1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/acpi.h> 4 #include <linux/array_size.h> 5 #include <linux/bitmap.h> 6 #include <linux/cleanup.h> 7 #include <linux/compat.h> 8 #include <linux/debugfs.h> 9 #include <linux/device.h> 10 #include <linux/err.h> 11 #include <linux/errno.h> 12 #include <linux/file.h> 13 #include <linux/fs.h> 14 #include <linux/idr.h> 15 #include <linux/interrupt.h> 16 #include <linux/irq.h> 17 #include <linux/kernel.h> 18 #include <linux/list.h> 19 #include <linux/lockdep.h> 20 #include <linux/module.h> 21 #include <linux/nospec.h> 22 #include <linux/of.h> 23 #include <linux/pinctrl/consumer.h> 24 #include <linux/seq_file.h> 25 #include <linux/slab.h> 26 #include <linux/spinlock.h> 27 #include <linux/srcu.h> 28 #include <linux/string.h> 29 30 #include <linux/gpio.h> 31 #include <linux/gpio/driver.h> 32 #include <linux/gpio/machine.h> 33 34 #include <uapi/linux/gpio.h> 35 36 #include "gpiolib-acpi.h" 37 #include "gpiolib-cdev.h" 38 #include "gpiolib-of.h" 39 #include "gpiolib-swnode.h" 40 #include "gpiolib-sysfs.h" 41 #include "gpiolib.h" 42 43 #define CREATE_TRACE_POINTS 44 #include <trace/events/gpio.h> 45 46 /* Implementation infrastructure for GPIO interfaces. 47 * 48 * The GPIO programming interface allows for inlining speed-critical 49 * get/set operations for common cases, so that access to SOC-integrated 50 * GPIOs can sometimes cost only an instruction or two per bit. 51 */ 52 53 /* Device and char device-related information */ 54 static DEFINE_IDA(gpio_ida); 55 static dev_t gpio_devt; 56 #define GPIO_DEV_MAX 256 /* 256 GPIO chip devices supported */ 57 58 static int gpio_bus_match(struct device *dev, const struct device_driver *drv) 59 { 60 struct fwnode_handle *fwnode = dev_fwnode(dev); 61 62 /* 63 * Only match if the fwnode doesn't already have a proper struct device 64 * created for it. 65 */ 66 if (fwnode && fwnode->dev != dev) 67 return 0; 68 return 1; 69 } 70 71 static const struct bus_type gpio_bus_type = { 72 .name = "gpio", 73 .match = gpio_bus_match, 74 }; 75 76 /* 77 * Number of GPIOs to use for the fast path in set array 78 */ 79 #define FASTPATH_NGPIO CONFIG_GPIOLIB_FASTPATH_LIMIT 80 81 static DEFINE_MUTEX(gpio_lookup_lock); 82 static LIST_HEAD(gpio_lookup_list); 83 84 static LIST_HEAD(gpio_devices); 85 /* Protects the GPIO device list against concurrent modifications. */ 86 static DEFINE_MUTEX(gpio_devices_lock); 87 /* Ensures coherence during read-only accesses to the list of GPIO devices. */ 88 DEFINE_STATIC_SRCU(gpio_devices_srcu); 89 90 static DEFINE_MUTEX(gpio_machine_hogs_mutex); 91 static LIST_HEAD(gpio_machine_hogs); 92 93 const char *const gpio_suffixes[] = { "gpios", "gpio" }; 94 const size_t gpio_suffix_count = ARRAY_SIZE(gpio_suffixes); 95 96 static void gpiochip_free_hogs(struct gpio_chip *gc); 97 static int gpiochip_add_irqchip(struct gpio_chip *gc, 98 struct lock_class_key *lock_key, 99 struct lock_class_key *request_key); 100 static void gpiochip_irqchip_remove(struct gpio_chip *gc); 101 static int gpiochip_irqchip_init_hw(struct gpio_chip *gc); 102 static int gpiochip_irqchip_init_valid_mask(struct gpio_chip *gc); 103 static void gpiochip_irqchip_free_valid_mask(struct gpio_chip *gc); 104 105 static bool gpiolib_initialized; 106 107 const char *gpiod_get_label(struct gpio_desc *desc) 108 { 109 struct gpio_desc_label *label; 110 unsigned long flags; 111 112 flags = READ_ONCE(desc->flags); 113 114 label = srcu_dereference_check(desc->label, &desc->gdev->desc_srcu, 115 srcu_read_lock_held(&desc->gdev->desc_srcu)); 116 117 if (test_bit(FLAG_USED_AS_IRQ, &flags)) 118 return label->str ?: "interrupt"; 119 120 if (!test_bit(FLAG_REQUESTED, &flags)) 121 return NULL; 122 123 return label->str; 124 } 125 126 static void desc_free_label(struct rcu_head *rh) 127 { 128 kfree(container_of(rh, struct gpio_desc_label, rh)); 129 } 130 131 static int desc_set_label(struct gpio_desc *desc, const char *label) 132 { 133 struct gpio_desc_label *new = NULL, *old; 134 135 if (label) { 136 new = kzalloc(struct_size(new, str, strlen(label) + 1), 137 GFP_KERNEL); 138 if (!new) 139 return -ENOMEM; 140 141 strcpy(new->str, label); 142 } 143 144 old = rcu_replace_pointer(desc->label, new, 1); 145 if (old) 146 call_srcu(&desc->gdev->desc_srcu, &old->rh, desc_free_label); 147 148 return 0; 149 } 150 151 /** 152 * gpio_to_desc - Convert a GPIO number to its descriptor 153 * @gpio: global GPIO number 154 * 155 * Returns: 156 * The GPIO descriptor associated with the given GPIO, or %NULL if no GPIO 157 * with the given number exists in the system. 158 */ 159 struct gpio_desc *gpio_to_desc(unsigned gpio) 160 { 161 struct gpio_device *gdev; 162 163 scoped_guard(srcu, &gpio_devices_srcu) { 164 list_for_each_entry_srcu(gdev, &gpio_devices, list, 165 srcu_read_lock_held(&gpio_devices_srcu)) { 166 if (gdev->base <= gpio && 167 gdev->base + gdev->ngpio > gpio) 168 return &gdev->descs[gpio - gdev->base]; 169 } 170 } 171 172 return NULL; 173 } 174 EXPORT_SYMBOL_GPL(gpio_to_desc); 175 176 /* This function is deprecated and will be removed soon, don't use. */ 177 struct gpio_desc *gpiochip_get_desc(struct gpio_chip *gc, 178 unsigned int hwnum) 179 { 180 return gpio_device_get_desc(gc->gpiodev, hwnum); 181 } 182 183 /** 184 * gpio_device_get_desc() - get the GPIO descriptor corresponding to the given 185 * hardware number for this GPIO device 186 * @gdev: GPIO device to get the descriptor from 187 * @hwnum: hardware number of the GPIO for this chip 188 * 189 * Returns: 190 * A pointer to the GPIO descriptor or %EINVAL if no GPIO exists in the given 191 * chip for the specified hardware number or %ENODEV if the underlying chip 192 * already vanished. 193 * 194 * The reference count of struct gpio_device is *NOT* increased like when the 195 * GPIO is being requested for exclusive usage. It's up to the caller to make 196 * sure the GPIO device will stay alive together with the descriptor returned 197 * by this function. 198 */ 199 struct gpio_desc * 200 gpio_device_get_desc(struct gpio_device *gdev, unsigned int hwnum) 201 { 202 if (hwnum >= gdev->ngpio) 203 return ERR_PTR(-EINVAL); 204 205 return &gdev->descs[array_index_nospec(hwnum, gdev->ngpio)]; 206 } 207 EXPORT_SYMBOL_GPL(gpio_device_get_desc); 208 209 /** 210 * desc_to_gpio - convert a GPIO descriptor to the integer namespace 211 * @desc: GPIO descriptor 212 * 213 * This should disappear in the future but is needed since we still 214 * use GPIO numbers for error messages and sysfs nodes. 215 * 216 * Returns: 217 * The global GPIO number for the GPIO specified by its descriptor. 218 */ 219 int desc_to_gpio(const struct gpio_desc *desc) 220 { 221 return desc->gdev->base + (desc - &desc->gdev->descs[0]); 222 } 223 EXPORT_SYMBOL_GPL(desc_to_gpio); 224 225 226 /** 227 * gpiod_to_chip - Return the GPIO chip to which a GPIO descriptor belongs 228 * @desc: descriptor to return the chip of 229 * 230 * *DEPRECATED* 231 * This function is unsafe and should not be used. Using the chip address 232 * without taking the SRCU read lock may result in dereferencing a dangling 233 * pointer. 234 */ 235 struct gpio_chip *gpiod_to_chip(const struct gpio_desc *desc) 236 { 237 if (!desc) 238 return NULL; 239 240 return gpio_device_get_chip(desc->gdev); 241 } 242 EXPORT_SYMBOL_GPL(gpiod_to_chip); 243 244 /** 245 * gpiod_to_gpio_device() - Return the GPIO device to which this descriptor 246 * belongs. 247 * @desc: Descriptor for which to return the GPIO device. 248 * 249 * This *DOES NOT* increase the reference count of the GPIO device as it's 250 * expected that the descriptor is requested and the users already holds a 251 * reference to the device. 252 * 253 * Returns: 254 * Address of the GPIO device owning this descriptor. 255 */ 256 struct gpio_device *gpiod_to_gpio_device(struct gpio_desc *desc) 257 { 258 if (!desc) 259 return NULL; 260 261 return desc->gdev; 262 } 263 EXPORT_SYMBOL_GPL(gpiod_to_gpio_device); 264 265 /** 266 * gpio_device_get_base() - Get the base GPIO number allocated by this device 267 * @gdev: GPIO device 268 * 269 * Returns: 270 * First GPIO number in the global GPIO numberspace for this device. 271 */ 272 int gpio_device_get_base(struct gpio_device *gdev) 273 { 274 return gdev->base; 275 } 276 EXPORT_SYMBOL_GPL(gpio_device_get_base); 277 278 /** 279 * gpio_device_get_label() - Get the label of this GPIO device 280 * @gdev: GPIO device 281 * 282 * Returns: 283 * Pointer to the string containing the GPIO device label. The string's 284 * lifetime is tied to that of the underlying GPIO device. 285 */ 286 const char *gpio_device_get_label(struct gpio_device *gdev) 287 { 288 return gdev->label; 289 } 290 EXPORT_SYMBOL(gpio_device_get_label); 291 292 /** 293 * gpio_device_get_chip() - Get the gpio_chip implementation of this GPIO device 294 * @gdev: GPIO device 295 * 296 * Returns: 297 * Address of the GPIO chip backing this device. 298 * 299 * *DEPRECATED* 300 * Until we can get rid of all non-driver users of struct gpio_chip, we must 301 * provide a way of retrieving the pointer to it from struct gpio_device. This 302 * is *NOT* safe as the GPIO API is considered to be hot-unpluggable and the 303 * chip can dissapear at any moment (unlike reference-counted struct 304 * gpio_device). 305 * 306 * Use at your own risk. 307 */ 308 struct gpio_chip *gpio_device_get_chip(struct gpio_device *gdev) 309 { 310 return rcu_dereference_check(gdev->chip, 1); 311 } 312 EXPORT_SYMBOL_GPL(gpio_device_get_chip); 313 314 /* dynamic allocation of GPIOs, e.g. on a hotplugged device */ 315 static int gpiochip_find_base_unlocked(u16 ngpio) 316 { 317 unsigned int base = GPIO_DYNAMIC_BASE; 318 struct gpio_device *gdev; 319 320 list_for_each_entry_srcu(gdev, &gpio_devices, list, 321 lockdep_is_held(&gpio_devices_lock)) { 322 /* found a free space? */ 323 if (gdev->base >= base + ngpio) 324 break; 325 /* nope, check the space right after the chip */ 326 base = gdev->base + gdev->ngpio; 327 if (base < GPIO_DYNAMIC_BASE) 328 base = GPIO_DYNAMIC_BASE; 329 if (base > GPIO_DYNAMIC_MAX - ngpio) 330 break; 331 } 332 333 if (base <= GPIO_DYNAMIC_MAX - ngpio) { 334 pr_debug("%s: found new base at %d\n", __func__, base); 335 return base; 336 } else { 337 pr_err("%s: cannot find free range\n", __func__); 338 return -ENOSPC; 339 } 340 } 341 342 /** 343 * gpiod_get_direction - return the current direction of a GPIO 344 * @desc: GPIO to get the direction of 345 * 346 * Returns 0 for output, 1 for input, or an error code in case of error. 347 * 348 * This function may sleep if gpiod_cansleep() is true. 349 */ 350 int gpiod_get_direction(struct gpio_desc *desc) 351 { 352 unsigned long flags; 353 unsigned int offset; 354 int ret; 355 356 /* 357 * We cannot use VALIDATE_DESC() as we must not return 0 for a NULL 358 * descriptor like we usually do. 359 */ 360 if (!desc || IS_ERR(desc)) 361 return -EINVAL; 362 363 CLASS(gpio_chip_guard, guard)(desc); 364 if (!guard.gc) 365 return -ENODEV; 366 367 offset = gpio_chip_hwgpio(desc); 368 flags = READ_ONCE(desc->flags); 369 370 /* 371 * Open drain emulation using input mode may incorrectly report 372 * input here, fix that up. 373 */ 374 if (test_bit(FLAG_OPEN_DRAIN, &flags) && 375 test_bit(FLAG_IS_OUT, &flags)) 376 return 0; 377 378 if (!guard.gc->get_direction) 379 return -ENOTSUPP; 380 381 ret = guard.gc->get_direction(guard.gc, offset); 382 if (ret < 0) 383 return ret; 384 385 /* 386 * GPIO_LINE_DIRECTION_IN or other positive, 387 * otherwise GPIO_LINE_DIRECTION_OUT. 388 */ 389 if (ret > 0) 390 ret = 1; 391 392 assign_bit(FLAG_IS_OUT, &flags, !ret); 393 WRITE_ONCE(desc->flags, flags); 394 395 return ret; 396 } 397 EXPORT_SYMBOL_GPL(gpiod_get_direction); 398 399 /* 400 * Add a new chip to the global chips list, keeping the list of chips sorted 401 * by range(means [base, base + ngpio - 1]) order. 402 * 403 * Return -EBUSY if the new chip overlaps with some other chip's integer 404 * space. 405 */ 406 static int gpiodev_add_to_list_unlocked(struct gpio_device *gdev) 407 { 408 struct gpio_device *prev, *next; 409 410 lockdep_assert_held(&gpio_devices_lock); 411 412 if (list_empty(&gpio_devices)) { 413 /* initial entry in list */ 414 list_add_tail_rcu(&gdev->list, &gpio_devices); 415 return 0; 416 } 417 418 next = list_first_entry(&gpio_devices, struct gpio_device, list); 419 if (gdev->base + gdev->ngpio <= next->base) { 420 /* add before first entry */ 421 list_add_rcu(&gdev->list, &gpio_devices); 422 return 0; 423 } 424 425 prev = list_last_entry(&gpio_devices, struct gpio_device, list); 426 if (prev->base + prev->ngpio <= gdev->base) { 427 /* add behind last entry */ 428 list_add_tail_rcu(&gdev->list, &gpio_devices); 429 return 0; 430 } 431 432 list_for_each_entry_safe(prev, next, &gpio_devices, list) { 433 /* at the end of the list */ 434 if (&next->list == &gpio_devices) 435 break; 436 437 /* add between prev and next */ 438 if (prev->base + prev->ngpio <= gdev->base 439 && gdev->base + gdev->ngpio <= next->base) { 440 list_add_rcu(&gdev->list, &prev->list); 441 return 0; 442 } 443 } 444 445 synchronize_srcu(&gpio_devices_srcu); 446 447 return -EBUSY; 448 } 449 450 /* 451 * Convert a GPIO name to its descriptor 452 * Note that there is no guarantee that GPIO names are globally unique! 453 * Hence this function will return, if it exists, a reference to the first GPIO 454 * line found that matches the given name. 455 */ 456 static struct gpio_desc *gpio_name_to_desc(const char * const name) 457 { 458 struct gpio_device *gdev; 459 struct gpio_desc *desc; 460 struct gpio_chip *gc; 461 462 if (!name) 463 return NULL; 464 465 guard(srcu)(&gpio_devices_srcu); 466 467 list_for_each_entry_srcu(gdev, &gpio_devices, list, 468 srcu_read_lock_held(&gpio_devices_srcu)) { 469 guard(srcu)(&gdev->srcu); 470 471 gc = srcu_dereference(gdev->chip, &gdev->srcu); 472 if (!gc) 473 continue; 474 475 for_each_gpio_desc(gc, desc) { 476 if (desc->name && !strcmp(desc->name, name)) 477 return desc; 478 } 479 } 480 481 return NULL; 482 } 483 484 /* 485 * Take the names from gc->names and assign them to their GPIO descriptors. 486 * Warn if a name is already used for a GPIO line on a different GPIO chip. 487 * 488 * Note that: 489 * 1. Non-unique names are still accepted, 490 * 2. Name collisions within the same GPIO chip are not reported. 491 */ 492 static void gpiochip_set_desc_names(struct gpio_chip *gc) 493 { 494 struct gpio_device *gdev = gc->gpiodev; 495 int i; 496 497 /* First check all names if they are unique */ 498 for (i = 0; i != gc->ngpio; ++i) { 499 struct gpio_desc *gpio; 500 501 gpio = gpio_name_to_desc(gc->names[i]); 502 if (gpio) 503 dev_warn(&gdev->dev, 504 "Detected name collision for GPIO name '%s'\n", 505 gc->names[i]); 506 } 507 508 /* Then add all names to the GPIO descriptors */ 509 for (i = 0; i != gc->ngpio; ++i) 510 gdev->descs[i].name = gc->names[i]; 511 } 512 513 /* 514 * gpiochip_set_names - Set GPIO line names using device properties 515 * @chip: GPIO chip whose lines should be named, if possible 516 * 517 * Looks for device property "gpio-line-names" and if it exists assigns 518 * GPIO line names for the chip. The memory allocated for the assigned 519 * names belong to the underlying firmware node and should not be released 520 * by the caller. 521 */ 522 static int gpiochip_set_names(struct gpio_chip *chip) 523 { 524 struct gpio_device *gdev = chip->gpiodev; 525 struct device *dev = &gdev->dev; 526 const char **names; 527 int ret, i; 528 int count; 529 530 count = device_property_string_array_count(dev, "gpio-line-names"); 531 if (count < 0) 532 return 0; 533 534 /* 535 * When offset is set in the driver side we assume the driver internally 536 * is using more than one gpiochip per the same device. We have to stop 537 * setting friendly names if the specified ones with 'gpio-line-names' 538 * are less than the offset in the device itself. This means all the 539 * lines are not present for every single pin within all the internal 540 * gpiochips. 541 */ 542 if (count <= chip->offset) { 543 dev_warn(dev, "gpio-line-names too short (length %d), cannot map names for the gpiochip at offset %u\n", 544 count, chip->offset); 545 return 0; 546 } 547 548 names = kcalloc(count, sizeof(*names), GFP_KERNEL); 549 if (!names) 550 return -ENOMEM; 551 552 ret = device_property_read_string_array(dev, "gpio-line-names", 553 names, count); 554 if (ret < 0) { 555 dev_warn(dev, "failed to read GPIO line names\n"); 556 kfree(names); 557 return ret; 558 } 559 560 /* 561 * When more that one gpiochip per device is used, 'count' can 562 * contain at most number gpiochips x chip->ngpio. We have to 563 * correctly distribute all defined lines taking into account 564 * chip->offset as starting point from where we will assign 565 * the names to pins from the 'names' array. Since property 566 * 'gpio-line-names' cannot contains gaps, we have to be sure 567 * we only assign those pins that really exists since chip->ngpio 568 * can be different of the chip->offset. 569 */ 570 count = (count > chip->offset) ? count - chip->offset : count; 571 if (count > chip->ngpio) 572 count = chip->ngpio; 573 574 for (i = 0; i < count; i++) { 575 /* 576 * Allow overriding "fixed" names provided by the GPIO 577 * provider. The "fixed" names are more often than not 578 * generic and less informative than the names given in 579 * device properties. 580 */ 581 if (names[chip->offset + i] && names[chip->offset + i][0]) 582 gdev->descs[i].name = names[chip->offset + i]; 583 } 584 585 kfree(names); 586 587 return 0; 588 } 589 590 static unsigned long *gpiochip_allocate_mask(struct gpio_chip *gc) 591 { 592 unsigned long *p; 593 594 p = bitmap_alloc(gc->ngpio, GFP_KERNEL); 595 if (!p) 596 return NULL; 597 598 /* Assume by default all GPIOs are valid */ 599 bitmap_fill(p, gc->ngpio); 600 601 return p; 602 } 603 604 static void gpiochip_free_mask(unsigned long **p) 605 { 606 bitmap_free(*p); 607 *p = NULL; 608 } 609 610 static unsigned int gpiochip_count_reserved_ranges(struct gpio_chip *gc) 611 { 612 struct device *dev = &gc->gpiodev->dev; 613 int size; 614 615 /* Format is "start, count, ..." */ 616 size = device_property_count_u32(dev, "gpio-reserved-ranges"); 617 if (size > 0 && size % 2 == 0) 618 return size; 619 620 return 0; 621 } 622 623 static int gpiochip_apply_reserved_ranges(struct gpio_chip *gc) 624 { 625 struct device *dev = &gc->gpiodev->dev; 626 unsigned int size; 627 u32 *ranges; 628 int ret; 629 630 size = gpiochip_count_reserved_ranges(gc); 631 if (size == 0) 632 return 0; 633 634 ranges = kmalloc_array(size, sizeof(*ranges), GFP_KERNEL); 635 if (!ranges) 636 return -ENOMEM; 637 638 ret = device_property_read_u32_array(dev, "gpio-reserved-ranges", 639 ranges, size); 640 if (ret) { 641 kfree(ranges); 642 return ret; 643 } 644 645 while (size) { 646 u32 count = ranges[--size]; 647 u32 start = ranges[--size]; 648 649 if (start >= gc->ngpio || start + count > gc->ngpio) 650 continue; 651 652 bitmap_clear(gc->valid_mask, start, count); 653 } 654 655 kfree(ranges); 656 return 0; 657 } 658 659 static int gpiochip_init_valid_mask(struct gpio_chip *gc) 660 { 661 int ret; 662 663 if (!