xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_amdkfd_gfx_v10.c (revision ec8a42e7343234802b9054874fe01810880289ce)
1 /*
2  * Copyright 2019 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 #include "amdgpu.h"
23 #include "amdgpu_amdkfd.h"
24 #include "gc/gc_10_1_0_offset.h"
25 #include "gc/gc_10_1_0_sh_mask.h"
26 #include "navi10_enum.h"
27 #include "athub/athub_2_0_0_offset.h"
28 #include "athub/athub_2_0_0_sh_mask.h"
29 #include "oss/osssys_5_0_0_offset.h"
30 #include "oss/osssys_5_0_0_sh_mask.h"
31 #include "soc15_common.h"
32 #include "v10_structs.h"
33 #include "nv.h"
34 #include "nvd.h"
35 
36 enum hqd_dequeue_request_type {
37 	NO_ACTION = 0,
38 	DRAIN_PIPE,
39 	RESET_WAVES,
40 	SAVE_WAVES
41 };
42 
43 static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
44 {
45 	return (struct amdgpu_device *)kgd;
46 }
47 
48 static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
49 			uint32_t queue, uint32_t vmid)
50 {
51 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
52 
53 	mutex_lock(&adev->srbm_mutex);
54 	nv_grbm_select(adev, mec, pipe, queue, vmid);
55 }
56 
57 static void unlock_srbm(struct kgd_dev *kgd)
58 {
59 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
60 
61 	nv_grbm_select(adev, 0, 0, 0, 0);
62 	mutex_unlock(&adev->srbm_mutex);
63 }
64 
65 static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
66 				uint32_t queue_id)
67 {
68 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
69 
70 	uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
71 	uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
72 
73 	lock_srbm(kgd, mec, pipe, queue_id, 0);
74 }
75 
76 static uint64_t get_queue_mask(struct amdgpu_device *adev,
77 			       uint32_t pipe_id, uint32_t queue_id)
78 {
79 	unsigned int bit = pipe_id * adev->gfx.mec.num_queue_per_pipe +
80 			queue_id;
81 
82 	return 1ull << bit;
83 }
84 
85 static void release_queue(struct kgd_dev *kgd)
86 {
87 	unlock_srbm(kgd);
88 }
89 
90 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
91 					uint32_t sh_mem_config,
92 					uint32_t sh_mem_ape1_base,
93 					uint32_t sh_mem_ape1_limit,
94 					uint32_t sh_mem_bases)
95 {
96 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
97 
98 	lock_srbm(kgd, 0, 0, 0, vmid);
99 
100 	WREG32(SOC15_REG_OFFSET(GC, 0, mmSH_MEM_CONFIG), sh_mem_config);
101 	WREG32(SOC15_REG_OFFSET(GC, 0, mmSH_MEM_BASES), sh_mem_bases);
102 	/* APE1 no longer exists on GFX9 */
103 
104 	unlock_srbm(kgd);
105 }
106 
107 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, u32 pasid,
108 					unsigned int vmid)
109 {
110 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
111 
112 	/*
113 	 * We have to assume that there is no outstanding mapping.
114 	 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
115 	 * a mapping is in progress or because a mapping finished
116 	 * and the SW cleared it.
117 	 * So the protocol is to always wait & clear.
