1 /* 2 * Copyright 2019 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 */ 22 #include "amdgpu.h" 23 #include "amdgpu_amdkfd.h" 24 #include "gc/gc_10_1_0_offset.h" 25 #include "gc/gc_10_1_0_sh_mask.h" 26 #include "athub/athub_2_0_0_offset.h" 27 #include "athub/athub_2_0_0_sh_mask.h" 28 #include "oss/osssys_5_0_0_offset.h" 29 #include "oss/osssys_5_0_0_sh_mask.h" 30 #include "soc15_common.h" 31 #include "v10_structs.h" 32 #include "nv.h" 33 #include "nvd.h" 34 35 enum hqd_dequeue_request_type { 36 NO_ACTION = 0, 37 DRAIN_PIPE, 38 RESET_WAVES, 39 SAVE_WAVES 40 }; 41 42 static void lock_srbm(struct amdgpu_device *adev, uint32_t mec, uint32_t pipe, 43 uint32_t queue, uint32_t vmid) 44 { 45 mutex_lock(&adev->srbm_mutex); 46 nv_grbm_select(adev, mec, pipe, queue, vmid); 47 } 48 49 static void unlock_srbm(struct amdgpu_device *adev) 50 { 51 nv_grbm_select(adev, 0, 0, 0, 0); 52 mutex_unlock(&adev->srbm_mutex); 53 } 54 55 static void acquire_queue(struct amdgpu_device *adev, uint32_t pipe_id, 56 uint32_t queue_id) 57 { 58 uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1; 59 uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec); 60 61 lock_srbm(adev, mec, pipe, queue_id, 0); 62 } 63 64 static uint64_t get_queue_mask(struct amdgpu_device *adev, 65 uint32_t pipe_id, uint32_t queue_id) 66 { 67 unsigned int bit = pipe_id * adev->gfx.mec.num_queue_per_pipe + 68 queue_id; 69 70 return 1ull << bit; 71 } 72 73 static void release_queue(struct amdgpu_device *adev) 74 { 75 unlock_srbm(adev); 76 } 77 78 static void kgd_program_sh_mem_settings(struct amdgpu_device *adev, uint32_t vmid, 79 uint32_t sh_mem_config, 80 uint32_t sh_mem_ape1_base, 81 uint32_t sh_mem_ape1_limit, 82 uint32_t sh_mem_bases) 83 { 84 lock_srbm(adev, 0, 0, 0, vmid); 85 86 WREG32_SOC15(GC, 0, mmSH_MEM_CONFIG, sh_mem_config); 87 WREG32_SOC15(GC, 0, mmSH_MEM_BASES, sh_mem_bases); 88 /* APE1 no longer exists on GFX9 */ 89 90 unlock_srbm(adev); 91 } 92 93 static int kgd_set_pasid_vmid_mapping(struct amdgpu_device *adev, u32 pasid, 94 unsigned int vmid) 95 { 96 /* 97 * We have to assume that there is no outstanding mapping. 98 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because 99 * a mapping is in progress or because a mapping finished 100 * and the SW cleared it. 101 * So the protocol is to always wait & clear. 102 */ 103 uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid | 104 ATC_VMID0_PASID_MAPPING__VALID_MASK; 105 106 pr_debug("pasid 0x%x vmid %d, reg value %x\n", pasid, vmid, pasid_mapping); 107 108 pr_debug("ATHUB, reg %x\n", SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) + vmid); 109 WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) + vmid, 110 pasid_mapping); 111 112 #if 0 113 /* TODO: uncomment this code when the hardware support is ready. */ 114 while (!(RREG32(SOC15_REG_OFFSET( 115 ATHUB, 0, 116 mmATC_VMID_PASID_MAPPING_UPDATE_STATUS)) & 117 (1U << vmid))) 118 cpu_relax(); 119 120 pr_debug("ATHUB mapping update finished\n"); 121 WREG32(SOC15_REG_OFFSET(ATHUB, 0, 122 mmATC_VMID_PASID_MAPPING_UPDATE_STATUS), 123 1U << vmid); 124 #endif 125 126 /* Mapping vmid to pasid also for IH block */ 127 pr_debug("update mapping for IH block and mmhub"); 128 WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT) + vmid, 129 pasid_mapping); 130 131 return 0; 132 } 133 134 /* TODO - RING0 form of field is obsolete, seems to date back to SI 