(gpiochip_count_reserved_ranges(gc) || gc->init_valid_mask)) 664 return 0; 665 666 gc->valid_mask = gpiochip_allocate_mask(gc); 667 if (!gc->valid_mask) 668 return -ENOMEM; 669 670 ret = gpiochip_apply_reserved_ranges(gc); 671 if (ret) 672 return ret; 673 674 if (gc->init_valid_mask) 675 return gc->init_valid_mask(gc, 676 gc->valid_mask, 677 gc->ngpio); 678 679 return 0; 680 } 681 682 static void gpiochip_free_valid_mask(struct gpio_chip *gc) 683 { 684 gpiochip_free_mask(&gc->valid_mask); 685 } 686 687 static int gpiochip_add_pin_ranges(struct gpio_chip *gc) 688 { 689 /* 690 * Device Tree platforms are supposed to use "gpio-ranges" 691 * property. This check ensures that the ->add_pin_ranges() 692 * won't be called for them. 693 */ 694 if (device_property_present(&gc->gpiodev->dev, "gpio-ranges")) 695 return 0; 696 697 if (gc->add_pin_ranges) 698 return gc->add_pin_ranges(gc); 699 700 return 0; 701 } 702 703 bool gpiochip_line_is_valid(const struct gpio_chip *gc, 704 unsigned int offset) 705 { 706 /* No mask means all valid */ 707 if (likely(!gc->valid_mask)) 708 return true; 709 return test_bit(offset, gc->valid_mask); 710 } 711 EXPORT_SYMBOL_GPL(gpiochip_line_is_valid); 712 713 static void gpiodev_release(struct device *dev) 714 { 715 struct gpio_device *gdev = to_gpio_device(dev); 716 717 /* Call pending kfree()s for descriptor labels. */ 718 synchronize_srcu(&gdev->desc_srcu); 719 cleanup_srcu_struct(&gdev->desc_srcu); 720 721 ida_free(&gpio_ida, gdev->id); 722 kfree_const(gdev->label); 723 kfree(gdev->descs); 724 cleanup_srcu_struct(&gdev->srcu); 725 kfree(gdev); 726 } 727 728 static const struct device_type gpio_dev_type = { 729 .name = "gpio_chip", 730 .release = gpiodev_release, 731 }; 732 733 #ifdef CONFIG_GPIO_CDEV 734 #define gcdev_register(gdev, devt) gpiolib_cdev_register((gdev), (devt)) 735 #define gcdev_unregister(gdev) gpiolib_cdev_unregister((gdev)) 736 #else 737 /* 738 * gpiolib_cdev_register() indirectly calls device_add(), which is still 739 * required even when cdev is not selected. 740 */ 741 #define gcdev_register(gdev, devt) device_add(&(gdev)->dev) 742 #define gcdev_unregister(gdev) device_del(&(gdev)->dev) 743 #endif 744 745 static int gpiochip_setup_dev(struct gpio_device *gdev) 746 { 747 struct fwnode_handle *fwnode = dev_fwnode(&gdev->dev); 748 int ret; 749 750 device_initialize(&gdev->dev); 751 752 /* 753 * If fwnode doesn't belong to another device, it's safe to clear its 754 * initialized flag. 755 */ 756 if (fwnode && !fwnode->dev) 757 fwnode_dev_initialized(fwnode, false); 758 759 ret = gcdev_register(gdev, gpio_devt); 760 if (ret) 761 return ret; 762 763 ret = gpiochip_sysfs_register(gdev); 764 if (ret) 765 goto err_remove_device; 766 767 dev_dbg(&gdev->dev, "registered GPIOs %u to %u on %s\n", gdev->base, 768 gdev->base + gdev->ngpio - 1, gdev->label); 769 770 return 0; 771 772 err_remove_device: 773 gcdev_unregister(gdev); 774 return ret; 775 } 776 777 static void gpiochip_machine_hog(struct gpio_chip *gc, struct gpiod_hog *hog) 778 { 779 struct gpio_desc *desc; 780 int rv; 781 782 desc = gpiochip_get_desc(gc, hog->chip_hwnum); 783 if (IS_ERR(desc)) { 784 chip_err(gc, "%s: unable to get GPIO desc: %ld\n", __func__, 785 PTR_ERR(desc)); 786 return; 787 } 788 789 rv = gpiod_hog(desc, hog->line_name, hog->lflags, hog->dflags); 790 if (rv) 791 gpiod_err(desc, "%s: unable to hog GPIO line (%s:%u): %d\n", 792 __func__, gc->label, hog->chip_hwnum, rv); 793 } 794 795 static void machine_gpiochip_add(struct gpio_chip *gc) 796 { 797 struct gpiod_hog *hog; 798 799 mutex_lock(&gpio_machine_hogs_mutex); 800 801 list_for_each_entry(hog, &gpio_machine_hogs, list) { 802 if (!strcmp(gc->label, hog->chip_label)) 803 gpiochip_machine_hog(gc, hog); 804 } 805 806 mutex_unlock(&gpio_machine_hogs_mutex); 807 } 808 809 static void gpiochip_setup_devs(void) 810 { 811 struct gpio_device *gdev; 812 int ret; 813 814 guard(srcu)(&gpio_devices_srcu); 815 816 list_for_each_entry_srcu(gdev, &gpio_devices, list, 817 srcu_read_lock_held(&gpio_devices_srcu)) { 818 ret = gpiochip_setup_dev(gdev); 819 if (ret) 820 dev_err(&gdev->dev, 821 "Failed to initialize gpio device (%d)\n", ret); 822 } 823 } 824 825 static void gpiochip_set_data(struct gpio_chip *gc, void *data) 826 { 827 gc->gpiodev->data = data; 828 } 829 830 /** 831 * gpiochip_get_data() - get per-subdriver data for the chip 832 * @gc: GPIO chip 833 * 834 * Returns: 835 * The per-subdriver data for the chip. 836 */ 837 void *gpiochip_get_data(struct gpio_chip *gc) 838 { 839 return gc->gpiodev->data; 840 } 841 EXPORT_SYMBOL_GPL(gpiochip_get_data); 842 843 int gpiochip_get_ngpios(struct gpio_chip *gc, struct device *dev) 844 { 845 u32 ngpios = gc->ngpio; 846 int ret; 847 848 if (ngpios == 0) { 849 ret = device_property_read_u32(dev, "ngpios", &ngpios); 850 if (ret == -ENODATA) 851 /* 852 * -ENODATA means that there is no property found and 853 * we want to issue the error message to the user. 854 * Besides that, we want to return different error code 855 * to state that supplied value is not valid. 856 */ 857 ngpios = 0; 858 else if (ret) 859 return ret; 860 861 gc->ngpio = ngpios; 862 } 863 864 if (gc->ngpio == 0) { 865 chip_err(gc, "tried to insert a GPIO chip with zero lines\n"); 866 return -EINVAL; 867 } 868 869 if (gc->ngpio > FASTPATH_NGPIO) 870 chip_warn(gc, "line cnt %u is greater than fast path cnt %u\n", 871 gc->ngpio, FASTPATH_NGPIO); 872 873 return 0; 874 } 875 EXPORT_SYMBOL_GPL(gpiochip_get_ngpios); 876 877 int gpiochip_add_data_with_key(struct gpio_chip *gc, void *data, 878 struct lock_class_key *lock_key, 879 struct lock_class_key *request_key) 880 { 881 struct gpio_device *gdev; 882 unsigned int desc_index; 883 int base = 0; 884 int ret = 0; 885 886 /* 887 * First: allocate and populate the internal stat container, and 888 * set up the struct device. 889 */ 890 gdev = kzalloc(sizeof(*gdev), GFP_KERNEL); 891 if (!gdev) 892 return -ENOMEM; 893 894 gdev->dev.type = &gpio_dev_type; 895 gdev->dev.bus = &gpio_bus_type; 896 gdev->dev.parent = gc->parent; 897 rcu_assign_pointer(gdev->chip, gc); 898 899 gc->gpiodev = gdev; 900 gpiochip_set_data(gc, data); 901 902 /* 903 * If the calling driver did not initialize firmware node, 904 * do it here using the parent device, if any. 905 */ 906 if (gc->fwnode) 907 device_set_node(&gdev->dev, gc->fwnode); 908 else if (gc->parent) 909 device_set_node(&gdev->dev, dev_fwnode(gc->parent)); 910 911 gdev->id = ida_alloc(&gpio_ida, GFP_KERNEL); 912 if (gdev->id < 0) { 913 ret = gdev->id; 914 goto err_free_gdev; 915 } 916 917 ret = dev_set_name(&gdev->dev, GPIOCHIP_NAME "%d", gdev->id); 918 if (ret) 919 goto err_free_ida; 920 921 if (gc->parent && gc->parent->driver) 922 gdev->owner = gc->parent->driver->owner; 923 else if (gc->owner) 924 /* TODO: remove chip->owner */ 925 gdev->owner = gc->owner; 926 else 927 gdev->owner = THIS_MODULE; 928 929 ret = gpiochip_get_ngpios(gc, &gdev->dev); 930 if (ret) 931 goto err_free_dev_name; 932 933 gdev->descs = kcalloc(gc->ngpio, sizeof(*gdev->descs), GFP_KERNEL); 934 if (!gdev->descs) { 935 ret = -ENOMEM; 936 goto err_free_dev_name; 937 } 938 939 gdev->label = kstrdup_const(gc->label ?: "unknown", GFP_KERNEL); 940 if (!gdev->label) { 941 ret = -ENOMEM; 942 goto err_free_descs; 943 } 944 945 gdev->ngpio = gc->ngpio; 946 gdev->can_sleep = gc->can_sleep; 947 948 scoped_guard(mutex, &gpio_devices_lock) { 949 /* 950 * TODO: this allocates a Linux GPIO number base in the global 951 * GPIO numberspace for this chip. In the long run we want to 952 * get *rid* of this numberspace and use only descriptors, but 953 * it may be a pipe dream. It will not happen before we get rid 954 * of the sysfs interface anyways. 955 */ 956 base = gc->base; 957 if (base < 0) { 958 base = gpiochip_find_base_unlocked(gc->ngpio); 959 if (base < 0) { 960 ret = base; 961 base = 0; 962 goto err_free_label; 963 } 964 965 /* 966 * TODO: it should not be necessary to reflect the 967 * assigned base outside of the GPIO subsystem. Go over 968 * drivers and see if anyone makes use of this, else 969 * drop this and assign a poison instead. 970 */ 971 gc->base = base; 972 } else { 973 dev_warn(&gdev->dev, 974 "Static allocation of GPIO base is deprecated, use dynamic allocation.\n"); 975 } 976 977 gdev->base = base; 978 979 ret = gpiodev_add_to_list_unlocked(gdev); 980 if (ret) { 981 chip_err(gc, "GPIO integer space overlap, cannot add chip\n"); 982 goto err_free_label; 983 } 984 } 985 986 for (desc_index = 0; desc_index < gc->ngpio; desc_index++) 987 gdev->descs[desc_index].gdev = gdev; 988 989 BLOCKING_INIT_NOTIFIER_HEAD(&gdev->line_state_notifier); 990 BLOCKING_INIT_NOTIFIER_HEAD(&gdev->device_notifier); 991 992 ret = init_srcu_struct(&gdev->srcu); 993 if (ret) 994 goto err_remove_from_list; 995 996 ret = init_srcu_struct(&gdev->desc_srcu); 997 if (ret) 998 goto err_cleanup_gdev_srcu; 999 1000 #ifdef CONFIG_PINCTRL 1001 INIT_LIST_HEAD(&gdev->pin_ranges); 1002 #endif 1003 1004 if (gc->names) 1005 gpiochip_set_desc_names(gc); 1006 1007 ret = gpiochip_set_names(gc); 1008 if (ret) 1009 goto err_cleanup_desc_srcu; 1010 1011 ret = gpiochip_init_valid_mask(gc); 1012 if (ret) 1013 goto err_cleanup_desc_srcu; 1014 1015 for (desc_index = 0; desc_index < gc->ngpio; desc_index++) { 1016 struct gpio_desc *desc = &gdev->descs[desc_index]; 1017 1018 if (gc->get_direction && gpiochip_line_is_valid(gc, desc_index)) { 1019 assign_bit(FLAG_IS_OUT, 1020 &desc->flags, !gc->get_direction(gc, desc_index)); 1021 } else { 1022 assign_bit(FLAG_IS_OUT, 1023 &desc->flags, !gc->direction_input); 1024 } 1025 } 1026 1027 ret = of_gpiochip_add(gc); 1028 if (ret) 1029 goto err_free_valid_mask; 1030 1031 ret = gpiochip_add_pin_ranges(gc); 1032 if (ret) 1033 goto err_remove_of_chip; 1034 1035 acpi_gpiochip_add(gc); 1036 1037 machine_gpiochip_add(gc); 1038 1039 ret = gpiochip_irqchip_init_valid_mask(gc); 1040 if (ret) 1041 goto err_free_hogs; 1042 1043 ret = gpiochip_irqchip_init_hw(gc); 1044 if (ret) 1045 goto err_remove_irqchip_mask; 1046 1047 ret = gpiochip_add_irqchip(gc, lock_key, request_key); 1048 if (ret) 1049 goto err_remove_irqchip_mask; 1050 1051 /* 1052 * By first adding the chardev, and then adding the device, 1053 * we get a device node entry in sysfs under 1054 * /sys/bus/gpio/devices/gpiochipN/dev that can be used for 1055 * coldplug of device nodes and other udev business. 1056 * We can do this only if gpiolib has been initialized. 1057 * Otherwise, defer until later. 1058 */ 1059 if (gpiolib_initialized) { 1060 ret = gpiochip_setup_dev(gdev); 1061 if (ret) 1062 goto err_remove_irqchip; 1063 } 1064 return 0; 1065 1066 err_remove_irqchip: 1067 gpiochip_irqchip_remove(gc); 1068 err_remove_irqchip_mask: 1069 gpiochip_irqchip_free_valid_mask(gc); 1070 err_free_hogs: 1071 gpiochip_free_hogs(gc); 1072 acpi_gpiochip_remove(gc); 1073 gpiochip_remove_pin_ranges(gc); 1074 err_remove_of_chip: 1075 of_gpiochip_remove(gc); 1076 err_free_valid_mask: 1077 gpiochip_free_valid_mask(gc); 1078 err_cleanup_desc_srcu: 1079 cleanup_srcu_struct(&gdev->desc_srcu); 1080 err_cleanup_gdev_srcu: 1081 cleanup_srcu_struct(&gdev->srcu); 1082 err_remove_from_list: 1083 scoped_guard(mutex, &gpio_devices_lock) 1084 list_del_rcu(&gdev->list); 1085 synchronize_srcu(&gpio_devices_srcu); 1086 if (gdev->dev.release) { 1087 /* release() has been registered by gpiochip_setup_dev() */ 1088 gpio_device_put(gdev); 1089 goto err_print_message; 1090 } 1091 err_free_label: 1092 kfree_const(gdev->label); 1093 err_free_descs: 1094 kfree(gdev->descs); 1095 err_free_dev_name: 1096 kfree(dev_name(&gdev->dev)); 1097 err_free_ida: 1098 ida_free(&gpio_ida, gdev->id); 1099 err_free_gdev: 1100 kfree(gdev); 1101 err_print_message: 1102 /* failures here can mean systems won't boot... */ 1103 if (ret != -EPROBE_DEFER) { 1104 pr_err("%s: GPIOs %d..%d (%s) failed to register, %d\n", __func__, 1105 base, base + (int)gc->ngpio - 1, 1106 gc->label ? : "generic", ret); 1107 } 1108 return ret; 1109 } 1110 EXPORT_SYMBOL_GPL(gpiochip_add_data_with_key); 1111 1112 /** 1113 * gpiochip_remove() - unregister a gpio_chip 1114 * @gc: the chip to unregister 1115 * 1116 * A gpio_chip with any GPIOs still requested may not be removed. 1117 */ 1118 void gpiochip_remove(struct gpio_chip *gc) 1119 { 1120 struct gpio_device *gdev = gc->gpiodev; 1121 1122 /* FIXME: should the legacy sysfs handling be moved to gpio_device? */ 1123 gpiochip_sysfs_unregister(gdev); 1124 gpiochip_free_hogs(gc); 1125 1126 scoped_guard(mutex, &gpio_devices_lock) 1127 list_del_rcu(&gdev->list); 1128 synchronize_srcu(&gpio_devices_srcu); 1129 1130 /* Numb the device, cancelling all outstanding operations */ 1131 rcu_assign_pointer(gdev->chip, NULL); 1132 synchronize_srcu(&gdev->srcu); 1133 gpiochip_irqchip_remove(gc); 1134 acpi_gpiochip_remove(gc); 1135 of_gpiochip_remove(gc); 1136 gpiochip_remove_pin_ranges(gc); 1137 gpiochip_free_valid_mask(gc); 1138 /* 1139 * We accept no more calls into the driver from this point, so 1140 * NULL the driver data pointer. 1141 */ 1142 gpiochip_set_data(gc, NULL); 1143 1144 /* 1145 * The gpiochip side puts its use of the device to rest here: 1146 * if there are no userspace clients, the chardev and device will 1147 * be removed, else it will be dangling until the last user is 1148 * gone. 1149 */ 1150 gcdev_unregister(gdev); 1151 gpio_device_put(gdev); 1152 } 1153 EXPORT_SYMBOL_GPL(gpiochip_remove); 1154 1155 /** 1156 * gpio_device_find() - find a specific GPIO device 1157 * @data: data to pass to match function 1158 * @match: Callback function to check gpio_chip 1159 * 1160 * Returns: 1161 * New reference to struct gpio_device. 1162 * 1163 * Similar to bus_find_device(). It returns a reference to a gpio_device as 1164 * determined by a user supplied @match callback. The callback should return 1165 * 0 if the device doesn't match and non-zero if it does. If the callback 1166 * returns non-zero, this function will return to the caller and not iterate 1167 * over any more gpio_devices. 1168 * 1169 * The callback takes the GPIO chip structure as argument. During the execution 1170 * of the callback function the chip is protected from being freed. TODO: This 1171 * actually has yet to be implemented. 1172 * 1173 * If the function returns non-NULL, the returned reference must be freed by 1174 * the caller using gpio_device_put(). 1175 */ 1176 struct gpio_device *gpio_device_find(const void *data, 1177 int (*match)(struct gpio_chip *gc, 1178 const void *data)) 1179 { 1180 struct gpio_device *gdev; 1181 struct gpio_chip *gc; 1182 1183 /* 1184 * Not yet but in the future the spinlock below will become a mutex. 1185 * Annotate this function before anyone tries to use it in interrupt 1186 * context like it happened with gpiochip_find(). 1187 */ 1188 might_sleep(); 1189 1190 guard(srcu)(&gpio_devices_srcu); 1191 1192 list_for_each_entry_srcu(gdev, &gpio_devices, list, 1193 srcu_read_lock_held(&gpio_devices_srcu)) { 1194 if (!device_is_registered(&gdev->dev)) 1195 continue; 1196 1197 guard(srcu)(&gdev->srcu); 1198 1199 gc = srcu_dereference(gdev->chip, &gdev->srcu); 1200 1201 if (gc && match(gc, data)) 1202 return gpio_device_get(gdev); 1203 } 1204 1205 return NULL; 1206 } 1207 EXPORT_SYMBOL_GPL(gpio_device_find); 1208 1209 static int gpio_chip_match_by_label(struct gpio_chip *gc, const void *label) 1210 { 1211 return gc->label && !strcmp(gc->label, label); 1212 } 1213 1214 /** 1215 * gpio_device_find_by_label() - wrapper around gpio_device_find() finding the 1216 * GPIO device by its backing chip's label 1217 * @label: Label to lookup 1218 * 1219 * Returns: 1220 * Reference to the GPIO device or NULL. Reference must be released with 1221 * gpio_device_put(). 1222 */ 1223 struct gpio_device *gpio_device_find_by_label(const char *label) 1224 { 1225 return gpio_device_find((void *)label, gpio_chip_match_by_label); 1226 } 1227 EXPORT_SYMBOL_GPL(gpio_device_find_by_label); 1228 1229 static int gpio_chip_match_by_fwnode(struct gpio_chip *gc, const void *fwnode) 1230 { 1231 return device_match_fwnode(&gc->gpiodev->dev, fwnode); 1232 } 1233 1234 /** 1235 * gpio_device_find_by_fwnode() - wrapper around gpio_device_find() finding 1236 * the GPIO device by its fwnode 1237 * @fwnode: Firmware node to lookup 1238 * 1239 * Returns: 1240 * Reference to the GPIO device or NULL. Reference must be released with 1241 * gpio_device_put(). 1242 */ 1243 struct gpio_device *gpio_device_find_by_fwnode(const struct fwnode_handle *fwnode) 1244 { 1245 return gpio_device_find((void *)fwnode, gpio_chip_match_by_fwnode); 1246 } 1247 EXPORT_SYMBOL_GPL(gpio_device_find_by_fwnode); 1248 1249 /** 1250 * gpio_device_get() - Increase the reference count of this GPIO device 1251 * @gdev: GPIO device to increase the refcount for 1252 * 1253 * Returns: 1254 * Pointer to @gdev. 1255 */ 1256 struct gpio_device *gpio_device_get(struct gpio_device *gdev) 1257 { 1258 return to_gpio_device(get_device(&gdev->dev)); 1259 } 1260 EXPORT_SYMBOL_GPL(gpio_device_get); 1261 1262 /** 1263 * gpio_device_put() - Decrease the reference count of this GPIO device and 1264 * possibly free all resources associated with it. 1265 * @gdev: GPIO device to decrease the reference count for 1266 */ 1267 void gpio_device_put(struct gpio_device *gdev) 1268 { 1269 put_device(&gdev->dev); 1270 } 1271 EXPORT_SYMBOL_GPL(gpio_device_put); 1272 1273 /** 1274 * gpio_device_to_device() - Retrieve the address of the underlying struct 1275 * device. 1276 * @gdev: GPIO device for which to return the address. 1277 * 1278 * This does not increase the reference count of the GPIO device nor the 1279 * underlying struct device. 1280 * 1281 * Returns: 1282 * Address of struct device backing this GPIO device. 1283 */ 1284 struct device *gpio_device_to_device(struct gpio_device *gdev) 1285 { 1286 return &gdev->dev; 1287 } 1288 EXPORT_SYMBOL_GPL(gpio_device_to_device); 1289 1290 #ifdef CONFIG_GPIOLIB_IRQCHIP 1291 1292 /* 1293 * The following is irqchip helper code for gpiochips. 