1 /* 2 * Copyright 2019 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 */ 22 #include "amdgpu.h" 23 #include "amdgpu_amdkfd.h" 24 #include "amdgpu_amdkfd_gfx_v10.h" 25 #include "gc/gc_10_1_0_offset.h" 26 #include "gc/gc_10_1_0_sh_mask.h" 27 #include "athub/athub_2_0_0_offset.h" 28 #include "athub/athub_2_0_0_sh_mask.h" 29 #include "oss/osssys_5_0_0_offset.h" 30 #include "oss/osssys_5_0_0_sh_mask.h" 31 #include "soc15_common.h" 32 #include "v10_structs.h" 33 #include "nv.h" 34 #include "nvd.h" 35 #include <uapi/linux/kfd_ioctl.h> 36 37 enum hqd_dequeue_request_type { 38 NO_ACTION = 0, 39 DRAIN_PIPE, 40 RESET_WAVES, 41 SAVE_WAVES 42 }; 43 44 static void lock_srbm(struct amdgpu_device *adev, uint32_t mec, uint32_t pipe, 45 uint32_t queue, uint32_t vmid) 46 { 47 mutex_lock(&adev->srbm_mutex); 48 nv_grbm_select(adev, mec, pipe, queue, vmid); 49 } 50 51 static void unlock_srbm(struct amdgpu_device *adev) 52 { 53 nv_grbm_select(adev, 0, 0, 0, 0); 54 mutex_unlock(&adev->srbm_mutex); 55 } 56 57 static void acquire_queue(struct amdgpu_device *adev, uint32_t pipe_id, 58 uint32_t queue_id) 59 { 60 uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1; 61 uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec); 62 63 lock_srbm(adev, mec, pipe, queue_id, 0); 64 } 65 66 static uint64_t get_queue_mask(struct amdgpu_device *adev, 67 uint32_t pipe_id, uint32_t queue_id) 68 { 69 unsigned int bit = pipe_id * adev->gfx.mec.num_queue_per_pipe + 70 queue_id; 71 72 return 1ull << bit; 73 } 74 75 static void release_queue(struct amdgpu_device *adev) 76 { 77 unlock_srbm(adev); 78 } 79 80 static void kgd_program_sh_mem_settings(struct amdgpu_device *adev, uint32_t vmid, 81 uint32_t sh_mem_config, 82 uint32_t sh_mem_ape1_base, 83 uint32_t sh_mem_ape1_limit, 84 uint32_t sh_mem_bases, uint32_t inst) 85 { 86 lock_srbm(adev, 0, 0, 0, vmid); 87 88 WREG32_SOC15(GC, 0, mmSH_MEM_CONFIG, sh_mem_config); 89 WREG32_SOC15(GC, 0, mmSH_MEM_BASES, sh_mem_bases); 90 /* APE1 no longer exists on GFX9 */ 91 92 unlock_srbm(adev); 93 } 94 95 static int kgd_set_pasid_vmid_mapping(struct amdgpu_device *adev, u32 pasid, 96 unsigned int vmid, uint32_t inst) 97 { 98 /* 99 * We have to assume that there is no outstanding mapping. 100 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because 101 * a mapping is in progress or because a mapping finished 102 * and the SW cleared it. 103 * So the protocol is to always wait & clear. 104 */ 105 uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid | 106 ATC_VMID0_PASID_MAPPING__VALID_MASK; 107 108 pr_debug("pasid 0x%x vmid %d, reg value %x\n", pasid, vmid, pasid_mapping); 109 110 pr_debug("ATHUB, reg %x\n", SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) + vmid); 111 WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) + vmid, 112 pasid_mapping); 113 114 #if 0 115 /* TODO: uncomment this code when the hardware support is ready. */ 116 while (!(RREG32(SOC15_REG_OFFSET( 117 ATHUB, 0, 118 mmATC_VMID_PASID_MAPPING_UPDATE_STATUS)) & 119 (1U << vmid))) 120 cpu_relax(); 121 122 pr_debug("ATHUB mapping update finished\n"); 123 WREG32(SOC15_REG_OFFSET(ATHUB, 0, 124 mmATC_VMID_PASID_MAPPING_UPDATE_STATUS), 125 1U << vmid); 126 #endif 127 128 /* Mapping vmid to pasid also for IH block */ 129 pr_debug("update mapping for IH block and mmhub"); 130 WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT) + vmid, 131 pasid_mapping); 132 133 return 0; 134 } 135 136 /* TODO - RING0 form of field is obsolete, seems to date back to SI 137 * but still works 138 */ 139 140 static int kgd_init_interrupts(struct amdgpu_device *adev, uint32_t pipe_id, 141 uint32_t inst) 142 { 143 uint32_t mec; 144 uint32_t pipe; 145 146 mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1; 147 pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec); 148 149 lock_srbm(adev, mec, pipe, 0, 0); 150 151 WREG32_SOC15(GC, 0, mmCPC_INT_CNTL, 152 CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK | 153 CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK); 154 155 unlock_srbm(adev); 156 157 return 0; 158 } 159 160 static uint32_t get_sdma_rlc_reg_offset(struct amdgpu_device *adev, 161 unsigned int engine_id, 162 unsigned int queue_id) 163 { 164 uint32_t sdma_engine_reg_base[2] = { 165 SOC15_REG_OFFSET(SDMA0, 0, 166 mmSDMA0_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL, 167 /* On gfx10, mmSDMA1_xxx registers are defined