135 * but still works 136 */ 137 138 static int kgd_init_interrupts(struct amdgpu_device *adev, uint32_t pipe_id) 139 { 140 uint32_t mec; 141 uint32_t pipe; 142 143 mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1; 144 pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec); 145 146 lock_srbm(adev, mec, pipe, 0, 0); 147 148 WREG32_SOC15(GC, 0, mmCPC_INT_CNTL, 149 CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK | 150 CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK); 151 152 unlock_srbm(adev); 153 154 return 0; 155 } 156 157 static uint32_t get_sdma_rlc_reg_offset(struct amdgpu_device *adev, 158 unsigned int engine_id, 159 unsigned int queue_id) 160 { 161 uint32_t sdma_engine_reg_base[2] = { 162 SOC15_REG_OFFSET(SDMA0, 0, 163 mmSDMA0_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL, 164 /* On gfx10, mmSDMA1_xxx registers are defined NOT based 165 * on SDMA1 base address (dw 0x1860) but based on SDMA0 166 * base address (dw 0x1260). Therefore use mmSDMA0_RLC0_RB_CNTL 167 * instead of mmSDMA1_RLC0_RB_CNTL for the base address calc 168 * below 169 */ 170 SOC15_REG_OFFSET(SDMA1, 0, 171 mmSDMA1_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL 172 }; 173 174 uint32_t retval = sdma_engine_reg_base[engine_id] 175 + queue_id * (mmSDMA0_RLC1_RB_CNTL - mmSDMA0_RLC0_RB_CNTL); 176 177 pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n", engine_id, 178 queue_id, retval); 179 180 return retval; 181 } 182 183 #if 0 184 static uint32_t get_watch_base_addr(struct amdgpu_device *adev) 185 { 186 uint32_t retval = SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_ADDR_H) - 187 mmTCP_WATCH0_ADDR_H; 188 189 pr_debug("kfd: reg watch base address: 0x%x\n", retval); 190 191 return retval; 192 } 193 #endif 194 195 static inline struct v10_compute_mqd *get_mqd(void *mqd) 196 { 197 return (struct v10_compute_mqd *)mqd; 198 } 199 200 static inline struct v10_sdma_mqd *get_sdma_mqd(void *mqd) 201 { 202 return (struct v10_sdma_mqd *)mqd; 203 } 204 205 static int kgd_hqd_load(struct amdgpu_device *adev, void *mqd, 206 uint32_t pipe_id, uint32_t queue_id, 207 uint32_t __user *wptr, uint32_t wptr_shift, 208 uint32_t wptr_mask, struct mm_struct *mm) 209 { 210 struct v10_compute_mqd *m; 211 uint32_t *mqd_hqd; 212 uint32_t reg, hqd_base, data; 213 214 m = get_mqd(mqd); 215 216 pr_debug("Load hqd of pipe %d queue %d\n", pipe_id, queue_id); 217 acquire_queue(adev, pipe_id, queue_id); 218 219 /* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */ 220 mqd_hqd = &m->cp_mqd_base_addr_lo; 221 hqd_base = SOC15_REG_OFFSET(GC, 0, mmCP_MQD_BASE_ADDR); 222 223 for (reg = hqd_base; 224 reg <= SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI); reg++) 225 WREG32_SOC15_IP(GC, reg, mqd_hqd[reg - hqd_base]); 226 227 228 /* Activate doorbell logic before triggering WPTR poll. */ 229 data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control, 230 CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1); 231 WREG32_SOC15(GC, 0, mmCP_HQD_PQ_DOORBELL_CONTROL, data); 232 233 if (wptr) { 234 /* Don't read wptr with get_user because the user 235 * context may not be accessible (if this function 236 * runs in a work queue). Instead trigger a one-shot 237 * polling read from memory in the CP. This assumes 238 * that wptr is GPU-accessible in the queue's VMID via 239 * ATC or SVM. WPTR==RPTR before starting the poll so 240 * the CP starts fetching new commands from the right 241 * place. 