1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/acpi.h> 4 #include <linux/array_size.h> 5 #include <linux/bitmap.h> 6 #include <linux/cleanup.h> 7 #include <linux/compat.h> 8 #include <linux/debugfs.h> 9 #include <linux/device.h> 10 #include <linux/err.h> 11 #include <linux/errno.h> 12 #include <linux/file.h> 13 #include <linux/fs.h> 14 #include <linux/idr.h> 15 #include <linux/interrupt.h> 16 #include <linux/irq.h> 17 #include <linux/irqdesc.h> 18 #include <linux/kernel.h> 19 #include <linux/list.h> 20 #include <linux/lockdep.h> 21 #include <linux/module.h> 22 #include <linux/nospec.h> 23 #include <linux/of.h> 24 #include <linux/pinctrl/consumer.h> 25 #include <linux/seq_file.h> 26 #include <linux/slab.h> 27 #include <linux/srcu.h> 28 #include <linux/string.h> 29 #include <linux/string_choices.h> 30 31 #include <linux/gpio.h> 32 #include <linux/gpio/driver.h> 33 #include <linux/gpio/machine.h> 34 35 #include <uapi/linux/gpio.h> 36 37 #include "gpiolib-acpi.h" 38 #include "gpiolib-cdev.h" 39 #include "gpiolib-of.h" 40 #include "gpiolib-swnode.h" 41 #include "gpiolib-sysfs.h" 42 #include "gpiolib.h" 43 44 #define CREATE_TRACE_POINTS 45 #include <trace/events/gpio.h> 46 47 /* Implementation infrastructure for GPIO interfaces. 48 * 49 * The GPIO programming interface allows for inlining speed-critical 50 * get/set operations for common cases, so that access to SOC-integrated 51 * GPIOs can sometimes cost only an instruction or two per bit. 52 */ 53 54 /* Device and char device-related information */ 55 static DEFINE_IDA(gpio_ida); 56 static dev_t gpio_devt; 57 #define GPIO_DEV_MAX 256 /* 256 GPIO chip devices supported */ 58 59 static int gpio_bus_match(struct device *dev, const struct device_driver *drv) 60 { 61 struct fwnode_handle *fwnode = dev_fwnode(dev); 62 63 /* 64 * Only match if the fwnode doesn't already have a proper struct device 65 * created for it. 66 */ 67 if (fwnode && fwnode->dev != dev) 68 return 0; 69 return 1; 70 } 71 72 static const struct bus_type gpio_bus_type = { 73 .name = "gpio", 74 .match = gpio_bus_match, 75 }; 76 77 /* 78 * At the end we want all GPIOs to be dynamically allocated from 0. 79 * However, some legacy drivers still perform fixed allocation. 80 * Until they are all fixed, leave 0-512 space for them. 81 */ 82 #define GPIO_DYNAMIC_BASE 512 83 /* 84 * Define the maximum of the possible GPIO in the global numberspace. 85 * While the GPIO base and numbers are positive, we limit it with signed 86 * maximum as a lot of code is using negative values for special cases. 87 */ 88 #define GPIO_DYNAMIC_MAX INT_MAX 89 90 /* 91 * Number of GPIOs to use for the fast path in set array 92 */ 93 #define FASTPATH_NGPIO CONFIG_GPIOLIB_FASTPATH_LIMIT 94 95 static DEFINE_MUTEX(gpio_lookup_lock); 96 static LIST_HEAD(gpio_lookup_list); 97 98 static LIST_HEAD(gpio_devices); 99 /* Protects the GPIO device list against concurrent modifications. */ 100 static DEFINE_MUTEX(gpio_devices_lock); 101 /* Ensures coherence during read-only accesses to the list of GPIO devices. */ 102 DEFINE_STATIC_SRCU(gpio_devices_srcu); 103 104 static DEFINE_MUTEX(gpio_machine_hogs_mutex); 105 static LIST_HEAD(gpio_machine_hogs); 106 107 const char *const gpio_suffixes[] = { "gpios", "gpio", NULL }; 108 109 static void gpiochip_free_hogs(struct gpio_chip *gc); 110 static int gpiochip_add_irqchip(struct gpio_chip *gc, 111 struct lock_class_key *lock_key, 112 struct lock_class_key *request_key); 113 static void gpiochip_irqchip_remove(struct gpio_chip *gc); 114 static int gpiochip_irqchip_init_hw(struct gpio_chip *gc); 115 static int gpiochip_irqchip_init_valid_mask(struct gpio_chip *gc); 116 static void gpiochip_irqchip_free_valid_mask(struct gpio_chip *gc); 117 118 static bool gpiolib_initialized; 119 120 const char *gpiod_get_label(struct gpio_desc *desc) 121 { 122 struct gpio_desc_label *label; 123 unsigned long flags; 124 125 flags = READ_ONCE(desc->flags); 126 127 label = srcu_dereference_check(desc->label, &desc->gdev->desc_srcu, 128 srcu_read_lock_held(&desc->gdev->desc_srcu)); 129 130 if (test_bit(FLAG_USED_AS_IRQ, &flags)) 131 return label ? label->str : "interrupt"; 132 133 if (!test_bit(FLAG_REQUESTED, &flags)) 134 return NULL; 135 136 return label ? label->str : NULL; 137 } 138 139 static void desc_free_label(struct rcu_head *rh) 140 { 141 kfree(container_of(rh, struct gpio_desc_label, rh)); 142 } 143 144 static int desc_set_label(struct gpio_desc *desc, const char *label) 145 { 146 struct gpio_desc_label *new = NULL, *old; 147 148 if (label) { 149 new = kzalloc(struct_size(new, str, strlen(label) + 1), 150 GFP_KERNEL); 151 if (!new) 152 return -ENOMEM; 153 154 strcpy(new->str, label); 155 } 156 157 old = rcu_replace_pointer(desc->label, new, 1); 158 if (old) 159 call_srcu(&desc->gdev->desc_srcu, &old->rh, desc_free_label); 160 161 return 0; 162 } 163 164 /** 165 * gpio_to_desc - Convert a GPIO number to its descriptor 166 * @gpio: global GPIO number 167 * 168 * Returns: 169 * The GPIO descriptor associated with the given GPIO, or %NULL if no GPIO 170 * with the given number exists in the system. 171 */ 172 struct gpio_desc *gpio_to_desc(unsigned gpio) 173 { 174 struct gpio_device *gdev; 175 176 scoped_guard(srcu, &gpio_devices_srcu) { 177 list_for_each_entry_srcu(gdev, &gpio_devices, list, 178 srcu_read_lock_held(&gpio_devices_srcu)) { 179 if (gdev->base <= gpio && 180 gdev->base + gdev->ngpio > gpio) 181 return &gdev->descs[gpio - gdev->base]; 182 } 183 } 184 185 return NULL; 186 } 187 EXPORT_SYMBOL_GPL(gpio_to_desc); 188 189 /* This function is deprecated and will be removed soon, don't use. */ 190 struct gpio_desc *gpiochip_get_desc(struct gpio_chip *gc, 191 unsigned int hwnum) 192 { 193 return gpio_device_get_desc(gc->gpiodev, hwnum); 194 } 195 196 /** 197 * gpio_device_get_desc() - get the GPIO descriptor corresponding to the given 198 * hardware number for this GPIO device 199 * @gdev: GPIO device to get the descriptor from 200 * @hwnum: hardware number of the GPIO for this chip 201 * 202 * Returns: 203 * A pointer to the GPIO descriptor or %EINVAL if no GPIO exists in the given 204 * chip for the specified hardware number or %ENODEV if the underlying chip 205 * already vanished. 206 * 207 * The reference count of struct gpio_device is *NOT* increased like when the 208 * GPIO is being requested for exclusive usage. It's up to the caller to make 209 * sure the GPIO device will stay alive together with the descriptor returned 210 * by this function. 211 */ 212 struct gpio_desc * 213 gpio_device_get_desc(struct gpio_device *gdev, unsigned int hwnum) 214 { 215 if (hwnum >= gdev->ngpio) 216 return ERR_PTR(-EINVAL); 217 218 return &gdev->descs[array_index_nospec(hwnum, gdev->ngpio)]; 219 } 220 EXPORT_SYMBOL_GPL(gpio_device_get_desc); 221 222 /** 223 * desc_to_gpio - convert a GPIO descriptor to the integer namespace 224 * @desc: GPIO descriptor 225 * 226 * This should disappear in the future but is needed since we still 227 * use GPIO numbers for error messages and sysfs nodes. 228 * 229 * Returns: 230 * The global GPIO number for the GPIO specified by its descriptor. 231 */ 232 int desc_to_gpio(const struct gpio_desc *desc) 233 { 234 return desc->gdev->base + (desc - &desc->gdev->descs[0]); 235 } 236 EXPORT_SYMBOL_GPL(desc_to_gpio); 237 238 239 /** 240 * gpiod_to_chip - Return the GPIO chip to which a GPIO descriptor belongs 241 * @desc: descriptor to return the chip of 242 * 243 * *DEPRECATED* 244 * This function is unsafe and should not be used. Using the chip address 245 * without taking the SRCU read lock may result in dereferencing a dangling 246 * pointer. 247 * 248 * Returns: 249 * Address of the GPIO chip backing this device. 250 */ 251 struct gpio_chip *gpiod_to_chip(const struct gpio_desc *desc) 252 { 253 if (!desc) 254 return NULL; 255 256 return gpio_device_get_chip(desc->gdev); 257 } 258 EXPORT_SYMBOL_GPL(gpiod_to_chip); 259 260 /** 261 * gpiod_to_gpio_device() - Return the GPIO device to which this descriptor 262 * belongs. 263 * @desc: Descriptor for which to return the GPIO device. 264 * 265 * This *DOES NOT* increase the reference count of the GPIO device as it's 266 * expected that the descriptor is requested and the users already holds a 267 * reference to the device. 268 * 269 * Returns: 270 * Address of the GPIO device owning this descriptor. 271 */ 272 struct gpio_device *gpiod_to_gpio_device(struct gpio_desc *desc) 273 { 274 if (!desc) 275 return NULL; 276 277 return desc->gdev; 278 } 279 EXPORT_SYMBOL_GPL(gpiod_to_gpio_device); 280 281 /** 282 * gpio_device_get_base() - Get the base GPIO number allocated by this device 283 * @gdev: GPIO device 284 * 285 * Returns: 286 * First GPIO number in the global GPIO numberspace for this device. 287 */ 288 int gpio_device_get_base(struct gpio_device *gdev) 289 { 290 return gdev->base; 291 } 292 EXPORT_SYMBOL_GPL(gpio_device_get_base); 293 294 /** 295 * gpio_device_get_label() - Get the label of this GPIO device 296 * @gdev: GPIO device 297 * 298 * Returns: 299 * Pointer to the string containing the GPIO device label. The string's 300 * lifetime is tied to that of the underlying GPIO device. 301 */ 302 const char *gpio_device_get_label(struct gpio_device *gdev) 303 { 304 return gdev->label; 305 } 306 EXPORT_SYMBOL(gpio_device_get_label); 307 308 /** 309 * gpio_device_get_chip() - Get the gpio_chip implementation of this GPIO device 310 * @gdev: GPIO device 311 * 312 * Returns: 313 * Address of the GPIO chip backing this device. 314 * 315 * *DEPRECATED* 316 * Until we can get rid of all non-driver users of struct gpio_chip, we must 317 * provide a way of retrieving the pointer to it from struct gpio_device. This 318 * is *NOT* safe as the GPIO API is considered to be hot-unpluggable and the 319 * chip can dissapear at any moment (unlike reference-counted struct 320 * gpio_device). 321 * 322 * Use at your own risk. 323 */ 324 struct gpio_chip *gpio_device_get_chip(struct gpio_device *gdev) 325 { 326 return rcu_dereference_check(gdev->chip, 1); 327 } 328 EXPORT_SYMBOL_GPL(gpio_device_get_chip); 329 330 /* dynamic allocation of GPIOs, e.g. on a hotplugged device */ 331 static int gpiochip_find_base_unlocked(u16 ngpio) 332 { 333 unsigned int base = GPIO_DYNAMIC_BASE; 334 struct gpio_device *gdev; 335 336 list_for_each_entry_srcu(gdev, &gpio_devices, list, 337 lockdep_is_held(&gpio_devices_lock)) { 338 /* found a free space? */ 339 if (gdev->base >= base + ngpio) 340 break; 341 /* nope, check the space right after the chip */ 342 base = gdev->base + gdev->ngpio; 343 if (base < GPIO_DYNAMIC_BASE) 344 base = GPIO_DYNAMIC_BASE; 345 if (base > GPIO_DYNAMIC_MAX - ngpio) 346 break; 347 } 348 349 if (base <= GPIO_DYNAMIC_MAX - ngpio) { 350 pr_debug("%s: found new base at %d\n", __func__, base); 351 return base; 352 } else { 353 pr_err("%s: cannot find free range\n", __func__); 354 return -ENOSPC; 355 } 356 } 357 358 /* 359 * This descriptor validation needs to be inserted verbatim into each 360 * function taking a descriptor, so we need to use a preprocessor 361 * macro to avoid endless duplication. If the desc is NULL it is an 362 * optional GPIO and calls should just bail out. 363 */ 364 static int validate_desc(const struct gpio_desc *desc, const char *func) 365 { 366 if (!desc) 367 return 0; 368 369 if (IS_ERR(desc)) { 370 pr_warn("%s: invalid GPIO (errorpointer: %pe)\n", func, desc); 371 return PTR_ERR(desc); 372 } 373 374 return 1; 375 } 376 377 #define VALIDATE_DESC(desc) do { \ 378 int __valid = validate_desc(desc, __func__); \ 379 if (__valid <= 0) \ 380 return __valid; \ 381 } while (0) 382 383 #define VALIDATE_DESC_VOID(desc) do { \ 384 int __valid = validate_desc(desc, __func__); \ 385 if (__valid <= 0) \ 386 return; \ 387 } while (0) 388 389 /** 390 * gpiod_is_equal() - Check if two GPIO descriptors refer to the same pin. 391 * @desc: Descriptor to compare. 392 * @other: The second descriptor to compare against. 393 * 394 * Returns: 395 * True if the descriptors refer to the same physical pin. False otherwise. 396 */ 397 bool gpiod_is_equal(const struct gpio_desc *desc, const struct gpio_desc *other) 398 { 399 return validate_desc(desc, __func__) > 0 && 400 !IS_ERR_OR_NULL(other) && desc == other; 401 } 402 EXPORT_SYMBOL_GPL(gpiod_is_equal); 403 404 static int gpiochip_get_direction(struct gpio_chip *gc, unsigned int offset) 405 { 406 int ret; 407 408 lockdep_assert_held(&gc->gpiodev->srcu); 409 410 if (WARN_ON(!gc->get_direction)) 411 return -EOPNOTSUPP; 412 413 ret = gc->get_direction(gc, offset); 414 if (ret < 0) 415 return ret; 416 417 if (ret != GPIO_LINE_DIRECTION_OUT && ret != GPIO_LINE_DIRECTION_IN) 418 ret = -EBADE; 419 420 return ret; 421 } 422 423 /** 424 * gpiod_get_direction - return the current direction of a GPIO 425 * @desc: GPIO to get the direction of 426 * 427 * Returns: 428 * 0 for output, 1 for input, or an error code in case of error. 