1294 */ 1295 1296 static int gpiochip_irqchip_init_hw(struct gpio_chip *gc) 1297 { 1298 struct gpio_irq_chip *girq = &gc->irq; 1299 1300 if (!girq->init_hw) 1301 return 0; 1302 1303 return girq->init_hw(gc); 1304 } 1305 1306 static int gpiochip_irqchip_init_valid_mask(struct gpio_chip *gc) 1307 { 1308 struct gpio_irq_chip *girq = &gc->irq; 1309 1310 if (!girq->init_valid_mask) 1311 return 0; 1312 1313 girq->valid_mask = gpiochip_allocate_mask(gc); 1314 if (!girq->valid_mask) 1315 return -ENOMEM; 1316 1317 girq->init_valid_mask(gc, girq->valid_mask, gc->ngpio); 1318 1319 return 0; 1320 } 1321 1322 static void gpiochip_irqchip_free_valid_mask(struct gpio_chip *gc) 1323 { 1324 gpiochip_free_mask(&gc->irq.valid_mask); 1325 } 1326 1327 static bool gpiochip_irqchip_irq_valid(const struct gpio_chip *gc, 1328 unsigned int offset) 1329 { 1330 if (!gpiochip_line_is_valid(gc, offset)) 1331 return false; 1332 /* No mask means all valid */ 1333 if (likely(!gc->irq.valid_mask)) 1334 return true; 1335 return test_bit(offset, gc->irq.valid_mask); 1336 } 1337 1338 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 1339 1340 /** 1341 * gpiochip_set_hierarchical_irqchip() - connects a hierarchical irqchip 1342 * to a gpiochip 1343 * @gc: the gpiochip to set the irqchip hierarchical handler to 1344 * @irqchip: the irqchip to handle this level of the hierarchy, the interrupt 1345 * will then percolate up to the parent 1346 */ 1347 static void gpiochip_set_hierarchical_irqchip(struct gpio_chip *gc, 1348 struct irq_chip *irqchip) 1349 { 1350 /* DT will deal with mapping each IRQ as we go along */ 1351 if (is_of_node(gc->irq.fwnode)) 1352 return; 1353 1354 /* 1355 * This is for legacy and boardfile "irqchip" fwnodes: allocate 1356 * irqs upfront instead of dynamically since we don't have the 1357 * dynamic type of allocation that hardware description languages 1358 * provide. Once all GPIO drivers using board files are gone from 1359 * the kernel we can delete this code, but for a transitional period 1360 * it is necessary to keep this around. 1361 */ 1362 if (is_fwnode_irqchip(gc->irq.fwnode)) { 1363 int i; 1364 int ret; 1365 1366 for (i = 0; i < gc->ngpio; i++) { 1367 struct irq_fwspec fwspec; 1368 unsigned int parent_hwirq; 1369 unsigned int parent_type; 1370 struct gpio_irq_chip *girq = &gc->irq; 1371 1372 /* 1373 * We call the child to parent translation function 1374 * only to check if the child IRQ is valid or not. 1375 * Just pick the rising edge type here as that is what 1376 * we likely need to support. 1377 */ 1378 ret = girq->child_to_parent_hwirq(gc, i, 1379 IRQ_TYPE_EDGE_RISING, 1380 &parent_hwirq, 1381 &parent_type); 1382 if (ret) { 1383 chip_err(gc, "skip set-up on hwirq %d\n", 1384 i); 1385 continue; 1386 } 1387 1388 fwspec.fwnode = gc->irq.fwnode; 1389 /* This is the hwirq for the GPIO line side of things */ 1390 fwspec.param[0] = girq->child_offset_to_irq(gc, i); 1391 /* Just pick something */ 1392 fwspec.param[1] = IRQ_TYPE_EDGE_RISING; 1393 fwspec.param_count = 2; 1394 ret = irq_domain_alloc_irqs(gc->irq.domain, 1, 1395 NUMA_NO_NODE, &fwspec); 1396 if (ret < 0) { 1397 chip_err(gc, 1398 "can not allocate irq for GPIO line %d parent hwirq %d in hierarchy domain: %d\n", 1399 i, parent_hwirq, 1400 ret); 1401 } 1402 } 1403 } 1404 1405 chip_err(gc, "%s unknown fwnode type proceed anyway\n", __func__); 1406 1407 return; 1408 } 1409 1410 static int gpiochip_hierarchy_irq_domain_translate(struct irq_domain *d, 1411 struct irq_fwspec *fwspec, 1412 unsigned long *hwirq, 1413 unsigned int *type) 1414 { 1415 /* We support standard DT translation */ 1416 if (is_of_node(fwspec->fwnode) && fwspec->param_count == 2) { 1417 return irq_domain_translate_twocell(d, fwspec, hwirq, type); 1418 } 1419 1420 /* This is for board files and others not using DT */ 1421 if (is_fwnode_irqchip(fwspec->fwnode)) { 1422 int ret; 1423 1424 ret = irq_domain_translate_twocell(d, fwspec, hwirq, type); 1425 if (ret) 1426 return ret; 1427 WARN_ON(*type == IRQ_TYPE_NONE); 1428 return 0; 1429 } 1430 return -EINVAL; 1431 } 1432 1433 static int gpiochip_hierarchy_irq_domain_alloc(struct irq_domain *d, 1434 unsigned int irq, 1435 unsigned int nr_irqs, 1436 void *data) 1437 { 1438 struct gpio_chip *gc = d->host_data; 1439 irq_hw_number_t hwirq; 1440 unsigned int type = IRQ_TYPE_NONE; 1441 struct irq_fwspec *fwspec = data; 1442 union gpio_irq_fwspec gpio_parent_fwspec = {}; 1443 unsigned int parent_hwirq; 1444 unsigned int parent_type; 1445 struct gpio_irq_chip *girq = &gc->irq; 1446 int ret; 1447 1448 /* 1449 * The nr_irqs parameter is always one except for PCI multi-MSI 1450 * so this should not happen. 1451 */ 1452 WARN_ON(nr_irqs != 1); 1453 1454 ret = gc->irq.child_irq_domain_ops.translate(d, fwspec, &hwirq, &type); 1455 if (ret) 1456 return ret; 1457 1458 chip_dbg(gc, "allocate IRQ %d, hwirq %lu\n", irq, hwirq); 1459 1460 ret = girq->child_to_parent_hwirq(gc, hwirq, type, 1461 &parent_hwirq, &parent_type); 1462 if (ret) { 1463 chip_err(gc, "can't look up hwirq %lu\n", hwirq); 1464 return ret; 1465 } 1466 chip_dbg(gc, "found parent hwirq %u\n", parent_hwirq); 1467 1468 /* 1469 * We set handle_bad_irq because the .set_type() should 1470 * always be invoked and set the right type of handler. 1471 */ 1472 irq_domain_set_info(d, 1473 irq, 1474 hwirq, 1475 gc->irq.chip, 1476 gc, 1477 girq->handler, 1478 NULL, NULL); 1479 irq_set_probe(irq); 1480 1481 /* This parent only handles asserted level IRQs */ 1482 ret = girq->populate_parent_alloc_arg(gc, &gpio_parent_fwspec, 1483 parent_hwirq, parent_type); 1484 if (ret) 1485 return ret; 1486 1487 chip_dbg(gc, "alloc_irqs_parent for %d parent hwirq %d\n", 1488 irq, parent_hwirq); 1489 irq_set_lockdep_class(irq, gc->irq.lock_key, gc->irq.request_key); 1490 ret = irq_domain_alloc_irqs_parent(d, irq, 1, &gpio_parent_fwspec); 1491 /* 1492 * If the parent irqdomain is msi, the interrupts have already 1493 * been allocated, so the EEXIST is good. 1494 */ 1495 if (irq_domain_is_msi(d->parent) && (ret == -EEXIST)) 1496 ret = 0; 1497 if (ret) 1498 chip_err(gc, 1499 "failed to allocate parent hwirq %d for hwirq %lu\n", 1500 parent_hwirq, hwirq); 1501 1502 return ret; 1503 } 1504 1505 static unsigned int gpiochip_child_offset_to_irq_noop(struct gpio_chip *gc, 1506 unsigned int offset) 1507 { 1508 return offset; 1509 } 1510 1511 /** 1512 * gpiochip_irq_domain_activate() - Lock a GPIO to be used as an IRQ 1513 * @domain: The IRQ domain used by this IRQ chip 1514 * @data: Outermost irq_data associated with the IRQ 1515 * @reserve: If set, only reserve an interrupt vector instead of assigning one 1516 * 1517 * This function is a wrapper that calls gpiochip_lock_as_irq() and is to be 1518 * used as the activate function for the &struct irq_domain_ops. The host_data 1519 * for the IRQ domain must be the &struct gpio_chip. 1520 */ 1521 static int gpiochip_irq_domain_activate(struct irq_domain *domain, 1522 struct irq_data *data, bool reserve) 1523 { 1524 struct gpio_chip *gc = domain->host_data; 1525 unsigned int hwirq = irqd_to_hwirq(data); 1526 1527 return gpiochip_lock_as_irq(gc, hwirq); 1528 } 1529 1530 /** 1531 * gpiochip_irq_domain_deactivate() - Unlock a GPIO used as an IRQ 1532 * @domain: The IRQ domain used by this IRQ chip 1533 * @data: Outermost irq_data associated with the IRQ 1534 * 1535 * This function is a wrapper that will call gpiochip_unlock_as_irq() and is to 1536 * be used as the deactivate function for the &struct irq_domain_ops. The 1537 * host_data for the IRQ domain must be the &struct gpio_chip. 1538 */ 1539 static void gpiochip_irq_domain_deactivate(struct irq_domain *domain, 1540 struct irq_data *data) 1541 { 1542 struct gpio_chip *gc = domain->host_data; 1543 unsigned int hwirq = irqd_to_hwirq(data); 1544 1545 return gpiochip_unlock_as_irq(gc, hwirq); 1546 } 1547 1548 static void gpiochip_hierarchy_setup_domain_ops(struct irq_domain_ops *ops) 1549 { 1550 ops->activate = gpiochip_irq_domain_activate; 1551 ops->deactivate = gpiochip_irq_domain_deactivate; 1552 ops->alloc = gpiochip_hierarchy_irq_domain_alloc; 1553 1554 /* 1555 * We only allow overriding the translate() and free() functions for 1556 * hierarchical chips, and this should only be done if the user 1557 * really need something other than 1:1 translation for translate() 1558 * callback and free if user wants to free up any resources which 1559 * were allocated during callbacks, for example populate_parent_alloc_arg. 1560 */ 1561 if (!ops->translate) 1562 ops->translate = gpiochip_hierarchy_irq_domain_translate; 1563 if (!ops->free) 1564 ops->free = irq_domain_free_irqs_common; 1565 } 1566 1567 static struct irq_domain *gpiochip_hierarchy_create_domain(struct gpio_chip *gc) 1568 { 1569 struct irq_domain *domain; 1570 1571 if (!gc->irq.child_to_parent_hwirq || 1572 !gc->irq.fwnode) { 1573 chip_err(gc, "missing irqdomain vital data\n"); 1574 return ERR_PTR(-EINVAL); 1575 } 1576 1577 if (!gc->irq.child_offset_to_irq) 1578 gc->irq.child_offset_to_irq = gpiochip_child_offset_to_irq_noop; 1579 1580 if (!gc->irq.populate_parent_alloc_arg) 1581 gc->irq.populate_parent_alloc_arg = 1582 gpiochip_populate_parent_fwspec_twocell; 1583 1584 gpiochip_hierarchy_setup_domain_ops(&gc->irq.child_irq_domain_ops); 1585 1586 domain = irq_domain_create_hierarchy( 1587 gc->irq.parent_domain, 1588 0, 1589 gc->ngpio, 1590 gc->irq.fwnode, 1591 &gc->irq.child_irq_domain_ops, 1592 gc); 1593 1594 if (!domain) 1595 return ERR_PTR(-ENOMEM); 1596 1597 gpiochip_set_hierarchical_irqchip(gc, gc->irq.chip); 1598 1599 return domain; 1600 } 1601 1602 static bool gpiochip_hierarchy_is_hierarchical(struct gpio_chip *gc) 1603 { 1604 return !!gc->irq.parent_domain; 1605 } 1606 1607 int gpiochip_populate_parent_fwspec_twocell(struct gpio_chip *gc, 1608 union gpio_irq_fwspec *gfwspec, 1609 unsigned int parent_hwirq, 1610 unsigned int parent_type) 1611 { 1612 struct irq_fwspec *fwspec = &gfwspec->fwspec; 1613 1614 fwspec->fwnode = gc->irq.parent_domain->fwnode; 1615 fwspec->param_count = 2; 1616 fwspec->param[0] = parent_hwirq; 1617 fwspec->param[1] = parent_type; 1618 1619 return 0; 1620 } 1621 EXPORT_SYMBOL_GPL(gpiochip_populate_parent_fwspec_twocell); 1622 1623 int gpiochip_populate_parent_fwspec_fourcell(struct gpio_chip *gc, 1624 union gpio_irq_fwspec *gfwspec, 1625 unsigned int parent_hwirq, 1626 unsigned int parent_type) 1627 { 1628 struct irq_fwspec *fwspec = &gfwspec->fwspec; 1629 1630 fwspec->fwnode = gc->irq.parent_domain->fwnode; 1631 fwspec->param_count = 4; 1632 fwspec->param[0] = 0; 1633 fwspec->param[1] = parent_hwirq; 1634 fwspec->param[2] = 0; 1635 fwspec->param[3] = parent_type; 1636 1637 return 0; 1638 } 1639 EXPORT_SYMBOL_GPL(gpiochip_populate_parent_fwspec_fourcell); 1640 1641 #else 1642 1643 static struct irq_domain *gpiochip_hierarchy_create_domain(struct gpio_chip *gc) 1644 { 1645 return ERR_PTR(-EINVAL); 1646 } 1647 1648 static bool gpiochip_hierarchy_is_hierarchical(struct gpio_chip *gc) 1649 { 1650 return false; 1651 } 1652 1653 #endif /* CONFIG_IRQ_DOMAIN_HIERARCHY */ 1654 1655 /** 1656 * gpiochip_irq_map() - maps an IRQ into a GPIO irqchip 1657 * @d: the irqdomain used by this irqchip 1658 * @irq: the global irq number used by this GPIO irqchip irq 1659 * @hwirq: the local IRQ/GPIO line offset on this gpiochip 1660 * 1661 * This function will set up the mapping for a certain IRQ line on a 1662 * gpiochip by assigning the gpiochip as chip data, and using the irqchip 1663 * stored inside the gpiochip. 1664 */ 1665 static int gpiochip_irq_map(struct irq_domain *d, unsigned int irq, 1666 irq_hw_number_t hwirq) 1667 { 1668 struct gpio_chip *gc = d->host_data; 1669 int ret = 0; 1670 1671 if (!gpiochip_irqchip_irq_valid(gc, hwirq)) 1672 return -ENXIO; 1673 1674 irq_set_chip_data(irq, gc); 1675 /* 1676 * This lock class tells lockdep that GPIO irqs are in a different 1677 * category than their parents, so it won't report false recursion. 1678 */ 1679 irq_set_lockdep_class(irq, gc->irq.lock_key, gc->irq.request_key); 1680 irq_set_chip_and_handler(irq, gc->irq.chip, gc->irq.handler); 1681 /* Chips that use nested thread handlers have them marked */ 1682 if (gc->irq.threaded) 1683 irq_set_nested_thread(irq, 1); 1684 irq_set_noprobe(irq); 1685 1686 if (gc->irq.num_parents == 1) 1687 ret = irq_set_parent(irq, gc->irq.parents[0]); 1688 else if (gc->irq.map) 1689 ret = irq_set_parent(irq, gc->irq.map[hwirq]); 1690 1691 if (ret < 0) 1692 return ret; 1693 1694 /* 1695 * No set-up of the hardware will happen if IRQ_TYPE_NONE 1696 * is passed as default type. 1697 */ 1698 if (gc->irq.default_type != IRQ_TYPE_NONE) 1699 irq_set_irq_type(irq, gc->irq.default_type); 1700 1701 return 0; 1702 } 1703 1704 static void gpiochip_irq_unmap(struct irq_domain *d, unsigned int irq) 1705 { 1706 struct gpio_chip *gc = d->host_data; 1707 1708 if (gc->irq.threaded) 1709 irq_set_nested_thread(irq, 0); 1710 irq_set_chip_and_handler(irq, NULL, NULL); 1711 irq_set_chip_data(irq, NULL); 1712 } 1713 1714 static const struct irq_domain_ops gpiochip_domain_ops = { 1715 .map = gpiochip_irq_map, 1716 .unmap = gpiochip_irq_unmap, 1717 /* Virtually all GPIO irqchips are twocell:ed */ 1718 .xlate = irq_domain_xlate_twocell, 1719 }; 1720 1721 static struct irq_domain *gpiochip_simple_create_domain(struct gpio_chip *gc) 1722 { 1723 struct fwnode_handle *fwnode = dev_fwnode(&gc->gpiodev->dev); 1724 struct irq_domain *domain; 1725 1726 domain = irq_domain_create_simple(fwnode, gc->ngpio, gc->irq.first, 1727 &gpiochip_domain_ops, gc); 1728 if (!domain) 1729 return ERR_PTR(-EINVAL); 1730 1731 return domain; 1732 } 1733 1734 static int gpiochip_to_irq(struct gpio_chip *gc, unsigned int offset) 1735 { 1736 struct irq_domain *domain = gc->irq.domain; 1737 1738 #ifdef CONFIG_GPIOLIB_IRQCHIP 1739 /* 1740 * Avoid race condition with other code, which tries to lookup 1741 * an IRQ before the irqchip has been properly registered, 1742 * i.e. while gpiochip is still being brought up. 1743 */ 1744 if (!gc->irq.initialized) 1745 return -EPROBE_DEFER; 1746 #endif 1747 1748 if (!gpiochip_irqchip_irq_valid(gc, offset)) 1749 return -ENXIO; 1750 1751 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 1752 if (irq_domain_is_hierarchy(domain)) { 1753 struct irq_fwspec spec; 1754 1755 spec.fwnode = domain->fwnode; 1756 spec.param_count = 2; 1757 spec.param[0] = gc->irq.child_offset_to_irq(gc, offset); 1758 spec.param[1] = IRQ_TYPE_NONE; 1759 1760 return irq_create_fwspec_mapping(&spec); 1761 } 1762 #endif 1763 1764 return irq_create_mapping(domain, offset); 1765 } 1766 1767 int gpiochip_irq_reqres(struct irq_data *d) 1768 { 1769 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 1770 unsigned int hwirq = irqd_to_hwirq(d); 1771 1772 return gpiochip_reqres_irq(gc, hwirq); 1773 } 1774 EXPORT_SYMBOL(gpiochip_irq_reqres); 1775 1776 void gpiochip_irq_relres(struct irq_data *d) 1777 { 1778 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 1779 unsigned int hwirq = irqd_to_hwirq(d); 1780 1781 gpiochip_relres_irq(gc, hwirq); 1782 } 1783 EXPORT_SYMBOL(gpiochip_irq_relres); 1784 1785 static void gpiochip_irq_mask(struct irq_data *d) 1786 { 1787 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 1788 unsigned int hwirq = irqd_to_hwirq(d); 1789 1790 if (gc->irq.irq_mask) 1791 gc->irq.irq_mask(d); 1792 gpiochip_disable_irq(gc, hwirq); 1793 } 1794 1795 static void gpiochip_irq_unmask(struct irq_data *d) 1796 { 1797 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 1798 unsigned int hwirq = irqd_to_hwirq(d); 1799 1800 gpiochip_enable_irq(gc, hwirq); 1801 if (gc->irq.irq_unmask) 1802 gc->irq.irq_unmask(d); 1803 } 1804 1805 static void gpiochip_irq_enable(struct irq_data *d) 1806 { 1807 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 1808 unsigned int hwirq = irqd_to_hwirq(d); 1809 1810 gpiochip_enable_irq(gc, hwirq); 1811 gc->irq.irq_enable(d); 1812 } 1813 1814 static void gpiochip_irq_disable(struct irq_data *d) 1815 { 1816 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 1817 unsigned int hwirq = irqd_to_hwirq(d); 1818 1819 gc->irq.irq_disable(d); 1820 gpiochip_disable_irq(gc, hwirq); 1821 } 1822 1823 static void gpiochip_set_irq_hooks(struct gpio_chip *gc) 1824 { 1825 struct irq_chip *irqchip = gc->irq.chip; 1826 1827 if (irqchip->flags & IRQCHIP_IMMUTABLE) 1828 return; 1829 1830 chip_warn(gc, "not an immutable chip, please consider fixing it!\n"); 1831 1832 if (!irqchip->irq_request_resources && 1833 !irqchip->irq_release_resources) { 1834 irqchip->irq_request_resources = gpiochip_irq_reqres; 1835 irqchip->irq_release_resources = gpiochip_irq_relres; 1836 } 1837 if (WARN_ON(gc->irq.irq_enable)) 1838 return; 1839 /* Check if the irqchip already has this hook... */ 1840 if (irqchip->irq_enable == gpiochip_irq_enable || 1841 irqchip->irq_mask == gpiochip_irq_mask) { 1842 /* 1843 * ...and if so, give a gentle warning that this is bad 1844 * practice. 1845 */ 1846 chip_info(gc, 1847 "detected irqchip that is shared with multiple gpiochips: please fix the driver.\n"); 1848 return; 1849 } 1850 1851 if (irqchip->irq_disable) { 1852 gc->irq.irq_disable = irqchip->irq_disable; 1853 irqchip->irq_disable = gpiochip_irq_disable; 1854 } else { 1855 gc->irq.irq_mask = irqchip->irq_mask; 1856 irqchip->irq_mask = gpiochip_irq_mask; 1857 } 1858 1859 if (irqchip->irq_enable) { 1860 gc->irq.irq_enable = irqchip->irq_enable; 1861 irqchip->irq_enable = gpiochip_irq_enable; 1862 } else { 1863 gc->irq.irq_unmask = irqchip->irq_unmask; 1864 irqchip->irq_unmask = gpiochip_irq_unmask; 1865 } 1866 } 1867 1868 static int gpiochip_irqchip_add_allocated_domain(struct gpio_chip *gc, 1869 struct irq_domain *domain, 1870 bool allocated_externally) 1871 { 1872 if (!domain) 1873 return -EINVAL; 1874 1875 if (gc->to_irq) 1876 chip_warn(gc, "to_irq is redefined in %s and you shouldn't rely on it\n", __func__); 1877 1878 gc->to_irq = gpiochip_to_irq; 1879 gc->irq.domain = domain; 1880 gc->irq.domain_is_allocated_externally = allocated_externally; 1881 1882 /* 1883 * Using barrier() here to prevent compiler from reordering 1884 * gc->irq.initialized before adding irqdomain. 