242 * 243 * Guessing a 64-bit WPTR from a 32-bit RPTR is a bit 244 * tricky. Assume that the queue didn't overflow. The 245 * number of valid bits in the 32-bit RPTR depends on 246 * the queue size. The remaining bits are taken from 247 * the saved 64-bit WPTR. If the WPTR wrapped, add the 248 * queue size. 249 */ 250 uint32_t queue_size = 251 2 << REG_GET_FIELD(m->cp_hqd_pq_control, 252 CP_HQD_PQ_CONTROL, QUEUE_SIZE); 253 uint64_t guessed_wptr = m->cp_hqd_pq_rptr & (queue_size - 1); 254 255 if ((m->cp_hqd_pq_wptr_lo & (queue_size - 1)) < guessed_wptr) 256 guessed_wptr += queue_size; 257 guessed_wptr += m->cp_hqd_pq_wptr_lo & ~(queue_size - 1); 258 guessed_wptr += (uint64_t)m->cp_hqd_pq_wptr_hi << 32; 259 260 WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_LO, 261 lower_32_bits(guessed_wptr)); 262 WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_HI, 263 upper_32_bits(guessed_wptr)); 264 WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR, 265 lower_32_bits((uint64_t)wptr)); 266 WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR_HI, 267 upper_32_bits((uint64_t)wptr)); 268 pr_debug("%s setting CP_PQ_WPTR_POLL_CNTL1 to %x\n", __func__, 269 (uint32_t)get_queue_mask(adev, pipe_id, queue_id)); 270 WREG32_SOC15(GC, 0, mmCP_PQ_WPTR_POLL_CNTL1, 271 (uint32_t)get_queue_mask(adev, pipe_id, queue_id)); 272 } 273 274 /* Start the EOP fetcher */ 275 WREG32_SOC15(GC, 0, mmCP_HQD_EOP_RPTR, 276 REG_SET_FIELD(m->cp_hqd_eop_rptr, 277 CP_HQD_EOP_RPTR, INIT_FETCHER, 1)); 278 279 data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1); 280 WREG32_SOC15(GC, 0, mmCP_HQD_ACTIVE, data); 281 282 release_queue(adev); 283 284 return 0; 285 } 286 287 static int kgd_hiq_mqd_load(struct amdgpu_device *adev, void *mqd, 288 uint32_t pipe_id, uint32_t queue_id, 289 uint32_t doorbell_off) 290 { 291 struct amdgpu_ring *kiq_ring = &adev->gfx.kiq.ring; 292 struct v10_compute_mqd *m; 293 uint32_t mec, pipe; 294 int r; 295 296 m = get_mqd(mqd); 297 298 acquire_queue(adev, pipe_id, queue_id); 299 300 mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1; 301 pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec); 302 303 pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n", 304 mec, pipe, queue_id); 305 306 spin_lock(&adev->gfx.kiq.ring_lock); 307 r = amdgpu_ring_alloc(kiq_ring, 7); 308 if (r) { 309 pr_err("Failed to alloc KIQ (%d).\n", r); 310 goto out_unlock; 311 } 312 313 amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_MAP_QUEUES, 5)); 314 amdgpu_ring_write(kiq_ring, 315 PACKET3_MAP_QUEUES_QUEUE_SEL(0) | /* Queue_Sel */ 316 PACKET3_MAP_QUEUES_VMID(m->cp_hqd_vmid) | /* VMID */ 317 PACKET3_MAP_QUEUES_QUEUE(queue_id) | 318 PACKET3_MAP_QUEUES_PIPE(pipe) | 319 PACKET3_MAP_QUEUES_ME((mec - 1)) | 320 PACKET3_MAP_QUEUES_QUEUE_TYPE(0) | /*queue_type: normal compute queue */ 321 PACKET3_MAP_QUEUES_ALLOC_FORMAT(0) | /* alloc format: all_on_one_pipe */ 322 PACKET3_MAP_QUEUES_ENGINE_SEL(1) | /* engine_sel: hiq */ 323 PACKET3_MAP_QUEUES_NUM_QUEUES(1)); /* num_queues: must be 1 */ 324 amdgpu_ring_write(kiq_ring, 325 PACKET3_MAP_QUEUES_DOORBELL_OFFSET(doorbell_off)); 326 amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_lo); 327 amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_hi); 328 amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_lo); 329 amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_hi); 330 amdgpu_ring_commit(kiq_ring); 331 332 out_unlock: 333 spin_unlock(&adev->gfx.kiq.ring_lock); 334 release_queue(adev); 335 336 return r; 337 } 338 339 static int kgd_hqd_dump(struct amdgpu_device *adev, 340 uint32_t pipe_id, uint32_t queue_id, 341 uint32_t (**dump)[2], uint32_t *n_regs) 342 { 343 uint32_t i = 0, reg; 344 #define HQD_N_REGS 56 345 #define DUMP_REG(addr) do { \ 346 if (WARN_ON_ONCE(i >= HQD_N_REGS)) \ 347 break; \ 348 (*dump)[i][0] = (addr) << 2; \ 349 (*dump)[i++][1] = RREG32_SOC15_IP(GC, addr); \ 350 } while (0) 351 352 *dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL); 353 if (*dump == NULL) 354 return -ENOMEM; 355 356 acquire_queue(adev, pipe_id, queue_id); 357 358 for (reg = SOC15_REG_OFFSET(GC, 0, mmCP_MQD_BASE_ADDR); 359 reg <= SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI); reg++) 360 DUMP_REG(reg); 361 362 release_queue(adev); 363 364 WARN_ON_ONCE(i != HQD_N_REGS); 365 *n_regs = i; 366 367 return 0; 368 } 369 370 static int kgd_hqd_sdma_load(struct amdgpu_device *adev, void *mqd, 371 uint32_t __user *wptr, struct mm_struct *mm) 372 { 373 struct v10_sdma_mqd *m; 374 uint32_t sdma_rlc_reg_offset; 375 unsigned long end_jiffies; 376 uint32_t data; 377 uint64_t data64; 378 uint64_t __user *wptr64 = (uint64_t __user *)wptr; 379 380 m = get_sdma_mqd(mqd); 381 sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id, 382 m->sdma_queue_id); 383 384 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, 385 m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)); 386 387 end_jiffies = msecs_to_jiffies(2000) + jiffies; 388 while (true) { 389 data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS); 390 if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK) 391 break; 392 if (time_after(jiffies, end_jiffies)) { 393 pr_err("SDMA RLC not idle in %s\n", __func__); 394 return -ETIME; 395 } 396 usleep_range(500, 1000); 397 } 398 399 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL_OFFSET, 400 m->sdmax_rlcx_doorbell_offset); 401 402 data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL, 403 ENABLE, 1); 404 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data); 405 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR, 406 m->sdmax_rlcx_rb_rptr); 407 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI, 408 m->sdmax_rlcx_rb_rptr_hi); 409 410 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 1); 411 if (read_user_wptr(mm, wptr64, data64)) { 412 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR, 413 lower_32_bits(data64)); 414 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI, 415 upper_32_bits(data64)); 416 } else { 417 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR, 418 m->sdmax_rlcx_rb_rptr); 419 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI, 420 m->sdmax_rlcx_rb_rptr_hi); 421 } 422 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 0); 423 424 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base); 425 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI, 426 m->sdmax_rlcx_rb_base_hi); 427 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 428 m->sdmax_rlcx_rb_rptr_addr_lo); 429 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI, 430 m->sdmax_rlcx_rb_rptr_addr_hi); 431 432 data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL, 433 RB_ENABLE, 1); 434 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data); 