118 	 */
119 	uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
120 			ATC_VMID0_PASID_MAPPING__VALID_MASK;
121 
122 	pr_debug("pasid 0x%x vmid %d, reg value %x\n", pasid, vmid, pasid_mapping);
123 
124 	pr_debug("ATHUB, reg %x\n", SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) + vmid);
125 	WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) + vmid,
126 	       pasid_mapping);
127 
128 #if 0
129 	/* TODO: uncomment this code when the hardware support is ready. */
130 	while (!(RREG32(SOC15_REG_OFFSET(
131 				ATHUB, 0,
132 				mmATC_VMID_PASID_MAPPING_UPDATE_STATUS)) &
133 		 (1U << vmid)))
134 		cpu_relax();
135 
136 	pr_debug("ATHUB mapping update finished\n");
137 	WREG32(SOC15_REG_OFFSET(ATHUB, 0,
138 				mmATC_VMID_PASID_MAPPING_UPDATE_STATUS),
139 	       1U << vmid);
140 #endif
141 
142 	/* Mapping vmid to pasid also for IH block */
143 	pr_debug("update mapping for IH block and mmhub");
144 	WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT) + vmid,
145 	       pasid_mapping);
146 
147 	return 0;
148 }
149 
150 /* TODO - RING0 form of field is obsolete, seems to date back to SI
151  * but still works
152  */
153 
154 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
155 {
156 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
157 	uint32_t mec;
158 	uint32_t pipe;
159 
160 	mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
161 	pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
162 
163 	lock_srbm(kgd, mec, pipe, 0, 0);
164 
165 	WREG32(SOC15_REG_OFFSET(GC, 0, mmCPC_INT_CNTL),
166 		CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
167 		CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
168 
169 	unlock_srbm(kgd);
170 
171 	return 0;
172 }
173 
174 static uint32_t get_sdma_rlc_reg_offset(struct amdgpu_device *adev,
175 				unsigned int engine_id,
176 				unsigned int queue_id)
177 {
178 	uint32_t sdma_engine_reg_base[2] = {
179 		SOC15_REG_OFFSET(SDMA0, 0,
180 				 mmSDMA0_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL,
181 		/* On gfx10, mmSDMA1_xxx registers are defined NOT based
182 		 * on SDMA1 base address (dw 0x1860) but based on SDMA0
183 		 * base address (dw 0x1260). Therefore use mmSDMA0_RLC0_RB_CNTL
184 		 * instead of mmSDMA1_RLC0_RB_CNTL for the base address calc
185 		 * below
186 		 */
187 		SOC15_REG_OFFSET(SDMA1, 0,
188 				 mmSDMA1_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL
189 	};
190 
191 	uint32_t retval = sdma_engine_reg_base[engine_id]
192 		+ queue_id * (mmSDMA0_RLC1_RB_CNTL - mmSDMA0_RLC0_RB_CNTL);
193 
194 	pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n", engine_id,
195 			queue_id, retval);
196 
197 	return retval;
198 }
199 
200 #if 0
201 static uint32_t get_watch_base_addr(struct amdgpu_device *adev)
202 {
203 	uint32_t retval = SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_ADDR_H) -
204 			mmTCP_WATCH0_ADDR_H;
205 
206 	pr_debug("kfd: reg watch base address: 0x%x\n", retval);
207 
208 	return retval;
209 }
210 #endif
211 
212 static inline struct v10_compute_mqd *get_mqd(void *mqd)
213 {
214 	return (struct v10_compute_mqd *)mqd;
215 }
216 
217 static inline struct v10_sdma_mqd *get_sdma_mqd(void *mqd)
218 {
219 	return (struct v10_sdma_mqd *)mqd;
220 }
221 
222 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
223 			uint32_t queue_id, uint32_t __user *wptr,
224 			uint32_t wptr_shift, uint32_t wptr_mask,
225 			struct mm_struct *mm)
226 {
227 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
228 	struct v10_compute_mqd *m;
229 	uint32_t *mqd_hqd;
230 	uint32_t reg, hqd_base, data;
231 
232 	m = get_mqd(mqd);
233 
234 	pr_debug("Load hqd of pipe %d queue %d\n", pipe_id, queue_id);
235 	acquire_queue(kgd, pipe_id, queue_id);
236 
237 	/* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */
238 	mqd_hqd = &m->cp_mqd_base_addr_lo;
239 	hqd_base = SOC15_REG_OFFSET(GC, 0, mmCP_MQD_BASE_ADDR);
240 
241 	for (reg = hqd_base;
242 	     reg <= SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI); reg++)
243 		WREG32(reg, mqd_hqd[reg - hqd_base]);
244 
245 
246 	/* Activate doorbell logic before triggering WPTR poll. */
247 	data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
248 			     CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
249 	WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_DOORBELL_CONTROL), data);
250 
251 	if (wptr) {
252 		/* Don't read wptr with get_user because the user
253 		 * context may not be accessible (if this function
254 		 * runs in a work queue). Instead trigger a one-shot
255 		 * polling read from memory in the CP. This assumes
256 		 * that wptr is GPU-accessible in the queue's VMID via
257 		 * ATC or SVM. WPTR==RPTR before starting the poll so
258 		 * the CP starts fetching new commands from the right
259 		 * place.
260 		 *
261 		 * Guessing a 64-bit WPTR from a 32-bit RPTR is a bit
262 		 * tricky. Assume that the queue didn't overflow. The
263 		 * number of valid bits in the 32-bit RPTR depends on
264 		 * the queue size. The remaining bits are taken from
265 		 * the saved 64-bit WPTR. If the WPTR wrapped, add the
266 		 * queue size.