NOT based 168 * on SDMA1 base address (dw 0x1860) but based on SDMA0 169 * base address (dw 0x1260). Therefore use mmSDMA0_RLC0_RB_CNTL 170 * instead of mmSDMA1_RLC0_RB_CNTL for the base address calc 171 * below 172 */ 173 SOC15_REG_OFFSET(SDMA1, 0, 174 mmSDMA1_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL 175 }; 176 177 uint32_t retval = sdma_engine_reg_base[engine_id] 178 + queue_id * (mmSDMA0_RLC1_RB_CNTL - mmSDMA0_RLC0_RB_CNTL); 179 180 pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n", engine_id, 181 queue_id, retval); 182 183 return retval; 184 } 185 186 #if 0 187 static uint32_t get_watch_base_addr(struct amdgpu_device *adev) 188 { 189 uint32_t retval = SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_ADDR_H) - 190 mmTCP_WATCH0_ADDR_H; 191 192 pr_debug("kfd: reg watch base address: 0x%x\n", retval); 193 194 return retval; 195 } 196 #endif 197 198 static inline struct v10_compute_mqd *get_mqd(void *mqd) 199 { 200 return (struct v10_compute_mqd *)mqd; 201 } 202 203 static inline struct v10_sdma_mqd *get_sdma_mqd(void *mqd) 204 { 205 return (struct v10_sdma_mqd *)mqd; 206 } 207 208 static int kgd_hqd_load(struct amdgpu_device *adev, void *mqd, 209 uint32_t pipe_id, uint32_t queue_id, 210 uint32_t __user *wptr, uint32_t wptr_shift, 211 uint32_t wptr_mask, struct mm_struct *mm, uint32_t inst) 212 { 213 struct v10_compute_mqd *m; 214 uint32_t *mqd_hqd; 215 uint32_t reg, hqd_base, data; 216 217 m = get_mqd(mqd); 218 219 pr_debug("Load hqd of pipe %d queue %d\n", pipe_id, queue_id); 220 acquire_queue(adev, pipe_id, queue_id); 221 222 /* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */ 223 mqd_hqd = &m->cp_mqd_base_addr_lo; 224 hqd_base = SOC15_REG_OFFSET(GC, 0, mmCP_MQD_BASE_ADDR); 225 226 for (reg = hqd_base; 227 reg <= SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI); reg++) 228 WREG32_SOC15_IP(GC, reg, mqd_hqd[reg - hqd_base]); 229 230 231 /* Activate doorbell logic before triggering WPTR poll. */ 232 data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control, 233 CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1); 234 WREG32_SOC15(GC, 0, mmCP_HQD_PQ_DOORBELL_CONTROL, data); 235 236 if (wptr) { 237 /* Don't read wptr with get_user because the user 238 * context may not be accessible (if this function 239 * runs in a work queue). Instead trigger a one-shot 240 * polling read from memory in the CP. This assumes 241 * that wptr is GPU-accessible in the queue's VMID via 242 * ATC or SVM. WPTR==RPTR before starting the poll so 243 * the CP starts fetching new commands from the right 244 * place. 245 * 246 * Guessing a 64-bit WPTR from a 32-bit RPTR is a bit 247 * tricky. Assume that the queue didn't overflow. The 248 * number of valid bits in the 32-bit RPTR depends on 249 * the queue size. The remaining bits are taken from 250 * the saved 64-bit WPTR. If the WPTR wrapped, add the 251 * queue size. 252 */ 253 uint32_t queue_size = 254 2 << REG_GET_FIELD(m->cp_hqd_pq_control, 255 CP_HQD_PQ_CONTROL, QUEUE_SIZE); 256 uint64_t guessed_wptr = m->cp_hqd_pq_rptr & (queue_size - 1); 257 258 if ((m->cp_hqd_pq_wptr_lo & (queue_size - 1)) < guessed_wptr) 259 guessed_wptr += queue_size; 260 guessed_wptr += m->cp_hqd_pq_wptr_lo & ~(queue_size - 1); 261 guessed_wptr += (uint64_t)m->cp_hqd_pq_wptr_hi << 32; 262 263 WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_LO, 264 lower_32_bits(guessed_wptr)); 265 WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_HI, 266 upper_32_bits(guessed_wptr)); 267 WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR, 268 lower_32_bits((uint64_t)wptr)); 269 WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR_HI, 270 upper_32_bits((uint64_t)wptr)); 271 pr_debug("%s setting CP_PQ_WPTR_POLL_CNTL1 to %x\n", __func__, 272 (uint32_t)get_queue_mask(adev, pipe_id, queue_id)); 273 WREG32_SOC15(GC, 0, mmCP_PQ_WPTR_POLL_CNTL1, 274 (uint32_t)get_queue_mask(adev, pipe_id, queue_id)); 275 } 276 277 /* Start the EOP fetcher */ 278 WREG32_SOC15(GC, 0, mmCP_HQD_EOP_RPTR, 279 REG_SET_FIELD(m->cp_hqd_eop_rptr, 280 CP_HQD_EOP_RPTR, INIT_FETCHER, 1)); 281 282 data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1); 283 WREG32_SOC15(GC, 0, mmCP_HQD_ACTIVE, data); 284 285 release_queue(adev); 286 287 return 0; 288 } 289 290 static int kgd_hiq_mqd_load(struct amdgpu_device *adev, void *mqd, 291 uint32_t pipe_id, uint32_t queue_id, 292 uint32_t doorbell_off, uint32_t inst) 293 { 294 struct amdgpu_ring *kiq_ring = &adev->gfx.kiq[0].ring; 295 struct v10_compute_mqd *m; 296 uint32_t mec, pipe; 297 int r; 298 299 m = get_mqd(mqd); 300 301 acquire_queue(adev, pipe_id, queue_id); 302 303 mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1; 304 pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec); 305 306 pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n", 307 mec, pipe, queue_id); 308 309 spin_lock(&adev->gfx.kiq[0].ring_lock); 310 r = amdgpu_ring_alloc(kiq_ring, 7); 311 if (r) { 312 pr_err("Failed to alloc KIQ (%d).