1885 */ 1886 barrier(); 1887 1888 gc->irq.initialized = true; 1889 1890 return 0; 1891 } 1892 1893 /** 1894 * gpiochip_add_irqchip() - adds an IRQ chip to a GPIO chip 1895 * @gc: the GPIO chip to add the IRQ chip to 1896 * @lock_key: lockdep class for IRQ lock 1897 * @request_key: lockdep class for IRQ request 1898 */ 1899 static int gpiochip_add_irqchip(struct gpio_chip *gc, 1900 struct lock_class_key *lock_key, 1901 struct lock_class_key *request_key) 1902 { 1903 struct fwnode_handle *fwnode = dev_fwnode(&gc->gpiodev->dev); 1904 struct irq_chip *irqchip = gc->irq.chip; 1905 struct irq_domain *domain; 1906 unsigned int type; 1907 unsigned int i; 1908 int ret; 1909 1910 if (!irqchip) 1911 return 0; 1912 1913 if (gc->irq.parent_handler && gc->can_sleep) { 1914 chip_err(gc, "you cannot have chained interrupts on a chip that may sleep\n"); 1915 return -EINVAL; 1916 } 1917 1918 type = gc->irq.default_type; 1919 1920 /* 1921 * Specifying a default trigger is a terrible idea if DT or ACPI is 1922 * used to configure the interrupts, as you may end up with 1923 * conflicting triggers. Tell the user, and reset to NONE. 1924 */ 1925 if (WARN(fwnode && type != IRQ_TYPE_NONE, 1926 "%pfw: Ignoring %u default trigger\n", fwnode, type)) 1927 type = IRQ_TYPE_NONE; 1928 1929 gc->irq.default_type = type; 1930 gc->irq.lock_key = lock_key; 1931 gc->irq.request_key = request_key; 1932 1933 /* If a parent irqdomain is provided, let's build a hierarchy */ 1934 if (gpiochip_hierarchy_is_hierarchical(gc)) { 1935 domain = gpiochip_hierarchy_create_domain(gc); 1936 } else { 1937 domain = gpiochip_simple_create_domain(gc); 1938 } 1939 if (IS_ERR(domain)) 1940 return PTR_ERR(domain); 1941 1942 if (gc->irq.parent_handler) { 1943 for (i = 0; i < gc->irq.num_parents; i++) { 1944 void *data; 1945 1946 if (gc->irq.per_parent_data) 1947 data = gc->irq.parent_handler_data_array[i]; 1948 else 1949 data = gc->irq.parent_handler_data ?: gc; 1950 1951 /* 1952 * The parent IRQ chip is already using the chip_data 1953 * for this IRQ chip, so our callbacks simply use the 1954 * handler_data. 1955 */ 1956 irq_set_chained_handler_and_data(gc->irq.parents[i], 1957 gc->irq.parent_handler, 1958 data); 1959 } 1960 } 1961 1962 gpiochip_set_irq_hooks(gc); 1963 1964 ret = gpiochip_irqchip_add_allocated_domain(gc, domain, false); 1965 if (ret) 1966 return ret; 1967 1968 acpi_gpiochip_request_interrupts(gc); 1969 1970 return 0; 1971 } 1972 1973 /** 1974 * gpiochip_irqchip_remove() - removes an irqchip added to a gpiochip 1975 * @gc: the gpiochip to remove the irqchip from 1976 * 1977 * This is called only from gpiochip_remove() 1978 */ 1979 static void gpiochip_irqchip_remove(struct gpio_chip *gc) 1980 { 1981 struct irq_chip *irqchip = gc->irq.chip; 1982 unsigned int offset; 1983 1984 acpi_gpiochip_free_interrupts(gc); 1985 1986 if (irqchip && gc->irq.parent_handler) { 1987 struct gpio_irq_chip *irq = &gc->irq; 1988 unsigned int i; 1989 1990 for (i = 0; i < irq->num_parents; i++) 1991 irq_set_chained_handler_and_data(irq->parents[i], 1992 NULL, NULL); 1993 } 1994 1995 /* Remove all IRQ mappings and delete the domain */ 1996 if (!gc->irq.domain_is_allocated_externally && gc->irq.domain) { 1997 unsigned int irq; 1998 1999 for (offset = 0; offset < gc->ngpio; offset++) { 2000 if (!gpiochip_irqchip_irq_valid(gc, offset)) 2001 continue; 2002 2003 irq = irq_find_mapping(gc->irq.domain, offset); 2004 irq_dispose_mapping(irq); 2005 } 2006 2007 irq_domain_remove(gc->irq.domain); 2008 } 2009 2010 if (irqchip && !(irqchip->flags & IRQCHIP_IMMUTABLE)) { 2011 if (irqchip->irq_request_resources == gpiochip_irq_reqres) { 2012 irqchip->irq_request_resources = NULL; 2013 irqchip->irq_release_resources = NULL; 2014 } 2015 if (irqchip->irq_enable == gpiochip_irq_enable) { 2016 irqchip->irq_enable = gc->irq.irq_enable; 2017 irqchip->irq_disable = gc->irq.irq_disable; 2018 } 2019 } 2020 gc->irq.irq_enable = NULL; 2021 gc->irq.irq_disable = NULL; 2022 gc->irq.chip = NULL; 2023 2024 gpiochip_irqchip_free_valid_mask(gc); 2025 } 2026 2027 /** 2028 * gpiochip_irqchip_add_domain() - adds an irqdomain to a gpiochip 2029 * @gc: the gpiochip to add the irqchip to 2030 * @domain: the irqdomain to add to the gpiochip 2031 * 2032 * This function adds an IRQ domain to the gpiochip. 2033 */ 2034 int gpiochip_irqchip_add_domain(struct gpio_chip *gc, 2035 struct irq_domain *domain) 2036 { 2037 return gpiochip_irqchip_add_allocated_domain(gc, domain, true); 2038 } 2039 EXPORT_SYMBOL_GPL(gpiochip_irqchip_add_domain); 2040 2041 #else /* CONFIG_GPIOLIB_IRQCHIP */ 2042 2043 static inline int gpiochip_add_irqchip(struct gpio_chip *gc, 2044 struct lock_class_key *lock_key, 2045 struct lock_class_key *request_key) 2046 { 2047 return 0; 2048 } 2049 static void gpiochip_irqchip_remove(struct gpio_chip *gc) {} 2050 2051 static inline int gpiochip_irqchip_init_hw(struct gpio_chip *gc) 2052 { 2053 return 0; 2054 } 2055 2056 static inline int gpiochip_irqchip_init_valid_mask(struct gpio_chip *gc) 2057 { 2058 return 0; 2059 } 2060 static inline void gpiochip_irqchip_free_valid_mask(struct gpio_chip *gc) 2061 { } 2062 2063 #endif /* CONFIG_GPIOLIB_IRQCHIP */ 2064 2065 /** 2066 * gpiochip_generic_request() - request the gpio function for a pin 2067 * @gc: the gpiochip owning the GPIO 2068 * @offset: the offset of the GPIO to request for GPIO function 2069 */ 2070 int gpiochip_generic_request(struct gpio_chip *gc, unsigned int offset) 2071 { 2072 #ifdef CONFIG_PINCTRL 2073 if (list_empty(&gc->gpiodev->pin_ranges)) 2074 return 0; 2075 #endif 2076 2077 return pinctrl_gpio_request(gc, offset); 2078 } 2079 EXPORT_SYMBOL_GPL(gpiochip_generic_request); 2080 2081 /** 2082 * gpiochip_generic_free() - free the gpio function from a pin 2083 * @gc: the gpiochip to request the gpio function for 2084 * @offset: the offset of the GPIO to free from GPIO function 2085 */ 2086 void gpiochip_generic_free(struct gpio_chip *gc, unsigned int offset) 2087 { 2088 #ifdef CONFIG_PINCTRL 2089 if (list_empty(&gc->gpiodev->pin_ranges)) 2090 return; 2091 #endif 2092 2093 pinctrl_gpio_free(gc, offset); 2094 } 2095 EXPORT_SYMBOL_GPL(gpiochip_generic_free); 2096 2097 /** 2098 * gpiochip_generic_config() - apply configuration for a pin 2099 * @gc: the gpiochip owning the GPIO 2100 * @offset: the offset of the GPIO to apply the configuration 2101 * @config: the configuration to be applied 2102 */ 2103 int gpiochip_generic_config(struct gpio_chip *gc, unsigned int offset, 2104 unsigned long config) 2105 { 2106 #ifdef CONFIG_PINCTRL 2107 if (list_empty(&gc->gpiodev->pin_ranges)) 2108 return -ENOTSUPP; 2109 #endif 2110 2111 return pinctrl_gpio_set_config(gc, offset, config); 2112 } 2113 EXPORT_SYMBOL_GPL(gpiochip_generic_config); 2114 2115 #ifdef CONFIG_PINCTRL 2116 2117 /** 2118 * gpiochip_add_pingroup_range() - add a range for GPIO <-> pin mapping 2119 * @gc: the gpiochip to add the range for 2120 * @pctldev: the pin controller to map to 2121 * @gpio_offset: the start offset in the current gpio_chip number space 2122 * @pin_group: name of the pin group inside the pin controller 2123 * 2124 * Calling this function directly from a DeviceTree-supported 2125 * pinctrl driver is DEPRECATED. Please see Section 2.1 of 2126 * Documentation/devicetree/bindings/gpio/gpio.txt on how to 2127 * bind pinctrl and gpio drivers via the "gpio-ranges" property. 2128 */ 2129 int gpiochip_add_pingroup_range(struct gpio_chip *gc, 2130 struct pinctrl_dev *pctldev, 2131 unsigned int gpio_offset, const char *pin_group) 2132 { 2133 struct gpio_pin_range *pin_range; 2134 struct gpio_device *gdev = gc->gpiodev; 2135 int ret; 2136 2137 pin_range = kzalloc(sizeof(*pin_range), GFP_KERNEL); 2138 if (!pin_range) { 2139 chip_err(gc, "failed to allocate pin ranges\n"); 2140 return -ENOMEM; 2141 } 2142 2143 /* Use local offset as range ID */ 2144 pin_range->range.id = gpio_offset; 2145 pin_range->range.gc = gc; 2146 pin_range->range.name = gc->label; 2147 pin_range->range.base = gdev->base + gpio_offset; 2148 pin_range->pctldev = pctldev; 2149 2150 ret = pinctrl_get_group_pins(pctldev, pin_group, 2151 &pin_range->range.pins, 2152 &pin_range->range.npins); 2153 if (ret < 0) { 2154 kfree(pin_range); 2155 return ret; 2156 } 2157 2158 pinctrl_add_gpio_range(pctldev, &pin_range->range); 2159 2160 chip_dbg(gc, "created GPIO range %d->%d ==> %s PINGRP %s\n", 2161 gpio_offset, gpio_offset + pin_range->range.npins - 1, 2162 pinctrl_dev_get_devname(pctldev), pin_group); 2163 2164 list_add_tail(&pin_range->node, &gdev->pin_ranges); 2165 2166 return 0; 2167 } 2168 EXPORT_SYMBOL_GPL(gpiochip_add_pingroup_range); 2169 2170 /** 2171 * gpiochip_add_pin_range() - add a range for GPIO <-> pin mapping 2172 * @gc: the gpiochip to add the range for 2173 * @pinctl_name: the dev_name() of the pin controller to map to 2174 * @gpio_offset: the start offset in the current gpio_chip number space 2175 * @pin_offset: the start offset in the pin controller number space 2176 * @npins: the number of pins from the offset of each pin space (GPIO and 2177 * pin controller) to accumulate in this range 2178 * 2179 * Returns: 2180 * 0 on success, or a negative error-code on failure. 2181 * 2182 * Calling this function directly from a DeviceTree-supported 2183 * pinctrl driver is DEPRECATED. Please see Section 2.1 of 2184 * Documentation/devicetree/bindings/gpio/gpio.txt on how to 2185 * bind pinctrl and gpio drivers via the "gpio-ranges" property. 2186 */ 2187 int gpiochip_add_pin_range(struct gpio_chip *gc, const char *pinctl_name, 2188 unsigned int gpio_offset, unsigned int pin_offset, 2189 unsigned int npins) 2190 { 2191 struct gpio_pin_range *pin_range; 2192 struct gpio_device *gdev = gc->gpiodev; 2193 int ret; 2194 2195 pin_range = kzalloc(sizeof(*pin_range), GFP_KERNEL); 2196 if (!pin_range) { 2197 chip_err(gc, "failed to allocate pin ranges\n"); 2198 return -ENOMEM; 2199 } 2200 2201 /* Use local offset as range ID */ 2202 pin_range->range.id = gpio_offset; 2203 pin_range->range.gc = gc; 2204 pin_range->range.name = gc->label; 2205 pin_range->range.base = gdev->base + gpio_offset; 2206 pin_range->range.pin_base = pin_offset; 2207 pin_range->range.npins = npins; 2208 pin_range->pctldev = pinctrl_find_and_add_gpio_range(pinctl_name, 2209 &pin_range->range); 2210 if (IS_ERR(pin_range->pctldev)) { 2211 ret = PTR_ERR(pin_range->pctldev); 2212 chip_err(gc, "could not create pin range\n"); 2213 kfree(pin_range); 2214 return ret; 2215 } 2216 chip_dbg(gc, "created GPIO range %d->%d ==> %s PIN %d->%d\n", 2217 gpio_offset, gpio_offset + npins - 1, 2218 pinctl_name, 2219 pin_offset, pin_offset + npins - 1); 2220 2221 list_add_tail(&pin_range->node, &gdev->pin_ranges); 2222 2223 return 0; 2224 } 2225 EXPORT_SYMBOL_GPL(gpiochip_add_pin_range); 2226 2227 /** 2228 * gpiochip_remove_pin_ranges() - remove all the GPIO <-> pin mappings 2229 * @gc: the chip to remove all the mappings for 2230 */ 2231 void gpiochip_remove_pin_ranges(struct gpio_chip *gc) 2232 { 2233 struct gpio_pin_range *pin_range, *tmp; 2234 struct gpio_device *gdev = gc->gpiodev; 2235 2236 list_for_each_entry_safe(pin_range, tmp, &gdev->pin_ranges, node) { 2237 list_del(&pin_range->node); 2238 pinctrl_remove_gpio_range(pin_range->pctldev, 2239 &pin_range->range); 2240 kfree(pin_range); 2241 } 2242 } 2243 EXPORT_SYMBOL_GPL(gpiochip_remove_pin_ranges); 2244 2245 #endif /* CONFIG_PINCTRL */ 2246 2247 /* These "optional" allocation calls help prevent drivers from stomping 2248 * on each other, and help provide better diagnostics in debugfs. 2249 * They're called even less than the "set direction" calls. 2250 */ 2251 static int gpiod_request_commit(struct gpio_desc *desc, const char *label) 2252 { 2253 unsigned int offset; 2254 int ret; 2255 2256 CLASS(gpio_chip_guard, guard)(desc); 2257 if (!guard.gc) 2258 return -ENODEV; 2259 2260 if (test_and_set_bit(FLAG_REQUESTED, &desc->flags)) 2261 return -EBUSY; 2262 2263 /* NOTE: gpio_request() can be called in early boot, 2264 * before IRQs are enabled, for non-sleeping (SOC) GPIOs. 2265 */ 2266 2267 if (guard.gc->request) { 2268 offset = gpio_chip_hwgpio(desc); 2269 if (gpiochip_line_is_valid(guard.gc, offset)) 2270 ret = guard.gc->request(guard.gc, offset); 2271 else 2272 ret = -EINVAL; 2273 if (ret) 2274 goto out_clear_bit; 2275 } 2276 2277 if (guard.gc->get_direction) 2278 gpiod_get_direction(desc); 2279 2280 ret = desc_set_label(desc, label ? : "?"); 2281 if (ret) 2282 goto out_clear_bit; 2283 2284 return 0; 2285 2286 out_clear_bit: 2287 clear_bit(FLAG_REQUESTED, &desc->flags); 2288 return ret; 2289 } 2290 2291 /* 2292 * This descriptor validation needs to be inserted verbatim into each 2293 * function taking a descriptor, so we need to use a preprocessor 2294 * macro to avoid endless duplication. If the desc is NULL it is an 2295 * optional GPIO and calls should just bail out. 2296 */ 2297 static int validate_desc(const struct gpio_desc *desc, const char *func) 2298 { 2299 if (!desc) 2300 return 0; 2301 2302 if (IS_ERR(desc)) { 2303 pr_warn("%s: invalid GPIO (errorpointer)\n", func); 2304 return PTR_ERR(desc); 2305 } 2306 2307 return 1; 2308 } 2309 2310 #define VALIDATE_DESC(desc) do { \ 2311 int __valid = validate_desc(desc, __func__); \ 2312 if (__valid <= 0) \ 2313 return __valid; \ 2314 } while (0) 2315 2316 #define VALIDATE_DESC_VOID(desc) do { \ 2317 int __valid = validate_desc(desc, __func__); \ 2318 if (__valid <= 0) \ 2319 return; \ 2320 } while (0) 2321 2322 int gpiod_request(struct gpio_desc *desc, const char *label) 2323 { 2324 int ret = -EPROBE_DEFER; 2325 2326 VALIDATE_DESC(desc); 2327 2328 if (try_module_get(desc->gdev->owner)) { 2329 ret = gpiod_request_commit(desc, label); 2330 if (ret) 2331 module_put(desc->gdev->owner); 2332 else 2333 gpio_device_get(desc->gdev); 2334 } 2335 2336 if (ret) 2337 gpiod_dbg(desc, "%s: status %d\n", __func__, ret); 2338 2339 return ret; 2340 } 2341 2342 static void gpiod_free_commit(struct gpio_desc *desc) 2343 { 2344 unsigned long flags; 2345 2346 might_sleep(); 2347 2348 CLASS(gpio_chip_guard, guard)(desc); 2349 2350 flags = READ_ONCE(desc->flags); 2351 2352 if (guard.gc && test_bit(FLAG_REQUESTED, &flags)) { 2353 if (guard.gc->free) 2354 guard.gc->free(guard.gc, gpio_chip_hwgpio(desc)); 2355 2356 clear_bit(FLAG_ACTIVE_LOW, &flags); 2357 clear_bit(FLAG_REQUESTED, &flags); 2358 clear_bit(FLAG_OPEN_DRAIN, &flags); 2359 clear_bit(FLAG_OPEN_SOURCE, &flags); 2360 clear_bit(FLAG_PULL_UP, &flags); 2361 clear_bit(FLAG_PULL_DOWN, &flags); 2362 clear_bit(FLAG_BIAS_DISABLE, &flags); 2363 clear_bit(FLAG_EDGE_RISING, &flags); 2364 clear_bit(FLAG_EDGE_FALLING, &flags); 2365 clear_bit(FLAG_IS_HOGGED, &flags); 2366 #ifdef CONFIG_OF_DYNAMIC 2367 WRITE_ONCE(desc->hog, NULL); 2368 #endif 2369 desc_set_label(desc, NULL); 2370 WRITE_ONCE(desc->flags, flags); 2371 2372 gpiod_line_state_notify(desc, GPIOLINE_CHANGED_RELEASED); 2373 } 2374 } 2375 2376 void gpiod_free(struct gpio_desc *desc) 2377 { 2378 VALIDATE_DESC_VOID(desc); 2379 2380 gpiod_free_commit(desc); 2381 module_put(desc->gdev->owner); 2382 gpio_device_put(desc->gdev); 2383 } 2384 2385 /** 2386 * gpiochip_dup_line_label - Get a copy of the consumer label. 2387 * @gc: GPIO chip controlling this line. 2388 * @offset: Hardware offset of the line. 2389 * 2390 * Returns: 2391 * Pointer to a copy of the consumer label if the line is requested or NULL 2392 * if it's not. If a valid pointer was returned, it must be freed using 2393 * kfree(). In case of a memory allocation error, the function returns %ENOMEM. 2394 * 2395 * Must not be called from atomic context. 2396 */ 2397 char *gpiochip_dup_line_label(struct gpio_chip *gc, unsigned int offset) 2398 { 2399 struct gpio_desc *desc; 2400 char *label; 2401 2402 desc = gpiochip_get_desc(gc, offset); 2403 if (IS_ERR(desc)) 2404 return NULL; 2405 2406 if (!test_bit(FLAG_REQUESTED, &desc->flags)) 2407 return NULL; 2408 2409 guard(srcu)(&desc->gdev->desc_srcu); 2410 2411 label = kstrdup(gpiod_get_label(desc), GFP_KERNEL); 2412 if (!label) 2413 return ERR_PTR(-ENOMEM); 2414 2415 return label; 2416 } 2417 EXPORT_SYMBOL_GPL(gpiochip_dup_line_label); 2418 2419 static inline const char *function_name_or_default(const char *con_id) 2420 { 2421 return con_id ?: "(default)"; 2422 } 2423 2424 /** 2425 * gpiochip_request_own_desc - Allow GPIO chip to request its own descriptor 2426 * @gc: GPIO chip 2427 * @hwnum: hardware number of the GPIO for which to request the descriptor 2428 * @label: label for the GPIO 2429 * @lflags: lookup flags for this GPIO or 0 if default, this can be used to 2430 * specify things like line inversion semantics with the machine flags 2431 * such as GPIO_OUT_LOW 2432 * @dflags: descriptor request flags for this GPIO or 0 if default, this 2433 * can be used to specify consumer semantics such as open drain 2434 * 2435 * Function allows GPIO chip drivers to request and use their own GPIO 2436 * descriptors via gpiolib API. Difference to gpiod_request() is that this 2437 * function will not increase reference count of the GPIO chip module. This 2438 * allows the GPIO chip module to be unloaded as needed (we assume that the 2439 * GPIO chip driver handles freeing the GPIOs it has requested). 2440 * 2441 * Returns: 2442 * A pointer to the GPIO descriptor, or an ERR_PTR()-encoded negative error 2443 * code on failure. 2444 */ 2445 struct gpio_desc *gpiochip_request_own_desc(struct gpio_chip *gc, 2446 unsigned int hwnum, 2447 const char *label, 2448 enum gpio_lookup_flags lflags, 2449 enum gpiod_flags dflags) 2450 { 2451 struct gpio_desc *desc = gpiochip_get_desc(gc, hwnum); 2452 const char *name = function_name_or_default(label); 2453 int ret; 2454 2455 if (IS_ERR(desc)) { 2456 chip_err(gc, "failed to get GPIO %s descriptor\n", name); 2457 return desc; 2458 } 2459 2460 ret = gpiod_request_commit(desc, label); 2461 if (ret < 0) 2462 return ERR_PTR(ret); 2463 2464 ret = gpiod_configure_flags(desc, label, lflags, dflags); 2465 if (ret) { 2466 gpiod_free_commit(desc); 2467 chip_err(gc, "setup of own GPIO %s failed\n", name); 2468 return ERR_PTR(ret); 2469 } 2470 2471 return desc; 2472 } 2473 EXPORT_SYMBOL_GPL(gpiochip_request_own_desc); 2474 2475 /** 2476 * gpiochip_free_own_desc - Free GPIO requested by the chip driver 2477 * @desc: GPIO descriptor to free 2478 * 2479 * Function frees the given GPIO requested previously with 2480 * gpiochip_request_own_desc(). 2481 */ 2482 void gpiochip_free_own_desc(struct gpio_desc *desc) 2483 { 2484 if (desc) 2485 gpiod_free_commit(desc); 2486 } 2487 EXPORT_SYMBOL_GPL(gpiochip_free_own_desc); 2488 2489 /* 2490 * Drivers MUST set GPIO direction before making get/set calls. In 2491 * some cases this is done in early boot, before IRQs are enabled. 2492 * 2493 * As a rule these aren't called more than once (except for drivers 2494 * using the open-drain emulation idiom) so these are natural places 2495 * to accumulate extra debugging checks. Note that we can't (yet) 2496 * rely on gpio_request() having been called beforehand. 2497 */ 2498 2499 static int gpio_do_set_config(struct gpio_chip *gc, unsigned int offset, 2500 unsigned long config) 2501 { 2502 if (!gc->set_config) 2503 return -ENOTSUPP; 2504 2505 return gc->set_config(gc, offset, config); 2506 } 2507 2508 static int gpio_set_config_with_argument(struct gpio_desc *desc, 2509 enum pin_config_param mode, 2510 u32 argument) 2511 { 2512 unsigned long config; 2513 2514 CLASS(gpio_chip_guard, guard)(desc); 2515 if (!guard.gc) 2516 return -ENODEV; 2517 2518 config = pinconf_to_config_packed(mode, argument); 2519 return gpio_do_set_config(guard.gc, gpio_chip_hwgpio(desc), config); 2520 } 2521 2522 static int gpio_set_config_with_argument_optional(struct gpio_desc *desc, 2523 enum pin_config_param mode, 2524 u32 argument) 2525 { 2526 struct device *dev = &desc->gdev->dev; 2527 int gpio = gpio_chip_hwgpio(desc); 2528 int ret; 2529 2530 ret = gpio_set_config_with_argument(desc, mode, argument); 2531 if (ret != -ENOTSUPP) 2532 return ret; 2533 2534 switch (mode) { 2535 case PIN_CONFIG_PERSIST_STATE: 2536 dev_dbg(dev, "Persistence not supported for GPIO %d\n", gpio); 2537 break; 2538 default: 2539 break; 2540 } 2541 2542 return 0; 2543 } 2544 2545 static int gpio_set_config(struct gpio_desc *desc, enum pin_config_param mode) 2546 { 2547 return gpio_set_config_with_argument(desc, mode, 0); 2548 } 2549 2550 static int gpio_set_bias(struct gpio_desc *desc) 2551 { 2552 enum pin_config_param bias; 2553 unsigned long flags; 2554 unsigned int arg; 2555 2556 flags = READ_ONCE(desc->flags); 2557 2558 if (test_bit(FLAG_BIAS_DISABLE, &flags)) 2559 bias = PIN_CONFIG_BIAS_DISABLE; 2560 else if (test_bit(FLAG_PULL_UP, &flags)) 2561 bias = PIN_CONFIG_BIAS_PULL_UP; 2562 else if (test_bit(FLAG_PULL_DOWN, &flags)) 2563 bias = PIN_CONFIG_BIAS_PULL_DOWN; 2564 else 2565 return 0; 2566 2567 switch (bias) { 2568 case PIN_CONFIG_BIAS_PULL_DOWN: 2569 case PIN_CONFIG_BIAS_PULL_UP: 2570 arg = 1; 2571 break; 2572 2573 default: 2574 arg = 0; 2575 break; 2576 } 2577 2578 return gpio_set_config_with_argument_optional(desc, bias, arg); 2579 } 2580 2581 /** 2582 * gpio_set_debounce_timeout() - Set debounce timeout 2583 * @desc: GPIO descriptor to set the debounce timeout 2584 * @debounce: Debounce timeout in microseconds 2585 * 2586 * The function calls the certain GPIO driver to set debounce timeout 2587 * in the hardware. 