267 		 */
268 		uint32_t queue_size =
269 			2 << REG_GET_FIELD(m->cp_hqd_pq_control,
270 					   CP_HQD_PQ_CONTROL, QUEUE_SIZE);
271 		uint64_t guessed_wptr = m->cp_hqd_pq_rptr & (queue_size - 1);
272 
273 		if ((m->cp_hqd_pq_wptr_lo & (queue_size - 1)) < guessed_wptr)
274 			guessed_wptr += queue_size;
275 		guessed_wptr += m->cp_hqd_pq_wptr_lo & ~(queue_size - 1);
276 		guessed_wptr += (uint64_t)m->cp_hqd_pq_wptr_hi << 32;
277 
278 		WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_LO),
279 		       lower_32_bits(guessed_wptr));
280 		WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI),
281 		       upper_32_bits(guessed_wptr));
282 		WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR),
283 		       lower_32_bits((uint64_t)wptr));
284 		WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR_HI),
285 		       upper_32_bits((uint64_t)wptr));
286 		pr_debug("%s setting CP_PQ_WPTR_POLL_CNTL1 to %x\n", __func__,
287 			 (uint32_t)get_queue_mask(adev, pipe_id, queue_id));
288 		WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_PQ_WPTR_POLL_CNTL1),
289 		       (uint32_t)get_queue_mask(adev, pipe_id, queue_id));
290 	}
291 
292 	/* Start the EOP fetcher */
293 	WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_EOP_RPTR),
294 	       REG_SET_FIELD(m->cp_hqd_eop_rptr,
295 			     CP_HQD_EOP_RPTR, INIT_FETCHER, 1));
296 
297 	data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
298 	WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_ACTIVE), data);
299 
300 	release_queue(kgd);
301 
302 	return 0;
303 }
304 
305 static int kgd_hiq_mqd_load(struct kgd_dev *kgd, void *mqd,
306 			    uint32_t pipe_id, uint32_t queue_id,
307 			    uint32_t doorbell_off)
308 {
309 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
310 	struct amdgpu_ring *kiq_ring = &adev->gfx.kiq.ring;
311 	struct v10_compute_mqd *m;
312 	uint32_t mec, pipe;
313 	int r;
314 
315 	m = get_mqd(mqd);
316 
317 	acquire_queue(kgd, pipe_id, queue_id);
318 
319 	mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
320 	pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
321 
322 	pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
323 		 mec, pipe, queue_id);
324 
325 	spin_lock(&adev->gfx.kiq.ring_lock);
326 	r = amdgpu_ring_alloc(kiq_ring, 7);
327 	if (r) {
328 		pr_err("Failed to alloc KIQ (%d).\n", r);
329 		goto out_unlock;
330 	}
331 
332 	amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_MAP_QUEUES, 5));
333 	amdgpu_ring_write(kiq_ring,
334 			  PACKET3_MAP_QUEUES_QUEUE_SEL(0) | /* Queue_Sel */
335 			  PACKET3_MAP_QUEUES_VMID(m->cp_hqd_vmid) | /* VMID */
336 			  PACKET3_MAP_QUEUES_QUEUE(queue_id) |
337 			  PACKET3_MAP_QUEUES_PIPE(pipe) |
338 			  PACKET3_MAP_QUEUES_ME((mec - 1)) |
339 			  PACKET3_MAP_QUEUES_QUEUE_TYPE(0) | /*queue_type: normal compute queue */
340 			  PACKET3_MAP_QUEUES_ALLOC_FORMAT(0) | /* alloc format: all_on_one_pipe */
341 			  PACKET3_MAP_QUEUES_ENGINE_SEL(1) | /* engine_sel: hiq */
342 			  PACKET3_MAP_QUEUES_NUM_QUEUES(1)); /* num_queues: must be 1 */
343 	amdgpu_ring_write(kiq_ring,
344 			  PACKET3_MAP_QUEUES_DOORBELL_OFFSET(doorbell_off));
345 	amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_lo);
346 	amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_hi);
347 	amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_lo);
348 	amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_hi);
349 	amdgpu_ring_commit(kiq_ring);
350 
351 out_unlock:
352 	spin_unlock(&adev->gfx.kiq.ring_lock);
353 	release_queue(kgd);
354 
355 	return r;
356 }
357 
358 static int kgd_hqd_dump(struct kgd_dev *kgd,
359 			uint32_t pipe_id, uint32_t queue_id,
360 			uint32_t (**dump)[2], uint32_t *n_regs)
361 {
362 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
363 	uint32_t i = 0, reg;
364 #define HQD_N_REGS 56
365 #define DUMP_REG(addr) do {				\
366 		if (WARN_ON_ONCE(i >= HQD_N_REGS))	\
367 			break;				\
368 		(*dump)[i][0] = (addr) << 2;		\
369 		(*dump)[i++][1] = RREG32(addr);		\
370 	} while (0)
371 
372 	*dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
373 	if (*dump == NULL)
374 		return -ENOMEM;
375 
376 	acquire_queue(kgd, pipe_id, queue_id);
377 
378 	for (reg = SOC15_REG_OFFSET(GC, 0, mmCP_MQD_BASE_ADDR);
379 	     reg <= SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI); reg++)