\n", r); 313 goto out_unlock; 314 } 315 316 amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_MAP_QUEUES, 5)); 317 amdgpu_ring_write(kiq_ring, 318 PACKET3_MAP_QUEUES_QUEUE_SEL(0) | /* Queue_Sel */ 319 PACKET3_MAP_QUEUES_VMID(m->cp_hqd_vmid) | /* VMID */ 320 PACKET3_MAP_QUEUES_QUEUE(queue_id) | 321 PACKET3_MAP_QUEUES_PIPE(pipe) | 322 PACKET3_MAP_QUEUES_ME((mec - 1)) | 323 PACKET3_MAP_QUEUES_QUEUE_TYPE(0) | /*queue_type: normal compute queue */ 324 PACKET3_MAP_QUEUES_ALLOC_FORMAT(0) | /* alloc format: all_on_one_pipe */ 325 PACKET3_MAP_QUEUES_ENGINE_SEL(1) | /* engine_sel: hiq */ 326 PACKET3_MAP_QUEUES_NUM_QUEUES(1)); /* num_queues: must be 1 */ 327 amdgpu_ring_write(kiq_ring, 328 PACKET3_MAP_QUEUES_DOORBELL_OFFSET(doorbell_off)); 329 amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_lo); 330 amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_hi); 331 amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_lo); 332 amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_hi); 333 amdgpu_ring_commit(kiq_ring); 334 335 out_unlock: 336 spin_unlock(&adev->gfx.kiq[0].ring_lock); 337 release_queue(adev); 338 339 return r; 340 } 341 342 static int kgd_hqd_dump(struct amdgpu_device *adev, 343 uint32_t pipe_id, uint32_t queue_id, 344 uint32_t (**dump)[2], uint32_t *n_regs, uint32_t inst) 345 { 346 uint32_t i = 0, reg; 347 #define HQD_N_REGS 56 348 #define DUMP_REG(addr) do { \ 349 if (WARN_ON_ONCE(i >= HQD_N_REGS)) \ 350 break; \ 351 (*dump)[i][0] = (addr) << 2; \ 352 (*dump)[i++][1] = RREG32_SOC15_IP(GC, addr); \ 353 } while (0) 354 355 *dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL); 356 if (*dump == NULL) 357 return -ENOMEM; 358 359 acquire_queue(adev, pipe_id, queue_id); 360 361 for (reg = SOC15_REG_OFFSET(GC, 0, mmCP_MQD_BASE_ADDR); 362 reg <= SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI); reg++) 363 DUMP_REG(reg); 364 365 release_queue(adev); 366 367 WARN_ON_ONCE(i != HQD_N_REGS); 368 *n_regs = i; 369 370 return 0; 371 } 372 373 static int kgd_hqd_sdma_load(struct amdgpu_device *adev, void *mqd, 374 uint32_t __user *wptr, struct mm_struct *mm) 375 { 376 struct v10_sdma_mqd *m; 377 uint32_t sdma_rlc_reg_offset; 378 unsigned long end_jiffies; 379 uint32_t data; 380 uint64_t data64; 381 uint64_t __user *wptr64 = (uint64_t __user *)wptr; 382 383 m = get_sdma_mqd(mqd); 384 sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id, 385 m->sdma_queue_id); 386 387 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, 388 m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)); 389 390 end_jiffies = msecs_to_jiffies(2000) + jiffies; 391 while (true) { 392 data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS); 393 if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK) 394 break; 395 if (time_after(jiffies, end_jiffies)) { 396 pr_err("SDMA RLC not idle in %s\n", __func__); 397 return -ETIME; 398 } 399 usleep_range(500, 1000); 400 } 401 402 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL_OFFSET, 403 m->sdmax_rlcx_doorbell_offset); 404 405 data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL, 406 ENABLE, 1); 407 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data); 408 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR, 409 m->sdmax_rlcx_rb_rptr); 410 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI, 411 m->sdmax_rlcx_rb_rptr_hi); 412 413 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 1); 414 if (read_user_wptr(mm, wptr64, data64)) { 415 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR, 416 lower_32_bits(data64)); 417 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI, 418 upper_32_bits(data64)); 419 } else { 420 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR, 421 m->sdmax_rlcx_rb_rptr); 422 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI, 423 