2588 * 2589 * Returns 0 on success, or negative error code otherwise. 2590 */ 2591 int gpio_set_debounce_timeout(struct gpio_desc *desc, unsigned int debounce) 2592 { 2593 return gpio_set_config_with_argument_optional(desc, 2594 PIN_CONFIG_INPUT_DEBOUNCE, 2595 debounce); 2596 } 2597 2598 /** 2599 * gpiod_direction_input - set the GPIO direction to input 2600 * @desc: GPIO to set to input 2601 * 2602 * Set the direction of the passed GPIO to input, such as gpiod_get_value() can 2603 * be called safely on it. 2604 * 2605 * Return 0 in case of success, else an error code. 2606 */ 2607 int gpiod_direction_input(struct gpio_desc *desc) 2608 { 2609 int ret = 0; 2610 2611 VALIDATE_DESC(desc); 2612 2613 CLASS(gpio_chip_guard, guard)(desc); 2614 if (!guard.gc) 2615 return -ENODEV; 2616 2617 /* 2618 * It is legal to have no .get() and .direction_input() specified if 2619 * the chip is output-only, but you can't specify .direction_input() 2620 * and not support the .get() operation, that doesn't make sense. 2621 */ 2622 if (!guard.gc->get && guard.gc->direction_input) { 2623 gpiod_warn(desc, 2624 "%s: missing get() but have direction_input()\n", 2625 __func__); 2626 return -EIO; 2627 } 2628 2629 /* 2630 * If we have a .direction_input() callback, things are simple, 2631 * just call it. Else we are some input-only chip so try to check the 2632 * direction (if .get_direction() is supported) else we silently 2633 * assume we are in input mode after this. 2634 */ 2635 if (guard.gc->direction_input) { 2636 ret = guard.gc->direction_input(guard.gc, 2637 gpio_chip_hwgpio(desc)); 2638 } else if (guard.gc->get_direction && 2639 (guard.gc->get_direction(guard.gc, 2640 gpio_chip_hwgpio(desc)) != 1)) { 2641 gpiod_warn(desc, 2642 "%s: missing direction_input() operation and line is output\n", 2643 __func__); 2644 return -EIO; 2645 } 2646 if (ret == 0) { 2647 clear_bit(FLAG_IS_OUT, &desc->flags); 2648 ret = gpio_set_bias(desc); 2649 } 2650 2651 trace_gpio_direction(desc_to_gpio(desc), 1, ret); 2652 2653 return ret; 2654 } 2655 EXPORT_SYMBOL_GPL(gpiod_direction_input); 2656 2657 static int gpiod_direction_output_raw_commit(struct gpio_desc *desc, int value) 2658 { 2659 int val = !!value, ret = 0; 2660 2661 CLASS(gpio_chip_guard, guard)(desc); 2662 if (!guard.gc) 2663 return -ENODEV; 2664 2665 /* 2666 * It's OK not to specify .direction_output() if the gpiochip is 2667 * output-only, but if there is then not even a .set() operation it 2668 * is pretty tricky to drive the output line. 2669 */ 2670 if (!guard.gc->set && !guard.gc->direction_output) { 2671 gpiod_warn(desc, 2672 "%s: missing set() and direction_output() operations\n", 2673 __func__); 2674 return -EIO; 2675 } 2676 2677 if (guard.gc->direction_output) { 2678 ret = guard.gc->direction_output(guard.gc, 2679 gpio_chip_hwgpio(desc), val); 2680 } else { 2681 /* Check that we are in output mode if we can */ 2682 if (guard.gc->get_direction && 2683 guard.gc->get_direction(guard.gc, gpio_chip_hwgpio(desc))) { 2684 gpiod_warn(desc, 2685 "%s: missing direction_output() operation\n", 2686 __func__); 2687 return -EIO; 2688 } 2689 /* 2690 * If we can't actively set the direction, we are some 2691 * output-only chip, so just drive the output as desired. 2692 */ 2693 guard.gc->set(guard.gc, gpio_chip_hwgpio(desc), val); 2694 } 2695 2696 if (!ret) 2697 set_bit(FLAG_IS_OUT, &desc->flags); 2698 trace_gpio_value(desc_to_gpio(desc), 0, val); 2699 trace_gpio_direction(desc_to_gpio(desc), 0, ret); 2700 return ret; 2701 } 2702 2703 /** 2704 * gpiod_direction_output_raw - set the GPIO direction to output 2705 * @desc: GPIO to set to output 2706 * @value: initial output value of the GPIO 2707 * 2708 * Set the direction of the passed GPIO to output, such as gpiod_set_value() can 2709 * be called safely on it. The initial value of the output must be specified 2710 * as raw value on the physical line without regard for the ACTIVE_LOW status. 2711 * 2712 * Return 0 in case of success, else an error code. 2713 */ 2714 int gpiod_direction_output_raw(struct gpio_desc *desc, int value) 2715 { 2716 VALIDATE_DESC(desc); 2717 return gpiod_direction_output_raw_commit(desc, value); 2718 } 2719 EXPORT_SYMBOL_GPL(gpiod_direction_output_raw); 2720 2721 /** 2722 * gpiod_direction_output - set the GPIO direction to output 2723 * @desc: GPIO to set to output 2724 * @value: initial output value of the GPIO 2725 * 2726 * Set the direction of the passed GPIO to output, such as gpiod_set_value() can 2727 * be called safely on it. The initial value of the output must be specified 2728 * as the logical value of the GPIO, i.e. taking its ACTIVE_LOW status into 2729 * account. 2730 * 2731 * Return 0 in case of success, else an error code. 2732 */ 2733 int gpiod_direction_output(struct gpio_desc *desc, int value) 2734 { 2735 unsigned long flags; 2736 int ret; 2737 2738 VALIDATE_DESC(desc); 2739 2740 flags = READ_ONCE(desc->flags); 2741 2742 if (test_bit(FLAG_ACTIVE_LOW, &flags)) 2743 value = !value; 2744 else 2745 value = !!value; 2746 2747 /* GPIOs used for enabled IRQs shall not be set as output */ 2748 if (test_bit(FLAG_USED_AS_IRQ, &flags) && 2749 test_bit(FLAG_IRQ_IS_ENABLED, &flags)) { 2750 gpiod_err(desc, 2751 "%s: tried to set a GPIO tied to an IRQ as output\n", 2752 __func__); 2753 return -EIO; 2754 } 2755 2756 if (test_bit(FLAG_OPEN_DRAIN, &flags)) { 2757 /* First see if we can enable open drain in hardware */ 2758 ret = gpio_set_config(desc, PIN_CONFIG_DRIVE_OPEN_DRAIN); 2759 if (!ret) 2760 goto set_output_value; 2761 /* Emulate open drain by not actively driving the line high */ 2762 if (value) { 2763 ret = gpiod_direction_input(desc); 2764 goto set_output_flag; 2765 } 2766 } else if (test_bit(FLAG_OPEN_SOURCE, &flags)) { 2767 ret = gpio_set_config(desc, PIN_CONFIG_DRIVE_OPEN_SOURCE); 2768 if (!ret) 2769 goto set_output_value; 2770 /* Emulate open source by not actively driving the line low */ 2771 if (!value) { 2772 ret = gpiod_direction_input(desc); 2773 goto set_output_flag; 2774 } 2775 } else { 2776 gpio_set_config(desc, PIN_CONFIG_DRIVE_PUSH_PULL); 2777 } 2778 2779 set_output_value: 2780 ret = gpio_set_bias(desc); 2781 if (ret) 2782 return ret; 2783 return gpiod_direction_output_raw_commit(desc, value); 2784 2785 set_output_flag: 2786 /* 2787 * When emulating open-source or open-drain functionalities by not 2788 * actively driving the line (setting mode to input) we still need to 2789 * set the IS_OUT flag or otherwise we won't be able to set the line 2790 * value anymore. 2791 */ 2792 if (ret == 0) 2793 set_bit(FLAG_IS_OUT, &desc->flags); 2794 return ret; 2795 } 2796 EXPORT_SYMBOL_GPL(gpiod_direction_output); 2797 2798 /** 2799 * gpiod_enable_hw_timestamp_ns - Enable hardware timestamp in nanoseconds. 2800 * 2801 * @desc: GPIO to enable. 2802 * @flags: Flags related to GPIO edge. 2803 * 2804 * Return 0 in case of success, else negative error code. 2805 */ 2806 int gpiod_enable_hw_timestamp_ns(struct gpio_desc *desc, unsigned long flags) 2807 { 2808 int ret = 0; 2809 2810 VALIDATE_DESC(desc); 2811 2812 CLASS(gpio_chip_guard, guard)(desc); 2813 if (!guard.gc) 2814 return -ENODEV; 2815 2816 if (!guard.gc->en_hw_timestamp) { 2817 gpiod_warn(desc, "%s: hw ts not supported\n", __func__); 2818 return -ENOTSUPP; 2819 } 2820 2821 ret = guard.gc->en_hw_timestamp(guard.gc, 2822 gpio_chip_hwgpio(desc), flags); 2823 if (ret) 2824 gpiod_warn(desc, "%s: hw ts request failed\n", __func__); 2825 2826 return ret; 2827 } 2828 EXPORT_SYMBOL_GPL(gpiod_enable_hw_timestamp_ns); 2829 2830 /** 2831 * gpiod_disable_hw_timestamp_ns - Disable hardware timestamp. 2832 * 2833 * @desc: GPIO to disable. 2834 * @flags: Flags related to GPIO edge, same value as used during enable call. 2835 * 2836 * Return 0 in case of success, else negative error code. 2837 */ 2838 int gpiod_disable_hw_timestamp_ns(struct gpio_desc *desc, unsigned long flags) 2839 { 2840 int ret = 0; 2841 2842 VALIDATE_DESC(desc); 2843 2844 CLASS(gpio_chip_guard, guard)(desc); 2845 if (!guard.gc) 2846 return -ENODEV; 2847 2848 if (!guard.gc->dis_hw_timestamp) { 2849 gpiod_warn(desc, "%s: hw ts not supported\n", __func__); 2850 return -ENOTSUPP; 2851 } 2852 2853 ret = guard.gc->dis_hw_timestamp(guard.gc, gpio_chip_hwgpio(desc), 2854 flags); 2855 if (ret) 2856 gpiod_warn(desc, "%s: hw ts release failed\n", __func__); 2857 2858 return ret; 2859 } 2860 EXPORT_SYMBOL_GPL(gpiod_disable_hw_timestamp_ns); 2861 2862 /** 2863 * gpiod_set_config - sets @config for a GPIO 2864 * @desc: descriptor of the GPIO for which to set the configuration 2865 * @config: Same packed config format as generic pinconf 2866 * 2867 * Returns: 2868 * 0 on success, %-ENOTSUPP if the controller doesn't support setting the 2869 * configuration. 2870 */ 2871 int gpiod_set_config(struct gpio_desc *desc, unsigned long config) 2872 { 2873 VALIDATE_DESC(desc); 2874 2875 CLASS(gpio_chip_guard, guard)(desc); 2876 if (!guard.gc) 2877 return -ENODEV; 2878 2879 return gpio_do_set_config(guard.gc, gpio_chip_hwgpio(desc), config); 2880 } 2881 EXPORT_SYMBOL_GPL(gpiod_set_config); 2882 2883 /** 2884 * gpiod_set_debounce - sets @debounce time for a GPIO 2885 * @desc: descriptor of the GPIO for which to set debounce time 2886 * @debounce: debounce time in microseconds 2887 * 2888 * Returns: 2889 * 0 on success, %-ENOTSUPP if the controller doesn't support setting the 2890 * debounce time. 2891 */ 2892 int gpiod_set_debounce(struct gpio_desc *desc, unsigned int debounce) 2893 { 2894 unsigned long config; 2895 2896 config = pinconf_to_config_packed(PIN_CONFIG_INPUT_DEBOUNCE, debounce); 2897 return gpiod_set_config(desc, config); 2898 } 2899 EXPORT_SYMBOL_GPL(gpiod_set_debounce); 2900 2901 /** 2902 * gpiod_set_transitory - Lose or retain GPIO state on suspend or reset 2903 * @desc: descriptor of the GPIO for which to configure persistence 2904 * @transitory: True to lose state on suspend or reset, false for persistence 2905 * 2906 * Returns: 2907 * 0 on success, otherwise a negative error code. 2908 */ 2909 int gpiod_set_transitory(struct gpio_desc *desc, bool transitory) 2910 { 2911 VALIDATE_DESC(desc); 2912 /* 2913 * Handle FLAG_TRANSITORY first, enabling queries to gpiolib for 2914 * persistence state. 2915 */ 2916 assign_bit(FLAG_TRANSITORY, &desc->flags, transitory); 2917 2918 /* If the driver supports it, set the persistence state now */ 2919 return gpio_set_config_with_argument_optional(desc, 2920 PIN_CONFIG_PERSIST_STATE, 2921 !transitory); 2922 } 2923 2924 /** 2925 * gpiod_is_active_low - test whether a GPIO is active-low or not 2926 * @desc: the gpio descriptor to test 2927 * 2928 * Returns 1 if the GPIO is active-low, 0 otherwise. 2929 */ 2930 int gpiod_is_active_low(const struct gpio_desc *desc) 2931 { 2932 VALIDATE_DESC(desc); 2933 return test_bit(FLAG_ACTIVE_LOW, &desc->flags); 2934 } 2935 EXPORT_SYMBOL_GPL(gpiod_is_active_low); 2936 2937 /** 2938 * gpiod_toggle_active_low - toggle whether a GPIO is active-low or not 2939 * @desc: the gpio descriptor to change 2940 */ 2941 void gpiod_toggle_active_low(struct gpio_desc *desc) 2942 { 2943 VALIDATE_DESC_VOID(desc); 2944 change_bit(FLAG_ACTIVE_LOW, &desc->flags); 2945 } 2946 EXPORT_SYMBOL_GPL(gpiod_toggle_active_low); 2947 2948 static int gpio_chip_get_value(struct gpio_chip *gc, const struct gpio_desc *desc) 2949 { 2950 return gc->get ? gc->get(gc, gpio_chip_hwgpio(desc)) : -EIO; 2951 } 2952 2953 /* I/O calls are only valid after configuration completed; the relevant 2954 * "is this a valid GPIO" error checks should already have been done. 2955 * 2956 * "Get" operations are often inlinable as reading a pin value register, 2957 * and masking the relevant bit in that register. 2958 * 2959 * When "set" operations are inlinable, they involve writing that mask to 2960 * one register to set a low value, or a different register to set it high. 2961 * Otherwise locking is needed, so there may be little value to inlining. 2962 * 2963 *------------------------------------------------------------------------ 2964 * 2965 * IMPORTANT!!! The hot paths -- get/set value -- assume that callers 2966 * have requested the GPIO. That can include implicit requesting by 2967 * a direction setting call. Marking a gpio as requested locks its chip 2968 * in memory, guaranteeing that these table lookups need no more locking 2969 * and that gpiochip_remove() will fail. 2970 * 2971 * REVISIT when debugging, consider adding some instrumentation to ensure 2972 * that the GPIO was actually requested. 2973 */ 2974 2975 static int gpiod_get_raw_value_commit(const struct gpio_desc *desc) 2976 { 2977 struct gpio_device *gdev; 2978 struct gpio_chip *gc; 2979 int value; 2980 2981 /* FIXME Unable to use gpio_chip_guard due to const desc. */ 2982 gdev = desc->gdev; 2983 2984 guard(srcu)(&gdev->srcu); 2985 2986 gc = srcu_dereference(gdev->chip, &gdev->srcu); 2987 if (!gc) 2988 return -ENODEV; 2989 2990 value = gpio_chip_get_value(gc, desc); 2991 value = value < 0 ? value : !!value; 2992 trace_gpio_value(desc_to_gpio(desc), 1, value); 2993 return value; 2994 } 2995 2996 static int gpio_chip_get_multiple(struct gpio_chip *gc, 2997 unsigned long *mask, unsigned long *bits) 2998 { 2999 if (gc->get_multiple) 3000 return gc->get_multiple(gc, mask, bits); 3001 if (gc->get) { 3002 int i, value; 3003 3004 for_each_set_bit(i, mask, gc->ngpio) { 3005 value = gc->get(gc, i); 3006 if (value < 0) 3007 return value; 3008 __assign_bit(i, bits, value); 3009 } 3010 return 0; 3011 } 3012 return -EIO; 3013 } 3014 3015 /* The 'other' chip must be protected with its GPIO device's SRCU. */ 3016 static bool gpio_device_chip_cmp(struct gpio_device *gdev, struct gpio_chip *gc) 3017 { 3018 guard(srcu)(&gdev->srcu); 3019 3020 return gc == srcu_dereference(gdev->chip, &gdev->srcu); 3021 } 3022 3023 int gpiod_get_array_value_complex(bool raw, bool can_sleep, 3024 unsigned int array_size, 3025 struct gpio_desc **desc_array, 3026 struct gpio_array *array_info, 3027 unsigned long *value_bitmap) 3028 { 3029 int ret, i = 0; 3030 3031 /* 3032 * Validate array_info against desc_array and its size. 3033 * It should immediately follow desc_array if both 3034 * have been obtained from the same gpiod_get_array() call. 3035 */ 3036 if (array_info && array_info->desc == desc_array && 3037 array_size <= array_info->size && 3038 (void *)array_info == desc_array + array_info->size) { 3039 if (!can_sleep) 3040 WARN_ON(array_info->chip->can_sleep); 3041 3042 ret = gpio_chip_get_multiple(array_info->chip, 3043 array_info->get_mask, 3044 value_bitmap); 3045 if (ret) 3046 return ret; 3047 3048 if (!raw && !bitmap_empty(array_info->invert_mask, array_size)) 3049 bitmap_xor(value_bitmap, value_bitmap, 3050 array_info->invert_mask, array_size); 3051 3052 i = find_first_zero_bit(array_info->get_mask, array_size); 3053 if (i == array_size) 3054 return 0; 3055 } else { 3056 array_info = NULL; 3057 } 3058 3059 while (i < array_size) { 3060 DECLARE_BITMAP(fastpath_mask, FASTPATH_NGPIO); 3061 DECLARE_BITMAP(fastpath_bits, FASTPATH_NGPIO); 3062 unsigned long *mask, *bits; 3063 int first, j; 3064 3065 CLASS(gpio_chip_guard, guard)(desc_array[i]); 3066 if (!guard.gc) 3067 return -ENODEV; 3068 3069 if (likely(guard.gc->ngpio <= FASTPATH_NGPIO)) { 3070 mask = fastpath_mask; 3071 bits = fastpath_bits; 3072 } else { 3073 gfp_t flags = can_sleep ? GFP_KERNEL : GFP_ATOMIC; 3074 3075 mask = bitmap_alloc(guard.gc->ngpio, flags); 3076 if (!mask) 3077 return -ENOMEM; 3078 3079 bits = bitmap_alloc(guard.gc->ngpio, flags); 3080 if (!bits) { 3081 bitmap_free(mask); 3082 return -ENOMEM; 3083 } 3084 } 3085 3086 bitmap_zero(mask, guard.gc->ngpio); 3087 3088 if (!can_sleep) 3089 WARN_ON(guard.gc->can_sleep); 3090 3091 /* collect all inputs belonging to the same chip */ 3092 first = i; 3093 do { 3094 const struct gpio_desc *desc = desc_array[i]; 3095 int hwgpio = gpio_chip_hwgpio(desc); 3096 3097 __set_bit(hwgpio, mask); 3098 i++; 3099 3100 if (array_info) 3101 i = find_next_zero_bit(array_info->get_mask, 3102 array_size, i); 3103 } while ((i < array_size) && 3104 gpio_device_chip_cmp(desc_array[i]->gdev, guard.gc)); 3105 3106 ret = gpio_chip_get_multiple(guard.gc, mask, bits); 3107 if (ret) { 3108 if (mask != fastpath_mask) 3109 bitmap_free(mask); 3110 if (bits != fastpath_bits) 3111 bitmap_free(bits); 3112 return ret; 3113 } 3114 3115 for (j = first; j < i; ) { 3116 const struct gpio_desc *desc = desc_array[j]; 3117 int hwgpio = gpio_chip_hwgpio(desc); 3118 int value = test_bit(hwgpio, bits); 3119 3120 if (!raw && test_bit(FLAG_ACTIVE_LOW, &desc->flags)) 3121 value = !value; 3122 __assign_bit(j, value_bitmap, value); 3123 trace_gpio_value(desc_to_gpio(desc), 1, value); 3124 j++; 3125 3126 if (array_info) 3127 j = find_next_zero_bit(array_info->get_mask, i, 3128 j); 3129 } 3130 3131 if (mask != fastpath_mask) 3132 bitmap_free(mask); 3133 if (bits != fastpath_bits) 3134 bitmap_free(bits); 3135 } 3136 return 0; 3137 } 3138 3139 /** 3140 * gpiod_get_raw_value() - return a gpio's raw value 3141 * @desc: gpio whose value will be returned 3142 * 3143 * Return the GPIO's raw value, i.e. the value of the physical line disregarding 3144 * its ACTIVE_LOW status, or negative errno on failure. 3145 * 3146 * This function can be called from contexts where we cannot sleep, and will 3147 * complain if the GPIO chip functions potentially sleep. 3148 */ 3149 int gpiod_get_raw_value(const struct gpio_desc *desc) 3150 { 3151 VALIDATE_DESC(desc); 3152 /* Should be using gpiod_get_raw_value_cansleep() */ 3153 WARN_ON(desc->gdev->can_sleep); 3154 return gpiod_get_raw_value_commit(desc); 3155 } 3156 EXPORT_SYMBOL_GPL(gpiod_get_raw_value); 3157 3158 /** 3159 * gpiod_get_value() - return a gpio's value 3160 * @desc: gpio whose value will be returned 3161 * 3162 * Return the GPIO's logical value, i.e. taking the ACTIVE_LOW status into 3163 * account, or negative errno on failure. 3164 * 3165 * This function can be called from contexts where we cannot sleep, and will 3166 * complain if the GPIO chip functions potentially sleep. 