435 436 return 0; 437 } 438 439 static int kgd_hqd_sdma_dump(struct amdgpu_device *adev, 440 uint32_t engine_id, uint32_t queue_id, 441 uint32_t (**dump)[2], uint32_t *n_regs) 442 { 443 uint32_t sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, 444 engine_id, queue_id); 445 uint32_t i = 0, reg; 446 #undef HQD_N_REGS 447 #define HQD_N_REGS (19+6+7+10) 448 449 *dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL); 450 if (*dump == NULL) 451 return -ENOMEM; 452 453 for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++) 454 DUMP_REG(sdma_rlc_reg_offset + reg); 455 for (reg = mmSDMA0_RLC0_STATUS; reg <= mmSDMA0_RLC0_CSA_ADDR_HI; reg++) 456 DUMP_REG(sdma_rlc_reg_offset + reg); 457 for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN; 458 reg <= mmSDMA0_RLC0_MINOR_PTR_UPDATE; reg++) 459 DUMP_REG(sdma_rlc_reg_offset + reg); 460 for (reg = mmSDMA0_RLC0_MIDCMD_DATA0; 461 reg <= mmSDMA0_RLC0_MIDCMD_CNTL; reg++) 462 DUMP_REG(sdma_rlc_reg_offset + reg); 463 464 WARN_ON_ONCE(i != HQD_N_REGS); 465 *n_regs = i; 466 467 return 0; 468 } 469 470 static bool kgd_hqd_is_occupied(struct amdgpu_device *adev, 471 uint64_t queue_address, uint32_t pipe_id, 472 uint32_t queue_id) 473 { 474 uint32_t act; 475 bool retval = false; 476 uint32_t low, high; 477 478 acquire_queue(adev, pipe_id, queue_id); 479 act = RREG32_SOC15(GC, 0, mmCP_HQD_ACTIVE); 480 if (act) { 481 low = lower_32_bits(queue_address >> 8); 482 high = upper_32_bits(queue_address >> 8); 483 484 if (low == RREG32_SOC15(GC, 0, mmCP_HQD_PQ_BASE) && 485 high == RREG32_SOC15(GC, 0, mmCP_HQD_PQ_BASE_HI)) 486 retval = true; 487 } 488 release_queue(adev); 489 return retval; 490 } 491 492 static bool kgd_hqd_sdma_is_occupied(struct amdgpu_device *adev, void *mqd) 493 { 494 struct v10_sdma_mqd *m; 495 uint32_t sdma_rlc_reg_offset; 496 uint32_t sdma_rlc_rb_cntl; 497 498 m = get_sdma_mqd(mqd); 499 sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id, 500 m->sdma_queue_id); 501 502 sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL); 503 504 if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK) 505 return true; 506 507 return false; 508 } 509 510 static int kgd_hqd_destroy(struct amdgpu_device *adev, void *mqd, 511 enum kfd_preempt_type reset_type, 512 unsigned int utimeout, uint32_t pipe_id, 513 uint32_t queue_id) 514 { 515 enum hqd_dequeue_request_type type; 516 unsigned long end_jiffies; 517 uint32_t temp; 518 struct v10_compute_mqd *m = get_mqd(mqd); 519 520 if (amdgpu_in_reset(adev)) 521 return -EIO; 522 523 #if 0 524 unsigned long flags; 525 int retry; 526 #endif 527 528 acquire_queue(adev, pipe_id, queue_id); 529 530 if (m->cp_hqd_vmid == 0) 531 WREG32_FIELD15(GC, 0, RLC_CP_SCHEDULERS, scheduler1, 0); 532 533 switch (reset_type) { 534 case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN: 535 type = DRAIN_PIPE; 536 break; 537 case KFD_PREEMPT_TYPE_WAVEFRONT_RESET: 538 type = RESET_WAVES; 539 break; 540 case KFD_PREEMPT_TYPE_WAVEFRONT_SAVE: 541 type = SAVE_WAVES; 542 break; 543 default: 544 type = DRAIN_PIPE; 545 break; 546 } 547 548 #if 0 /* Is this still needed? */ 549 /* Workaround: If IQ timer is active and the wait time is close to or 550 * equal to 0, dequeueing is not safe. Wait until either the wait time 551 * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is 552 * cleared before continuing. Also, ensure wait times are set to at 553 * least 0x3. 