m->sdmax_rlcx_rb_rptr_hi); 424 } 425 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 0); 426 427 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base); 428 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI, 429 m->sdmax_rlcx_rb_base_hi); 430 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 431 m->sdmax_rlcx_rb_rptr_addr_lo); 432 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI, 433 m->sdmax_rlcx_rb_rptr_addr_hi); 434 435 data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL, 436 RB_ENABLE, 1); 437 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data); 438 439 return 0; 440 } 441 442 static int kgd_hqd_sdma_dump(struct amdgpu_device *adev, 443 uint32_t engine_id, uint32_t queue_id, 444 uint32_t (**dump)[2], uint32_t *n_regs) 445 { 446 uint32_t sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, 447 engine_id, queue_id); 448 uint32_t i = 0, reg; 449 #undef HQD_N_REGS 450 #define HQD_N_REGS (19+6+7+10) 451 452 *dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL); 453 if (*dump == NULL) 454 return -ENOMEM; 455 456 for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++) 457 DUMP_REG(sdma_rlc_reg_offset + reg); 458 for (reg = mmSDMA0_RLC0_STATUS; reg <= mmSDMA0_RLC0_CSA_ADDR_HI; reg++) 459 DUMP_REG(sdma_rlc_reg_offset + reg); 460 for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN; 461 reg <= mmSDMA0_RLC0_MINOR_PTR_UPDATE; reg++) 462 DUMP_REG(sdma_rlc_reg_offset + reg); 463 for (reg = mmSDMA0_RLC0_MIDCMD_DATA0; 464 reg <= mmSDMA0_RLC0_MIDCMD_CNTL; reg++) 465 DUMP_REG(sdma_rlc_reg_offset + reg); 466 467 WARN_ON_ONCE(i != HQD_N_REGS); 468 *n_regs = i; 469 470 return 0; 471 } 472 473 static bool kgd_hqd_is_occupied(struct amdgpu_device *adev, 474 uint64_t queue_address, uint32_t pipe_id, 475 uint32_t queue_id, uint32_t inst) 476 { 477 uint32_t act; 478 bool retval = false; 479 uint32_t low, high; 480 481 acquire_queue(adev, pipe_id, queue_id); 482 act = RREG32_SOC15(GC, 0, mmCP_HQD_ACTIVE); 483 if (act) { 484 low = lower_32_bits(queue_address >> 8); 485 high = upper_32_bits(queue_address >> 8); 486 487 if (low == RREG32_SOC15(GC, 0, mmCP_HQD_PQ_BASE) && 488 high == RREG32_SOC15(GC, 0, mmCP_HQD_PQ_BASE_HI)) 489 retval = true; 490 } 491 release_queue(adev); 492 return retval; 493 } 494 495 static bool kgd_hqd_sdma_is_occupied(struct amdgpu_device *adev, void *mqd) 496 { 497 struct v10_sdma_mqd *m; 498 uint32_t sdma_rlc_reg_offset; 499 uint32_t sdma_rlc_rb_cntl; 500 501 m = get_sdma_mqd(mqd); 502 sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id, 503 m->sdma_queue_id); 504 505 sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL); 506 507 if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK) 508 return true; 509 510 return false; 511 } 512 513 static int kgd_hqd_destroy(struct amdgpu_device *adev, void *mqd, 514 enum kfd_preempt_type reset_type, 515 unsigned int utimeout, uint32_t pipe_id, 516 uint32_t queue_id, uint32_t inst) 517 { 518 enum hqd_dequeue_request_type type; 519 unsigned long end_jiffies; 520 uint32_t temp; 521 struct v10_compute_mqd *m = get_mqd(mqd); 522 523 if (amdgpu_in_reset(adev)) 524 return -EIO; 525 526 #if 0 527 unsigned long flags; 528 int retry; 529 #endif 530 531 acquire_queue(adev, pipe_id, queue_id); 532 533 if (m->cp_hqd_vmid == 0) 534 WREG32_FIELD15(GC, 0, RLC_CP_SCHEDULERS, scheduler1, 0); 535 536 switch (reset_type) { 537 case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN: 538 type = DRAIN_PIPE; 539 break; 540 case KFD_PREEMPT_TYPE_WAVEFRONT_RESET: 541 type = RESET_WAVES; 542 break; 543 case KFD_PREEMPT_TYPE_WAVEFRONT_SAVE: 544 type = SAVE_WAVES; 545 break; 546 default: 547 type = DRAIN_PIPE; 548 break; 549 } 550 551 #if 0 /* Is this still needed? */ 552 /* Workaround: If IQ timer is active and the wait time is close to or 553 * equal to 0, dequeueing is not safe. Wait until either the wait time 554 * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is 555 * cleared before continuing. Also, ensure wait times are set to at 556 * least 0x3. 