429 * 430 * This function may sleep if gpiod_cansleep() is true. 431 */ 432 int gpiod_get_direction(struct gpio_desc *desc) 433 { 434 unsigned long flags; 435 unsigned int offset; 436 int ret; 437 438 ret = validate_desc(desc, __func__); 439 if (ret <= 0) 440 return -EINVAL; 441 442 CLASS(gpio_chip_guard, guard)(desc); 443 if (!guard.gc) 444 return -ENODEV; 445 446 offset = gpio_chip_hwgpio(desc); 447 flags = READ_ONCE(desc->flags); 448 449 /* 450 * Open drain emulation using input mode may incorrectly report 451 * input here, fix that up. 452 */ 453 if (test_bit(FLAG_OPEN_DRAIN, &flags) && 454 test_bit(FLAG_IS_OUT, &flags)) 455 return 0; 456 457 if (!guard.gc->get_direction) 458 return -ENOTSUPP; 459 460 ret = gpiochip_get_direction(guard.gc, offset); 461 if (ret < 0) 462 return ret; 463 464 /* 465 * GPIO_LINE_DIRECTION_IN or other positive, 466 * otherwise GPIO_LINE_DIRECTION_OUT. 467 */ 468 if (ret > 0) 469 ret = 1; 470 471 assign_bit(FLAG_IS_OUT, &flags, !ret); 472 WRITE_ONCE(desc->flags, flags); 473 474 return ret; 475 } 476 EXPORT_SYMBOL_GPL(gpiod_get_direction); 477 478 /* 479 * Add a new chip to the global chips list, keeping the list of chips sorted 480 * by range(means [base, base + ngpio - 1]) order. 481 * 482 * Returns: 483 * -EBUSY if the new chip overlaps with some other chip's integer space. 484 */ 485 static int gpiodev_add_to_list_unlocked(struct gpio_device *gdev) 486 { 487 struct gpio_device *prev, *next; 488 489 lockdep_assert_held(&gpio_devices_lock); 490 491 if (list_empty(&gpio_devices)) { 492 /* initial entry in list */ 493 list_add_tail_rcu(&gdev->list, &gpio_devices); 494 return 0; 495 } 496 497 next = list_first_entry(&gpio_devices, struct gpio_device, list); 498 if (gdev->base + gdev->ngpio <= next->base) { 499 /* add before first entry */ 500 list_add_rcu(&gdev->list, &gpio_devices); 501 return 0; 502 } 503 504 prev = list_last_entry(&gpio_devices, struct gpio_device, list); 505 if (prev->base + prev->ngpio <= gdev->base) { 506 /* add behind last entry */ 507 list_add_tail_rcu(&gdev->list, &gpio_devices); 508 return 0; 509 } 510 511 list_for_each_entry_safe(prev, next, &gpio_devices, list) { 512 /* at the end of the list */ 513 if (&next->list == &gpio_devices) 514 break; 515 516 /* add between prev and next */ 517 if (prev->base + prev->ngpio <= gdev->base 518 && gdev->base + gdev->ngpio <= next->base) { 519 list_add_rcu(&gdev->list, &prev->list); 520 return 0; 521 } 522 } 523 524 synchronize_srcu(&gpio_devices_srcu); 525 526 return -EBUSY; 527 } 528 529 /* 530 * Convert a GPIO name to its descriptor 531 * Note that there is no guarantee that GPIO names are globally unique! 532 * Hence this function will return, if it exists, a reference to the first GPIO 533 * line found that matches the given name. 534 */ 535 static struct gpio_desc *gpio_name_to_desc(const char * const name) 536 { 537 struct gpio_device *gdev; 538 struct gpio_desc *desc; 539 struct gpio_chip *gc; 540 541 if (!name) 542 return NULL; 543 544 guard(srcu)(&gpio_devices_srcu); 545 546 list_for_each_entry_srcu(gdev, &gpio_devices, list, 547 srcu_read_lock_held(&gpio_devices_srcu)) { 548 guard(srcu)(&gdev->srcu); 549 550 gc = srcu_dereference(gdev->chip, &gdev->srcu); 551 if (!gc) 552 continue; 553 554 for_each_gpio_desc(gc, desc) { 555 if (desc->name && !strcmp(desc->name, name)) 556 return desc; 557 } 558 } 559 560 return NULL; 561 } 562 563 /* 564 * Take the names from gc->names and assign them to their GPIO descriptors. 565 * Warn if a name is already used for a GPIO line on a different GPIO chip. 566 * 567 * Note that: 568 * 1. Non-unique names are still accepted, 569 * 2. Name collisions within the same GPIO chip are not reported. 570 */ 571 static void gpiochip_set_desc_names(struct gpio_chip *gc) 572 { 573 struct gpio_device *gdev = gc->gpiodev; 574 int i; 575 576 /* First check all names if they are unique */ 577 for (i = 0; i != gc->ngpio; ++i) { 578 struct gpio_desc *gpio; 579 580 gpio = gpio_name_to_desc(gc->names[i]); 581 if (gpio) 582 dev_warn(&gdev->dev, 583 "Detected name collision for GPIO name '%s'\n", 584 gc->names[i]); 585 } 586 587 /* Then add all names to the GPIO descriptors */ 588 for (i = 0; i != gc->ngpio; ++i) 589 gdev->descs[i].name = gc->names[i]; 590 } 591 592 /* 593 * gpiochip_set_names - Set GPIO line names using device properties 594 * @chip: GPIO chip whose lines should be named, if possible 595 * 596 * Looks for device property "gpio-line-names" and if it exists assigns 597 * GPIO line names for the chip. The memory allocated for the assigned 598 * names belong to the underlying firmware node and should not be released 599 * by the caller. 600 */ 601 static int gpiochip_set_names(struct gpio_chip *chip) 602 { 603 struct gpio_device *gdev = chip->gpiodev; 604 struct device *dev = &gdev->dev; 605 const char **names; 606 int ret, i; 607 int count; 608 609 count = device_property_string_array_count(dev, "gpio-line-names"); 610 if (count < 0) 611 return 0; 612 613 /* 614 * When offset is set in the driver side we assume the driver internally 615 * is using more than one gpiochip per the same device. We have to stop 616 * setting friendly names if the specified ones with 'gpio-line-names' 617 * are less than the offset in the device itself. This means all the 618 * lines are not present for every single pin within all the internal 619 * gpiochips. 620 */ 621 if (count <= chip->offset) { 622 dev_warn(dev, "gpio-line-names too short (length %d), cannot map names for the gpiochip at offset %u\n", 623 count, chip->offset); 624 return 0; 625 } 626 627 names = kcalloc(count, sizeof(*names), GFP_KERNEL); 628 if (!names) 629 return -ENOMEM; 630 631 ret = device_property_read_string_array(dev, "gpio-line-names", 632 names, count); 633 if (ret < 0) { 634 dev_warn(dev, "failed to read GPIO line names\n"); 635 kfree(names); 636 return ret; 637 } 638 639 /* 640 * When more that one gpiochip per device is used, 'count' can 641 * contain at most number gpiochips x chip->ngpio. We have to 642 * correctly distribute all defined lines taking into account 643 * chip->offset as starting point from where we will assign 644 * the names to pins from the 'names' array. Since property 645 * 'gpio-line-names' cannot contains gaps, we have to be sure 646 * we only assign those pins that really exists since chip->ngpio 647 * can be different of the chip->offset. 648 */ 649 count = (count > chip->offset) ? count - chip->offset : count; 650 if (count > chip->ngpio) 651 count = chip->ngpio; 652 653 for (i = 0; i < count; i++) { 654 /* 655 * Allow overriding "fixed" names provided by the GPIO 656 * provider. The "fixed" names are more often than not 657 * generic and less informative than the names given in 658 * device properties. 659 */ 660 if (names[chip->offset + i] && names[chip->offset + i][0]) 661 gdev->descs[i].name = names[chip->offset + i]; 662 } 663 664 kfree(names); 665 666 return 0; 667 } 668 669 static unsigned long *gpiochip_allocate_mask(struct gpio_chip *gc) 670 { 671 unsigned long *p; 672 673 p = bitmap_alloc(gc->ngpio, GFP_KERNEL); 674 if (!p) 675 return NULL; 676 677 /* Assume by default all GPIOs are valid */ 678 bitmap_fill(p, gc->ngpio); 679 680 return p; 681 } 682 683 static void gpiochip_free_mask(unsigned long **p) 684 { 685 bitmap_free(*p); 686 *p = NULL; 687 } 688 689 static unsigned int gpiochip_count_reserved_ranges(struct gpio_chip *gc) 690 { 691 struct device *dev = &gc->gpiodev->dev; 692 int size; 693 694 /* Format is "start, count, ..." */ 695 size = device_property_count_u32(dev, "gpio-reserved-ranges"); 696 if (size > 0 && size % 2 == 0) 697 return size; 698 699 return 0; 700 } 701 702 static int gpiochip_apply_reserved_ranges(struct gpio_chip *gc) 703 { 704 struct device *dev = &gc->gpiodev->dev; 705 unsigned int size; 706 u32 *ranges; 707 int ret; 708 709 size = gpiochip_count_reserved_ranges(gc); 710 if (size == 0) 711 return 0; 712 713 ranges = kmalloc_array(size, sizeof(*ranges), GFP_KERNEL); 714 if (!ranges) 715 return -ENOMEM; 716 717 ret = device_property_read_u32_array(dev, "gpio-reserved-ranges", 718 ranges, size); 719 if (ret) { 720 kfree(ranges); 721 return ret; 722 } 723 724 while (size) { 725 u32 count = ranges[--size]; 726 u32 start = ranges[--size]; 727 728 if (start >= gc->ngpio || start + count > gc->ngpio) 729 continue; 730 731 bitmap_clear(gc->gpiodev->valid_mask, start, count); 732 } 733 734 kfree(ranges); 735 return 0; 736 } 737 738 static int gpiochip_init_valid_mask(struct gpio_chip *gc) 739 { 740 int ret; 741 742 if (!(gpiochip_count_reserved_ranges(gc) || gc->init_valid_mask)) 743 return 0; 744 745 gc->gpiodev->valid_mask = gpiochip_allocate_mask(gc); 746 if (!gc->gpiodev->valid_mask) 747 return -ENOMEM; 748 749 ret = gpiochip_apply_reserved_ranges(gc); 750 if (ret) 751 return ret; 752 753 if (gc->init_valid_mask) 754 return gc->init_valid_mask(gc, 755 gc->gpiodev->valid_mask, 756 gc->ngpio); 757 758 return 0; 759 } 760 761 static void gpiochip_free_valid_mask(struct gpio_chip *gc) 762 { 763 gpiochip_free_mask(&gc->gpiodev->valid_mask); 764 } 765 766 static int gpiochip_add_pin_ranges(struct gpio_chip *gc) 767 { 768 /* 769 * Device Tree platforms are supposed to use "gpio-ranges" 770 * property. This check ensures that the ->add_pin_ranges() 771 * won't be called for them. 772 */ 773 if (device_property_present(&gc->gpiodev->dev, "gpio-ranges")) 774 return 0; 775 776 if (gc->add_pin_ranges) 777 return gc->add_pin_ranges(gc); 778 779 return 0; 780 } 781 782 /** 783 * gpiochip_query_valid_mask - return the GPIO validity information 784 * @gc: gpio chip which validity information is queried 785 * 786 * Returns: bitmap representing valid GPIOs or NULL if all GPIOs are valid 787 * 788 * Some GPIO chips may support configurations where some of the pins aren't 789 * available. These chips can have valid_mask set to represent the valid 790 * GPIOs. This function can be used to retrieve this information. 791 */ 792 const unsigned long *gpiochip_query_valid_mask(const struct gpio_chip *gc) 793 { 794 return gc->gpiodev->valid_mask; 795 } 796 EXPORT_SYMBOL_GPL(gpiochip_query_valid_mask); 797 798 bool gpiochip_line_is_valid(const struct gpio_chip *gc, 799 unsigned int offset) 800 { 801 /* 802 * hog pins are requested before registering GPIO chip 803 */ 804 if (!gc->gpiodev) 805 return true; 806 807 /* No mask means all valid */ 808 if (likely(!gc->gpiodev->valid_mask)) 809 return true; 810 return test_bit(offset, gc->gpiodev->valid_mask); 811 } 812 EXPORT_SYMBOL_GPL(gpiochip_line_is_valid); 813 814 static void gpiod_free_irqs(struct gpio_desc *desc) 815 { 816 int irq = gpiod_to_irq(desc); 817 struct irq_desc *irqd = irq_to_desc(irq); 818 void *cookie; 819 820 for (;;) { 821 /* 822 * Make sure the action doesn't go away while we're 823 * dereferencing it. Retrieve and store the cookie value. 824 * If the irq is freed after we release the lock, that's 825 * alright - the underlying maple tree lookup will return NULL 826 * and nothing will happen in free_irq(). 827 */ 828 scoped_guard(mutex, &irqd->request_mutex) { 829 if (!irq_desc_has_action(irqd)) 830 return; 831 832 cookie = irqd->action->dev_id; 833 } 834 835 free_irq(irq, cookie); 836 } 837 } 838 839 /* 840 * The chip is going away but there may be users who had requested interrupts 841 * on its GPIO lines who have no idea about its removal and have no way of 842 * being notified about it. We need to free any interrupts still in use here or 843 * we'll leak memory and resources (like procfs files). 844 */ 845 static void gpiochip_free_remaining_irqs(struct gpio_chip *gc) 846 { 847 struct gpio_desc *desc; 848 849 for_each_gpio_desc_with_flag(gc, desc, FLAG_USED_AS_IRQ) 850 gpiod_free_irqs(desc); 851 } 852 853 static void gpiodev_release(struct device *dev) 854 { 855 struct gpio_device *gdev = to_gpio_device(dev); 856 857 /* Call pending kfree()s for descriptor labels. */ 858 synchronize_srcu(&gdev->desc_srcu); 859 cleanup_srcu_struct(&gdev->desc_srcu); 860 861 ida_free(&gpio_ida, gdev->id); 862 kfree_const(gdev->label); 863 kfree(gdev->descs); 864 cleanup_srcu_struct(&gdev->srcu); 865 kfree(gdev); 866 } 867 868 static const struct device_type gpio_dev_type = { 869 .name = "gpio_chip", 870 .release = gpiodev_release, 871 }; 872 873 #ifdef CONFIG_GPIO_CDEV 874 #define gcdev_register(gdev, devt) gpiolib_cdev_register((gdev), (devt)) 875 #define gcdev_unregister(gdev) gpiolib_cdev_unregister((gdev)) 876 #else 877 /* 878 * gpiolib_cdev_register() indirectly calls device_add(), which is still 879 * required even when cdev is not selected. 