380 		DUMP_REG(reg);
381 
382 	release_queue(kgd);
383 
384 	WARN_ON_ONCE(i != HQD_N_REGS);
385 	*n_regs = i;
386 
387 	return 0;
388 }
389 
390 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
391 			     uint32_t __user *wptr, struct mm_struct *mm)
392 {
393 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
394 	struct v10_sdma_mqd *m;
395 	uint32_t sdma_rlc_reg_offset;
396 	unsigned long end_jiffies;
397 	uint32_t data;
398 	uint64_t data64;
399 	uint64_t __user *wptr64 = (uint64_t __user *)wptr;
400 
401 	m = get_sdma_mqd(mqd);
402 	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
403 					    m->sdma_queue_id);
404 
405 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
406 		m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
407 
408 	end_jiffies = msecs_to_jiffies(2000) + jiffies;
409 	while (true) {
410 		data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
411 		if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
412 			break;
413 		if (time_after(jiffies, end_jiffies)) {
414 			pr_err("SDMA RLC not idle in %s\n", __func__);
415 			return -ETIME;
416 		}
417 		usleep_range(500, 1000);
418 	}
419 
420 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL_OFFSET,
421 	       m->sdmax_rlcx_doorbell_offset);
422 
423 	data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL,
424 			     ENABLE, 1);
425 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data);
426 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR,
427 				m->sdmax_rlcx_rb_rptr);
428 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI,
429 				m->sdmax_rlcx_rb_rptr_hi);
430 
431 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 1);
432 	if (read_user_wptr(mm, wptr64, data64)) {
433 		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
434 		       lower_32_bits(data64));
435 		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI,
436 		       upper_32_bits(data64));
437 	} else {
438 		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
439 		       m->sdmax_rlcx_rb_rptr);
440 		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI,
441 		       m->sdmax_rlcx_rb_rptr_hi);
442 	}
443 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 0);
444 
445 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base);
446 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI,
447 			m->sdmax_rlcx_rb_base_hi);
448 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
449 			m->sdmax_rlcx_rb_rptr_addr_lo);
450 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
451 			m->sdmax_rlcx_rb_rptr_addr_hi);
452 
453 	data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL,
454 			     RB_ENABLE, 1);
455 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data);
456 
457 	return 0;
458 }
459 
460 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
461 			     uint32_t engine_id, uint32_t queue_id,
462 			     uint32_t (**dump)[2], uint32_t *n_regs)
463 {
464 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
465 	uint32_t sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev,
466 			engine_id, queue_id);
467 	uint32_t i = 0, reg;
468 #undef HQD_N_REGS
469 #define HQD_N_REGS (19+6+7+10)
470 
471 	*dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
472 	if (*dump == NULL)
473 		return -ENOMEM;
474 
475 	for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
476 		DUMP_REG(sdma_rlc_reg_offset + reg);
477 	for (reg = mmSDMA0_RLC0_STATUS; reg <= mmSDMA0_RLC0_CSA_ADDR_HI; reg++)
478 		DUMP_REG(sdma_rlc_reg_offset + reg);
479 	for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN;
480 	     reg <= mmSDMA0_RLC0_MINOR_PTR_UPDATE; reg++)
481 		DUMP_REG(sdma_rlc_reg_offset + reg);
482 	for (reg = mmSDMA0_RLC0_MIDCMD_DATA0;
483 	     reg <= mmSDMA0_RLC0_MIDCMD_CNTL; reg++)
484 		DUMP_REG(sdma_rlc_reg_offset + reg);
485 
486 	WARN_ON_ONCE(i != HQD_N_REGS);
487 	*n_regs = i;
488 
489 	return 0;
490 }
491 
492 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
493 				uint32_t pipe_id, uint32_t queue_id)
494 {
495 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
496 	uint32_t act;
497 	bool retval = false;
498 	uint32_t low, high;
499 
500 	acquire_queue(kgd, pipe_id, queue_id);
501 	act = RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_ACTIVE));
502 	if (act) {
503 		low = lower_32_bits(queue_address >> 8);