557 */ 558 local_irq_save(flags); 559 preempt_disable(); 560 retry = 5000; /* wait for 500 usecs at maximum */ 561 while (true) { 562 temp = RREG32(mmCP_HQD_IQ_TIMER); 563 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) { 564 pr_debug("HW is processing IQ\n"); 565 goto loop; 566 } 567 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) { 568 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE) 569 == 3) /* SEM-rearm is safe */ 570 break; 571 /* Wait time 3 is safe for CP, but our MMIO read/write 572 * time is close to 1 microsecond, so check for 10 to 573 * leave more buffer room 574 */ 575 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME) 576 >= 10) 577 break; 578 pr_debug("IQ timer is active\n"); 579 } else 580 break; 581 loop: 582 if (!retry) { 583 pr_err("CP HQD IQ timer status time out\n"); 584 break; 585 } 586 ndelay(100); 587 --retry; 588 } 589 retry = 1000; 590 while (true) { 591 temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST); 592 if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK)) 593 break; 594 pr_debug("Dequeue request is pending\n"); 595 596 if (!retry) { 597 pr_err("CP HQD dequeue request time out\n"); 598 break; 599 } 600 ndelay(100); 601 --retry; 602 } 603 local_irq_restore(flags); 604 preempt_enable(); 605 #endif 606 607 WREG32_SOC15(GC, 0, mmCP_HQD_DEQUEUE_REQUEST, type); 608 609 end_jiffies = (utimeout * HZ / 1000) + jiffies; 610 while (true) { 611 temp = RREG32_SOC15(GC, 0, mmCP_HQD_ACTIVE); 612 if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK)) 613 break; 614 if (time_after(jiffies, end_jiffies)) { 615 pr_err("cp queue preemption time out.\n"); 616 release_queue(adev); 617 return -ETIME; 618 } 619 usleep_range(500, 1000); 620 } 621 622 release_queue(adev); 623 return 0; 624 } 625 626 static int kgd_hqd_sdma_destroy(struct amdgpu_device *adev, void *mqd, 627 unsigned int utimeout) 628 { 629 struct v10_sdma_mqd *m; 630 uint32_t sdma_rlc_reg_offset; 631 uint32_t temp; 632 unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies; 633 634 m = get_sdma_mqd(mqd); 635 sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id, 636 m->sdma_queue_id); 637 638 temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL); 639 temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK; 640 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp); 641 642 while (true) { 643 temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS); 644 if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK) 645 break; 646 if (time_after(jiffies, end_jiffies)) { 647 pr_err("SDMA RLC not idle in %s\n", __func__); 648 return -ETIME; 649 } 650 usleep_range(500, 1000); 651 } 652 653 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0); 654 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, 655 RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) | 656 SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK); 657 658 m->sdmax_rlcx_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR); 659 m->sdmax_rlcx_rb_rptr_hi = 660 RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI); 661 662 return 0; 663 } 664 665 static bool get_atc_vmid_pasid_mapping_info(struct amdgpu_device *adev, 666 uint8_t vmid, uint16_t *p_pasid) 667 { 668 uint32_t value; 669 670 value = RREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) 671 + vmid); 672 *p_pasid = value & ATC_VMID0_PASID_MAPPING__PASID_MASK; 673 674 return !!(value & ATC_VMID0_PASID_MAPPING__VALID_MASK); 675 } 676 677 static int kgd_wave_control_execute(struct amdgpu_device *adev, 678 uint32_t gfx_index_val, 679 uint32_t sq_cmd, uint32_t inst) 680 { 681 uint32_t data = 0; 682 683 mutex_lock(&adev->grbm_idx_mutex); 684 685 WREG32_SOC15(GC, 0, mmGRBM_GFX_INDEX, gfx_index_val); 686 WREG32_SOC15(GC, 0, mmSQ_CMD, sq_cmd); 687 688 data = REG_SET_FIELD(data, GRBM_GFX_INDEX, 689 INSTANCE_BROADCAST_WRITES, 1); 690 data = REG_SET_FIELD(data, GRBM_GFX_INDEX, 691 SA_BROADCAST_WRITES, 1); 692 data = REG_SET_FIELD(data, GRBM_GFX_INDEX, 693 SE_BROADCAST_WRITES, 1); 694 695 WREG32_SOC15(GC, 0, mmGRBM_GFX_INDEX, data); 696 mutex_unlock(&adev->grbm_idx_mutex); 697 698 return 0; 699 } 700 701 static void set_vm_context_page_table_base(struct amdgpu_device *adev, 702 uint32_t vmid, uint64_t page_table_base) 703 { 704 if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) { 705 pr_err("trying to set page table base for wrong VMID %u\n", 706 vmid); 707 return; 708 } 709 710 /* SDMA is on gfxhub as well for Navi1* series */ 711 adev->gfxhub.funcs->setup_vm_pt_regs(adev, vmid, page_table_base); 712 } 713 714 /* 715 * GFX10 helper for wave launch stall requirements on debug trap setting. 716 * 717 * vmid: 718 * Target VMID to stall/unstall. 719 * 720 * stall: 721 * 0-unstall wave launch (enable), 1-stall wave launch (disable). 