880 */ 881 #define gcdev_register(gdev, devt) device_add(&(gdev)->dev) 882 #define gcdev_unregister(gdev) device_del(&(gdev)->dev) 883 #endif 884 885 static int gpiochip_setup_dev(struct gpio_device *gdev) 886 { 887 struct fwnode_handle *fwnode = dev_fwnode(&gdev->dev); 888 int ret; 889 890 device_initialize(&gdev->dev); 891 892 /* 893 * If fwnode doesn't belong to another device, it's safe to clear its 894 * initialized flag. 895 */ 896 if (fwnode && !fwnode->dev) 897 fwnode_dev_initialized(fwnode, false); 898 899 ret = gcdev_register(gdev, gpio_devt); 900 if (ret) 901 return ret; 902 903 ret = gpiochip_sysfs_register(gdev); 904 if (ret) 905 goto err_remove_device; 906 907 dev_dbg(&gdev->dev, "registered GPIOs %u to %u on %s\n", gdev->base, 908 gdev->base + gdev->ngpio - 1, gdev->label); 909 910 return 0; 911 912 err_remove_device: 913 gcdev_unregister(gdev); 914 return ret; 915 } 916 917 static void gpiochip_machine_hog(struct gpio_chip *gc, struct gpiod_hog *hog) 918 { 919 struct gpio_desc *desc; 920 int rv; 921 922 desc = gpiochip_get_desc(gc, hog->chip_hwnum); 923 if (IS_ERR(desc)) { 924 chip_err(gc, "%s: unable to get GPIO desc: %ld\n", __func__, 925 PTR_ERR(desc)); 926 return; 927 } 928 929 rv = gpiod_hog(desc, hog->line_name, hog->lflags, hog->dflags); 930 if (rv) 931 gpiod_err(desc, "%s: unable to hog GPIO line (%s:%u): %d\n", 932 __func__, gc->label, hog->chip_hwnum, rv); 933 } 934 935 static void machine_gpiochip_add(struct gpio_chip *gc) 936 { 937 struct gpiod_hog *hog; 938 939 guard(mutex)(&gpio_machine_hogs_mutex); 940 941 list_for_each_entry(hog, &gpio_machine_hogs, list) { 942 if (!strcmp(gc->label, hog->chip_label)) 943 gpiochip_machine_hog(gc, hog); 944 } 945 } 946 947 static void gpiochip_setup_devs(void) 948 { 949 struct gpio_device *gdev; 950 int ret; 951 952 guard(srcu)(&gpio_devices_srcu); 953 954 list_for_each_entry_srcu(gdev, &gpio_devices, list, 955 srcu_read_lock_held(&gpio_devices_srcu)) { 956 ret = gpiochip_setup_dev(gdev); 957 if (ret) 958 dev_err(&gdev->dev, 959 "Failed to initialize gpio device (%d)\n", ret); 960 } 961 } 962 963 static void gpiochip_set_data(struct gpio_chip *gc, void *data) 964 { 965 gc->gpiodev->data = data; 966 } 967 968 /** 969 * gpiochip_get_data() - get per-subdriver data for the chip 970 * @gc: GPIO chip 971 * 972 * Returns: 973 * The per-subdriver data for the chip. 974 */ 975 void *gpiochip_get_data(struct gpio_chip *gc) 976 { 977 return gc->gpiodev->data; 978 } 979 EXPORT_SYMBOL_GPL(gpiochip_get_data); 980 981 /* 982 * If the calling driver provides the specific firmware node, 983 * use it. Otherwise use the one from the parent device, if any. 984 */ 985 static struct fwnode_handle *gpiochip_choose_fwnode(struct gpio_chip *gc) 986 { 987 if (gc->fwnode) 988 return gc->fwnode; 989 990 if (gc->parent) 991 return dev_fwnode(gc->parent); 992 993 return NULL; 994 } 995 996 int gpiochip_get_ngpios(struct gpio_chip *gc, struct device *dev) 997 { 998 struct fwnode_handle *fwnode = gpiochip_choose_fwnode(gc); 999 u32 ngpios = gc->ngpio; 1000 int ret; 1001 1002 if (ngpios == 0) { 1003 ret = fwnode_property_read_u32(fwnode, "ngpios", &ngpios); 1004 if (ret == -ENODATA) 1005 /* 1006 * -ENODATA means that there is no property found and 1007 * we want to issue the error message to the user. 1008 * Besides that, we want to return different error code 1009 * to state that supplied value is not valid. 1010 */ 1011 ngpios = 0; 1012 else if (ret) 1013 return ret; 1014 1015 gc->ngpio = ngpios; 1016 } 1017 1018 if (gc->ngpio == 0) { 1019 dev_err(dev, "tried to insert a GPIO chip with zero lines\n"); 1020 return -EINVAL; 1021 } 1022 1023 if (gc->ngpio > FASTPATH_NGPIO) 1024 dev_warn(dev, "line cnt %u is greater than fast path cnt %u\n", 1025 gc->ngpio, FASTPATH_NGPIO); 1026 1027 return 0; 1028 } 1029 EXPORT_SYMBOL_GPL(gpiochip_get_ngpios); 1030 1031 int gpiochip_add_data_with_key(struct gpio_chip *gc, void *data, 1032 struct lock_class_key *lock_key, 1033 struct lock_class_key *request_key) 1034 { 1035 struct gpio_device *gdev; 1036 unsigned int desc_index; 1037 int base = 0; 1038 int ret; 1039 1040 /* 1041 * First: allocate and populate the internal stat container, and 1042 * set up the struct device. 1043 */ 1044 gdev = kzalloc(sizeof(*gdev), GFP_KERNEL); 1045 if (!gdev) 1046 return -ENOMEM; 1047 1048 gdev->dev.type = &gpio_dev_type; 1049 gdev->dev.bus = &gpio_bus_type; 1050 gdev->dev.parent = gc->parent; 1051 rcu_assign_pointer(gdev->chip, gc); 1052 1053 gc->gpiodev = gdev; 1054 gpiochip_set_data(gc, data); 1055 1056 device_set_node(&gdev->dev, gpiochip_choose_fwnode(gc)); 1057 1058 ret = ida_alloc(&gpio_ida, GFP_KERNEL); 1059 if (ret < 0) 1060 goto err_free_gdev; 1061 gdev->id = ret; 1062 1063 ret = dev_set_name(&gdev->dev, GPIOCHIP_NAME "%d", gdev->id); 1064 if (ret) 1065 goto err_free_ida; 1066 1067 if (gc->parent && gc->parent->driver) 1068 gdev->owner = gc->parent->driver->owner; 1069 else if (gc->owner) 1070 /* TODO: remove chip->owner */ 1071 gdev->owner = gc->owner; 1072 else 1073 gdev->owner = THIS_MODULE; 1074 1075 ret = gpiochip_get_ngpios(gc, &gdev->dev); 1076 if (ret) 1077 goto err_free_dev_name; 1078 1079 gdev->descs = kcalloc(gc->ngpio, sizeof(*gdev->descs), GFP_KERNEL); 1080 if (!gdev->descs) { 1081 ret = -ENOMEM; 1082 goto err_free_dev_name; 1083 } 1084 1085 gdev->label = kstrdup_const(gc->label ?: "unknown", GFP_KERNEL); 1086 if (!gdev->label) { 1087 ret = -ENOMEM; 1088 goto err_free_descs; 1089 } 1090 1091 gdev->ngpio = gc->ngpio; 1092 gdev->can_sleep = gc->can_sleep; 1093 1094 scoped_guard(mutex, &gpio_devices_lock) { 1095 /* 1096 * TODO: this allocates a Linux GPIO number base in the global 1097 * GPIO numberspace for this chip. In the long run we want to 1098 * get *rid* of this numberspace and use only descriptors, but 1099 * it may be a pipe dream. It will not happen before we get rid 1100 * of the sysfs interface anyways. 1101 */ 1102 base = gc->base; 1103 if (base < 0) { 1104 base = gpiochip_find_base_unlocked(gc->ngpio); 1105 if (base < 0) { 1106 ret = base; 1107 base = 0; 1108 goto err_free_label; 1109 } 1110 1111 /* 1112 * TODO: it should not be necessary to reflect the 1113 * assigned base outside of the GPIO subsystem. Go over 1114 * drivers and see if anyone makes use of this, else 1115 * drop this and assign a poison instead. 1116 */ 1117 gc->base = base; 1118 } else { 1119 dev_warn(&gdev->dev, 1120 "Static allocation of GPIO base is deprecated, use dynamic allocation.\n"); 1121 } 1122 1123 gdev->base = base; 1124 1125 ret = gpiodev_add_to_list_unlocked(gdev); 1126 if (ret) { 1127 chip_err(gc, "GPIO integer space overlap, cannot add chip\n"); 1128 goto err_free_label; 1129 } 1130 } 1131 1132 rwlock_init(&gdev->line_state_lock); 1133 RAW_INIT_NOTIFIER_HEAD(&gdev->line_state_notifier); 1134 BLOCKING_INIT_NOTIFIER_HEAD(&gdev->device_notifier); 1135 1136 ret = init_srcu_struct(&gdev->srcu); 1137 if (ret) 1138 goto err_remove_from_list; 1139 1140 ret = init_srcu_struct(&gdev->desc_srcu); 1141 if (ret) 1142 goto err_cleanup_gdev_srcu; 1143 1144 #ifdef CONFIG_PINCTRL 1145 INIT_LIST_HEAD(&gdev->pin_ranges); 1146 #endif 1147 1148 if (gc->names) 1149 gpiochip_set_desc_names(gc); 1150 1151 ret = gpiochip_set_names(gc); 1152 if (ret) 1153 goto err_cleanup_desc_srcu; 1154 1155 ret = gpiochip_init_valid_mask(gc); 1156 if (ret) 1157 goto err_cleanup_desc_srcu; 1158 1159 for (desc_index = 0; desc_index < gc->ngpio; desc_index++) { 1160 struct gpio_desc *desc = &gdev->descs[desc_index]; 1161 1162 desc->gdev = gdev; 1163 1164 /* 1165 * We would typically want to use gpiochip_get_direction() here 1166 * but we must not check the return value and bail-out as pin 1167 * controllers can have pins configured to alternate functions 1168 * and return -EINVAL. Also: there's no need to take the SRCU 1169 * lock here. 1170 */ 1171 if (gc->get_direction && gpiochip_line_is_valid(gc, desc_index)) 1172 assign_bit(FLAG_IS_OUT, &desc->flags, 1173 !gc->get_direction(gc, desc_index)); 1174 else 1175 assign_bit(FLAG_IS_OUT, 1176 &desc->flags, !gc->direction_input); 1177 } 1178 1179 ret = of_gpiochip_add(gc); 1180 if (ret) 1181 goto err_free_valid_mask; 1182 1183 ret = gpiochip_add_pin_ranges(gc); 1184 if (ret) 1185 goto err_remove_of_chip; 1186 1187 acpi_gpiochip_add(gc); 1188 1189 machine_gpiochip_add(gc); 1190 1191 ret = gpiochip_irqchip_init_valid_mask(gc); 1192 if (ret) 1193 goto err_free_hogs; 1194 1195 ret = gpiochip_irqchip_init_hw(gc); 1196 if (ret) 1197 goto err_remove_irqchip_mask; 1198 1199 ret = gpiochip_add_irqchip(gc, lock_key, request_key); 1200 if (ret) 1201 goto err_remove_irqchip_mask; 1202 1203 /* 1204 * By first adding the chardev, and then adding the device, 1205 * we get a device node entry in sysfs under 1206 * /sys/bus/gpio/devices/gpiochipN/dev that can be used for 1207 * coldplug of device nodes and other udev business. 1208 * We can do this only if gpiolib has been initialized. 1209 * Otherwise, defer until later. 1210 */ 1211 if (gpiolib_initialized) { 1212 ret = gpiochip_setup_dev(gdev); 1213 if (ret) 1214 goto err_remove_irqchip; 1215 } 1216 return 0; 1217 1218 err_remove_irqchip: 1219 gpiochip_irqchip_remove(gc); 1220 err_remove_irqchip_mask: 1221 gpiochip_irqchip_free_valid_mask(gc); 1222 err_free_hogs: 1223 gpiochip_free_hogs(gc); 1224 acpi_gpiochip_remove(gc); 1225 gpiochip_remove_pin_ranges(gc); 1226 err_remove_of_chip: 1227 of_gpiochip_remove(gc); 1228 err_free_valid_mask: 1229 gpiochip_free_valid_mask(gc); 1230 err_cleanup_desc_srcu: 1231 cleanup_srcu_struct(&gdev->desc_srcu); 1232 err_cleanup_gdev_srcu: 1233 cleanup_srcu_struct(&gdev->srcu); 1234 err_remove_from_list: 1235 scoped_guard(mutex, &gpio_devices_lock) 1236 list_del_rcu(&gdev->list); 1237 synchronize_srcu(&gpio_devices_srcu); 1238 if (gdev->dev.release) { 1239 /* release() has been registered by gpiochip_setup_dev() */ 1240 gpio_device_put(gdev); 1241 goto err_print_message; 1242 } 1243 err_free_label: 1244 kfree_const(gdev->label); 1245 err_free_descs: 1246 kfree(gdev->descs); 1247 err_free_dev_name: 1248 kfree(dev_name(&gdev->dev)); 1249 err_free_ida: 1250 ida_free(&gpio_ida, gdev->id); 1251 err_free_gdev: 1252 kfree(gdev); 1253 err_print_message: 1254 /* failures here can mean systems won't boot... */ 1255 if (ret != -EPROBE_DEFER) { 1256 pr_err("%s: GPIOs %d..%d (%s) failed to register, %d\n", __func__, 1257 base, base + (int)gc->ngpio - 1, 1258 gc->label ? : "generic", ret); 1259 } 1260 return ret; 1261 } 1262 EXPORT_SYMBOL_GPL(gpiochip_add_data_with_key); 1263 1264 /** 1265 * gpiochip_remove() - unregister a gpio_chip 1266 * @gc: the chip to unregister 1267 * 1268 * A gpio_chip with any GPIOs still requested may not be removed. 1269 */ 1270 void gpiochip_remove(struct gpio_chip *gc) 1271 { 1272 struct gpio_device *gdev = gc->gpiodev; 1273 1274 /* FIXME: should the legacy sysfs handling be moved to gpio_device? */ 1275 gpiochip_sysfs_unregister(gdev); 1276 gpiochip_free_hogs(gc); 1277 gpiochip_free_remaining_irqs(gc); 1278 1279 scoped_guard(mutex, &gpio_devices_lock) 1280 list_del_rcu(&gdev->list); 1281 synchronize_srcu(&gpio_devices_srcu); 1282 1283 /* Numb the device, cancelling all outstanding operations */ 1284 rcu_assign_pointer(gdev->chip, NULL); 1285 synchronize_srcu(&gdev->srcu); 1286 gpiochip_irqchip_remove(gc); 1287 acpi_gpiochip_remove(gc); 1288 of_gpiochip_remove(gc); 1289 gpiochip_remove_pin_ranges(gc); 1290 gpiochip_free_valid_mask(gc); 1291 /* 1292 * We accept no more calls into the driver from this point, so 1293 * NULL the driver data pointer. 1294 */ 1295 gpiochip_set_data(gc, NULL); 1296 1297 /* 1298 * The gpiochip side puts its use of the device to rest here: 1299 * if there are no userspace clients, the chardev and device will 1300 * be removed, else it will be dangling until the last user is 1301 * gone. 1302 */ 1303 gcdev_unregister(gdev); 1304 gpio_device_put(gdev); 1305 } 1306 EXPORT_SYMBOL_GPL(gpiochip_remove); 1307 1308 /** 1309 * gpio_device_find() - find a specific GPIO device 1310 * @data: data to pass to match function 1311 * @match: Callback function to check gpio_chip 1312 * 1313 * Returns: 1314 * New reference to struct gpio_device. 1315 * 1316 * Similar to bus_find_device(). It returns a reference to a gpio_device as 1317 * determined by a user supplied @match callback. The callback should return 1318 * 0 if the device doesn't match and non-zero if it does. If the callback 1319 * returns non-zero, this function will return to the caller and not iterate 1320 * over any more gpio_devices. 1321 * 1322 * The callback takes the GPIO chip structure as argument. During the execution 1323 * of the callback function the chip is protected from being freed. TODO: This 1324 * actually has yet to be implemented. 1325 * 1326 * If the function returns non-NULL, the returned reference must be freed by 1327 * the caller using gpio_device_put(). 