554 */ 555 local_irq_save(flags); 556 preempt_disable(); 557 retry = 5000; /* wait for 500 usecs at maximum */ 558 while (true) { 559 temp = RREG32(mmCP_HQD_IQ_TIMER); 560 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) { 561 pr_debug("HW is processing IQ\n"); 562 goto loop; 563 } 564 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) { 565 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE) 566 == 3) /* SEM-rearm is safe */ 567 break; 568 /* Wait time 3 is safe for CP, but our MMIO read/write 569 * time is close to 1 microsecond, so check for 10 to 570 * leave more buffer room 571 */ 572 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME) 573 >= 10) 574 break; 575 pr_debug("IQ timer is active\n"); 576 } else 577 break; 578 loop: 579 if (!retry) { 580 pr_err("CP HQD IQ timer status time out\n"); 581 break; 582 } 583 ndelay(100); 584 --retry; 585 } 586 retry = 1000; 587 while (true) { 588 temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST); 589 if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK)) 590 break; 591 pr_debug("Dequeue request is pending\n"); 592 593 if (!retry) { 594 pr_err("CP HQD dequeue request time out\n"); 595 break; 596 } 597 ndelay(100); 598 --retry; 599 } 600 local_irq_restore(flags); 601 preempt_enable(); 602 #endif 603 604 WREG32_SOC15(GC, 0, mmCP_HQD_DEQUEUE_REQUEST, type); 605 606 end_jiffies = (utimeout * HZ / 1000) + jiffies; 607 while (true) { 608 temp = RREG32_SOC15(GC, 0, mmCP_HQD_ACTIVE); 609 if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK)) 610 break; 611 if (time_after(jiffies, end_jiffies)) { 612 pr_err("cp queue preemption time out.\n"); 613 release_queue(adev); 614 return -ETIME; 615 } 616 usleep_range(500, 1000); 617 } 618 619 release_queue(adev); 620 return 0; 621 } 622 623 static int kgd_hqd_sdma_destroy(struct amdgpu_device *adev, void *mqd, 624 unsigned int utimeout) 625 { 626 struct v10_sdma_mqd *m; 627 uint32_t sdma_rlc_reg_offset; 628 uint32_t temp; 629 unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies; 630 631 m = get_sdma_mqd(mqd); 632 sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id, 633 m->sdma_queue_id); 634 635 temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL); 636 temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK; 637 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp); 638 639 while (true) { 640 temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS); 641 if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK) 642 break; 643 if (time_after(jiffies, end_jiffies)) { 644 pr_err("SDMA RLC not idle in %s\n", __func__); 645 return -ETIME; 646 } 647 usleep_range(500, 1000); 648 } 649 650 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0); 651 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, 652 RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) | 653 SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK); 654 655 m->sdmax_rlcx_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR); 656 m->sdmax_rlcx_rb_rptr_hi = 657 RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI); 658 659 return 0; 660 } 661 662 static bool get_atc_vmid_pasid_mapping_info(struct amdgpu_device *adev, 663 uint8_t vmid, uint16_t *p_pasid) 664 { 665 uint32_t value; 666 667 value = RREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) 668 + vmid); 669 *p_pasid = value & ATC_VMID0_PASID_MAPPING__PASID_MASK; 670 671 return !!