722 * After wavefront launch has been stalled, allocated waves must drain from 723 * SPI in order for debug trap settings to take effect on those waves. 724 * This is roughly a ~3500 clock cycle wait on SPI where a read on 725 * SPI_GDBG_WAVE_CNTL translates to ~32 clock cycles. 726 * KGD_GFX_V10_WAVE_LAUNCH_SPI_DRAIN_LATENCY indicates the number of reads required. 727 * 728 * NOTE: We can afford to clear the entire STALL_VMID field on unstall 729 * because current GFX10 chips cannot support multi-process debugging due to 730 * trap configuration and masking being limited to global scope. Always 731 * assume single process conditions. 732 * 733 */ 734 735 #define KGD_GFX_V10_WAVE_LAUNCH_SPI_DRAIN_LATENCY 110 736 static void kgd_gfx_v10_set_wave_launch_stall(struct amdgpu_device *adev, uint32_t vmid, bool stall) 737 { 738 uint32_t data = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL)); 739 int i; 740 741 data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL, STALL_VMID, 742 stall ? 1 << vmid : 0); 743 744 WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL), data); 745 746 if (!stall) 747 return; 748 749 for (i = 0; i < KGD_GFX_V10_WAVE_LAUNCH_SPI_DRAIN_LATENCY; i++) 750 RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL)); 751 } 752 753 uint32_t kgd_gfx_v10_enable_debug_trap(struct amdgpu_device *adev, 754 bool restore_dbg_registers, 755 uint32_t vmid) 756 { 757 758 mutex_lock(&adev->grbm_idx_mutex); 759 760 kgd_gfx_v10_set_wave_launch_stall(adev, vmid, true); 761 762 /* assume gfx off is disabled for the debug session if rlc restore not supported. */ 763 if (restore_dbg_registers) { 764 uint32_t data = 0; 765 766 data = REG_SET_FIELD(data, SPI_GDBG_TRAP_CONFIG, 767 VMID_SEL, 1 << vmid); 768 data = REG_SET_FIELD(data, SPI_GDBG_TRAP_CONFIG, 769 TRAP_EN, 1); 770 WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_CONFIG), data); 771 WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_DATA0), 0); 772 WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_DATA1), 0); 773 774 kgd_gfx_v10_set_wave_launch_stall(adev, vmid, false); 775 776 mutex_unlock(&adev->grbm_idx_mutex); 777 778 return 0; 779 } 780 781 WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK), 0); 782 783 kgd_gfx_v10_set_wave_launch_stall(adev, vmid, false); 784 785 mutex_unlock(&adev->grbm_idx_mutex); 786 787 return 0; 788 } 789 790 uint32_t kgd_gfx_v10_disable_debug_trap(struct amdgpu_device *adev, 791 bool keep_trap_enabled, 792 uint32_t vmid) 793 { 794 mutex_lock(&adev->grbm_idx_mutex); 795 796 kgd_gfx_v10_set_wave_launch_stall(adev, vmid, true); 797 798 WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK), 0); 799 800 kgd_gfx_v10_set_wave_launch_stall(adev, vmid, false); 801 802 mutex_unlock(&adev->grbm_idx_mutex); 803 804 return 0; 805 } 806 807 int kgd_gfx_v10_validate_trap_override_request(struct amdgpu_device *adev, 808 uint32_t trap_override, 809 uint32_t *trap_mask_supported) 810 { 811 *trap_mask_supported &= KFD_DBG_TRAP_MASK_DBG_ADDRESS_WATCH; 812 813 /* The SPI_GDBG_TRAP_MASK register is global and affects all 814 * processes. Only allow OR-ing the address-watch bit, since 815 * this only affects processes under the debugger. Other bits 816 * should stay 0 to avoid the debugger interfering with other 817 * processes. 818 */ 819 if (trap_override != KFD_DBG_TRAP_OVERRIDE_OR) 820 return -EINVAL; 821 822 return 0; 823 } 824 825 uint32_t kgd_gfx_v10_set_wave_launch_trap_override(struct amdgpu_device *adev, 826 uint32_t vmid, 827 uint32_t trap_override, 828 uint32_t trap_mask_bits, 829 uint32_t trap_mask_request, 830 uint32_t *trap_mask_prev, 831 uint32_t kfd_dbg_trap_cntl_prev) 832 { 833 uint32_t data, wave_cntl_prev; 834 835 mutex_lock(&adev->grbm_idx_mutex); 836 837 wave_cntl_prev = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL)); 838 839 kgd_gfx_v10_set_wave_launch_stall(adev, vmid, true); 840 841 data = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK)); 842 *trap_mask_prev = REG_GET_FIELD(data, SPI_GDBG_TRAP_MASK, EXCP_EN); 843 844 trap_mask_bits = (trap_mask_bits & trap_mask_request) | 845 (*trap_mask_prev & ~trap_mask_request); 846 847 data = REG_SET_FIELD(data, SPI_GDBG_TRAP_MASK, EXCP_EN, trap_mask_bits); 848 data = REG_SET_FIELD(data, SPI_GDBG_TRAP_MASK, REPLACE, trap_override); 849 WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK), data); 850 851 /* We need to preserve wave launch mode stall settings. */ 852 WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL), wave_cntl_prev); 853 854 mutex_unlock(&adev->grbm_idx_mutex); 855 856 return 0; 857 } 858 859 uint32_t kgd_gfx_v10_set_wave_launch_mode(struct amdgpu_device *adev, 860 uint8_t wave_launch_mode, 861 uint32_t vmid) 862 { 863 uint32_t data = 0; 864 bool is_mode_set = !!wave_launch_mode; 865 866 mutex_lock(&adev->grbm_idx_mutex); 867 868 kgd_gfx_v10_set_wave_launch_stall(adev, vmid, true); 869 870 data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL2, 871 VMID_MASK, is_mode_set ? 