1328 */ 1329 struct gpio_device *gpio_device_find(const void *data, 1330 int (*match)(struct gpio_chip *gc, 1331 const void *data)) 1332 { 1333 struct gpio_device *gdev; 1334 struct gpio_chip *gc; 1335 1336 might_sleep(); 1337 1338 guard(srcu)(&gpio_devices_srcu); 1339 1340 list_for_each_entry_srcu(gdev, &gpio_devices, list, 1341 srcu_read_lock_held(&gpio_devices_srcu)) { 1342 if (!device_is_registered(&gdev->dev)) 1343 continue; 1344 1345 guard(srcu)(&gdev->srcu); 1346 1347 gc = srcu_dereference(gdev->chip, &gdev->srcu); 1348 1349 if (gc && match(gc, data)) 1350 return gpio_device_get(gdev); 1351 } 1352 1353 return NULL; 1354 } 1355 EXPORT_SYMBOL_GPL(gpio_device_find); 1356 1357 static int gpio_chip_match_by_label(struct gpio_chip *gc, const void *label) 1358 { 1359 return gc->label && !strcmp(gc->label, label); 1360 } 1361 1362 /** 1363 * gpio_device_find_by_label() - wrapper around gpio_device_find() finding the 1364 * GPIO device by its backing chip's label 1365 * @label: Label to lookup 1366 * 1367 * Returns: 1368 * Reference to the GPIO device or NULL. Reference must be released with 1369 * gpio_device_put(). 1370 */ 1371 struct gpio_device *gpio_device_find_by_label(const char *label) 1372 { 1373 return gpio_device_find((void *)label, gpio_chip_match_by_label); 1374 } 1375 EXPORT_SYMBOL_GPL(gpio_device_find_by_label); 1376 1377 static int gpio_chip_match_by_fwnode(struct gpio_chip *gc, const void *fwnode) 1378 { 1379 return device_match_fwnode(&gc->gpiodev->dev, fwnode); 1380 } 1381 1382 /** 1383 * gpio_device_find_by_fwnode() - wrapper around gpio_device_find() finding 1384 * the GPIO device by its fwnode 1385 * @fwnode: Firmware node to lookup 1386 * 1387 * Returns: 1388 * Reference to the GPIO device or NULL. Reference must be released with 1389 * gpio_device_put(). 1390 */ 1391 struct gpio_device *gpio_device_find_by_fwnode(const struct fwnode_handle *fwnode) 1392 { 1393 return gpio_device_find((void *)fwnode, gpio_chip_match_by_fwnode); 1394 } 1395 EXPORT_SYMBOL_GPL(gpio_device_find_by_fwnode); 1396 1397 /** 1398 * gpio_device_get() - Increase the reference count of this GPIO device 1399 * @gdev: GPIO device to increase the refcount for 1400 * 1401 * Returns: 1402 * Pointer to @gdev. 1403 */ 1404 struct gpio_device *gpio_device_get(struct gpio_device *gdev) 1405 { 1406 return to_gpio_device(get_device(&gdev->dev)); 1407 } 1408 EXPORT_SYMBOL_GPL(gpio_device_get); 1409 1410 /** 1411 * gpio_device_put() - Decrease the reference count of this GPIO device and 1412 * possibly free all resources associated with it. 1413 * @gdev: GPIO device to decrease the reference count for 1414 */ 1415 void gpio_device_put(struct gpio_device *gdev) 1416 { 1417 put_device(&gdev->dev); 1418 } 1419 EXPORT_SYMBOL_GPL(gpio_device_put); 1420 1421 /** 1422 * gpio_device_to_device() - Retrieve the address of the underlying struct 1423 * device. 1424 * @gdev: GPIO device for which to return the address. 1425 * 1426 * This does not increase the reference count of the GPIO device nor the 1427 * underlying struct device. 1428 * 1429 * Returns: 1430 * Address of struct device backing this GPIO device. 1431 */ 1432 struct device *gpio_device_to_device(struct gpio_device *gdev) 1433 { 1434 return &gdev->dev; 1435 } 1436 EXPORT_SYMBOL_GPL(gpio_device_to_device); 1437 1438 #ifdef CONFIG_GPIOLIB_IRQCHIP 1439 1440 /* 1441 * The following is irqchip helper code for gpiochips. 1442 */ 1443 1444 static int gpiochip_irqchip_init_hw(struct gpio_chip *gc) 1445 { 1446 struct gpio_irq_chip *girq = &gc->irq; 1447 1448 if (!girq->init_hw) 1449 return 0; 1450 1451 return girq->init_hw(gc); 1452 } 1453 1454 static int gpiochip_irqchip_init_valid_mask(struct gpio_chip *gc) 1455 { 1456 struct gpio_irq_chip *girq = &gc->irq; 1457 1458 if (!girq->init_valid_mask) 1459 return 0; 1460 1461 girq->valid_mask = gpiochip_allocate_mask(gc); 1462 if (!girq->valid_mask) 1463 return -ENOMEM; 1464 1465 girq->init_valid_mask(gc, girq->valid_mask, gc->ngpio); 1466 1467 return 0; 1468 } 1469 1470 static void gpiochip_irqchip_free_valid_mask(struct gpio_chip *gc) 1471 { 1472 gpiochip_free_mask(&gc->irq.valid_mask); 1473 } 1474 1475 static bool gpiochip_irqchip_irq_valid(const struct gpio_chip *gc, 1476 unsigned int offset) 1477 { 1478 if (!gpiochip_line_is_valid(gc, offset)) 1479 return false; 1480 /* No mask means all valid */ 1481 if (likely(!gc->irq.valid_mask)) 1482 return true; 1483 return test_bit(offset, gc->irq.valid_mask); 1484 } 1485 1486 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 1487 1488 /** 1489 * gpiochip_set_hierarchical_irqchip() - connects a hierarchical irqchip 1490 * to a gpiochip 1491 * @gc: the gpiochip to set the irqchip hierarchical handler to 1492 * @irqchip: the irqchip to handle this level of the hierarchy, the interrupt 1493 * will then percolate up to the parent 1494 */ 1495 static void gpiochip_set_hierarchical_irqchip(struct gpio_chip *gc, 1496 struct irq_chip *irqchip) 1497 { 1498 /* DT will deal with mapping each IRQ as we go along */ 1499 if (is_of_node(gc->irq.fwnode)) 1500 return; 1501 1502 /* 1503 * This is for legacy and boardfile "irqchip" fwnodes: allocate 1504 * irqs upfront instead of dynamically since we don't have the 1505 * dynamic type of allocation that hardware description languages 1506 * provide. Once all GPIO drivers using board files are gone from 1507 * the kernel we can delete this code, but for a transitional period 1508 * it is necessary to keep this around. 1509 */ 1510 if (is_fwnode_irqchip(gc->irq.fwnode)) { 1511 int i; 1512 int ret; 1513 1514 for (i = 0; i < gc->ngpio; i++) { 1515 struct irq_fwspec fwspec; 1516 unsigned int parent_hwirq; 1517 unsigned int parent_type; 1518 struct gpio_irq_chip *girq = &gc->irq; 1519 1520 /* 1521 * We call the child to parent translation function 1522 * only to check if the child IRQ is valid or not. 1523 * Just pick the rising edge type here as that is what 1524 * we likely need to support. 1525 */ 1526 ret = girq->child_to_parent_hwirq(gc, i, 1527 IRQ_TYPE_EDGE_RISING, 1528 &parent_hwirq, 1529 &parent_type); 1530 if (ret) { 1531 chip_err(gc, "skip set-up on hwirq %d\n", 1532 i); 1533 continue; 1534 } 1535 1536 fwspec.fwnode = gc->irq.fwnode; 1537 /* This is the hwirq for the GPIO line side of things */ 1538 fwspec.param[0] = girq->child_offset_to_irq(gc, i); 1539 /* Just pick something */ 1540 fwspec.param[1] = IRQ_TYPE_EDGE_RISING; 1541 fwspec.param_count = 2; 1542 ret = irq_domain_alloc_irqs(gc->irq.domain, 1, 1543 NUMA_NO_NODE, &fwspec); 1544 if (ret < 0) { 1545 chip_err(gc, 1546 "can not allocate irq for GPIO line %d parent hwirq %d in hierarchy domain: %d\n", 1547 i, parent_hwirq, 1548 ret); 1549 } 1550 } 1551 } 1552 1553 chip_err(gc, "%s unknown fwnode type proceed anyway\n", __func__); 1554 1555 return; 1556 } 1557 1558 static int gpiochip_hierarchy_irq_domain_translate(struct irq_domain *d, 1559 struct irq_fwspec *fwspec, 1560 unsigned long *hwirq, 1561 unsigned int *type) 1562 { 1563 /* We support standard DT translation */ 1564 if (is_of_node(fwspec->fwnode)) 1565 return irq_domain_translate_twothreecell(d, fwspec, hwirq, type); 1566 1567 /* This is for board files and others not using DT */ 1568 if (is_fwnode_irqchip(fwspec->fwnode)) { 1569 int ret; 1570 1571 ret = irq_domain_translate_twocell(d, fwspec, hwirq, type); 1572 if (ret) 1573 return ret; 1574 WARN_ON(*type == IRQ_TYPE_NONE); 1575 return 0; 1576 } 1577 return -EINVAL; 1578 } 1579 1580 static int gpiochip_hierarchy_irq_domain_alloc(struct irq_domain *d, 1581 unsigned int irq, 1582 unsigned int nr_irqs, 1583 void *data) 1584 { 1585 struct gpio_chip *gc = d->host_data; 1586 irq_hw_number_t hwirq; 1587 unsigned int type = IRQ_TYPE_NONE; 1588 struct irq_fwspec *fwspec = data; 1589 union gpio_irq_fwspec gpio_parent_fwspec = {}; 1590 unsigned int parent_hwirq; 1591 unsigned int parent_type; 1592 struct gpio_irq_chip *girq = &gc->irq; 1593 int ret; 1594 1595 /* 1596 * The nr_irqs parameter is always one except for PCI multi-MSI 1597 * so this should not happen. 1598 */ 1599 WARN_ON(nr_irqs != 1); 1600 1601 ret = gc->irq.child_irq_domain_ops.translate(d, fwspec, &hwirq, &type); 1602 if (ret) 1603 return ret; 1604 1605 chip_dbg(gc, "allocate IRQ %d, hwirq %lu\n", irq, hwirq); 1606 1607 ret = girq->child_to_parent_hwirq(gc, hwirq, type, 1608 &parent_hwirq, &parent_type); 1609 if (ret) { 1610 chip_err(gc, "can't look up hwirq %lu\n", hwirq); 1611 return ret; 1612 } 1613 chip_dbg(gc, "found parent hwirq %u\n", parent_hwirq); 1614 1615 /* 1616 * We set handle_bad_irq because the .set_type() should 1617 * always be invoked and set the right type of handler. 1618 */ 1619 irq_domain_set_info(d, 1620 irq, 1621 hwirq, 1622 gc->irq.chip, 1623 gc, 1624 girq->handler, 1625 NULL, NULL); 1626 irq_set_probe(irq); 1627 1628 /* This parent only handles asserted level IRQs */ 1629 ret = girq->populate_parent_alloc_arg(gc, &gpio_parent_fwspec, 1630 parent_hwirq, parent_type); 1631 if (ret) 1632 return ret; 1633 1634 chip_dbg(gc, "alloc_irqs_parent for %d parent hwirq %d\n", 1635 irq, parent_hwirq); 1636 irq_set_lockdep_class(irq, gc->irq.lock_key, gc->irq.request_key); 1637 ret = irq_domain_alloc_irqs_parent(d, irq, 1, &gpio_parent_fwspec); 1638 /* 1639 * If the parent irqdomain is msi, the interrupts have already 1640 * been allocated, so the EEXIST is good. 1641 */ 1642 if (irq_domain_is_msi(d->parent) && (ret == -EEXIST)) 1643 ret = 0; 1644 if (ret) 1645 chip_err(gc, 1646 "failed to allocate parent hwirq %d for hwirq %lu\n", 1647 parent_hwirq, hwirq); 1648 1649 return ret; 1650 } 1651 1652 static unsigned int gpiochip_child_offset_to_irq_noop(struct gpio_chip *gc, 1653 unsigned int offset) 1654 { 1655 return offset; 1656 } 1657 1658 /** 1659 * gpiochip_irq_domain_activate() - Lock a GPIO to be used as an IRQ 1660 * @domain: The IRQ domain used by this IRQ chip 1661 * @data: Outermost irq_data associated with the IRQ 1662 * @reserve: If set, only reserve an interrupt vector instead of assigning one 1663 * 1664 * This function is a wrapper that calls gpiochip_lock_as_irq() and is to be 1665 * used as the activate function for the &struct irq_domain_ops. The host_data 1666 * for the IRQ domain must be the &struct gpio_chip. 1667 * 1668 * Returns: 1669 * 0 on success, or negative errno on failure. 1670 */ 1671 static int gpiochip_irq_domain_activate(struct irq_domain *domain, 1672 struct irq_data *data, bool reserve) 1673 { 1674 struct gpio_chip *gc = domain->host_data; 1675 unsigned int hwirq = irqd_to_hwirq(data); 1676 1677 return gpiochip_lock_as_irq(gc, hwirq); 1678 } 1679 1680 /** 1681 * gpiochip_irq_domain_deactivate() - Unlock a GPIO used as an IRQ 1682 * @domain: The IRQ domain used by this IRQ chip 1683 * @data: Outermost irq_data associated with the IRQ 1684 * 1685 * This function is a wrapper that will call gpiochip_unlock_as_irq() and is to 1686 * be used as the deactivate function for the &struct irq_domain_ops. The 1687 * host_data for the IRQ domain must be the &struct gpio_chip. 1688 */ 1689 static void gpiochip_irq_domain_deactivate(struct irq_domain *domain, 1690 struct irq_data *data) 1691 { 1692 struct gpio_chip *gc = domain->host_data; 1693 unsigned int hwirq = irqd_to_hwirq(data); 1694 1695 return gpiochip_unlock_as_irq(gc, hwirq); 1696 } 1697 1698 static void gpiochip_hierarchy_setup_domain_ops(struct irq_domain_ops *ops) 1699 { 1700 ops->activate = gpiochip_irq_domain_activate; 1701 ops->deactivate = gpiochip_irq_domain_deactivate; 1702 ops->alloc = gpiochip_hierarchy_irq_domain_alloc; 1703 1704 /* 1705 * We only allow overriding the translate() and free() functions for 1706 * hierarchical chips, and this should only be done if the user 1707 * really need something other than 1:1 translation for translate() 1708 * callback and free if user wants to free up any resources which 1709 * were allocated during callbacks, for example populate_parent_alloc_arg. 1710 */ 1711 if (!ops->translate) 1712 ops->translate = gpiochip_hierarchy_irq_domain_translate; 1713 if (!ops->free) 1714 ops->free = irq_domain_free_irqs_common; 1715 } 1716 1717 static struct irq_domain *gpiochip_hierarchy_create_domain(struct gpio_chip *gc) 1718 { 1719 struct irq_domain *domain; 1720 1721 if (!gc->irq.child_to_parent_hwirq || 1722 !gc->irq.fwnode) { 1723 chip_err(gc, "missing irqdomain vital data\n"); 1724 return ERR_PTR(-EINVAL); 1725 } 1726 1727 if (!gc->irq.child_offset_to_irq) 1728 gc->irq.child_offset_to_irq = gpiochip_child_offset_to_irq_noop; 1729 1730 if (!gc->irq.populate_parent_alloc_arg) 1731 gc->irq.populate_parent_alloc_arg = 1732 gpiochip_populate_parent_fwspec_twocell; 1733 1734 gpiochip_hierarchy_setup_domain_ops(&gc->irq.child_irq_domain_ops); 1735 1736 domain = irq_domain_create_hierarchy( 1737 gc->irq.parent_domain, 1738 0, 1739 gc->ngpio, 1740 gc->irq.fwnode, 1741 &gc->irq.child_irq_domain_ops, 1742 