504 		high = upper_32_bits(queue_address >> 8);
505 
506 		if (low == RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_BASE)) &&
507 		   high == RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_BASE_HI)))
508 			retval = true;
509 	}
510 	release_queue(kgd);
511 	return retval;
512 }
513 
514 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
515 {
516 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
517 	struct v10_sdma_mqd *m;
518 	uint32_t sdma_rlc_reg_offset;
519 	uint32_t sdma_rlc_rb_cntl;
520 
521 	m = get_sdma_mqd(mqd);
522 	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
523 					    m->sdma_queue_id);
524 
525 	sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
526 
527 	if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
528 		return true;
529 
530 	return false;
531 }
532 
533 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
534 				enum kfd_preempt_type reset_type,
535 				unsigned int utimeout, uint32_t pipe_id,
536 				uint32_t queue_id)
537 {
538 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
539 	enum hqd_dequeue_request_type type;
540 	unsigned long end_jiffies;
541 	uint32_t temp;
542 	struct v10_compute_mqd *m = get_mqd(mqd);
543 
544 	if (amdgpu_in_reset(adev))
545 		return -EIO;
546 
547 #if 0
548 	unsigned long flags;
549 	int retry;
550 #endif
551 
552 	acquire_queue(kgd, pipe_id, queue_id);
553 
554 	if (m->cp_hqd_vmid == 0)
555 		WREG32_FIELD15(GC, 0, RLC_CP_SCHEDULERS, scheduler1, 0);
556 
557 	switch (reset_type) {
558 	case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
559 		type = DRAIN_PIPE;
560 		break;
561 	case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
562 		type = RESET_WAVES;
563 		break;
564 	default:
565 		type = DRAIN_PIPE;
566 		break;
567 	}
568 
569 #if 0 /* Is this still needed? */
570 	/* Workaround: If IQ timer is active and the wait time is close to or
571 	 * equal to 0, dequeueing is not safe. Wait until either the wait time
572 	 * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
573 	 * cleared before continuing. Also, ensure wait times are set to at
574 	 * least 0x3.
575 	 */
576 	local_irq_save(flags);
577 	preempt_disable();
578 	retry = 5000; /* wait for 500 usecs at maximum */
579 	while (true) {
580 		temp = RREG32(mmCP_HQD_IQ_TIMER);
581 		if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
582 			pr_debug("HW is processing IQ\n");
583 			goto loop;
584 		}
585 		if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
586 			if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
587 					== 3) /* SEM-rearm is safe */
588 				break;
589 			/* Wait time 3 is safe for CP, but our MMIO read/write
590 			 * time is close to 1 microsecond, so check for 10 to
591 			 * leave more buffer room
592 			 */
593 			if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
594 					>= 10)
595 				break;
596 			pr_debug("IQ timer is active\n");
597 		} else
598 			break;
599 loop:
600 		if (!retry) {
601 			pr_err("CP HQD IQ timer status time out\n");
602 			break;
603 		}
604 		ndelay(100);
605 		--retry;
606 	}
607 	retry = 1000;
608 	while (true) {
609 		temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
610 		if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
611 			break;
612 		pr_debug("Dequeue request is pending\n");
613 
614 		if (!retry) {
615 			pr_err("CP HQD dequeue request time out\n");
616 			break;
617 		}
618 		ndelay(100);
619 		--retry;
620 	}
621 	local_irq_restore(flags);
622 	preempt_enable();
623 #endif
624 
625 	WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_DEQUEUE_REQUEST), type);
626 
627 	end_jiffies = (utimeout * HZ / 1000) + jiffies;
628 	while (true) {
629 		temp = RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_ACTIVE));
630 		if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
631 			break;
632 		if (time_after(jiffies, end_jiffies)) {
633 			pr_err("cp queue preemption time out.\n");
634 			release_queue(kgd);
635 			return -ETIME;
636 		}
637 		usleep_range(500, 1000);
638 	}
639 
640 	release_queue(kgd);
641 	return 0;
642 }
643 
644 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
645 				unsigned int utimeout)
646 {
647 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
648 	struct v10_sdma_mqd *m;
649 	uint32_t sdma_rlc_reg_offset;
650 	uint32_t temp;