1 << vmid : 0); 872 data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL2, 873 MODE, is_mode_set ? wave_launch_mode : 0); 874 WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL2), data); 875 876 kgd_gfx_v10_set_wave_launch_stall(adev, vmid, false); 877 878 mutex_unlock(&adev->grbm_idx_mutex); 879 880 return 0; 881 } 882 883 #define TCP_WATCH_STRIDE (mmTCP_WATCH1_ADDR_H - mmTCP_WATCH0_ADDR_H) 884 #define SQ_WATCH_STRIDE (mmSQ_WATCH1_ADDR_H - mmSQ_WATCH0_ADDR_H) 885 uint32_t kgd_gfx_v10_set_address_watch(struct amdgpu_device *adev, 886 uint64_t watch_address, 887 uint32_t watch_address_mask, 888 uint32_t watch_id, 889 uint32_t watch_mode, 890 uint32_t debug_vmid, 891 uint32_t inst) 892 { 893 /* SQ_WATCH?_ADDR_* and TCP_WATCH?_ADDR_* are programmed with the 894 * same values. 895 */ 896 uint32_t watch_address_high; 897 uint32_t watch_address_low; 898 uint32_t tcp_watch_address_cntl; 899 uint32_t sq_watch_address_cntl; 900 901 watch_address_low = lower_32_bits(watch_address); 902 watch_address_high = upper_32_bits(watch_address) & 0xffff; 903 904 tcp_watch_address_cntl = 0; 905 tcp_watch_address_cntl = REG_SET_FIELD(tcp_watch_address_cntl, 906 TCP_WATCH0_CNTL, 907 VMID, 908 debug_vmid); 909 tcp_watch_address_cntl = REG_SET_FIELD(tcp_watch_address_cntl, 910 TCP_WATCH0_CNTL, 911 MODE, 912 watch_mode); 913 tcp_watch_address_cntl = REG_SET_FIELD(tcp_watch_address_cntl, 914 TCP_WATCH0_CNTL, 915 MASK, 916 watch_address_mask >> 7); 917 918 sq_watch_address_cntl = 0; 919 sq_watch_address_cntl = REG_SET_FIELD(sq_watch_address_cntl, 920 SQ_WATCH0_CNTL, 921 VMID, 922 debug_vmid); 923 sq_watch_address_cntl = REG_SET_FIELD(sq_watch_address_cntl, 924 SQ_WATCH0_CNTL, 925 MODE, 926 watch_mode); 927 sq_watch_address_cntl = REG_SET_FIELD(sq_watch_address_cntl, 928 SQ_WATCH0_CNTL, 929 MASK, 930 watch_address_mask >> 6); 931 932 /* Turning off this watch point until we set all the registers */ 933 tcp_watch_address_cntl = REG_SET_FIELD(tcp_watch_address_cntl, 934 TCP_WATCH0_CNTL, 935 VALID, 936 0); 937 WREG32((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_CNTL) + 938 (watch_id * TCP_WATCH_STRIDE)), 939 tcp_watch_address_cntl); 940 941 sq_watch_address_cntl = REG_SET_FIELD(sq_watch_address_cntl, 942 SQ_WATCH0_CNTL, 943 VALID, 944 0); 945 WREG32((SOC15_REG_OFFSET(GC, 0, mmSQ_WATCH0_CNTL) + 946 (watch_id * SQ_WATCH_STRIDE)), 947 sq_watch_address_cntl); 948 949 /* Program {TCP,SQ}_WATCH?_ADDR* */ 950 WREG32((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_ADDR_H) + 951 (watch_id * TCP_WATCH_STRIDE)), 952 watch_address_high); 953 WREG32((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_ADDR_L) + 954 (watch_id * TCP_WATCH_STRIDE)), 955 watch_address_low); 956 957 WREG32((SOC15_REG_OFFSET(GC, 0, mmSQ_WATCH0_ADDR_H) + 958 (watch_id * SQ_WATCH_STRIDE)), 959 watch_address_high); 960 WREG32((SOC15_REG_OFFSET(GC, 0, mmSQ_WATCH0_ADDR_L) + 961 (watch_id * SQ_WATCH_STRIDE)), 962 watch_address_low); 963 964 /* Enable the watch point */ 965 tcp_watch_address_cntl = REG_SET_FIELD(tcp_watch_address_cntl, 966 TCP_WATCH0_CNTL, 967 VALID, 968 1); 969 WREG32((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_CNTL) + 970 (watch_id * TCP_WATCH_STRIDE)), 971 tcp_watch_address_cntl); 972 973 sq_watch_address_cntl = REG_SET_FIELD(sq_watch_address_cntl, 974 SQ_WATCH0_CNTL, 975 VALID, 976 1); 977 WREG32((SOC15_REG_OFFSET(GC, 0, mmSQ_WATCH0_CNTL) + 978 (watch_id * SQ_WATCH_STRIDE)), 979 sq_watch_address_cntl); 980 981 return 0; 982 } 983 984 uint32_t kgd_gfx_v10_clear_address_watch(struct amdgpu_device *adev, 985 uint32_t watch_id) 986 { 987 uint32_t watch_address_cntl; 988 989 watch_address_cntl = 0; 990 991 WREG32((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_CNTL) + 992 (watch_id * TCP_WATCH_STRIDE)), 993 watch_address_cntl); 994 995 WREG32((SOC15_REG_OFFSET(GC, 0, mmSQ_WATCH0_CNTL) + 996 (watch_id * SQ_WATCH_STRIDE)), 997 watch_address_cntl); 998 999 return 0; 1000 } 1001 #undef TCP_WATCH_STRIDE 1002 #undef SQ_WATCH_STRIDE 1003 1004 1005 /* kgd_gfx_v10_get_iq_wait_times: Returns the mmCP_IQ_WAIT_TIME1/2 values 1006 * The values read are: 1007 * ib_offload_wait_time -- Wait Count for Indirect Buffer Offloads. 