gc); 1743 1744 if (!domain) 1745 return ERR_PTR(-ENOMEM); 1746 1747 gpiochip_set_hierarchical_irqchip(gc, gc->irq.chip); 1748 1749 return domain; 1750 } 1751 1752 static bool gpiochip_hierarchy_is_hierarchical(struct gpio_chip *gc) 1753 { 1754 return !!gc->irq.parent_domain; 1755 } 1756 1757 int gpiochip_populate_parent_fwspec_twocell(struct gpio_chip *gc, 1758 union gpio_irq_fwspec *gfwspec, 1759 unsigned int parent_hwirq, 1760 unsigned int parent_type) 1761 { 1762 struct irq_fwspec *fwspec = &gfwspec->fwspec; 1763 1764 fwspec->fwnode = gc->irq.parent_domain->fwnode; 1765 fwspec->param_count = 2; 1766 fwspec->param[0] = parent_hwirq; 1767 fwspec->param[1] = parent_type; 1768 1769 return 0; 1770 } 1771 EXPORT_SYMBOL_GPL(gpiochip_populate_parent_fwspec_twocell); 1772 1773 int gpiochip_populate_parent_fwspec_fourcell(struct gpio_chip *gc, 1774 union gpio_irq_fwspec *gfwspec, 1775 unsigned int parent_hwirq, 1776 unsigned int parent_type) 1777 { 1778 struct irq_fwspec *fwspec = &gfwspec->fwspec; 1779 1780 fwspec->fwnode = gc->irq.parent_domain->fwnode; 1781 fwspec->param_count = 4; 1782 fwspec->param[0] = 0; 1783 fwspec->param[1] = parent_hwirq; 1784 fwspec->param[2] = 0; 1785 fwspec->param[3] = parent_type; 1786 1787 return 0; 1788 } 1789 EXPORT_SYMBOL_GPL(gpiochip_populate_parent_fwspec_fourcell); 1790 1791 #else 1792 1793 static struct irq_domain *gpiochip_hierarchy_create_domain(struct gpio_chip *gc) 1794 { 1795 return ERR_PTR(-EINVAL); 1796 } 1797 1798 static bool gpiochip_hierarchy_is_hierarchical(struct gpio_chip *gc) 1799 { 1800 return false; 1801 } 1802 1803 #endif /* CONFIG_IRQ_DOMAIN_HIERARCHY */ 1804 1805 /** 1806 * gpiochip_irq_map() - maps an IRQ into a GPIO irqchip 1807 * @d: the irqdomain used by this irqchip 1808 * @irq: the global irq number used by this GPIO irqchip irq 1809 * @hwirq: the local IRQ/GPIO line offset on this gpiochip 1810 * 1811 * This function will set up the mapping for a certain IRQ line on a 1812 * gpiochip by assigning the gpiochip as chip data, and using the irqchip 1813 * stored inside the gpiochip. 1814 * 1815 * Returns: 1816 * 0 on success, or negative errno on failure. 1817 */ 1818 static int gpiochip_irq_map(struct irq_domain *d, unsigned int irq, 1819 irq_hw_number_t hwirq) 1820 { 1821 struct gpio_chip *gc = d->host_data; 1822 int ret = 0; 1823 1824 if (!gpiochip_irqchip_irq_valid(gc, hwirq)) 1825 return -ENXIO; 1826 1827 irq_set_chip_data(irq, gc); 1828 /* 1829 * This lock class tells lockdep that GPIO irqs are in a different 1830 * category than their parents, so it won't report false recursion. 1831 */ 1832 irq_set_lockdep_class(irq, gc->irq.lock_key, gc->irq.request_key); 1833 irq_set_chip_and_handler(irq, gc->irq.chip, gc->irq.handler); 1834 /* Chips that use nested thread handlers have them marked */ 1835 if (gc->irq.threaded) 1836 irq_set_nested_thread(irq, 1); 1837 irq_set_noprobe(irq); 1838 1839 if (gc->irq.num_parents == 1) 1840 ret = irq_set_parent(irq, gc->irq.parents[0]); 1841 else if (gc->irq.map) 1842 ret = irq_set_parent(irq, gc->irq.map[hwirq]); 1843 1844 if (ret < 0) 1845 return ret; 1846 1847 /* 1848 * No set-up of the hardware will happen if IRQ_TYPE_NONE 1849 * is passed as default type. 1850 */ 1851 if (gc->irq.default_type != IRQ_TYPE_NONE) 1852 irq_set_irq_type(irq, gc->irq.default_type); 1853 1854 return 0; 1855 } 1856 1857 static void gpiochip_irq_unmap(struct irq_domain *d, unsigned int irq) 1858 { 1859 struct gpio_chip *gc = d->host_data; 1860 1861 if (gc->irq.threaded) 1862 irq_set_nested_thread(irq, 0); 1863 irq_set_chip_and_handler(irq, NULL, NULL); 1864 irq_set_chip_data(irq, NULL); 1865 } 1866 1867 static int gpiochip_irq_select(struct irq_domain *d, struct irq_fwspec *fwspec, 1868 enum irq_domain_bus_token bus_token) 1869 { 1870 struct fwnode_handle *fwnode = fwspec->fwnode; 1871 struct gpio_chip *gc = d->host_data; 1872 unsigned int index = fwspec->param[0]; 1873 1874 if (fwspec->param_count == 3 && is_of_node(fwnode)) 1875 return of_gpiochip_instance_match(gc, index); 1876 1877 /* Fallback for twocells */ 1878 return (fwnode && (d->fwnode == fwnode) && (d->bus_token == bus_token)); 1879 } 1880 1881 static const struct irq_domain_ops gpiochip_domain_ops = { 1882 .map = gpiochip_irq_map, 1883 .unmap = gpiochip_irq_unmap, 1884 .select = gpiochip_irq_select, 1885 /* Virtually all GPIO irqchips are twocell:ed */ 1886 .xlate = irq_domain_xlate_twothreecell, 1887 }; 1888 1889 static struct irq_domain *gpiochip_simple_create_domain(struct gpio_chip *gc) 1890 { 1891 struct fwnode_handle *fwnode = dev_fwnode(&gc->gpiodev->dev); 1892 struct irq_domain *domain; 1893 1894 domain = irq_domain_create_simple(fwnode, gc->ngpio, gc->irq.first, 1895 &gpiochip_domain_ops, gc); 1896 if (!domain) 1897 return ERR_PTR(-EINVAL); 1898 1899 return domain; 1900 } 1901 1902 static int gpiochip_to_irq(struct gpio_chip *gc, unsigned int offset) 1903 { 1904 struct irq_domain *domain = gc->irq.domain; 1905 1906 /* 1907 * Avoid race condition with other code, which tries to lookup 1908 * an IRQ before the irqchip has been properly registered, 1909 * i.e. while gpiochip is still being brought up. 1910 */ 1911 if (!gc->irq.initialized) 1912 return -EPROBE_DEFER; 1913 1914 if (!gpiochip_irqchip_irq_valid(gc, offset)) 1915 return -ENXIO; 1916 1917 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 1918 if (irq_domain_is_hierarchy(domain)) { 1919 struct irq_fwspec spec; 1920 1921 spec.fwnode = domain->fwnode; 1922 spec.param_count = 2; 1923 spec.param[0] = gc->irq.child_offset_to_irq(gc, offset); 1924 spec.param[1] = IRQ_TYPE_NONE; 1925 1926 return irq_create_fwspec_mapping(&spec); 1927 } 1928 #endif 1929 1930 return irq_create_mapping(domain, offset); 1931 } 1932 1933 int gpiochip_irq_reqres(struct irq_data *d) 1934 { 1935 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 1936 unsigned int hwirq = irqd_to_hwirq(d); 1937 1938 return gpiochip_reqres_irq(gc, hwirq); 1939 } 1940 EXPORT_SYMBOL(gpiochip_irq_reqres); 1941 1942 void gpiochip_irq_relres(struct irq_data *d) 1943 { 1944 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 1945 unsigned int hwirq = irqd_to_hwirq(d); 1946 1947 gpiochip_relres_irq(gc, hwirq); 1948 } 1949 EXPORT_SYMBOL(gpiochip_irq_relres); 1950 1951 static void gpiochip_irq_mask(struct irq_data *d) 1952 { 1953 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 1954 unsigned int hwirq = irqd_to_hwirq(d); 1955 1956 if (gc->irq.irq_mask) 1957 gc->irq.irq_mask(d); 1958 gpiochip_disable_irq(gc, hwirq); 1959 } 1960 1961 static void gpiochip_irq_unmask(struct irq_data *d) 1962 { 1963 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 1964 unsigned int hwirq = irqd_to_hwirq(d); 1965 1966 gpiochip_enable_irq(gc, hwirq); 1967 if (gc->irq.irq_unmask) 1968 gc->irq.irq_unmask(d); 1969 } 1970 1971 static void gpiochip_irq_enable(struct irq_data *d) 1972 { 1973 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 1974 unsigned int hwirq = irqd_to_hwirq(d); 1975 1976 gpiochip_enable_irq(gc, hwirq); 1977 gc->irq.irq_enable(d); 1978 } 1979 1980 static void gpiochip_irq_disable(struct irq_data *d) 1981 { 1982 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 1983 unsigned int hwirq = irqd_to_hwirq(d); 1984 1985 gc->irq.irq_disable(d); 1986 gpiochip_disable_irq(gc, hwirq); 1987 } 1988 1989 static void gpiochip_set_irq_hooks(struct gpio_chip *gc) 1990 { 1991 struct irq_chip *irqchip = gc->irq.chip; 1992 1993 if (irqchip->flags & IRQCHIP_IMMUTABLE) 1994 return; 1995 1996 chip_warn(gc, "not an immutable chip, please consider fixing it!\n"); 1997 1998 if (!irqchip->irq_request_resources && 1999 !irqchip->irq_release_resources) { 2000 irqchip->irq_request_resources = gpiochip_irq_reqres; 2001 irqchip->irq_release_resources = gpiochip_irq_relres; 2002 } 2003 if (WARN_ON(gc->irq.irq_enable)) 2004 return; 2005 /* Check if the irqchip already has this hook... */ 2006 if (irqchip->irq_enable == gpiochip_irq_enable || 2007 irqchip->irq_mask == gpiochip_irq_mask) { 2008 /* 2009 * ...and if so, give a gentle warning that this is bad 2010 * practice. 2011 */ 2012 chip_info(gc, 2013 "detected irqchip that is shared with multiple gpiochips: please fix the driver.\n"); 2014 return; 2015 } 2016 2017 if (irqchip->irq_disable) { 2018 gc->irq.irq_disable = irqchip->irq_disable; 2019 irqchip->irq_disable = gpiochip_irq_disable; 2020 } else { 2021 gc->irq.irq_mask = irqchip->irq_mask; 2022 irqchip->irq_mask = gpiochip_irq_mask; 2023 } 2024 2025 if (irqchip->irq_enable) { 2026 gc->irq.irq_enable = irqchip->irq_enable; 2027 irqchip->irq_enable = gpiochip_irq_enable; 2028 } else { 2029 gc->irq.irq_unmask = irqchip->irq_unmask; 2030 irqchip->irq_unmask = gpiochip_irq_unmask; 2031 } 2032 } 2033 2034 static int gpiochip_irqchip_add_allocated_domain(struct gpio_chip *gc, 2035 struct irq_domain *domain, 2036 bool allocated_externally) 2037 { 2038 if (!domain) 2039 return -EINVAL; 2040 2041 if (gc->to_irq) 2042 chip_warn(gc, "to_irq is redefined in %s and you shouldn't rely on it\n", __func__); 2043 2044 gc->to_irq = gpiochip_to_irq; 2045 gc->irq.domain = domain; 2046 gc->irq.domain_is_allocated_externally = allocated_externally; 2047 2048 /* 2049 * Using barrier() here to prevent compiler from reordering 2050 * gc->irq.initialized before adding irqdomain. 2051 */ 2052 barrier(); 2053 2054 gc->irq.initialized = true; 2055 2056 return 0; 2057 } 2058 2059 /** 2060 * gpiochip_add_irqchip() - adds an IRQ chip to a GPIO chip 2061 * @gc: the GPIO chip to add the IRQ chip to 2062 * @lock_key: lockdep class for IRQ lock 2063 * @request_key: lockdep class for IRQ request 2064 * 2065 * Returns: 2066 * 0 on success, or a negative errno on failure. 2067 */ 2068 static int gpiochip_add_irqchip(struct gpio_chip *gc, 2069 struct lock_class_key *lock_key, 2070 struct lock_class_key *request_key) 2071 { 2072 struct fwnode_handle *fwnode = dev_fwnode(&gc->gpiodev->dev); 2073 struct irq_chip *irqchip = gc->irq.chip; 2074 struct irq_domain *domain; 2075 unsigned int type; 2076 unsigned int i; 2077 int ret; 2078 2079 if (!irqchip) 2080 return 0; 2081 2082 if (gc->irq.parent_handler && gc->can_sleep) { 2083 chip_err(gc, "you cannot have chained interrupts on a chip that may sleep\n"); 2084 return -EINVAL; 2085 } 2086 2087 type = gc->irq.default_type; 2088 2089 /* 2090 * Specifying a default trigger is a terrible idea if DT or ACPI is 2091 * used to configure the interrupts, as you may end up with 2092 * conflicting triggers. Tell the user, and reset to NONE. 2093 */ 2094 if (WARN(fwnode && type != IRQ_TYPE_NONE, 2095 "%pfw: Ignoring %u default trigger\n", fwnode, type)) 2096 type = IRQ_TYPE_NONE; 2097 2098 gc->irq.default_type = type; 2099 gc->irq.lock_key = lock_key; 2100 gc->irq.request_key = request_key; 2101 2102 /* If a parent irqdomain is provided, let's build a hierarchy */ 2103 if (gpiochip_hierarchy_is_hierarchical(gc)) { 2104 domain = gpiochip_hierarchy_create_domain(gc); 2105 } else { 2106 domain = gpiochip_simple_create_domain(gc); 2107 } 2108 if (IS_ERR(domain)) 2109 return PTR_ERR(domain); 2110 2111 if (gc->irq.parent_handler) { 2112 for (i = 0; i < gc->irq.num_parents; i++) { 2113 void *data; 2114 2115 if (gc->irq.per_parent_data) 2116 data = gc->irq.parent_handler_data_array[i]; 2117 else 2118 data = gc->irq.parent_handler_data ?: gc; 2119 2120 /* 2121 * The parent IRQ chip is already using the chip_data 2122 * for this IRQ chip, so our callbacks simply use the 2123 * handler_data. 2124 */ 2125 irq_set_chained_handler_and_data(gc->irq.parents[i], 2126 gc->irq.parent_handler, 2127 data); 2128 } 2129 } 2130 2131 gpiochip_set_irq_hooks(gc); 2132 2133 ret = gpiochip_irqchip_add_allocated_domain(gc, domain, false); 2134 if (ret) 2135 return ret; 2136 2137 acpi_gpiochip_request_interrupts(gc); 2138 2139 return 0; 2140 } 2141 2142 /** 2143 * gpiochip_irqchip_remove() - removes an irqchip added to a gpiochip 2144 * @gc: the gpiochip to remove the irqchip from 2145 * 2146 * This is called only from gpiochip_remove() 2147 */ 2148 static void gpiochip_irqchip_remove(struct gpio_chip *gc) 2149 { 2150 struct irq_chip *irqchip = gc->irq.chip; 2151 unsigned int offset; 2152 2153 acpi_gpiochip_free_interrupts(gc); 2154 2155 if (irqchip && gc->irq.parent_handler) { 2156 struct gpio_irq_chip *irq = &gc->irq; 2157 unsigned int i; 2158 2159 for (i = 0; i < irq->num_parents; i++) 2160 irq_set_chained_handler_and_data(irq->parents[i], 2161 NULL, NULL); 2162 } 2163 2164 /* Remove all IRQ mappings and delete the domain */ 2165 if (!gc->irq.domain_is_allocated_externally && gc->irq.domain) { 2166 unsigned int irq; 2167 2168 for (offset = 0; offset < gc->ngpio; offset++) { 2169 if (!gpiochip_irqchip_irq_valid(gc, offset)) 2170 continue; 2171 2172 irq = irq_find_mapping(gc->irq.domain, offset); 2173 irq_dispose_mapping(irq); 2174 } 2175 2176 irq_domain_remove(gc->irq.domain); 2177 } 2178 2179 if (irqchip && !