3167 */ 3168 int gpiod_get_value(const struct gpio_desc *desc) 3169 { 3170 int value; 3171 3172 VALIDATE_DESC(desc); 3173 /* Should be using gpiod_get_value_cansleep() */ 3174 WARN_ON(desc->gdev->can_sleep); 3175 3176 value = gpiod_get_raw_value_commit(desc); 3177 if (value < 0) 3178 return value; 3179 3180 if (test_bit(FLAG_ACTIVE_LOW, &desc->flags)) 3181 value = !value; 3182 3183 return value; 3184 } 3185 EXPORT_SYMBOL_GPL(gpiod_get_value); 3186 3187 /** 3188 * gpiod_get_raw_array_value() - read raw values from an array of GPIOs 3189 * @array_size: number of elements in the descriptor array / value bitmap 3190 * @desc_array: array of GPIO descriptors whose values will be read 3191 * @array_info: information on applicability of fast bitmap processing path 3192 * @value_bitmap: bitmap to store the read values 3193 * 3194 * Read the raw values of the GPIOs, i.e. the values of the physical lines 3195 * without regard for their ACTIVE_LOW status. Return 0 in case of success, 3196 * else an error code. 3197 * 3198 * This function can be called from contexts where we cannot sleep, 3199 * and it will complain if the GPIO chip functions potentially sleep. 3200 */ 3201 int gpiod_get_raw_array_value(unsigned int array_size, 3202 struct gpio_desc **desc_array, 3203 struct gpio_array *array_info, 3204 unsigned long *value_bitmap) 3205 { 3206 if (!desc_array) 3207 return -EINVAL; 3208 return gpiod_get_array_value_complex(true, false, array_size, 3209 desc_array, array_info, 3210 value_bitmap); 3211 } 3212 EXPORT_SYMBOL_GPL(gpiod_get_raw_array_value); 3213 3214 /** 3215 * gpiod_get_array_value() - read values from an array of GPIOs 3216 * @array_size: number of elements in the descriptor array / value bitmap 3217 * @desc_array: array of GPIO descriptors whose values will be read 3218 * @array_info: information on applicability of fast bitmap processing path 3219 * @value_bitmap: bitmap to store the read values 3220 * 3221 * Read the logical values of the GPIOs, i.e. taking their ACTIVE_LOW status 3222 * into account. Return 0 in case of success, else an error code. 3223 * 3224 * This function can be called from contexts where we cannot sleep, 3225 * and it will complain if the GPIO chip functions potentially sleep. 3226 */ 3227 int gpiod_get_array_value(unsigned int array_size, 3228 struct gpio_desc **desc_array, 3229 struct gpio_array *array_info, 3230 unsigned long *value_bitmap) 3231 { 3232 if (!desc_array) 3233 return -EINVAL; 3234 return gpiod_get_array_value_complex(false, false, array_size, 3235 desc_array, array_info, 3236 value_bitmap); 3237 } 3238 EXPORT_SYMBOL_GPL(gpiod_get_array_value); 3239 3240 /* 3241 * gpio_set_open_drain_value_commit() - Set the open drain gpio's value. 3242 * @desc: gpio descriptor whose state need to be set. 3243 * @value: Non-zero for setting it HIGH otherwise it will set to LOW. 3244 */ 3245 static void gpio_set_open_drain_value_commit(struct gpio_desc *desc, bool value) 3246 { 3247 int ret = 0, offset = gpio_chip_hwgpio(desc); 3248 3249 CLASS(gpio_chip_guard, guard)(desc); 3250 if (!guard.gc) 3251 return; 3252 3253 if (value) { 3254 ret = guard.gc->direction_input(guard.gc, offset); 3255 } else { 3256 ret = guard.gc->direction_output(guard.gc, offset, 0); 3257 if (!ret) 3258 set_bit(FLAG_IS_OUT, &desc->flags); 3259 } 3260 trace_gpio_direction(desc_to_gpio(desc), value, ret); 3261 if (ret < 0) 3262 gpiod_err(desc, 3263 "%s: Error in set_value for open drain err %d\n", 3264 __func__, ret); 3265 } 3266 3267 /* 3268 * _gpio_set_open_source_value() - Set the open source gpio's value. 3269 * @desc: gpio descriptor whose state need to be set. 3270 * @value: Non-zero for setting it HIGH otherwise it will set to LOW. 3271 */ 3272 static void gpio_set_open_source_value_commit(struct gpio_desc *desc, bool value) 3273 { 3274 int ret = 0, offset = gpio_chip_hwgpio(desc); 3275 3276 CLASS(gpio_chip_guard, guard)(desc); 3277 if (!guard.gc) 3278 return; 3279 3280 if (value) { 3281 ret = guard.gc->direction_output(guard.gc, offset, 1); 3282 if (!ret) 3283 set_bit(FLAG_IS_OUT, &desc->flags); 3284 } else { 3285 ret = guard.gc->direction_input(guard.gc, offset); 3286 } 3287 trace_gpio_direction(desc_to_gpio(desc), !value, ret); 3288 if (ret < 0) 3289 gpiod_err(desc, 3290 "%s: Error in set_value for open source err %d\n", 3291 __func__, ret); 3292 } 3293 3294 static void gpiod_set_raw_value_commit(struct gpio_desc *desc, bool value) 3295 { 3296 CLASS(gpio_chip_guard, guard)(desc); 3297 if (!guard.gc) 3298 return; 3299 3300 trace_gpio_value(desc_to_gpio(desc), 0, value); 3301 guard.gc->set(guard.gc, gpio_chip_hwgpio(desc), value); 3302 } 3303 3304 /* 3305 * set multiple outputs on the same chip; 3306 * use the chip's set_multiple function if available; 3307 * otherwise set the outputs sequentially; 3308 * @chip: the GPIO chip we operate on 3309 * @mask: bit mask array; one bit per output; BITS_PER_LONG bits per word 3310 * defines which outputs are to be changed 3311 * @bits: bit value array; one bit per output; BITS_PER_LONG bits per word 3312 * defines the values the outputs specified by mask are to be set to 3313 */ 3314 static void gpio_chip_set_multiple(struct gpio_chip *gc, 3315 unsigned long *mask, unsigned long *bits) 3316 { 3317 if (gc->set_multiple) { 3318 gc->set_multiple(gc, mask, bits); 3319 } else { 3320 unsigned int i; 3321 3322 /* set outputs if the corresponding mask bit is set */ 3323 for_each_set_bit(i, mask, gc->ngpio) 3324 gc->set(gc, i, test_bit(i, bits)); 3325 } 3326 } 3327 3328 int gpiod_set_array_value_complex(bool raw, bool can_sleep, 3329 unsigned int array_size, 3330 struct gpio_desc **desc_array, 3331 struct gpio_array *array_info, 3332 unsigned long *value_bitmap) 3333 { 3334 int i = 0; 3335 3336 /* 3337 * Validate array_info against desc_array and its size. 3338 * It should immediately follow desc_array if both 3339 * have been obtained from the same gpiod_get_array() call. 3340 */ 3341 if (array_info && array_info->desc == desc_array && 3342 array_size <= array_info->size && 3343 (void *)array_info == desc_array + array_info->size) { 3344 if (!can_sleep) 3345 WARN_ON(array_info->chip->can_sleep); 3346 3347 if (!raw && !bitmap_empty(array_info->invert_mask, array_size)) 3348 bitmap_xor(value_bitmap, value_bitmap, 3349 array_info->invert_mask, array_size); 3350 3351 gpio_chip_set_multiple(array_info->chip, array_info->set_mask, 3352 value_bitmap); 3353 3354 i = find_first_zero_bit(array_info->set_mask, array_size); 3355 if (i == array_size) 3356 return 0; 3357 } else { 3358 array_info = NULL; 3359 } 3360 3361 while (i < array_size) { 3362 DECLARE_BITMAP(fastpath_mask, FASTPATH_NGPIO); 3363 DECLARE_BITMAP(fastpath_bits, FASTPATH_NGPIO); 3364 unsigned long *mask, *bits; 3365 int count = 0; 3366 3367 CLASS(gpio_chip_guard, guard)(desc_array[i]); 3368 if (!guard.gc) 3369 return -ENODEV; 3370 3371 if (likely(guard.gc->ngpio <= FASTPATH_NGPIO)) { 3372 mask = fastpath_mask; 3373 bits = fastpath_bits; 3374 } else { 3375 gfp_t flags = can_sleep ? GFP_KERNEL : GFP_ATOMIC; 3376 3377 mask = bitmap_alloc(guard.gc->ngpio, flags); 3378 if (!mask) 3379 return -ENOMEM; 3380 3381 bits = bitmap_alloc(guard.gc->ngpio, flags); 3382 if (!bits) { 3383 bitmap_free(mask); 3384 return -ENOMEM; 3385 } 3386 } 3387 3388 bitmap_zero(mask, guard.gc->ngpio); 3389 3390 if (!can_sleep) 3391 WARN_ON(guard.gc->can_sleep); 3392 3393 do { 3394 struct gpio_desc *desc = desc_array[i]; 3395 int hwgpio = gpio_chip_hwgpio(desc); 3396 int value = test_bit(i, value_bitmap); 3397 3398 /* 3399 * Pins applicable for fast input but not for 3400 * fast output processing may have been already 3401 * inverted inside the fast path, skip them. 3402 */ 3403 if (!raw && !(array_info && 3404 test_bit(i, array_info->invert_mask)) && 3405 test_bit(FLAG_ACTIVE_LOW, &desc->flags)) 3406 value = !value; 3407 trace_gpio_value(desc_to_gpio(desc), 0, value); 3408 /* 3409 * collect all normal outputs belonging to the same chip 3410 * open drain and open source outputs are set individually 3411 */ 3412 if (test_bit(FLAG_OPEN_DRAIN, &desc->flags) && !raw) { 3413 gpio_set_open_drain_value_commit(desc, value); 3414 } else if (test_bit(FLAG_OPEN_SOURCE, &desc->flags) && !raw) { 3415 gpio_set_open_source_value_commit(desc, value); 3416 } else { 3417 __set_bit(hwgpio, mask); 3418 __assign_bit(hwgpio, bits, value); 3419 count++; 3420 } 3421 i++; 3422 3423 if (array_info) 3424 i = find_next_zero_bit(array_info->set_mask, 3425 array_size, i); 3426 } while ((i < array_size) && 3427 gpio_device_chip_cmp(desc_array[i]->gdev, guard.gc)); 3428 /* push collected bits to outputs */ 3429 if (count != 0) 3430 gpio_chip_set_multiple(guard.gc, mask, bits); 3431 3432 if (mask != fastpath_mask) 3433 bitmap_free(mask); 3434 if (bits != fastpath_bits) 3435 bitmap_free(bits); 3436 } 3437 return 0; 3438 } 3439 3440 /** 3441 * gpiod_set_raw_value() - assign a gpio's raw value 3442 * @desc: gpio whose value will be assigned 3443 * @value: value to assign 3444 * 3445 * Set the raw value of the GPIO, i.e. the value of its physical line without 3446 * regard for its ACTIVE_LOW status. 3447 * 3448 * This function can be called from contexts where we cannot sleep, and will 3449 * complain if the GPIO chip functions potentially sleep. 3450 */ 3451 void gpiod_set_raw_value(struct gpio_desc *desc, int value) 3452 { 3453 VALIDATE_DESC_VOID(desc); 3454 /* Should be using gpiod_set_raw_value_cansleep() */ 3455 WARN_ON(desc->gdev->can_sleep); 3456 gpiod_set_raw_value_commit(desc, value); 3457 } 3458 EXPORT_SYMBOL_GPL(gpiod_set_raw_value); 3459 3460 /** 3461 * gpiod_set_value_nocheck() - set a GPIO line value without checking 3462 * @desc: the descriptor to set the value on 3463 * @value: value to set 3464 * 3465 * This sets the value of a GPIO line backing a descriptor, applying 3466 * different semantic quirks like active low and open drain/source 3467 * handling. 3468 */ 3469 static void gpiod_set_value_nocheck(struct gpio_desc *desc, int value) 3470 { 3471 if (test_bit(FLAG_ACTIVE_LOW, &desc->flags)) 3472 value = !value; 3473 if (test_bit(FLAG_OPEN_DRAIN, &desc->flags)) 3474 gpio_set_open_drain_value_commit(desc, value); 3475 else if (test_bit(FLAG_OPEN_SOURCE, &desc->flags)) 3476 gpio_set_open_source_value_commit(desc, value); 3477 else 3478 gpiod_set_raw_value_commit(desc, value); 3479 } 3480 3481 /** 3482 * gpiod_set_value() - assign a gpio's value 3483 * @desc: gpio whose value will be assigned 3484 * @value: value to assign 3485 * 3486 * Set the logical value of the GPIO, i.e. taking its ACTIVE_LOW, 3487 * OPEN_DRAIN and OPEN_SOURCE flags into account. 3488 * 3489 * This function can be called from contexts where we cannot sleep, and will 3490 * complain if the GPIO chip functions potentially sleep. 3491 */ 3492 void gpiod_set_value(struct gpio_desc *desc, int value) 3493 { 3494 VALIDATE_DESC_VOID(desc); 3495 /* Should be using gpiod_set_value_cansleep() */ 3496 WARN_ON(desc->gdev->can_sleep); 3497 gpiod_set_value_nocheck(desc, value); 3498 } 3499 EXPORT_SYMBOL_GPL(gpiod_set_value); 3500 3501 /** 3502 * gpiod_set_raw_array_value() - assign values to an array of GPIOs 3503 * @array_size: number of elements in the descriptor array / value bitmap 3504 * @desc_array: array of GPIO descriptors whose values will be assigned 3505 * @array_info: information on applicability of fast bitmap processing path 3506 * @value_bitmap: bitmap of values to assign 3507 * 3508 * Set the raw values of the GPIOs, i.e. the values of the physical lines 3509 * without regard for their ACTIVE_LOW status. 3510 * 3511 * This function can be called from contexts where we cannot sleep, and will 3512 * complain if the GPIO chip functions potentially sleep. 3513 */ 3514 int gpiod_set_raw_array_value(unsigned int array_size, 3515 struct gpio_desc **desc_array, 3516 struct gpio_array *array_info, 3517 unsigned long *value_bitmap) 3518 { 3519 if (!desc_array) 3520 return -EINVAL; 3521 return gpiod_set_array_value_complex(true, false, array_size, 3522 desc_array, array_info, value_bitmap); 3523 } 3524 EXPORT_SYMBOL_GPL(gpiod_set_raw_array_value); 3525 3526 /** 3527 * gpiod_set_array_value() - assign values to an array of GPIOs 3528 * @array_size: number of elements in the descriptor array / value bitmap 3529 * @desc_array: array of GPIO descriptors whose values will be assigned 3530 * @array_info: information on applicability of fast bitmap processing path 3531 * @value_bitmap: bitmap of values to assign 3532 * 3533 * Set the logical values of the GPIOs, i.e. taking their ACTIVE_LOW status 3534 * into account. 3535 * 3536 * This function can be called from contexts where we cannot sleep, and will 3537 * complain if the GPIO chip functions potentially sleep. 3538 */ 3539 int gpiod_set_array_value(unsigned int array_size, 3540 struct gpio_desc **desc_array, 3541 struct gpio_array *array_info, 3542 unsigned long *value_bitmap) 3543 { 3544 if (!desc_array) 3545 return -EINVAL; 3546 return gpiod_set_array_value_complex(false, false, array_size, 3547 desc_array, array_info, 3548 value_bitmap); 3549 } 3550 EXPORT_SYMBOL_GPL(gpiod_set_array_value); 3551 3552 /** 3553 * gpiod_cansleep() - report whether gpio value access may sleep 3554 * @desc: gpio to check 3555 * 3556 */ 3557 int gpiod_cansleep(const struct gpio_desc *desc) 3558 { 3559 VALIDATE_DESC(desc); 3560 return desc->gdev->can_sleep; 3561 } 3562 EXPORT_SYMBOL_GPL(gpiod_cansleep); 3563 3564 /** 3565 * gpiod_set_consumer_name() - set the consumer name for the descriptor 3566 * @desc: gpio to set the consumer name on 3567 * @name: the new consumer name 3568 */ 3569 int gpiod_set_consumer_name(struct gpio_desc *desc, const char *name) 3570 { 3571 VALIDATE_DESC(desc); 3572 3573 return desc_set_label(desc, name); 3574 } 3575 EXPORT_SYMBOL_GPL(gpiod_set_consumer_name); 3576 3577 /** 3578 * gpiod_to_irq() - return the IRQ corresponding to a GPIO 3579 * @desc: gpio whose IRQ will be returned (already requested) 3580 * 3581 * Return the IRQ corresponding to the passed GPIO, or an error code in case of 3582 * error. 3583 */ 3584 int gpiod_to_irq(const struct gpio_desc *desc) 3585 { 3586 struct gpio_device *gdev; 3587 struct gpio_chip *gc; 3588 int offset; 3589 3590 /* 3591 * Cannot VALIDATE_DESC() here as gpiod_to_irq() consumer semantics 3592 * requires this function to not return zero on an invalid descriptor 3593 * but rather a negative error number. 3594 */ 3595 if (!desc || IS_ERR(desc)) 3596 return -EINVAL; 3597 3598 gdev = desc->gdev; 3599 /* FIXME Cannot use gpio_chip_guard due to const desc. */ 3600 guard(srcu)(&gdev->srcu); 3601 gc = srcu_dereference(gdev->chip, &gdev->srcu); 3602 if (!gc) 3603 return -ENODEV; 3604 3605 offset = gpio_chip_hwgpio(desc); 3606 if (gc->to_irq) { 3607 int retirq = gc->to_irq(gc, offset); 3608 3609 /* Zero means NO_IRQ */ 3610 if (!retirq) 3611 return -ENXIO; 3612 3613 return retirq; 3614 } 3615 #ifdef CONFIG_GPIOLIB_IRQCHIP 3616 if (gc->irq.chip) { 3617 /* 3618 * Avoid race condition with other code, which tries to lookup 3619 * an IRQ before the irqchip has been properly registered, 3620 * i.e. while gpiochip is still being brought up. 3621 */ 3622 return -EPROBE_DEFER; 3623 } 3624 #endif 3625 return -ENXIO; 3626 } 3627 EXPORT_SYMBOL_GPL(gpiod_to_irq); 3628 3629 /** 3630 * gpiochip_lock_as_irq() - lock a GPIO to be used as IRQ 3631 * @gc: the chip the GPIO to lock belongs to 3632 * @offset: the offset of the GPIO to lock as IRQ 3633 * 3634 * This is used directly by GPIO drivers that want to lock down 3635 * a certain GPIO line to be used for IRQs. 3636 */ 3637 int gpiochip_lock_as_irq(struct gpio_chip *gc, unsigned int offset) 3638 { 3639 struct gpio_desc *desc; 3640 3641 desc = gpiochip_get_desc(gc, offset); 3642 if (IS_ERR(desc)) 3643 return PTR_ERR(desc); 3644 3645 /* 3646 * If it's fast: flush the direction setting if something changed 3647 * behind our back 3648 */ 3649 if (!gc->can_sleep && gc->get_direction) { 3650 int dir = gpiod_get_direction(desc); 3651 3652 if (dir < 0) { 3653 chip_err(gc, "%s: cannot get GPIO direction\n", 3654 __func__); 3655 return dir; 3656 } 3657 } 3658 3659 /* To be valid for IRQ the line needs to be input or open drain */ 3660 if (test_bit(FLAG_IS_OUT, &desc->flags) && 3661 !test_bit(FLAG_OPEN_DRAIN, &desc->flags)) { 3662 chip_err(gc, 3663 "%s: tried to flag a GPIO set as output for IRQ\n", 3664 __func__); 3665 return -EIO; 3666 } 3667 3668 set_bit(FLAG_USED_AS_IRQ, &desc->flags); 3669 set_bit(FLAG_IRQ_IS_ENABLED, &desc->flags); 3670 3671 return 0; 3672 } 3673 EXPORT_SYMBOL_GPL(gpiochip_lock_as_irq); 3674 3675 /** 3676 * gpiochip_unlock_as_irq() - unlock a GPIO used as IRQ 3677 * @gc: the chip the GPIO to lock belongs to 3678 * @offset: the offset of the GPIO to lock as IRQ 3679 * 3680 * This is used directly by GPIO drivers that want to indicate 3681 * that a certain GPIO is no longer used exclusively for IRQ. 3682 */ 3683 void gpiochip_unlock_as_irq(struct gpio_chip *gc, unsigned int offset) 3684 { 3685 struct gpio_desc *desc; 3686 3687 desc = gpiochip_get_desc(gc, offset); 3688 if (IS_ERR(desc)) 3689 return; 3690 3691 clear_bit(FLAG_USED_AS_IRQ, &desc->flags); 3692 clear_bit(FLAG_IRQ_IS_ENABLED, &desc->flags); 3693 } 3694 EXPORT_SYMBOL_GPL(gpiochip_unlock_as_irq); 3695 3696 void gpiochip_disable_irq(struct gpio_chip *gc, unsigned int offset) 3697 { 3698 struct gpio_desc *desc = gpiochip_get_desc(gc, offset); 3699 3700 if (!IS_ERR(desc) && 3701 !WARN_ON(!test_bit(FLAG_USED_AS_IRQ, &desc->flags))) 3702 clear_bit(FLAG_IRQ_IS_ENABLED, &desc->flags); 3703 } 3704 EXPORT_SYMBOL_GPL(gpiochip_disable_irq); 3705 3706 void gpiochip_enable_irq(struct gpio_chip *gc, unsigned int offset) 3707 { 3708 struct gpio_desc *desc = gpiochip_get_desc(gc, offset); 3709 3710 if (!IS_ERR(desc) && 3711 !WARN_ON(!test_bit(FLAG_USED_AS_IRQ, &desc->flags))) { 3712 /* 3713 * We must not be output when using IRQ UNLESS we are 3714 * open drain. 