1008 * atomic_offload_wait_time -- Wait Count for L2 and GDS Atomics Offloads. 1009 * wrm_offload_wait_time -- Wait Count for WAIT_REG_MEM Offloads. 1010 * gws_wait_time -- Wait Count for Global Wave Syncs. 1011 * que_sleep_wait_time -- Wait Count for Dequeue Retry. 1012 * sch_wave_wait_time -- Wait Count for Scheduling Wave Message. 1013 * sem_rearm_wait_time -- Wait Count for Semaphore re-arm. 1014 * deq_retry_wait_time -- Wait Count for Global Wave Syncs. 1015 */ 1016 void kgd_gfx_v10_get_iq_wait_times(struct amdgpu_device *adev, 1017 uint32_t *wait_times, 1018 uint32_t inst) 1019 1020 { 1021 *wait_times = RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_IQ_WAIT_TIME2)); 1022 } 1023 1024 void kgd_gfx_v10_build_grace_period_packet_info(struct amdgpu_device *adev, 1025 uint32_t wait_times, 1026 uint32_t grace_period, 1027 uint32_t *reg_offset, 1028 uint32_t *reg_data) 1029 { 1030 *reg_data = wait_times; 1031 1032 /* 1033 * The CP cannont handle a 0 grace period input and will result in 1034 * an infinite grace period being set so set to 1 to prevent this. 1035 */ 1036 if (grace_period == 0) 1037 grace_period = 1; 1038 1039 *reg_data = REG_SET_FIELD(*reg_data, 1040 CP_IQ_WAIT_TIME2, 1041 SCH_WAVE, 1042 grace_period); 1043 1044 *reg_offset = SOC15_REG_OFFSET(GC, 0, mmCP_IQ_WAIT_TIME2); 1045 } 1046 1047 static void program_trap_handler_settings(struct amdgpu_device *adev, 1048 uint32_t vmid, uint64_t tba_addr, uint64_t tma_addr, 1049 uint32_t inst) 1050 { 1051 lock_srbm(adev, 0, 0, 0, vmid); 1052 1053 /* 1054 * Program TBA registers 1055 */ 1056 WREG32(SOC15_REG_OFFSET(GC, 0, mmSQ_SHADER_TBA_LO), 1057 lower_32_bits(tba_addr >> 8)); 1058 WREG32(SOC15_REG_OFFSET(GC, 0, mmSQ_SHADER_TBA_HI), 1059 upper_32_bits(tba_addr >> 8) | 1060 (1 << SQ_SHADER_TBA_HI__TRAP_EN__SHIFT)); 1061 1062 /* 1063 * Program TMA registers 1064 */ 1065 WREG32(SOC15_REG_OFFSET(GC, 0, mmSQ_SHADER_TMA_LO), 1066 lower_32_bits(tma_addr >> 8)); 1067 WREG32(SOC15_REG_OFFSET(GC, 0, mmSQ_SHADER_TMA_HI), 1068 upper_32_bits(tma_addr >> 8)); 1069 1070 unlock_srbm(adev); 1071 } 1072 1073 uint64_t kgd_gfx_v10_hqd_get_pq_addr(struct amdgpu_device *adev, 1074 uint32_t pipe_id, uint32_t queue_id, 1075 uint32_t inst) 1076 { 1077 return 0; 1078 } 1079 1080 uint64_t kgd_gfx_v10_hqd_reset(struct amdgpu_device *adev, 1081 uint32_t pipe_id, uint32_t queue_id, 1082 uint32_t inst, unsigned int utimeout) 1083 { 1084 return 0; 1085 } 1086 1087 const struct kfd2kgd_calls gfx_v10_kfd2kgd = { 1088 .program_sh_mem_settings = kgd_program_sh_mem_settings, 1089 .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping, 1090 .init_interrupts = kgd_init_interrupts, 1091 .hqd_load = kgd_hqd_load, 1092 .hiq_mqd_load = kgd_hiq_mqd_load, 1093 .hqd_sdma_load = kgd_hqd_sdma_load, 1094 .hqd_dump = kgd_hqd_dump, 1095 .hqd_sdma_dump = kgd_hqd_sdma_dump, 1096 .hqd_is_occupied = kgd_hqd_is_occupied, 1097 .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied, 1098 .hqd_destroy = kgd_hqd_destroy, 1099 .hqd_sdma_destroy = kgd_hqd_sdma_destroy, 1100 .wave_control_execute = kgd_wave_control_execute, 1101 .get_atc_vmid_pasid_mapping_info = 1102 get_atc_vmid_pasid_mapping_info, 1103 .set_vm_context_page_table_base = set_vm_context_page_table_base, 1104 .enable_debug_trap = kgd_gfx_v10_enable_debug_trap, 1105 .disable_debug_trap = kgd_gfx_v10_disable_debug_trap, 1106 .validate_trap_override_request = kgd_gfx_v10_validate_trap_override_request, 1107 .set_wave_launch_trap_override = kgd_gfx_v10_set_wave_launch_trap_override, 1108 .set_wave_launch_mode = kgd_gfx_v10_set_wave_launch_mode, 1109 .set_address_watch = kgd_gfx_v10_set_address_watch, 1110 .clear_address_watch = kgd_gfx_v10_clear_address_watch, 1111 .get_iq_wait_times = kgd_gfx_v10_get_iq_wait_times, 1112 .build_grace_period_packet_info = kgd_gfx_v10_build_grace_period_packet_info, 1113 .program_trap_handler_settings = program_trap_handler_settings, 1114 .hqd_get_pq_addr = kgd_gfx_v10_hqd_get_pq_addr, 1115 .hqd_reset = kgd_gfx_v10_hqd_reset 1116 }; 1117