(irqchip->flags & IRQCHIP_IMMUTABLE)) { 2180 if (irqchip->irq_request_resources == gpiochip_irq_reqres) { 2181 irqchip->irq_request_resources = NULL; 2182 irqchip->irq_release_resources = NULL; 2183 } 2184 if (irqchip->irq_enable == gpiochip_irq_enable) { 2185 irqchip->irq_enable = gc->irq.irq_enable; 2186 irqchip->irq_disable = gc->irq.irq_disable; 2187 } 2188 } 2189 gc->irq.irq_enable = NULL; 2190 gc->irq.irq_disable = NULL; 2191 gc->irq.chip = NULL; 2192 2193 gpiochip_irqchip_free_valid_mask(gc); 2194 } 2195 2196 /** 2197 * gpiochip_irqchip_add_domain() - adds an irqdomain to a gpiochip 2198 * @gc: the gpiochip to add the irqchip to 2199 * @domain: the irqdomain to add to the gpiochip 2200 * 2201 * This function adds an IRQ domain to the gpiochip. 2202 * 2203 * Returns: 2204 * 0 on success, or negative errno on failure. 2205 */ 2206 int gpiochip_irqchip_add_domain(struct gpio_chip *gc, 2207 struct irq_domain *domain) 2208 { 2209 return gpiochip_irqchip_add_allocated_domain(gc, domain, true); 2210 } 2211 EXPORT_SYMBOL_GPL(gpiochip_irqchip_add_domain); 2212 2213 #else /* CONFIG_GPIOLIB_IRQCHIP */ 2214 2215 static inline int gpiochip_add_irqchip(struct gpio_chip *gc, 2216 struct lock_class_key *lock_key, 2217 struct lock_class_key *request_key) 2218 { 2219 return 0; 2220 } 2221 static void gpiochip_irqchip_remove(struct gpio_chip *gc) {} 2222 2223 static inline int gpiochip_irqchip_init_hw(struct gpio_chip *gc) 2224 { 2225 return 0; 2226 } 2227 2228 static inline int gpiochip_irqchip_init_valid_mask(struct gpio_chip *gc) 2229 { 2230 return 0; 2231 } 2232 static inline void gpiochip_irqchip_free_valid_mask(struct gpio_chip *gc) 2233 { } 2234 2235 #endif /* CONFIG_GPIOLIB_IRQCHIP */ 2236 2237 /** 2238 * gpiochip_generic_request() - request the gpio function for a pin 2239 * @gc: the gpiochip owning the GPIO 2240 * @offset: the offset of the GPIO to request for GPIO function 2241 * 2242 * Returns: 2243 * 0 on success, or negative errno on failure. 2244 */ 2245 int gpiochip_generic_request(struct gpio_chip *gc, unsigned int offset) 2246 { 2247 #ifdef CONFIG_PINCTRL 2248 if (list_empty(&gc->gpiodev->pin_ranges)) 2249 return 0; 2250 #endif 2251 2252 return pinctrl_gpio_request(gc, offset); 2253 } 2254 EXPORT_SYMBOL_GPL(gpiochip_generic_request); 2255 2256 /** 2257 * gpiochip_generic_free() - free the gpio function from a pin 2258 * @gc: the gpiochip to request the gpio function for 2259 * @offset: the offset of the GPIO to free from GPIO function 2260 */ 2261 void gpiochip_generic_free(struct gpio_chip *gc, unsigned int offset) 2262 { 2263 #ifdef CONFIG_PINCTRL 2264 if (list_empty(&gc->gpiodev->pin_ranges)) 2265 return; 2266 #endif 2267 2268 pinctrl_gpio_free(gc, offset); 2269 } 2270 EXPORT_SYMBOL_GPL(gpiochip_generic_free); 2271 2272 /** 2273 * gpiochip_generic_config() - apply configuration for a pin 2274 * @gc: the gpiochip owning the GPIO 2275 * @offset: the offset of the GPIO to apply the configuration 2276 * @config: the configuration to be applied 2277 * 2278 * Returns: 2279 * 0 on success, or negative errno on failure. 2280 */ 2281 int gpiochip_generic_config(struct gpio_chip *gc, unsigned int offset, 2282 unsigned long config) 2283 { 2284 #ifdef CONFIG_PINCTRL 2285 if (list_empty(&gc->gpiodev->pin_ranges)) 2286 return -ENOTSUPP; 2287 #endif 2288 2289 return pinctrl_gpio_set_config(gc, offset, config); 2290 } 2291 EXPORT_SYMBOL_GPL(gpiochip_generic_config); 2292 2293 #ifdef CONFIG_PINCTRL 2294 2295 /** 2296 * gpiochip_add_pingroup_range() - add a range for GPIO <-> pin mapping 2297 * @gc: the gpiochip to add the range for 2298 * @pctldev: the pin controller to map to 2299 * @gpio_offset: the start offset in the current gpio_chip number space 2300 * @pin_group: name of the pin group inside the pin controller 2301 * 2302 * Calling this function directly from a DeviceTree-supported 2303 * pinctrl driver is DEPRECATED. Please see Section 2.1 of 2304 * Documentation/devicetree/bindings/gpio/gpio.txt on how to 2305 * bind pinctrl and gpio drivers via the "gpio-ranges" property. 2306 * 2307 * Returns: 2308 * 0 on success, or negative errno on failure. 2309 */ 2310 int gpiochip_add_pingroup_range(struct gpio_chip *gc, 2311 struct pinctrl_dev *pctldev, 2312 unsigned int gpio_offset, const char *pin_group) 2313 { 2314 struct gpio_pin_range *pin_range; 2315 struct gpio_device *gdev = gc->gpiodev; 2316 int ret; 2317 2318 pin_range = kzalloc(sizeof(*pin_range), GFP_KERNEL); 2319 if (!pin_range) { 2320 chip_err(gc, "failed to allocate pin ranges\n"); 2321 return -ENOMEM; 2322 } 2323 2324 /* Use local offset as range ID */ 2325 pin_range->range.id = gpio_offset; 2326 pin_range->range.gc = gc; 2327 pin_range->range.name = gc->label; 2328 pin_range->range.base = gdev->base + gpio_offset; 2329 pin_range->pctldev = pctldev; 2330 2331 ret = pinctrl_get_group_pins(pctldev, pin_group, 2332 &pin_range->range.pins, 2333 &pin_range->range.npins); 2334 if (ret < 0) { 2335 kfree(pin_range); 2336 return ret; 2337 } 2338 2339 pinctrl_add_gpio_range(pctldev, &pin_range->range); 2340 2341 chip_dbg(gc, "created GPIO range %d->%d ==> %s PINGRP %s\n", 2342 gpio_offset, gpio_offset + pin_range->range.npins - 1, 2343 pinctrl_dev_get_devname(pctldev), pin_group); 2344 2345 list_add_tail(&pin_range->node, &gdev->pin_ranges); 2346 2347 return 0; 2348 } 2349 EXPORT_SYMBOL_GPL(gpiochip_add_pingroup_range); 2350 2351 /** 2352 * gpiochip_add_pin_range() - add a range for GPIO <-> pin mapping 2353 * @gc: the gpiochip to add the range for 2354 * @pinctl_name: the dev_name() of the pin controller to map to 2355 * @gpio_offset: the start offset in the current gpio_chip number space 2356 * @pin_offset: the start offset in the pin controller number space 2357 * @npins: the number of pins from the offset of each pin space (GPIO and 2358 * pin controller) to accumulate in this range 2359 * 2360 * Calling this function directly from a DeviceTree-supported 2361 * pinctrl driver is DEPRECATED. Please see Section 2.1 of 2362 * Documentation/devicetree/bindings/gpio/gpio.txt on how to 2363 * bind pinctrl and gpio drivers via the "gpio-ranges" property. 2364 * 2365 * Returns: 2366 * 0 on success, or a negative errno on failure. 2367 */ 2368 int gpiochip_add_pin_range(struct gpio_chip *gc, const char *pinctl_name, 2369 unsigned int gpio_offset, unsigned int pin_offset, 2370 unsigned int npins) 2371 { 2372 struct gpio_pin_range *pin_range; 2373 struct gpio_device *gdev = gc->gpiodev; 2374 int ret; 2375 2376 pin_range = kzalloc(sizeof(*pin_range), GFP_KERNEL); 2377 if (!pin_range) { 2378 chip_err(gc, "failed to allocate pin ranges\n"); 2379 return -ENOMEM; 2380 } 2381 2382 /* Use local offset as range ID */ 2383 pin_range->range.id = gpio_offset; 2384 pin_range->range.gc = gc; 2385 pin_range->range.name = gc->label; 2386 pin_range->range.base = gdev->base + gpio_offset; 2387 pin_range->range.pin_base = pin_offset; 2388 pin_range->range.npins = npins; 2389 pin_range->pctldev = pinctrl_find_and_add_gpio_range(pinctl_name, 2390 &pin_range->range); 2391 if (IS_ERR(pin_range->pctldev)) { 2392 ret = PTR_ERR(pin_range->pctldev); 2393 chip_err(gc, "could not create pin range\n"); 2394 kfree(pin_range); 2395 return ret; 2396 } 2397 chip_dbg(gc, "created GPIO range %d->%d ==> %s PIN %d->%d\n", 2398 gpio_offset, gpio_offset + npins - 1, 2399 pinctl_name, 2400 pin_offset, pin_offset + npins - 1); 2401 2402 list_add_tail(&pin_range->node, &gdev->pin_ranges); 2403 2404 return 0; 2405 } 2406 EXPORT_SYMBOL_GPL(gpiochip_add_pin_range); 2407 2408 /** 2409 * gpiochip_remove_pin_ranges() - remove all the GPIO <-> pin mappings 2410 * @gc: the chip to remove all the mappings for 2411 */ 2412 void gpiochip_remove_pin_ranges(struct gpio_chip *gc) 2413 { 2414 struct gpio_pin_range *pin_range, *tmp; 2415 struct gpio_device *gdev = gc->gpiodev; 2416 2417 list_for_each_entry_safe(pin_range, tmp, &gdev->pin_ranges, node) { 2418 list_del(&pin_range->node); 2419 pinctrl_remove_gpio_range(pin_range->pctldev, 2420 &pin_range->range); 2421 kfree(pin_range); 2422 } 2423 } 2424 EXPORT_SYMBOL_GPL(gpiochip_remove_pin_ranges); 2425 2426 #endif /* CONFIG_PINCTRL */ 2427 2428 /* These "optional" allocation calls help prevent drivers from stomping 2429 * on each other, and help provide better diagnostics in debugfs. 2430 * They're called even less than the "set direction" calls. 2431 */ 2432 static int gpiod_request_commit(struct gpio_desc *desc, const char *label) 2433 { 2434 unsigned int offset; 2435 int ret; 2436 2437 CLASS(gpio_chip_guard, guard)(desc); 2438 if (!guard.gc) 2439 return -ENODEV; 2440 2441 if (test_and_set_bit(FLAG_REQUESTED, &desc->flags)) 2442 return -EBUSY; 2443 2444 offset = gpio_chip_hwgpio(desc); 2445 if (!gpiochip_line_is_valid(guard.gc, offset)) 2446 return -EINVAL; 2447 2448 /* NOTE: gpio_request() can be called in early boot, 2449 * before IRQs are enabled, for non-sleeping (SOC) GPIOs. 2450 */ 2451 2452 if (guard.gc->request) { 2453 ret = guard.gc->request(guard.gc, offset); 2454 if (ret > 0) 2455 ret = -EBADE; 2456 if (ret) 2457 goto out_clear_bit; 2458 } 2459 2460 if (guard.gc->get_direction) 2461 gpiod_get_direction(desc); 2462 2463 ret = desc_set_label(desc, label ? : "?"); 2464 if (ret) 2465 goto out_clear_bit; 2466 2467 return 0; 2468 2469 out_clear_bit: 2470 clear_bit(FLAG_REQUESTED, &desc->flags); 2471 return ret; 2472 } 2473 2474 int gpiod_request(struct gpio_desc *desc, const char *label) 2475 { 2476 int ret = -EPROBE_DEFER; 2477 2478 VALIDATE_DESC(desc); 2479 2480 if (try_module_get(desc->gdev->owner)) { 2481 ret = gpiod_request_commit(desc, label); 2482 if (ret) 2483 module_put(desc->gdev->owner); 2484 else 2485 gpio_device_get(desc->gdev); 2486 } 2487 2488 if (ret) 2489 gpiod_dbg(desc, "%s: status %d\n", __func__, ret); 2490 2491 return ret; 2492 } 2493 2494 static void gpiod_free_commit(struct gpio_desc *desc) 2495 { 2496 unsigned long flags; 2497 2498 might_sleep(); 2499 2500 CLASS(gpio_chip_guard, guard)(desc); 2501 2502 flags = READ_ONCE(desc->flags); 2503 2504 if (guard.gc && test_bit(FLAG_REQUESTED, &flags)) { 2505 if (guard.gc->free) 2506 guard.gc->free(guard.gc, gpio_chip_hwgpio(desc)); 2507 2508 clear_bit(FLAG_ACTIVE_LOW, &flags); 2509 clear_bit(FLAG_REQUESTED, &flags); 2510 clear_bit(FLAG_OPEN_DRAIN, &flags); 2511 clear_bit(FLAG_OPEN_SOURCE, &flags); 2512 clear_bit(FLAG_PULL_UP, &flags); 2513 clear_bit(FLAG_PULL_DOWN, &flags); 2514 clear_bit(FLAG_BIAS_DISABLE, &flags); 2515 clear_bit(FLAG_EDGE_RISING, &flags); 2516 clear_bit(FLAG_EDGE_FALLING, &flags); 2517 clear_bit(FLAG_IS_HOGGED, &flags); 2518 #ifdef CONFIG_OF_DYNAMIC 2519 WRITE_ONCE(desc->hog, NULL); 2520 #endif 2521 desc_set_label(desc, NULL); 2522 WRITE_ONCE(desc->flags, flags); 2523 #ifdef CONFIG_GPIO_CDEV 2524 WRITE_ONCE(desc->debounce_period_us, 0); 2525 #endif 2526 gpiod_line_state_notify(desc, GPIO_V2_LINE_CHANGED_RELEASED); 2527 } 2528 } 2529 2530 void gpiod_free(struct gpio_desc *desc) 2531 { 2532 VALIDATE_DESC_VOID(desc); 2533 2534 gpiod_free_commit(desc); 2535 module_put(desc->gdev->owner); 2536 gpio_device_put(desc->gdev); 2537 } 2538 2539 /** 2540 * gpiochip_dup_line_label - Get a copy of the consumer label. 2541 * @gc: GPIO chip controlling this line. 2542 * @offset: Hardware offset of the line. 2543 * 2544 * Returns: 2545 * Pointer to a copy of the consumer label if the line is requested or NULL 2546 * if it's not. If a valid pointer was returned, it must be freed using 2547 * kfree(). In case of a memory allocation error, the function returns %ENOMEM. 2548 * 2549 * Must not be called from atomic context. 2550 */ 2551 char *gpiochip_dup_line_label(struct gpio_chip *gc, unsigned int offset) 2552 { 2553 struct gpio_desc *desc; 2554 char *label; 2555 2556 desc = gpiochip_get_desc(gc, offset); 2557 if (IS_ERR(desc)) 2558 return NULL; 2559 2560 if (!test_bit(FLAG_REQUESTED, &desc->flags)) 2561 return NULL; 2562 2563 guard(srcu)(&desc->gdev->desc_srcu); 2564 2565 label = kstrdup(gpiod_get_label(desc), GFP_KERNEL); 2566 if (!label) 2567 return ERR_PTR(-ENOMEM); 2568 2569 return label; 2570 } 2571 EXPORT_SYMBOL_GPL(gpiochip_dup_line_label); 2572 2573 static inline const char *function_name_or_default(const char *con_id) 2574 { 2575 return con_id ?: "(default)"; 2576 } 2577 2578 /** 2579 * gpiochip_request_own_desc - Allow GPIO chip to request its own descriptor 2580 * @gc: GPIO chip 2581 * @hwnum: hardware number of the GPIO for which to request the descriptor 2582 * @label: label for the GPIO 2583 * @lflags: lookup flags for this GPIO or 0 if default, this can be used to 2584 * specify things like line inversion semantics with the machine flags 2585 * such as GPIO_OUT_LOW 2586 * @dflags: descriptor request flags for this GPIO or 0 if default, this 2587 * can be used to specify consumer semantics such as open drain 2588 * 2589 * Function allows GPIO chip drivers to request and use their own GPIO 2590 * descriptors via gpiolib API. Difference to gpiod_request() is that this 2591 * function will not increase reference count of the GPIO chip module. This 2592 * allows the GPIO chip module to be unloaded as needed (we assume that the 2593 * GPIO chip driver handles freeing the GPIOs it has requested). 