651 	unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
652 
653 	m = get_sdma_mqd(mqd);
654 	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
655 					    m->sdma_queue_id);
656 
657 	temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
658 	temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
659 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp);
660 
661 	while (true) {
662 		temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
663 		if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
664 			break;
665 		if (time_after(jiffies, end_jiffies)) {
666 			pr_err("SDMA RLC not idle in %s\n", __func__);
667 			return -ETIME;
668 		}
669 		usleep_range(500, 1000);
670 	}
671 
672 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0);
673 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
674 		RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) |
675 		SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
676 
677 	m->sdmax_rlcx_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR);
678 	m->sdmax_rlcx_rb_rptr_hi =
679 		RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI);
680 
681 	return 0;
682 }
683 
684 static bool get_atc_vmid_pasid_mapping_info(struct kgd_dev *kgd,
685 					uint8_t vmid, uint16_t *p_pasid)
686 {
687 	uint32_t value;
688 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
689 
690 	value = RREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING)
691 		     + vmid);
692 	*p_pasid = value & ATC_VMID0_PASID_MAPPING__PASID_MASK;
693 
694 	return !!(value & ATC_VMID0_PASID_MAPPING__VALID_MASK);
695 }
696 
697 static int kgd_address_watch_disable(struct kgd_dev *kgd)
698 {
699 	return 0;
700 }
701 
702 static int kgd_address_watch_execute(struct kgd_dev *kgd,
703 					unsigned int watch_point_id,
704 					uint32_t cntl_val,
705 					uint32_t addr_hi,
706 					uint32_t addr_lo)
707 {
708 	return 0;
709 }
710 
711 static int kgd_wave_control_execute(struct kgd_dev *kgd,
712 					uint32_t gfx_index_val,
713 					uint32_t sq_cmd)
714 {
715 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
716 	uint32_t data = 0;
717 
718 	mutex_lock(&adev->grbm_idx_mutex);
719 
720 	WREG32(SOC15_REG_OFFSET(GC, 0, mmGRBM_GFX_INDEX), gfx_index_val);
721 	WREG32(SOC15_REG_OFFSET(GC, 0, mmSQ_CMD), sq_cmd);
722 
723 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
724 		INSTANCE_BROADCAST_WRITES, 1);
725 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
726 		SA_BROADCAST_WRITES, 1);
727 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
728 		SE_BROADCAST_WRITES, 1);
729 
730 	WREG32(SOC15_REG_OFFSET(GC, 0, mmGRBM_GFX_INDEX), data);
731 	mutex_unlock(&adev->grbm_idx_mutex);
732 
733 	return 0;
734 }
735 
736 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
737 					unsigned int watch_point_id,
738 					unsigned int reg_offset)
739 {
740 	return 0;
741 }
742 
743 static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
744 		uint64_t page_table_base)
745 {
746 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
747 
748 	if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
749 		pr_err("trying to set page table base for wrong VMID %u\n",
750 		       vmid);
751 		return;
752 	}
753 
754 	/* SDMA is on gfxhub as well for Navi1* series */
755 	adev->gfxhub.funcs->setup_vm_pt_regs(adev, vmid, page_table_base);
756 }
757 
758 const struct kfd2kgd_calls gfx_v10_kfd2kgd = {
759 	.program_sh_mem_settings = kgd_program_sh_mem_settings,
760 	.set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
761 	.init_interrupts = kgd_init_interrupts,
762 	.hqd_load = kgd_hqd_load,
763 	.hiq_mqd_load = kgd_hiq_mqd_load,
764 	.hqd_sdma_load = kgd_hqd_sdma_load,
765 	.hqd_dump = kgd_hqd_dump,
766 	.hqd_sdma_dump = kgd_hqd_sdma_dump,
767 	.hqd_is_occupied = kgd_hqd_is_occupied,
768 	.hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
769 	.hqd_destroy = kgd_hqd_destroy,
770 	.hqd_sdma_destroy = kgd_hqd_sdma_destroy,
771 	.address_watch_disable = kgd_address_watch_disable,
772 	.address_watch_execute = kgd_address_watch_execute,
773 	.wave_control_execute = kgd_wave_control_execute,
774 	.address_watch_get_offset = kgd_address_watch_get_offset,
775 	.get_atc_vmid_pasid_mapping_info =
776 			get_atc_vmid_pasid_mapping_info,
777 	.set_vm_context_page_table_base = set_vm_context_page_table_base,
778 };
779