3715 */ 3716 WARN_ON(test_bit(FLAG_IS_OUT, &desc->flags) && 3717 !test_bit(FLAG_OPEN_DRAIN, &desc->flags)); 3718 set_bit(FLAG_IRQ_IS_ENABLED, &desc->flags); 3719 } 3720 } 3721 EXPORT_SYMBOL_GPL(gpiochip_enable_irq); 3722 3723 bool gpiochip_line_is_irq(struct gpio_chip *gc, unsigned int offset) 3724 { 3725 if (offset >= gc->ngpio) 3726 return false; 3727 3728 return test_bit(FLAG_USED_AS_IRQ, &gc->gpiodev->descs[offset].flags); 3729 } 3730 EXPORT_SYMBOL_GPL(gpiochip_line_is_irq); 3731 3732 int gpiochip_reqres_irq(struct gpio_chip *gc, unsigned int offset) 3733 { 3734 int ret; 3735 3736 if (!try_module_get(gc->gpiodev->owner)) 3737 return -ENODEV; 3738 3739 ret = gpiochip_lock_as_irq(gc, offset); 3740 if (ret) { 3741 chip_err(gc, "unable to lock HW IRQ %u for IRQ\n", offset); 3742 module_put(gc->gpiodev->owner); 3743 return ret; 3744 } 3745 return 0; 3746 } 3747 EXPORT_SYMBOL_GPL(gpiochip_reqres_irq); 3748 3749 void gpiochip_relres_irq(struct gpio_chip *gc, unsigned int offset) 3750 { 3751 gpiochip_unlock_as_irq(gc, offset); 3752 module_put(gc->gpiodev->owner); 3753 } 3754 EXPORT_SYMBOL_GPL(gpiochip_relres_irq); 3755 3756 bool gpiochip_line_is_open_drain(struct gpio_chip *gc, unsigned int offset) 3757 { 3758 if (offset >= gc->ngpio) 3759 return false; 3760 3761 return test_bit(FLAG_OPEN_DRAIN, &gc->gpiodev->descs[offset].flags); 3762 } 3763 EXPORT_SYMBOL_GPL(gpiochip_line_is_open_drain); 3764 3765 bool gpiochip_line_is_open_source(struct gpio_chip *gc, unsigned int offset) 3766 { 3767 if (offset >= gc->ngpio) 3768 return false; 3769 3770 return test_bit(FLAG_OPEN_SOURCE, &gc->gpiodev->descs[offset].flags); 3771 } 3772 EXPORT_SYMBOL_GPL(gpiochip_line_is_open_source); 3773 3774 bool gpiochip_line_is_persistent(struct gpio_chip *gc, unsigned int offset) 3775 { 3776 if (offset >= gc->ngpio) 3777 return false; 3778 3779 return !test_bit(FLAG_TRANSITORY, &gc->gpiodev->descs[offset].flags); 3780 } 3781 EXPORT_SYMBOL_GPL(gpiochip_line_is_persistent); 3782 3783 /** 3784 * gpiod_get_raw_value_cansleep() - return a gpio's raw value 3785 * @desc: gpio whose value will be returned 3786 * 3787 * Return the GPIO's raw value, i.e. the value of the physical line disregarding 3788 * its ACTIVE_LOW status, or negative errno on failure. 3789 * 3790 * This function is to be called from contexts that can sleep. 3791 */ 3792 int gpiod_get_raw_value_cansleep(const struct gpio_desc *desc) 3793 { 3794 might_sleep(); 3795 VALIDATE_DESC(desc); 3796 return gpiod_get_raw_value_commit(desc); 3797 } 3798 EXPORT_SYMBOL_GPL(gpiod_get_raw_value_cansleep); 3799 3800 /** 3801 * gpiod_get_value_cansleep() - return a gpio's value 3802 * @desc: gpio whose value will be returned 3803 * 3804 * Return the GPIO's logical value, i.e. taking the ACTIVE_LOW status into 3805 * account, or negative errno on failure. 3806 * 3807 * This function is to be called from contexts that can sleep. 3808 */ 3809 int gpiod_get_value_cansleep(const struct gpio_desc *desc) 3810 { 3811 int value; 3812 3813 might_sleep(); 3814 VALIDATE_DESC(desc); 3815 value = gpiod_get_raw_value_commit(desc); 3816 if (value < 0) 3817 return value; 3818 3819 if (test_bit(FLAG_ACTIVE_LOW, &desc->flags)) 3820 value = !value; 3821 3822 return value; 3823 } 3824 EXPORT_SYMBOL_GPL(gpiod_get_value_cansleep); 3825 3826 /** 3827 * gpiod_get_raw_array_value_cansleep() - read raw values from an array of GPIOs 3828 * @array_size: number of elements in the descriptor array / value bitmap 3829 * @desc_array: array of GPIO descriptors whose values will be read 3830 * @array_info: information on applicability of fast bitmap processing path 3831 * @value_bitmap: bitmap to store the read values 3832 * 3833 * Read the raw values of the GPIOs, i.e. the values of the physical lines 3834 * without regard for their ACTIVE_LOW status. Return 0 in case of success, 3835 * else an error code. 3836 * 3837 * This function is to be called from contexts that can sleep. 3838 */ 3839 int gpiod_get_raw_array_value_cansleep(unsigned int array_size, 3840 struct gpio_desc **desc_array, 3841 struct gpio_array *array_info, 3842 unsigned long *value_bitmap) 3843 { 3844 might_sleep(); 3845 if (!desc_array) 3846 return -EINVAL; 3847 return gpiod_get_array_value_complex(true, true, array_size, 3848 desc_array, array_info, 3849 value_bitmap); 3850 } 3851 EXPORT_SYMBOL_GPL(gpiod_get_raw_array_value_cansleep); 3852 3853 /** 3854 * gpiod_get_array_value_cansleep() - read values from an array of GPIOs 3855 * @array_size: number of elements in the descriptor array / value bitmap 3856 * @desc_array: array of GPIO descriptors whose values will be read 3857 * @array_info: information on applicability of fast bitmap processing path 3858 * @value_bitmap: bitmap to store the read values 3859 * 3860 * Read the logical values of the GPIOs, i.e. taking their ACTIVE_LOW status 3861 * into account. Return 0 in case of success, else an error code. 3862 * 3863 * This function is to be called from contexts that can sleep. 3864 */ 3865 int gpiod_get_array_value_cansleep(unsigned int array_size, 3866 struct gpio_desc **desc_array, 3867 struct gpio_array *array_info, 3868 unsigned long *value_bitmap) 3869 { 3870 might_sleep(); 3871 if (!desc_array) 3872 return -EINVAL; 3873 return gpiod_get_array_value_complex(false, true, array_size, 3874 desc_array, array_info, 3875 value_bitmap); 3876 } 3877 EXPORT_SYMBOL_GPL(gpiod_get_array_value_cansleep); 3878 3879 /** 3880 * gpiod_set_raw_value_cansleep() - assign a gpio's raw value 3881 * @desc: gpio whose value will be assigned 3882 * @value: value to assign 3883 * 3884 * Set the raw value of the GPIO, i.e. the value of its physical line without 3885 * regard for its ACTIVE_LOW status. 3886 * 3887 * This function is to be called from contexts that can sleep. 3888 */ 3889 void gpiod_set_raw_value_cansleep(struct gpio_desc *desc, int value) 3890 { 3891 might_sleep(); 3892 VALIDATE_DESC_VOID(desc); 3893 gpiod_set_raw_value_commit(desc, value); 3894 } 3895 EXPORT_SYMBOL_GPL(gpiod_set_raw_value_cansleep); 3896 3897 /** 3898 * gpiod_set_value_cansleep() - assign a gpio's value 3899 * @desc: gpio whose value will be assigned 3900 * @value: value to assign 3901 * 3902 * Set the logical value of the GPIO, i.e. taking its ACTIVE_LOW status into 3903 * account 3904 * 3905 * This function is to be called from contexts that can sleep. 3906 */ 3907 void gpiod_set_value_cansleep(struct gpio_desc *desc, int value) 3908 { 3909 might_sleep(); 3910 VALIDATE_DESC_VOID(desc); 3911 gpiod_set_value_nocheck(desc, value); 3912 } 3913 EXPORT_SYMBOL_GPL(gpiod_set_value_cansleep); 3914 3915 /** 3916 * gpiod_set_raw_array_value_cansleep() - assign values to an array of GPIOs 3917 * @array_size: number of elements in the descriptor array / value bitmap 3918 * @desc_array: array of GPIO descriptors whose values will be assigned 3919 * @array_info: information on applicability of fast bitmap processing path 3920 * @value_bitmap: bitmap of values to assign 3921 * 3922 * Set the raw values of the GPIOs, i.e. the values of the physical lines 3923 * without regard for their ACTIVE_LOW status. 3924 * 3925 * This function is to be called from contexts that can sleep. 3926 */ 3927 int gpiod_set_raw_array_value_cansleep(unsigned int array_size, 3928 struct gpio_desc **desc_array, 3929 struct gpio_array *array_info, 3930 unsigned long *value_bitmap) 3931 { 3932 might_sleep(); 3933 if (!desc_array) 3934 return -EINVAL; 3935 return gpiod_set_array_value_complex(true, true, array_size, desc_array, 3936 array_info, value_bitmap); 3937 } 3938 EXPORT_SYMBOL_GPL(gpiod_set_raw_array_value_cansleep); 3939 3940 /** 3941 * gpiod_add_lookup_tables() - register GPIO device consumers 3942 * @tables: list of tables of consumers to register 3943 * @n: number of tables in the list 3944 */ 3945 void gpiod_add_lookup_tables(struct gpiod_lookup_table **tables, size_t n) 3946 { 3947 unsigned int i; 3948 3949 mutex_lock(&gpio_lookup_lock); 3950 3951 for (i = 0; i < n; i++) 3952 list_add_tail(&tables[i]->list, &gpio_lookup_list); 3953 3954 mutex_unlock(&gpio_lookup_lock); 3955 } 3956 3957 /** 3958 * gpiod_set_array_value_cansleep() - assign values to an array of GPIOs 3959 * @array_size: number of elements in the descriptor array / value bitmap 3960 * @desc_array: array of GPIO descriptors whose values will be assigned 3961 * @array_info: information on applicability of fast bitmap processing path 3962 * @value_bitmap: bitmap of values to assign 3963 * 3964 * Set the logical values of the GPIOs, i.e. taking their ACTIVE_LOW status 3965 * into account. 3966 * 3967 * This function is to be called from contexts that can sleep. 3968 */ 3969 int gpiod_set_array_value_cansleep(unsigned int array_size, 3970 struct gpio_desc **desc_array, 3971 struct gpio_array *array_info, 3972 unsigned long *value_bitmap) 3973 { 3974 might_sleep(); 3975 if (!desc_array) 3976 return -EINVAL; 3977 return gpiod_set_array_value_complex(false, true, array_size, 3978 desc_array, array_info, 3979 value_bitmap); 3980 } 3981 EXPORT_SYMBOL_GPL(gpiod_set_array_value_cansleep); 3982 3983 void gpiod_line_state_notify(struct gpio_desc *desc, unsigned long action) 3984 { 3985 blocking_notifier_call_chain(&desc->gdev->line_state_notifier, 3986 action, desc); 3987 } 3988 3989 /** 3990 * gpiod_add_lookup_table() - register GPIO device consumers 3991 * @table: table of consumers to register 3992 */ 3993 void gpiod_add_lookup_table(struct gpiod_lookup_table *table) 3994 { 3995 gpiod_add_lookup_tables(&table, 1); 3996 } 3997 EXPORT_SYMBOL_GPL(gpiod_add_lookup_table); 3998 3999 /** 4000 * gpiod_remove_lookup_table() - unregister GPIO device consumers 4001 * @table: table of consumers to unregister 4002 */ 4003 void gpiod_remove_lookup_table(struct gpiod_lookup_table *table) 4004 { 4005 /* Nothing to remove */ 4006 if (!table) 4007 return; 4008 4009 mutex_lock(&gpio_lookup_lock); 4010 4011 list_del(&table->list); 4012 4013 mutex_unlock(&gpio_lookup_lock); 4014 } 4015 EXPORT_SYMBOL_GPL(gpiod_remove_lookup_table); 4016 4017 /** 4018 * gpiod_add_hogs() - register a set of GPIO hogs from machine code 4019 * @hogs: table of gpio hog entries with a zeroed sentinel at the end 4020 */ 4021 void gpiod_add_hogs(struct gpiod_hog *hogs) 4022 { 4023 struct gpiod_hog *hog; 4024 4025 mutex_lock(&gpio_machine_hogs_mutex); 4026 4027 for (hog = &hogs[0]; hog->chip_label; hog++) { 4028 list_add_tail(&hog->list, &gpio_machine_hogs); 4029 4030 /* 4031 * The chip may have been registered earlier, so check if it 4032 * exists and, if so, try to hog the line now. 4033 */ 4034 struct gpio_device *gdev __free(gpio_device_put) = 4035 gpio_device_find_by_label(hog->chip_label); 4036 if (gdev) 4037 gpiochip_machine_hog(gpio_device_get_chip(gdev), hog); 4038 } 4039 4040 mutex_unlock(&gpio_machine_hogs_mutex); 4041 } 4042 EXPORT_SYMBOL_GPL(gpiod_add_hogs); 4043 4044 void gpiod_remove_hogs(struct gpiod_hog *hogs) 4045 { 4046 struct gpiod_hog *hog; 4047 4048 mutex_lock(&gpio_machine_hogs_mutex); 4049 for (hog = &hogs[0]; hog->chip_label; hog++) 4050 list_del(&hog->list); 4051 mutex_unlock(&gpio_machine_hogs_mutex); 4052 } 4053 EXPORT_SYMBOL_GPL(gpiod_remove_hogs); 4054 4055 static struct gpiod_lookup_table *gpiod_find_lookup_table(struct device *dev) 4056 { 4057 const char *dev_id = dev ? dev_name(dev) : NULL; 4058 struct gpiod_lookup_table *table; 4059 4060 list_for_each_entry(table, &gpio_lookup_list, list) { 4061 if (table->dev_id && dev_id) { 4062 /* 4063 * Valid strings on both ends, must be identical to have 4064 * a match 4065 */ 4066 if (!strcmp(table->dev_id, dev_id)) 4067 return table; 4068 } else { 4069 /* 4070 * One of the pointers is NULL, so both must be to have 4071 * a match 4072 */ 4073 if (dev_id == table->dev_id) 4074 return table; 4075 } 4076 } 4077 4078 return NULL; 4079 } 4080 4081 static struct gpio_desc *gpiod_find(struct device *dev, const char *con_id, 4082 unsigned int idx, unsigned long *flags) 4083 { 4084 struct gpio_desc *desc = ERR_PTR(-ENOENT); 4085 struct gpiod_lookup_table *table; 4086 struct gpiod_lookup *p; 4087 struct gpio_chip *gc; 4088 4089 guard(mutex)(&gpio_lookup_lock); 4090 4091 table = gpiod_find_lookup_table(dev); 4092 if (!table) 4093 return desc; 4094 4095 for (p = &table->table[0]; p->key; p++) { 4096 /* idx must always match exactly */ 4097 if (p->idx != idx) 4098 continue; 4099 4100 /* If the lookup entry has a con_id, require exact match */ 4101 if (p->con_id && (!con_id || strcmp(p->con_id, con_id))) 4102 continue; 4103 4104 if (p->chip_hwnum == U16_MAX) { 4105 desc = gpio_name_to_desc(p->key); 4106 if (desc) { 4107 *flags = p->flags; 4108 return desc; 4109 } 4110 4111 dev_warn(dev, "cannot find GPIO line %s, deferring\n", 4112 p->key); 4113 return ERR_PTR(-EPROBE_DEFER); 4114 } 4115 4116 struct gpio_device *gdev __free(gpio_device_put) = 4117 gpio_device_find_by_label(p->key); 4118 if (!gdev) { 4119 /* 4120 * As the lookup table indicates a chip with 4121 * p->key should exist, assume it may 4122 * still appear later and let the interested 4123 * consumer be probed again or let the Deferred 4124 * Probe infrastructure handle the error. 4125 */ 4126 dev_warn(dev, "cannot find GPIO chip %s, deferring\n", 4127 p->key); 4128 return ERR_PTR(-EPROBE_DEFER); 4129 } 4130 4131 gc = gpio_device_get_chip(gdev); 4132 4133 if (gc->ngpio <= p->chip_hwnum) { 4134 dev_err(dev, 4135 "requested GPIO %u (%u) is out of range [0..%u] for chip %s\n", 4136 idx, p->chip_hwnum, gc->ngpio - 1, 4137 gc->label); 4138 return ERR_PTR(-EINVAL); 4139 } 4140 4141 desc = gpio_device_get_desc(gdev, p->chip_hwnum); 4142 *flags = p->flags; 4143 4144 return desc; 4145 } 4146 4147 return desc; 4148 } 4149 4150 static int platform_gpio_count(struct device *dev, const char *con_id) 4151 { 4152 struct gpiod_lookup_table *table; 4153 struct gpiod_lookup *p; 4154 unsigned int count = 0; 4155 4156 scoped_guard(mutex, &gpio_lookup_lock) { 4157 table = gpiod_find_lookup_table(dev); 4158 if (!table) 4159 return -ENOENT; 4160 4161 for (p = &table->table[0]; p->key; p++) { 4162 if ((con_id && p->con_id && !strcmp(con_id, p->con_id)) || 4163 (!con_id && !p->con_id)) 4164 count++; 4165 } 4166 } 4167 4168 if (!count) 4169 return -ENOENT; 4170 4171 return count; 4172 } 4173 4174 static struct gpio_desc *gpiod_find_by_fwnode(struct fwnode_handle *fwnode, 4175 struct device *consumer, 4176 const char *con_id, 4177 unsigned int idx, 4178 enum gpiod_flags *flags, 4179 unsigned long *lookupflags) 4180 { 4181 const char *name = function_name_or_default(con_id); 4182 struct gpio_desc *desc = ERR_PTR(-ENOENT); 4183 4184 if (is_of_node(fwnode)) { 4185 dev_dbg(consumer, "using DT '%pfw' for '%s' GPIO lookup\n", fwnode, name); 4186 desc = of_find_gpio(to_of_node(fwnode), con_id, idx, lookupflags); 4187 } else if (is_acpi_node(fwnode)) { 4188 dev_dbg(consumer, "using ACPI '%pfw' for '%s' GPIO lookup\n", fwnode, name); 4189 desc = acpi_find_gpio(fwnode, con_id, idx, flags, lookupflags); 4190 } else if (is_software_node(fwnode)) { 4191 dev_dbg(consumer, "using swnode '%pfw' for '%s' GPIO lookup\n", fwnode, name); 4192 desc = swnode_find_gpio(fwnode, con_id, idx, lookupflags); 4193 } 4194 4195 return desc; 4196 } 4197 4198 struct gpio_desc *gpiod_find_and_request(struct device *consumer, 4199 struct fwnode_handle *fwnode, 4200 const char *con_id, 4201 unsigned int idx, 4202 enum gpiod_flags flags, 4203 const char *label, 4204 bool platform_lookup_allowed) 4205 { 4206 unsigned long lookupflags = GPIO_LOOKUP_FLAGS_DEFAULT; 4207 const char *name = function_name_or_default(con_id); 4208 /* 4209 * scoped_guard() is implemented as a for loop, meaning static 4210 * analyzers will complain about these two not being initialized. 4211 */ 4212 struct gpio_desc *desc = NULL; 4213 int ret = 0; 4214 4215 scoped_guard(srcu, &gpio_devices_srcu) { 4216 desc = gpiod_find_by_fwnode(fwnode, consumer, con_id, idx, 4217 &flags, &lookupflags); 4218 if (gpiod_not_found(desc) && platform_lookup_allowed) { 4219 /* 4220 * Either we are not using DT or ACPI, or their lookup 4221 * did not return a result. In that case, use platform 4222 * lookup as a fallback. 4223 */ 4224 dev_dbg(consumer, 4225 "using lookup tables for GPIO lookup\n"); 4226 desc = gpiod_find(consumer, con_id, idx, &lookupflags); 4227 } 4228 4229 if (IS_ERR(desc)) { 4230 dev_dbg(consumer, "No GPIO consumer %s found\n", name); 4231 return desc; 4232 } 4233 4234 /* 4235 * If a connection label was passed use that, else attempt to use 4236 * the device name as label 4237 */ 4238 ret = gpiod_request(desc, label); 4239 } 4240 if (ret) { 4241 if (!(ret == -EBUSY && flags & GPIOD_FLAGS_BIT_NONEXCLUSIVE)) 4242 return ERR_PTR(ret); 4243 4244 /* 4245 * This happens when there are several consumers for 4246 * the same GPIO line: we just return here without 4247 * further initialization. It is a bit of a hack. 4248 * This is necessary to support fixed regulators. 4249 * 4250 * FIXME: Make this more sane and safe. 4251 */ 4252 dev_info(consumer, "nonexclusive access to GPIO for %s\n", name); 4253 return desc; 4254 } 4255 4256 ret = gpiod_configure_flags(desc, con_id, lookupflags, flags); 4257 if (ret < 0) { 4258 gpiod_put(desc); 4259 dev_err(consumer, "setup of GPIO %s failed: %d\n", name, ret); 4260 return ERR_PTR(ret); 4261 } 4262 4263 gpiod_line_state_notify(desc, GPIOLINE_CHANGED_REQUESTED); 4264 4265 return desc; 4266 } 4267 4268 /** 4269 * fwnode_gpiod_get_index - obtain a GPIO from firmware node 4270 * @fwnode: handle of the firmware node 4271 * @con_id: function within the GPIO consumer 4272 * @index: index of the GPIO to obtain for the consumer 4273 * @flags: GPIO initialization flags 4274 * @label: label to attach to the requested GPIO 4275 * 4276 * This function can be used for drivers that get their configuration 4277 * from opaque firmware. 4278 * 4279 * The function properly finds the corresponding GPIO using whatever is the 4280 * underlying firmware interface and then makes sure that the GPIO 4281 * descriptor is requested before it is returned to the caller. 4282 * 4283 * Returns: 4284 * On successful request the GPIO pin is configured in accordance with 4285 * provided @flags. 4286 * 4287 * In case of error an ERR_PTR() is returned. 4288 */ 4289 struct gpio_desc *fwnode_gpiod_get_index(struct fwnode_handle *fwnode, 4290 const char *con_id, 4291 int index, 4292 enum gpiod_flags flags, 4293 const char *label) 4294 { 4295 return gpiod_find_and_request(NULL, fwnode, con_id, index, flags, label, false); 4296 } 4297 EXPORT_SYMBOL_GPL(fwnode_gpiod_get_index); 4298 4299 /** 4300 * gpiod_count - return the number of GPIOs associated with a device / function 4301 * or -ENOENT if no GPIO has been assigned to the requested function 4302 * @dev: GPIO consumer, can be NULL for system-global GPIOs 4303 * @con_id: function within the GPIO consumer 4304 */ 4305 int gpiod_count(struct device *dev, const char *con_id) 4306 { 4307 const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL; 4308 int count = -ENOENT; 4309 4310 if (is_of_node(fwnode)) 4311 count = of_gpio_count(fwnode, con_id); 4312 else if (is_acpi_node(fwnode)) 4313 count = acpi_gpio_count(fwnode, con_id); 4314 else if (is_software_node(fwnode)) 4315 count = swnode_gpio_count(fwnode, con_id); 4316 4317 if (count < 0) 4318 count = platform_gpio_count(dev, con_id); 4319 4320 return count; 4321 } 4322 EXPORT_SYMBOL_GPL(gpiod_count); 4323 4324 /** 4325 * gpiod_get - obtain a GPIO for a given GPIO function 4326 * @dev: GPIO consumer, can be NULL for system-global GPIOs 4327 * @con_id: function within the GPIO consumer 4328 * @flags: optional GPIO initialization flags 4329 * 4330 * Return the GPIO descriptor corresponding to the function con_id of device 4331 * dev, -ENOENT if no GPIO has been assigned to the requested function, or 4332 * another IS_ERR() code if an error occurred while trying to acquire the GPIO. 4333 */ 4334 struct gpio_desc *__must_check gpiod_get(struct device *dev, const char *con_id, 4335 enum gpiod_flags flags) 4336 { 4337 return gpiod_get_index(dev, con_id, 0, flags); 4338 } 4339 EXPORT_SYMBOL_GPL(gpiod_get); 4340 4341 /** 4342 * gpiod_get_optional - obtain an optional GPIO for a given GPIO function 4343 * @dev: GPIO consumer, can be NULL for system-global GPIOs 4344 * @con_id: function within the GPIO consumer 4345 * @flags: optional GPIO initialization flags 4346 * 4347 * This is equivalent to gpiod_get(), except that when no GPIO was assigned to 4348 * the requested function it will return NULL. This is convenient for drivers 4349 * that need to handle optional GPIOs. 