2594 * 2595 * Returns: 2596 * A pointer to the GPIO descriptor, or an ERR_PTR()-encoded negative error 2597 * code on failure. 2598 */ 2599 struct gpio_desc *gpiochip_request_own_desc(struct gpio_chip *gc, 2600 unsigned int hwnum, 2601 const char *label, 2602 enum gpio_lookup_flags lflags, 2603 enum gpiod_flags dflags) 2604 { 2605 struct gpio_desc *desc = gpiochip_get_desc(gc, hwnum); 2606 const char *name = function_name_or_default(label); 2607 int ret; 2608 2609 if (IS_ERR(desc)) { 2610 chip_err(gc, "failed to get GPIO %s descriptor\n", name); 2611 return desc; 2612 } 2613 2614 ret = gpiod_request_commit(desc, label); 2615 if (ret < 0) 2616 return ERR_PTR(ret); 2617 2618 ret = gpiod_configure_flags(desc, label, lflags, dflags); 2619 if (ret) { 2620 gpiod_free_commit(desc); 2621 chip_err(gc, "setup of own GPIO %s failed\n", name); 2622 return ERR_PTR(ret); 2623 } 2624 2625 gpiod_line_state_notify(desc, GPIO_V2_LINE_CHANGED_REQUESTED); 2626 2627 return desc; 2628 } 2629 EXPORT_SYMBOL_GPL(gpiochip_request_own_desc); 2630 2631 /** 2632 * gpiochip_free_own_desc - Free GPIO requested by the chip driver 2633 * @desc: GPIO descriptor to free 2634 * 2635 * Function frees the given GPIO requested previously with 2636 * gpiochip_request_own_desc(). 2637 */ 2638 void gpiochip_free_own_desc(struct gpio_desc *desc) 2639 { 2640 if (desc) 2641 gpiod_free_commit(desc); 2642 } 2643 EXPORT_SYMBOL_GPL(gpiochip_free_own_desc); 2644 2645 /* 2646 * Drivers MUST set GPIO direction before making get/set calls. In 2647 * some cases this is done in early boot, before IRQs are enabled. 2648 * 2649 * As a rule these aren't called more than once (except for drivers 2650 * using the open-drain emulation idiom) so these are natural places 2651 * to accumulate extra debugging checks. Note that we can't (yet) 2652 * rely on gpio_request() having been called beforehand. 2653 */ 2654 2655 int gpio_do_set_config(struct gpio_desc *desc, unsigned long config) 2656 { 2657 int ret; 2658 2659 CLASS(gpio_chip_guard, guard)(desc); 2660 if (!guard.gc) 2661 return -ENODEV; 2662 2663 if (!guard.gc->set_config) 2664 return -ENOTSUPP; 2665 2666 ret = guard.gc->set_config(guard.gc, gpio_chip_hwgpio(desc), config); 2667 if (ret > 0) 2668 ret = -EBADE; 2669 2670 #ifdef CONFIG_GPIO_CDEV 2671 /* 2672 * Special case - if we're setting debounce period, we need to store 2673 * it in the descriptor in case user-space wants to know it. 2674 */ 2675 if (!ret && pinconf_to_config_param(config) == PIN_CONFIG_INPUT_DEBOUNCE) 2676 WRITE_ONCE(desc->debounce_period_us, 2677 pinconf_to_config_argument(config)); 2678 #endif 2679 return ret; 2680 } 2681 2682 static int gpio_set_config_with_argument(struct gpio_desc *desc, 2683 enum pin_config_param mode, 2684 u32 argument) 2685 { 2686 unsigned long config; 2687 2688 config = pinconf_to_config_packed(mode, argument); 2689 return gpio_do_set_config(desc, config); 2690 } 2691 2692 static int gpio_set_config_with_argument_optional(struct gpio_desc *desc, 2693 enum pin_config_param mode, 2694 u32 argument) 2695 { 2696 struct device *dev = &desc->gdev->dev; 2697 int gpio = gpio_chip_hwgpio(desc); 2698 int ret; 2699 2700 ret = gpio_set_config_with_argument(desc, mode, argument); 2701 if (ret != -ENOTSUPP) 2702 return ret; 2703 2704 switch (mode) { 2705 case PIN_CONFIG_PERSIST_STATE: 2706 dev_dbg(dev, "Persistence not supported for GPIO %d\n", gpio); 2707 break; 2708 default: 2709 break; 2710 } 2711 2712 return 0; 2713 } 2714 2715 static int gpio_set_config(struct gpio_desc *desc, enum pin_config_param mode) 2716 { 2717 return gpio_set_config_with_argument(desc, mode, 0); 2718 } 2719 2720 static int gpio_set_bias(struct gpio_desc *desc) 2721 { 2722 enum pin_config_param bias; 2723 unsigned long flags; 2724 unsigned int arg; 2725 2726 flags = READ_ONCE(desc->flags); 2727 2728 if (test_bit(FLAG_BIAS_DISABLE, &flags)) 2729 bias = PIN_CONFIG_BIAS_DISABLE; 2730 else if (test_bit(FLAG_PULL_UP, &flags)) 2731 bias = PIN_CONFIG_BIAS_PULL_UP; 2732 else if (test_bit(FLAG_PULL_DOWN, &flags)) 2733 bias = PIN_CONFIG_BIAS_PULL_DOWN; 2734 else 2735 return 0; 2736 2737 switch (bias) { 2738 case PIN_CONFIG_BIAS_PULL_DOWN: 2739 case PIN_CONFIG_BIAS_PULL_UP: 2740 arg = 1; 2741 break; 2742 2743 default: 2744 arg = 0; 2745 break; 2746 } 2747 2748 return gpio_set_config_with_argument_optional(desc, bias, arg); 2749 } 2750 2751 /** 2752 * gpio_set_debounce_timeout() - Set debounce timeout 2753 * @desc: GPIO descriptor to set the debounce timeout 2754 * @debounce: Debounce timeout in microseconds 2755 * 2756 * The function calls the certain GPIO driver to set debounce timeout 2757 * in the hardware. 2758 * 2759 * Returns: 2760 * 0 on success, or negative errno on failure. 2761 */ 2762 int gpio_set_debounce_timeout(struct gpio_desc *desc, unsigned int debounce) 2763 { 2764 int ret; 2765 2766 ret = gpio_set_config_with_argument_optional(desc, 2767 PIN_CONFIG_INPUT_DEBOUNCE, 2768 debounce); 2769 if (!ret) 2770 gpiod_line_state_notify(desc, GPIO_V2_LINE_CHANGED_CONFIG); 2771 2772 return ret; 2773 } 2774 2775 static int gpiochip_direction_input(struct gpio_chip *gc, unsigned int offset) 2776 { 2777 int ret; 2778 2779 lockdep_assert_held(&gc->gpiodev->srcu); 2780 2781 if (WARN_ON(!gc->direction_input)) 2782 return -EOPNOTSUPP; 2783 2784 ret = gc->direction_input(gc, offset); 2785 if (ret > 0) 2786 ret = -EBADE; 2787 2788 return ret; 2789 } 2790 2791 static int gpiochip_direction_output(struct gpio_chip *gc, unsigned int offset, 2792 int value) 2793 { 2794 int ret; 2795 2796 lockdep_assert_held(&gc->gpiodev->srcu); 2797 2798 if (WARN_ON(!gc->direction_output)) 2799 return -EOPNOTSUPP; 2800 2801 ret = gc->direction_output(gc, offset, value); 2802 if (ret > 0) 2803 ret = -EBADE; 2804 2805 return ret; 2806 } 2807 2808 /** 2809 * gpiod_direction_input - set the GPIO direction to input 2810 * @desc: GPIO to set to input 2811 * 2812 * Set the direction of the passed GPIO to input, such as gpiod_get_value() can 2813 * be called safely on it. 2814 * 2815 * Returns: 2816 * 0 on success, or negative errno on failure. 2817 */ 2818 int gpiod_direction_input(struct gpio_desc *desc) 2819 { 2820 int ret; 2821 2822 VALIDATE_DESC(desc); 2823 2824 ret = gpiod_direction_input_nonotify(desc); 2825 if (ret == 0) 2826 gpiod_line_state_notify(desc, GPIO_V2_LINE_CHANGED_CONFIG); 2827 2828 return ret; 2829 } 2830 EXPORT_SYMBOL_GPL(gpiod_direction_input); 2831 2832 int gpiod_direction_input_nonotify(struct gpio_desc *desc) 2833 { 2834 int ret = 0, dir; 2835 2836 CLASS(gpio_chip_guard, guard)(desc); 2837 if (!guard.gc) 2838 return -ENODEV; 2839 2840 /* 2841 * It is legal to have no .get() and .direction_input() specified if 2842 * the chip is output-only, but you can't specify .direction_input() 2843 * and not support the .get() operation, that doesn't make sense. 2844 */ 2845 if (!guard.gc->get && guard.gc->direction_input) { 2846 gpiod_warn(desc, 2847 "%s: missing get() but have direction_input()\n", 2848 __func__); 2849 return -EIO; 2850 } 2851 2852 /* 2853 * If we have a .direction_input() callback, things are simple, 2854 * just call it. Else we are some input-only chip so try to check the 2855 * direction (if .get_direction() is supported) else we silently 2856 * assume we are in input mode after this. 2857 */ 2858 if (guard.gc->direction_input) { 2859 ret = gpiochip_direction_input(guard.gc, 2860 gpio_chip_hwgpio(desc)); 2861 } else if (guard.gc->get_direction) { 2862 dir = gpiochip_get_direction(guard.gc, gpio_chip_hwgpio(desc)); 2863 if (dir < 0) 2864 return dir; 2865 2866 if (dir != GPIO_LINE_DIRECTION_IN) { 2867 gpiod_warn(desc, 2868 "%s: missing direction_input() operation and line is output\n", 2869 __func__); 2870 return -EIO; 2871 } 2872 } 2873 if (ret == 0) { 2874 clear_bit(FLAG_IS_OUT, &desc->flags); 2875 ret = gpio_set_bias(desc); 2876 } 2877 2878 trace_gpio_direction(desc_to_gpio(desc), 1, ret); 2879 2880 return ret; 2881 } 2882 2883 static int gpiochip_set(struct gpio_chip *gc, unsigned int offset, int value) 2884 { 2885 int ret; 2886 2887 lockdep_assert_held(&gc->gpiodev->srcu); 2888 2889 if (WARN_ON(unlikely(!gc->set))) 2890 return -EOPNOTSUPP; 2891 2892 ret = gc->set(gc, offset, value); 2893 if (ret > 0) 2894 ret = -EBADE; 2895 2896 return ret; 2897 } 2898 2899 static int gpiod_direction_output_raw_commit(struct gpio_desc *desc, int value) 2900 { 2901 int val = !!value, ret = 0, dir; 2902 2903 CLASS(gpio_chip_guard, guard)(desc); 2904 if (!guard.gc) 2905 return -ENODEV; 2906 2907 /* 2908 * It's OK not to specify .direction_output() if the gpiochip is 2909 * output-only, but if there is then not even a .set() operation it 2910 * is pretty tricky to drive the output line. 2911 */ 2912 if (!guard.gc->set && !guard.gc->direction_output) { 2913 gpiod_warn(desc, 2914 "%s: missing set() and direction_output() operations\n", 2915 __func__); 2916 return -EIO; 2917 } 2918 2919 if (guard.gc->direction_output) { 2920 ret = gpiochip_direction_output(guard.gc, 2921 gpio_chip_hwgpio(desc), val); 2922 } else { 2923 /* Check that we are in output mode if we can */ 2924 if (guard.gc->get_direction) { 2925 dir = gpiochip_get_direction(guard.gc, 2926 gpio_chip_hwgpio(desc)); 2927 if (dir < 0) 2928 return dir; 2929 2930 if (dir != GPIO_LINE_DIRECTION_OUT) { 2931 gpiod_warn(desc, 2932 "%s: missing direction_output() operation\n", 2933 __func__); 2934 return -EIO; 2935 } 2936 } 2937 /* 2938 * If we can't actively set the direction, we are some 2939 * output-only chip, so just drive the output as desired. 2940 */ 2941 ret = gpiochip_set(guard.gc, gpio_chip_hwgpio(desc), val); 2942 if (ret) 2943 return ret; 2944 } 2945 2946 if (!ret) 2947 set_bit(FLAG_IS_OUT, &desc->flags); 2948 trace_gpio_value(desc_to_gpio(desc), 0, val); 2949 trace_gpio_direction(desc_to_gpio(desc), 0, ret); 2950 return ret; 2951 } 2952 2953 /** 2954 * gpiod_direction_output_raw - set the GPIO direction to output 2955 * @desc: GPIO to set to output 2956 * @value: initial output value of the GPIO 2957 * 2958 * Set the direction of the passed GPIO to output, such as gpiod_set_value() can 2959 * be called safely on it. The initial value of the output must be specified 2960 * as raw value on the physical line without regard for the ACTIVE_LOW status. 2961 * 2962 * Returns: 2963 * 0 on success, or negative errno on failure. 2964 */ 2965 int gpiod_direction_output_raw(struct gpio_desc *desc, int value) 2966 { 2967 int ret; 2968 2969 VALIDATE_DESC(desc); 2970 2971 ret = gpiod_direction_output_raw_commit(desc, value); 2972 if (ret == 0) 2973 gpiod_line_state_notify(desc, GPIO_V2_LINE_CHANGED_CONFIG); 2974 2975 return ret; 2976 } 2977 EXPORT_SYMBOL_GPL(gpiod_direction_output_raw); 2978 2979 /** 2980 * gpiod_direction_output - set the GPIO direction to output 2981 * @desc: GPIO to set to output 2982 * @value: initial output value of the GPIO 2983 * 2984 * Set the direction of the passed GPIO to output, such as gpiod_set_value() can 2985 * be called safely on it. The initial value of the output must be specified 2986 * as the logical value of the GPIO, i.e. taking its ACTIVE_LOW status into 2987 * account. 2988 * 2989 * Returns: 2990 * 0 on success, or negative errno on failure. 2991 */ 2992 int gpiod_direction_output(struct gpio_desc *desc, int value) 2993 { 2994 int ret; 2995 2996 VALIDATE_DESC(desc); 2997 2998 ret = gpiod_direction_output_nonotify(desc, value); 2999 if (ret == 0) 3000 gpiod_line_state_notify(desc, GPIO_V2_LINE_CHANGED_CONFIG); 3001 3002 return ret; 3003 } 3004 EXPORT_SYMBOL_GPL(gpiod_direction_output); 3005 3006 int gpiod_direction_output_nonotify(struct gpio_desc *desc, int value) 3007 { 3008 unsigned long flags; 3009 int ret; 3010 3011 flags = READ_ONCE(desc->flags); 3012 3013 if (test_bit(FLAG_ACTIVE_LOW, &flags)) 3014 value = !value; 3015 else 3016 value = !!value; 3017 3018 /* GPIOs used for enabled IRQs shall not be set as output */ 3019 if (test_bit(FLAG_USED_AS_IRQ, &flags) && 3020 test_bit(FLAG_IRQ_IS_ENABLED, &flags)) { 3021 gpiod_err(desc, 3022 "%s: tried to set a GPIO tied to an IRQ as output\n", 3023 __func__); 3024 return -EIO; 3025 } 3026 3027 if (test_bit(FLAG_OPEN_DRAIN, &flags)) { 3028 /* First see if we can enable open drain in hardware */ 3029 ret = gpio_set_config(desc, PIN_CONFIG_DRIVE_OPEN_DRAIN); 3030 if (!ret) 3031 goto set_output_value; 3032 /* Emulate open drain by not actively driving the line high */ 3033 if (value) 3034 goto set_output_flag; 3035 } else if (test_bit(FLAG_OPEN_SOURCE, &flags)) { 3036 ret = gpio_set_config(desc, PIN_CONFIG_DRIVE_OPEN_SOURCE); 3037 if (!ret) 3038 goto set_output_value; 3039 /* Emulate open source by not actively driving the line low */ 3040 if (!value) 3041 goto set_output_flag; 3042 } else { 3043 gpio_set_config(desc, PIN_CONFIG_DRIVE_PUSH_PULL); 3044 } 3045 3046 set_output_value: 3047 ret = gpio_set_bias(desc); 3048 if (ret) 3049 return ret; 3050 return gpiod_direction_output_raw_commit(desc, value); 3051 3052 set_output_flag: 3053 ret = gpiod_direction_input_nonotify(desc); 3054 if (ret) 3055 return ret; 3056 /* 3057 * When emulating open-source or open-drain functionalities by not 3058 * actively driving the line (setting mode to input) we still need to 3059 * set the IS_OUT flag or otherwise we won't be able to set the line 3060 * value anymore. 