(value & ATC_VMID0_PASID_MAPPING__VALID_MASK); 672 } 673 674 static int kgd_address_watch_disable(struct amdgpu_device *adev) 675 { 676 return 0; 677 } 678 679 static int kgd_address_watch_execute(struct amdgpu_device *adev, 680 unsigned int watch_point_id, 681 uint32_t cntl_val, 682 uint32_t addr_hi, 683 uint32_t addr_lo) 684 { 685 return 0; 686 } 687 688 static int kgd_wave_control_execute(struct amdgpu_device *adev, 689 uint32_t gfx_index_val, 690 uint32_t sq_cmd) 691 { 692 uint32_t data = 0; 693 694 mutex_lock(&adev->grbm_idx_mutex); 695 696 WREG32_SOC15(GC, 0, mmGRBM_GFX_INDEX, gfx_index_val); 697 WREG32_SOC15(GC, 0, mmSQ_CMD, sq_cmd); 698 699 data = REG_SET_FIELD(data, GRBM_GFX_INDEX, 700 INSTANCE_BROADCAST_WRITES, 1); 701 data = REG_SET_FIELD(data, GRBM_GFX_INDEX, 702 SA_BROADCAST_WRITES, 1); 703 data = REG_SET_FIELD(data, GRBM_GFX_INDEX, 704 SE_BROADCAST_WRITES, 1); 705 706 WREG32_SOC15(GC, 0, mmGRBM_GFX_INDEX, data); 707 mutex_unlock(&adev->grbm_idx_mutex); 708 709 return 0; 710 } 711 712 static uint32_t kgd_address_watch_get_offset(struct amdgpu_device *adev, 713 unsigned int watch_point_id, 714 unsigned int reg_offset) 715 { 716 return 0; 717 } 718 719 static void set_vm_context_page_table_base(struct amdgpu_device *adev, 720 uint32_t vmid, uint64_t page_table_base) 721 { 722 if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) { 723 pr_err("trying to set page table base for wrong VMID %u\n", 724 vmid); 725 return; 726 } 727 728 /* SDMA is on gfxhub as well for Navi1* series */ 729 adev->gfxhub.funcs->setup_vm_pt_regs(adev, vmid, page_table_base); 730 } 731 732 static void program_trap_handler_settings(struct amdgpu_device *adev, 733 uint32_t vmid, uint64_t tba_addr, uint64_t tma_addr) 734 { 735 lock_srbm(adev, 0, 0, 0, vmid); 736 737 /* 738 * Program TBA registers 739 */ 740 WREG32(SOC15_REG_OFFSET(GC, 0, mmSQ_SHADER_TBA_LO), 741 lower_32_bits(tba_addr >> 8)); 742 WREG32(SOC15_REG_OFFSET(GC, 0, mmSQ_SHADER_TBA_HI), 743 upper_32_bits(tba_addr >> 8) | 744 (1 << SQ_SHADER_TBA_HI__TRAP_EN__SHIFT)); 745 746 /* 747 * Program TMA registers 748 */ 749 WREG32(SOC15_REG_OFFSET(GC, 0, mmSQ_SHADER_TMA_LO), 750 lower_32_bits(tma_addr >> 8)); 751 WREG32(SOC15_REG_OFFSET(GC, 0, mmSQ_SHADER_TMA_HI), 752 upper_32_bits(tma_addr >> 8)); 753 754 unlock_srbm(adev); 755 } 756 757 const struct kfd2kgd_calls gfx_v10_kfd2kgd = { 758 .program_sh_mem_settings = kgd_program_sh_mem_settings, 759 .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping, 760 .init_interrupts = kgd_init_interrupts, 761 .hqd_load = kgd_hqd_load, 762 .hiq_mqd_load = kgd_hiq_mqd_load, 763 .hqd_sdma_load = kgd_hqd_sdma_load, 764 .hqd_dump = kgd_hqd_dump, 765 .hqd_sdma_dump = kgd_hqd_sdma_dump, 766 .hqd_is_occupied = kgd_hqd_is_occupied, 767 .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied, 768 .hqd_destroy = kgd_hqd_destroy, 769 .hqd_sdma_destroy = kgd_hqd_sdma_destroy, 770 .address_watch_disable = kgd_address_watch_disable, 771 .address_watch_execute = kgd_address_watch_execute, 772 .wave_control_execute = kgd_wave_control_execute, 773 .address_watch_get_offset = kgd_address_watch_get_offset, 774 .get_atc_vmid_pasid_mapping_info = 775 get_atc_vmid_pasid_mapping_info, 776 .set_vm_context_page_table_base = set_vm_context_page_table_base, 777 .program_trap_handler_settings = program_trap_handler_settings, 778 }; 779