4350 */ 4351 struct gpio_desc *__must_check gpiod_get_optional(struct device *dev, 4352 const char *con_id, 4353 enum gpiod_flags flags) 4354 { 4355 return gpiod_get_index_optional(dev, con_id, 0, flags); 4356 } 4357 EXPORT_SYMBOL_GPL(gpiod_get_optional); 4358 4359 4360 /** 4361 * gpiod_configure_flags - helper function to configure a given GPIO 4362 * @desc: gpio whose value will be assigned 4363 * @con_id: function within the GPIO consumer 4364 * @lflags: bitmask of gpio_lookup_flags GPIO_* values - returned from 4365 * of_find_gpio() or of_get_gpio_hog() 4366 * @dflags: gpiod_flags - optional GPIO initialization flags 4367 * 4368 * Return 0 on success, -ENOENT if no GPIO has been assigned to the 4369 * requested function and/or index, or another IS_ERR() code if an error 4370 * occurred while trying to acquire the GPIO. 4371 */ 4372 int gpiod_configure_flags(struct gpio_desc *desc, const char *con_id, 4373 unsigned long lflags, enum gpiod_flags dflags) 4374 { 4375 const char *name = function_name_or_default(con_id); 4376 int ret; 4377 4378 if (lflags & GPIO_ACTIVE_LOW) 4379 set_bit(FLAG_ACTIVE_LOW, &desc->flags); 4380 4381 if (lflags & GPIO_OPEN_DRAIN) 4382 set_bit(FLAG_OPEN_DRAIN, &desc->flags); 4383 else if (dflags & GPIOD_FLAGS_BIT_OPEN_DRAIN) { 4384 /* 4385 * This enforces open drain mode from the consumer side. 4386 * This is necessary for some busses like I2C, but the lookup 4387 * should *REALLY* have specified them as open drain in the 4388 * first place, so print a little warning here. 4389 */ 4390 set_bit(FLAG_OPEN_DRAIN, &desc->flags); 4391 gpiod_warn(desc, 4392 "enforced open drain please flag it properly in DT/ACPI DSDT/board file\n"); 4393 } 4394 4395 if (lflags & GPIO_OPEN_SOURCE) 4396 set_bit(FLAG_OPEN_SOURCE, &desc->flags); 4397 4398 if (((lflags & GPIO_PULL_UP) && (lflags & GPIO_PULL_DOWN)) || 4399 ((lflags & GPIO_PULL_UP) && (lflags & GPIO_PULL_DISABLE)) || 4400 ((lflags & GPIO_PULL_DOWN) && (lflags & GPIO_PULL_DISABLE))) { 4401 gpiod_err(desc, 4402 "multiple pull-up, pull-down or pull-disable enabled, invalid configuration\n"); 4403 return -EINVAL; 4404 } 4405 4406 if (lflags & GPIO_PULL_UP) 4407 set_bit(FLAG_PULL_UP, &desc->flags); 4408 else if (lflags & GPIO_PULL_DOWN) 4409 set_bit(FLAG_PULL_DOWN, &desc->flags); 4410 else if (lflags & GPIO_PULL_DISABLE) 4411 set_bit(FLAG_BIAS_DISABLE, &desc->flags); 4412 4413 ret = gpiod_set_transitory(desc, (lflags & GPIO_TRANSITORY)); 4414 if (ret < 0) 4415 return ret; 4416 4417 /* No particular flag request, return here... */ 4418 if (!(dflags & GPIOD_FLAGS_BIT_DIR_SET)) { 4419 gpiod_dbg(desc, "no flags found for GPIO %s\n", name); 4420 return 0; 4421 } 4422 4423 /* Process flags */ 4424 if (dflags & GPIOD_FLAGS_BIT_DIR_OUT) 4425 ret = gpiod_direction_output(desc, 4426 !!(dflags & GPIOD_FLAGS_BIT_DIR_VAL)); 4427 else 4428 ret = gpiod_direction_input(desc); 4429 4430 return ret; 4431 } 4432 4433 /** 4434 * gpiod_get_index - obtain a GPIO from a multi-index GPIO function 4435 * @dev: GPIO consumer, can be NULL for system-global GPIOs 4436 * @con_id: function within the GPIO consumer 4437 * @idx: index of the GPIO to obtain in the consumer 4438 * @flags: optional GPIO initialization flags 4439 * 4440 * This variant of gpiod_get() allows to access GPIOs other than the first 4441 * defined one for functions that define several GPIOs. 4442 * 4443 * Return a valid GPIO descriptor, -ENOENT if no GPIO has been assigned to the 4444 * requested function and/or index, or another IS_ERR() code if an error 4445 * occurred while trying to acquire the GPIO. 4446 */ 4447 struct gpio_desc *__must_check gpiod_get_index(struct device *dev, 4448 const char *con_id, 4449 unsigned int idx, 4450 enum gpiod_flags flags) 4451 { 4452 struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL; 4453 const char *devname = dev ? dev_name(dev) : "?"; 4454 const char *label = con_id ?: devname; 4455 4456 return gpiod_find_and_request(dev, fwnode, con_id, idx, flags, label, true); 4457 } 4458 EXPORT_SYMBOL_GPL(gpiod_get_index); 4459 4460 /** 4461 * gpiod_get_index_optional - obtain an optional GPIO from a multi-index GPIO 4462 * function 4463 * @dev: GPIO consumer, can be NULL for system-global GPIOs 4464 * @con_id: function within the GPIO consumer 4465 * @index: index of the GPIO to obtain in the consumer 4466 * @flags: optional GPIO initialization flags 4467 * 4468 * This is equivalent to gpiod_get_index(), except that when no GPIO with the 4469 * specified index was assigned to the requested function it will return NULL. 4470 * This is convenient for drivers that need to handle optional GPIOs. 4471 */ 4472 struct gpio_desc *__must_check gpiod_get_index_optional(struct device *dev, 4473 const char *con_id, 4474 unsigned int index, 4475 enum gpiod_flags flags) 4476 { 4477 struct gpio_desc *desc; 4478 4479 desc = gpiod_get_index(dev, con_id, index, flags); 4480 if (gpiod_not_found(desc)) 4481 return NULL; 4482 4483 return desc; 4484 } 4485 EXPORT_SYMBOL_GPL(gpiod_get_index_optional); 4486 4487 /** 4488 * gpiod_hog - Hog the specified GPIO desc given the provided flags 4489 * @desc: gpio whose value will be assigned 4490 * @name: gpio line name 4491 * @lflags: bitmask of gpio_lookup_flags GPIO_* values - returned from 4492 * of_find_gpio() or of_get_gpio_hog() 4493 * @dflags: gpiod_flags - optional GPIO initialization flags 4494 */ 4495 int gpiod_hog(struct gpio_desc *desc, const char *name, 4496 unsigned long lflags, enum gpiod_flags dflags) 4497 { 4498 struct gpio_device *gdev = desc->gdev; 4499 struct gpio_desc *local_desc; 4500 int hwnum; 4501 int ret; 4502 4503 CLASS(gpio_chip_guard, guard)(desc); 4504 if (!guard.gc) 4505 return -ENODEV; 4506 4507 if (test_and_set_bit(FLAG_IS_HOGGED, &desc->flags)) 4508 return 0; 4509 4510 hwnum = gpio_chip_hwgpio(desc); 4511 4512 local_desc = gpiochip_request_own_desc(guard.gc, hwnum, name, 4513 lflags, dflags); 4514 if (IS_ERR(local_desc)) { 4515 clear_bit(FLAG_IS_HOGGED, &desc->flags); 4516 ret = PTR_ERR(local_desc); 4517 pr_err("requesting hog GPIO %s (chip %s, offset %d) failed, %d\n", 4518 name, gdev->label, hwnum, ret); 4519 return ret; 4520 } 4521 4522 gpiod_dbg(desc, "hogged as %s%s\n", 4523 (dflags & GPIOD_FLAGS_BIT_DIR_OUT) ? "output" : "input", 4524 (dflags & GPIOD_FLAGS_BIT_DIR_OUT) ? 4525 (dflags & GPIOD_FLAGS_BIT_DIR_VAL) ? "/high" : "/low" : ""); 4526 4527 return 0; 4528 } 4529 4530 /** 4531 * gpiochip_free_hogs - Scan gpio-controller chip and release GPIO hog 4532 * @gc: gpio chip to act on 4533 */ 4534 static void gpiochip_free_hogs(struct gpio_chip *gc) 4535 { 4536 struct gpio_desc *desc; 4537 4538 for_each_gpio_desc_with_flag(gc, desc, FLAG_IS_HOGGED) 4539 gpiochip_free_own_desc(desc); 4540 } 4541 4542 /** 4543 * gpiod_get_array - obtain multiple GPIOs from a multi-index GPIO function 4544 * @dev: GPIO consumer, can be NULL for system-global GPIOs 4545 * @con_id: function within the GPIO consumer 4546 * @flags: optional GPIO initialization flags 4547 * 4548 * This function acquires all the GPIOs defined under a given function. 4549 * 4550 * Return a struct gpio_descs containing an array of descriptors, -ENOENT if 4551 * no GPIO has been assigned to the requested function, or another IS_ERR() 4552 * code if an error occurred while trying to acquire the GPIOs. 4553 */ 4554 struct gpio_descs *__must_check gpiod_get_array(struct device *dev, 4555 const char *con_id, 4556 enum gpiod_flags flags) 4557 { 4558 struct gpio_desc *desc; 4559 struct gpio_descs *descs; 4560 struct gpio_array *array_info = NULL; 4561 struct gpio_chip *gc; 4562 int count, bitmap_size; 4563 size_t descs_size; 4564 4565 count = gpiod_count(dev, con_id); 4566 if (count < 0) 4567 return ERR_PTR(count); 4568 4569 descs_size = struct_size(descs, desc, count); 4570 descs = kzalloc(descs_size, GFP_KERNEL); 4571 if (!descs) 4572 return ERR_PTR(-ENOMEM); 4573 4574 for (descs->ndescs = 0; descs->ndescs < count; descs->ndescs++) { 4575 desc = gpiod_get_index(dev, con_id, descs->ndescs, flags); 4576 if (IS_ERR(desc)) { 4577 gpiod_put_array(descs); 4578 return ERR_CAST(desc); 4579 } 4580 4581 descs->desc[descs->ndescs] = desc; 4582 4583 gc = gpiod_to_chip(desc); 4584 /* 4585 * If pin hardware number of array member 0 is also 0, select 4586 * its chip as a candidate for fast bitmap processing path. 4587 */ 4588 if (descs->ndescs == 0 && gpio_chip_hwgpio(desc) == 0) { 4589 struct gpio_descs *array; 4590 4591 bitmap_size = BITS_TO_LONGS(gc->ngpio > count ? 4592 gc->ngpio : count); 4593 4594 array = krealloc(descs, descs_size + 4595 struct_size(array_info, invert_mask, 3 * bitmap_size), 4596 GFP_KERNEL | __GFP_ZERO); 4597 if (!array) { 4598 gpiod_put_array(descs); 4599 return ERR_PTR(-ENOMEM); 4600 } 4601 4602 descs = array; 4603 4604 array_info = (void *)descs + descs_size; 4605 array_info->get_mask = array_info->invert_mask + 4606 bitmap_size; 4607 array_info->set_mask = array_info->get_mask + 4608 bitmap_size; 4609 4610 array_info->desc = descs->desc; 4611 array_info->size = count; 4612 array_info->chip = gc; 4613 bitmap_set(array_info->get_mask, descs->ndescs, 4614 count - descs->ndescs); 4615 bitmap_set(array_info->set_mask, descs->ndescs, 4616 count - descs->ndescs); 4617 descs->info = array_info; 4618 } 4619 4620 /* If there is no cache for fast bitmap processing path, continue */ 4621 if (!array_info) 4622 continue; 4623 4624 /* Unmark array members which don't belong to the 'fast' chip */ 4625 if (array_info->chip != gc) { 4626 __clear_bit(descs->ndescs, array_info->get_mask); 4627 __clear_bit(descs->ndescs, array_info->set_mask); 4628 } 4629 /* 4630 * Detect array members which belong to the 'fast' chip 4631 * but their pins are not in hardware order. 4632 */ 4633 else if (gpio_chip_hwgpio(desc) != descs->ndescs) { 4634 /* 4635 * Don't use fast path if all array members processed so 4636 * far belong to the same chip as this one but its pin 4637 * hardware number is different from its array index. 4638 */ 4639 if (bitmap_full(array_info->get_mask, descs->ndescs)) { 4640 array_info = NULL; 4641 } else { 4642 __clear_bit(descs->ndescs, 4643 array_info->get_mask); 4644 __clear_bit(descs->ndescs, 4645 array_info->set_mask); 4646 } 4647 } else { 4648 /* Exclude open drain or open source from fast output */ 4649 if (gpiochip_line_is_open_drain(gc, descs->ndescs) || 4650 gpiochip_line_is_open_source(gc, descs->ndescs)) 4651 __clear_bit(descs->ndescs, 4652 array_info->set_mask); 4653 /* Identify 'fast' pins which require invertion */ 4654 if (gpiod_is_active_low(desc)) 4655 __set_bit(descs->ndescs, 4656 array_info->invert_mask); 4657 } 4658 } 4659 if (array_info) 4660 dev_dbg(dev, 4661 "GPIO array info: chip=%s, size=%d, get_mask=%lx, set_mask=%lx, invert_mask=%lx\n", 4662 array_info->chip->label, array_info->size, 4663 *array_info->get_mask, *array_info->set_mask, 4664 *array_info->invert_mask); 4665 return descs; 4666 } 4667 EXPORT_SYMBOL_GPL(gpiod_get_array); 4668 4669 /** 4670 * gpiod_get_array_optional - obtain multiple GPIOs from a multi-index GPIO 4671 * function 4672 * @dev: GPIO consumer, can be NULL for system-global GPIOs 4673 * @con_id: function within the GPIO consumer 4674 * @flags: optional GPIO initialization flags 4675 * 4676 * This is equivalent to gpiod_get_array(), except that when no GPIO was 4677 * assigned to the requested function it will return NULL. 4678 */ 4679 struct gpio_descs *__must_check gpiod_get_array_optional(struct device *dev, 4680 const char *con_id, 4681 enum gpiod_flags flags) 4682 { 4683 struct gpio_descs *descs; 4684 4685 descs = gpiod_get_array(dev, con_id, flags); 4686 if (gpiod_not_found(descs)) 4687 return NULL; 4688 4689 return descs; 4690 } 4691 EXPORT_SYMBOL_GPL(gpiod_get_array_optional); 4692 4693 /** 4694 * gpiod_put - dispose of a GPIO descriptor 4695 * @desc: GPIO descriptor to dispose of 4696 * 4697 * No descriptor can be used after gpiod_put() has been called on it. 4698 */ 4699 void gpiod_put(struct gpio_desc *desc) 4700 { 4701 if (desc) 4702 gpiod_free(desc); 4703 } 4704 EXPORT_SYMBOL_GPL(gpiod_put); 4705 4706 /** 4707 * gpiod_put_array - dispose of multiple GPIO descriptors 4708 * @descs: struct gpio_descs containing an array of descriptors 4709 */ 4710 void gpiod_put_array(struct gpio_descs *descs) 4711 { 4712 unsigned int i; 4713 4714 for (i = 0; i < descs->ndescs; i++) 4715 gpiod_put(descs->desc[i]); 4716 4717 kfree(descs); 4718 } 4719 EXPORT_SYMBOL_GPL(gpiod_put_array); 4720 4721 static int gpio_stub_drv_probe(struct device *dev) 4722 { 4723 /* 4724 * The DT node of some GPIO chips have a "compatible" property, but 4725 * never have a struct device added and probed by a driver to register 4726 * the GPIO chip with gpiolib. In such cases, fw_devlink=on will cause 4727 * the consumers of the GPIO chip to get probe deferred forever because 4728 * they will be waiting for a device associated with the GPIO chip 4729 * firmware node to get added and bound to a driver. 4730 * 4731 * To allow these consumers to probe, we associate the struct 4732 * gpio_device of the GPIO chip with the firmware node and then simply 4733 * bind it to this stub driver. 4734 */ 4735 return 0; 4736 } 4737 4738 static struct device_driver gpio_stub_drv = { 4739 .name = "gpio_stub_drv", 4740 .bus = &gpio_bus_type, 4741 .probe = gpio_stub_drv_probe, 4742 }; 4743 4744 static int __init gpiolib_dev_init(void) 4745 { 4746 int ret; 4747 4748 /* Register GPIO sysfs bus */ 4749 ret = bus_register(&gpio_bus_type); 4750 if (ret < 0) { 4751 pr_err("gpiolib: could not register GPIO bus type\n"); 4752 return ret; 4753 } 4754 4755 ret = driver_register(&gpio_stub_drv); 4756 if (ret < 0) { 4757 pr_err("gpiolib: could not register GPIO stub driver\n"); 4758 bus_unregister(&gpio_bus_type); 4759 return ret; 4760 } 4761 4762 ret = alloc_chrdev_region(&gpio_devt, 0, GPIO_DEV_MAX, GPIOCHIP_NAME); 4763 if (ret < 0) { 4764 pr_err("gpiolib: failed to allocate char dev region\n"); 4765 driver_unregister(&gpio_stub_drv); 4766 bus_unregister(&gpio_bus_type); 4767 return ret; 4768 } 4769 4770 gpiolib_initialized = true; 4771 gpiochip_setup_devs(); 4772 4773 #if IS_ENABLED(CONFIG_OF_DYNAMIC) && IS_ENABLED(CONFIG_OF_GPIO) 4774 WARN_ON(of_reconfig_notifier_register(&gpio_of_notifier)); 4775 #endif /* CONFIG_OF_DYNAMIC && CONFIG_OF_GPIO */ 4776 4777 return ret; 4778 } 4779 core_initcall(gpiolib_dev_init); 4780 4781 #ifdef CONFIG_DEBUG_FS 4782 4783 static void gpiolib_dbg_show(struct seq_file *s, struct gpio_device *gdev) 4784 { 4785 bool active_low, is_irq, is_out; 4786 unsigned int gpio = gdev->base; 4787 struct gpio_desc *desc; 4788 struct gpio_chip *gc; 4789 int value; 4790 4791 guard(srcu)(&gdev->srcu); 4792 4793 gc = srcu_dereference(gdev->chip, &gdev->srcu); 4794 if (!gc) { 4795 seq_puts(s, "Underlying GPIO chip is gone\n"); 4796 return; 4797 } 4798 4799 for_each_gpio_desc(gc, desc) { 4800 guard(srcu)(&desc->gdev->desc_srcu); 4801 is_irq = test_bit(FLAG_USED_AS_IRQ, &desc->flags); 4802 if (is_irq || test_bit(FLAG_REQUESTED, &desc->flags)) { 4803 gpiod_get_direction(desc); 4804 is_out = test_bit(FLAG_IS_OUT, &desc->flags); 4805 value = gpio_chip_get_value(gc, desc); 4806 active_low = test_bit(FLAG_ACTIVE_LOW, &desc->flags); 4807 seq_printf(s, " gpio-%-3u (%-20.20s|%-20.20s) %s %s %s%s\n", 4808 gpio, desc->name ?: "", gpiod_get_label(desc), 4809 is_out ? "out" : "in ", 4810 value >= 0 ? (value ? "hi" : "lo") : "? ", 4811 is_irq ? "IRQ " : "", 4812 active_low ? "ACTIVE LOW" : ""); 4813 } else if (desc->name) { 4814 seq_printf(s, " gpio-%-3u (%-20.20s)\n", gpio, desc->name); 4815 } 4816 4817 gpio++; 4818 } 4819 } 4820 4821 struct gpiolib_seq_priv { 4822 bool newline; 4823 int idx; 4824 }; 4825 4826 static void *gpiolib_seq_start(struct seq_file *s, loff_t *pos) 4827 { 4828 struct gpiolib_seq_priv *priv; 4829 struct gpio_device *gdev; 4830 loff_t index = *pos; 4831 4832 priv = kzalloc(sizeof(*priv), GFP_KERNEL); 4833 if (!priv) 4834 return NULL; 4835 4836 s->private = priv; 4837 priv->idx = srcu_read_lock(&gpio_devices_srcu); 4838 4839 list_for_each_entry_srcu(gdev, &gpio_devices, list, 4840 srcu_read_lock_held(&gpio_devices_srcu)) { 4841 if (index-- == 0) 4842 return gdev; 4843 } 4844 4845 return NULL; 4846 } 4847 4848 static void *gpiolib_seq_next(struct seq_file *s, void *v, loff_t *pos) 4849 { 4850 struct gpiolib_seq_priv *priv = s->private; 4851 struct gpio_device *gdev = v, *next; 4852 4853 next = list_entry_rcu(gdev->list.next, struct gpio_device, list); 4854 gdev = &next->list == &gpio_devices ? NULL : next; 4855 priv->newline = true; 4856 ++*pos; 4857 4858 return gdev; 4859 } 4860 4861 static void gpiolib_seq_stop(struct seq_file *s, void *v) 4862 { 4863 struct gpiolib_seq_priv *priv = s->private; 4864 4865 srcu_read_unlock(&gpio_devices_srcu, priv->idx); 4866 kfree(priv); 4867 } 4868 4869 static int gpiolib_seq_show(struct seq_file *s, void *v) 4870 { 4871 struct gpiolib_seq_priv *priv = s->private; 4872 struct gpio_device *gdev = v; 4873 struct gpio_chip *gc; 4874 struct device *parent; 4875 4876 guard(srcu)(&gdev->srcu); 4877 4878 gc = srcu_dereference(gdev->chip, &gdev->srcu); 4879 if (!gc) { 4880 seq_printf(s, "%s%s: (dangling chip)", 4881 priv->newline ? "\n" : "", 4882 dev_name(&gdev->dev)); 4883 return 0; 4884 } 4885 4886 seq_printf(s, "%s%s: GPIOs %u-%u", priv->newline ? "\n" : "", 4887 dev_name(&gdev->dev), 4888 gdev->base, gdev->base + gdev->ngpio - 1); 4889 parent = gc->parent; 4890 if (parent) 4891 seq_printf(s, ", parent: %s/%s", 4892 parent->bus ? parent->bus->name : "no-bus", 4893 dev_name(parent)); 4894 if (gc->label) 4895 seq_printf(s, ", %s", gc->label); 4896 if (gc->can_sleep) 4897 seq_printf(s, ", can sleep"); 4898 seq_printf(s, ":\n"); 4899 4900 if (gc->dbg_show) 4901 gc->dbg_show(s, gc); 4902 else 4903 gpiolib_dbg_show(s, gdev); 4904 4905 return 0; 4906 } 4907 4908 static const struct seq_operations gpiolib_sops = { 4909 .start = gpiolib_seq_start, 4910 .next = gpiolib_seq_next, 4911 .stop = gpiolib_seq_stop, 4912 .show = gpiolib_seq_show, 4913 }; 4914 DEFINE_SEQ_ATTRIBUTE(gpiolib); 4915 4916 static int __init gpiolib_debugfs_init(void) 4917 { 4918 /* /sys/kernel/debug/gpio */ 4919 debugfs_create_file("gpio", 0444, NULL, NULL, &gpiolib_fops); 4920 return 0; 4921 } 4922 subsys_initcall(gpiolib_debugfs_init); 4923 4924 #endif /* DEBUG_FS */ 4925