3061 */ 3062 set_bit(FLAG_IS_OUT, &desc->flags); 3063 return 0; 3064 } 3065 3066 #if IS_ENABLED(CONFIG_HTE) 3067 /** 3068 * gpiod_enable_hw_timestamp_ns - Enable hardware timestamp in nanoseconds. 3069 * 3070 * @desc: GPIO to enable. 3071 * @flags: Flags related to GPIO edge. 3072 * 3073 * Returns: 3074 * 0 on success, or negative errno on failure. 3075 */ 3076 int gpiod_enable_hw_timestamp_ns(struct gpio_desc *desc, unsigned long flags) 3077 { 3078 int ret; 3079 3080 VALIDATE_DESC(desc); 3081 3082 CLASS(gpio_chip_guard, guard)(desc); 3083 if (!guard.gc) 3084 return -ENODEV; 3085 3086 if (!guard.gc->en_hw_timestamp) { 3087 gpiod_warn(desc, "%s: hw ts not supported\n", __func__); 3088 return -ENOTSUPP; 3089 } 3090 3091 ret = guard.gc->en_hw_timestamp(guard.gc, 3092 gpio_chip_hwgpio(desc), flags); 3093 if (ret) 3094 gpiod_warn(desc, "%s: hw ts request failed\n", __func__); 3095 3096 return ret; 3097 } 3098 EXPORT_SYMBOL_GPL(gpiod_enable_hw_timestamp_ns); 3099 3100 /** 3101 * gpiod_disable_hw_timestamp_ns - Disable hardware timestamp. 3102 * 3103 * @desc: GPIO to disable. 3104 * @flags: Flags related to GPIO edge, same value as used during enable call. 3105 * 3106 * Returns: 3107 * 0 on success, or negative errno on failure. 3108 */ 3109 int gpiod_disable_hw_timestamp_ns(struct gpio_desc *desc, unsigned long flags) 3110 { 3111 int ret; 3112 3113 VALIDATE_DESC(desc); 3114 3115 CLASS(gpio_chip_guard, guard)(desc); 3116 if (!guard.gc) 3117 return -ENODEV; 3118 3119 if (!guard.gc->dis_hw_timestamp) { 3120 gpiod_warn(desc, "%s: hw ts not supported\n", __func__); 3121 return -ENOTSUPP; 3122 } 3123 3124 ret = guard.gc->dis_hw_timestamp(guard.gc, gpio_chip_hwgpio(desc), 3125 flags); 3126 if (ret) 3127 gpiod_warn(desc, "%s: hw ts release failed\n", __func__); 3128 3129 return ret; 3130 } 3131 EXPORT_SYMBOL_GPL(gpiod_disable_hw_timestamp_ns); 3132 #endif /* CONFIG_HTE */ 3133 3134 /** 3135 * gpiod_set_config - sets @config for a GPIO 3136 * @desc: descriptor of the GPIO for which to set the configuration 3137 * @config: Same packed config format as generic pinconf 3138 * 3139 * Returns: 3140 * 0 on success, %-ENOTSUPP if the controller doesn't support setting the 3141 * configuration. 3142 */ 3143 int gpiod_set_config(struct gpio_desc *desc, unsigned long config) 3144 { 3145 int ret; 3146 3147 VALIDATE_DESC(desc); 3148 3149 ret = gpio_do_set_config(desc, config); 3150 if (!ret) { 3151 /* These are the only options we notify the userspace about. */ 3152 switch (pinconf_to_config_param(config)) { 3153 case PIN_CONFIG_BIAS_DISABLE: 3154 case PIN_CONFIG_BIAS_PULL_DOWN: 3155 case PIN_CONFIG_BIAS_PULL_UP: 3156 case PIN_CONFIG_DRIVE_OPEN_DRAIN: 3157 case PIN_CONFIG_DRIVE_OPEN_SOURCE: 3158 case PIN_CONFIG_DRIVE_PUSH_PULL: 3159 case PIN_CONFIG_INPUT_DEBOUNCE: 3160 gpiod_line_state_notify(desc, 3161 GPIO_V2_LINE_CHANGED_CONFIG); 3162 break; 3163 default: 3164 break; 3165 } 3166 } 3167 3168 return ret; 3169 } 3170 EXPORT_SYMBOL_GPL(gpiod_set_config); 3171 3172 /** 3173 * gpiod_set_debounce - sets @debounce time for a GPIO 3174 * @desc: descriptor of the GPIO for which to set debounce time 3175 * @debounce: debounce time in microseconds 3176 * 3177 * Returns: 3178 * 0 on success, %-ENOTSUPP if the controller doesn't support setting the 3179 * debounce time. 3180 */ 3181 int gpiod_set_debounce(struct gpio_desc *desc, unsigned int debounce) 3182 { 3183 unsigned long config; 3184 3185 config = pinconf_to_config_packed(PIN_CONFIG_INPUT_DEBOUNCE, debounce); 3186 return gpiod_set_config(desc, config); 3187 } 3188 EXPORT_SYMBOL_GPL(gpiod_set_debounce); 3189 3190 /** 3191 * gpiod_set_transitory - Lose or retain GPIO state on suspend or reset 3192 * @desc: descriptor of the GPIO for which to configure persistence 3193 * @transitory: True to lose state on suspend or reset, false for persistence 3194 * 3195 * Returns: 3196 * 0 on success, otherwise a negative error code. 3197 */ 3198 int gpiod_set_transitory(struct gpio_desc *desc, bool transitory) 3199 { 3200 VALIDATE_DESC(desc); 3201 /* 3202 * Handle FLAG_TRANSITORY first, enabling queries to gpiolib for 3203 * persistence state. 3204 */ 3205 assign_bit(FLAG_TRANSITORY, &desc->flags, transitory); 3206 3207 /* If the driver supports it, set the persistence state now */ 3208 return gpio_set_config_with_argument_optional(desc, 3209 PIN_CONFIG_PERSIST_STATE, 3210 !transitory); 3211 } 3212 3213 /** 3214 * gpiod_is_active_low - test whether a GPIO is active-low or not 3215 * @desc: the gpio descriptor to test 3216 * 3217 * Returns: 3218 * 1 if the GPIO is active-low, 0 otherwise. 3219 */ 3220 int gpiod_is_active_low(const struct gpio_desc *desc) 3221 { 3222 VALIDATE_DESC(desc); 3223 return test_bit(FLAG_ACTIVE_LOW, &desc->flags); 3224 } 3225 EXPORT_SYMBOL_GPL(gpiod_is_active_low); 3226 3227 /** 3228 * gpiod_toggle_active_low - toggle whether a GPIO is active-low or not 3229 * @desc: the gpio descriptor to change 3230 */ 3231 void gpiod_toggle_active_low(struct gpio_desc *desc) 3232 { 3233 VALIDATE_DESC_VOID(desc); 3234 change_bit(FLAG_ACTIVE_LOW, &desc->flags); 3235 gpiod_line_state_notify(desc, GPIO_V2_LINE_CHANGED_CONFIG); 3236 } 3237 EXPORT_SYMBOL_GPL(gpiod_toggle_active_low); 3238 3239 static int gpiochip_get(struct gpio_chip *gc, unsigned int offset) 3240 { 3241 int ret; 3242 3243 lockdep_assert_held(&gc->gpiodev->srcu); 3244 3245 /* Make sure this is called after checking for gc->get(). */ 3246 ret = gc->get(gc, offset); 3247 if (ret > 1) 3248 ret = -EBADE; 3249 3250 return ret; 3251 } 3252 3253 static int gpio_chip_get_value(struct gpio_chip *gc, const struct gpio_desc *desc) 3254 { 3255 return gc->get ? gpiochip_get(gc, gpio_chip_hwgpio(desc)) : -EIO; 3256 } 3257 3258 /* I/O calls are only valid after configuration completed; the relevant 3259 * "is this a valid GPIO" error checks should already have been done. 3260 * 3261 * "Get" operations are often inlinable as reading a pin value register, 3262 * and masking the relevant bit in that register. 3263 * 3264 * When "set" operations are inlinable, they involve writing that mask to 3265 * one register to set a low value, or a different register to set it high. 3266 * Otherwise locking is needed, so there may be little value to inlining. 3267 * 3268 *------------------------------------------------------------------------ 3269 * 3270 * IMPORTANT!!! The hot paths -- get/set value -- assume that callers 3271 * have requested the GPIO. That can include implicit requesting by 3272 * a direction setting call. Marking a gpio as requested locks its chip 3273 * in memory, guaranteeing that these table lookups need no more locking 3274 * and that gpiochip_remove() will fail. 3275 * 3276 * REVISIT when debugging, consider adding some instrumentation to ensure 3277 * that the GPIO was actually requested. 3278 */ 3279 3280 static int gpiod_get_raw_value_commit(const struct gpio_desc *desc) 3281 { 3282 struct gpio_device *gdev; 3283 struct gpio_chip *gc; 3284 int value; 3285 3286 /* FIXME Unable to use gpio_chip_guard due to const desc. */ 3287 gdev = desc->gdev; 3288 3289 guard(srcu)(&gdev->srcu); 3290 3291 gc = srcu_dereference(gdev->chip, &gdev->srcu); 3292 if (!gc) 3293 return -ENODEV; 3294 3295 value = gpio_chip_get_value(gc, desc); 3296 value = value < 0 ? value : !!value; 3297 trace_gpio_value(desc_to_gpio(desc), 1, value); 3298 return value; 3299 } 3300 3301 static int gpio_chip_get_multiple(struct gpio_chip *gc, 3302 unsigned long *mask, unsigned long *bits) 3303 { 3304 lockdep_assert_held(&gc->gpiodev->srcu); 3305 3306 if (gc->get_multiple) { 3307 int ret; 3308 3309 ret = gc->get_multiple(gc, mask, bits); 3310 if (ret > 0) 3311 return -EBADE; 3312 return ret; 3313 } 3314 3315 if (gc->get) { 3316 int i, value; 3317 3318 for_each_set_bit(i, mask, gc->ngpio) { 3319 value = gpiochip_get(gc, i); 3320 if (value < 0) 3321 return value; 3322 __assign_bit(i, bits, value); 3323 } 3324 return 0; 3325 } 3326 return -EIO; 3327 } 3328 3329 /* The 'other' chip must be protected with its GPIO device's SRCU. */ 3330 static bool gpio_device_chip_cmp(struct gpio_device *gdev, struct gpio_chip *gc) 3331 { 3332 guard(srcu)(&gdev->srcu); 3333 3334 return gc == srcu_dereference(gdev->chip, &gdev->srcu); 3335 } 3336 3337 int gpiod_get_array_value_complex(bool raw, bool can_sleep, 3338 unsigned int array_size, 3339 struct gpio_desc **desc_array, 3340 struct gpio_array *array_info, 3341 unsigned long *value_bitmap) 3342 { 3343 struct gpio_chip *gc; 3344 int ret, i = 0; 3345 3346 /* 3347 * Validate array_info against desc_array and its size. 3348 * It should immediately follow desc_array if both 3349 * have been obtained from the same gpiod_get_array() call. 3350 */ 3351 if (array_info && array_info->desc == desc_array && 3352 array_size <= array_info->size && 3353 (void *)array_info == desc_array + array_info->size) { 3354 if (!can_sleep) 3355 WARN_ON(array_info->gdev->can_sleep); 3356 3357 guard(srcu)(&array_info->gdev->srcu); 3358 gc = srcu_dereference(array_info->gdev->chip, 3359 &array_info->gdev->srcu); 3360 if (!gc) 3361 return -ENODEV; 3362 3363 ret = gpio_chip_get_multiple(gc, array_info->get_mask, 3364 value_bitmap); 3365 if (ret) 3366 return ret; 3367 3368 if (!raw && !bitmap_empty(array_info->invert_mask, array_size)) 3369 bitmap_xor(value_bitmap, value_bitmap, 3370 array_info->invert_mask, array_size); 3371 3372 i = find_first_zero_bit(array_info->get_mask, array_size); 3373 if (i == array_size) 3374 return 0; 3375 } else { 3376 array_info = NULL; 3377 } 3378 3379 while (i < array_size) { 3380 DECLARE_BITMAP(fastpath_mask, FASTPATH_NGPIO); 3381 DECLARE_BITMAP(fastpath_bits, FASTPATH_NGPIO); 3382 unsigned long *mask, *bits; 3383 int first, j; 3384 3385 CLASS(gpio_chip_guard, guard)(desc_array[i]); 3386 if (!guard.gc) 3387 return -ENODEV; 3388 3389 if (likely(guard.gc->ngpio <= FASTPATH_NGPIO)) { 3390 mask = fastpath_mask; 3391 bits = fastpath_bits; 3392 } else { 3393 gfp_t flags = can_sleep ? GFP_KERNEL : GFP_ATOMIC; 3394 3395 mask = bitmap_alloc(guard.gc->ngpio, flags); 3396 if (!mask) 3397 return -ENOMEM; 3398 3399 bits = bitmap_alloc(guard.gc->ngpio, flags); 3400 if (!bits) { 3401 bitmap_free(mask); 3402 return -ENOMEM; 3403 } 3404 } 3405 3406 bitmap_zero(mask, guard.gc->ngpio); 3407 3408 if (!can_sleep) 3409 WARN_ON(guard.gc->can_sleep); 3410 3411 /* collect all inputs belonging to the same chip */ 3412 first = i; 3413 do { 3414 const struct gpio_desc *desc = desc_array[i]; 3415 int hwgpio = gpio_chip_hwgpio(desc); 3416 3417 __set_bit(hwgpio, mask); 3418 i++; 3419 3420 if (array_info) 3421 i = find_next_zero_bit(array_info->get_mask, 3422 array_size, i); 3423 } while ((i < array_size) && 3424 gpio_device_chip_cmp(desc_array[i]->gdev, guard.gc)); 3425 3426 ret = gpio_chip_get_multiple(guard.gc, mask, bits); 3427 if (ret) { 3428 if (mask != fastpath_mask) 3429 bitmap_free(mask); 3430 if (bits != fastpath_bits) 3431 bitmap_free(bits); 3432 return ret; 3433 } 3434 3435 for (j = first; j < i; ) { 3436 const struct gpio_desc *desc = desc_array[j]; 3437 int hwgpio = gpio_chip_hwgpio(desc); 3438 int value = test_bit(hwgpio, bits); 3439 3440 if (!raw && test_bit(FLAG_ACTIVE_LOW, &desc->flags)) 3441 value = !value; 3442 __assign_bit(j, value_bitmap, value); 3443 trace_gpio_value(desc_to_gpio(desc), 1, value); 3444 j++; 3445 3446 if (array_info) 3447 j = find_next_zero_bit(array_info->get_mask, i, 3448 j); 3449 } 3450 3451 if (mask != fastpath_mask) 3452 bitmap_free(mask); 3453 if (bits != fastpath_bits) 3454 bitmap_free(bits); 3455 } 3456 return 0; 3457 } 3458 3459 /** 3460 * gpiod_get_raw_value() - return a gpio's raw value 3461 * @desc: gpio whose value will be returned 3462 * 3463 * Returns: 3464 * The GPIO's raw value, i.e. the value of the physical line disregarding 3465 * its ACTIVE_LOW status, or negative errno on failure. 3466 * 3467 * This function can be called from contexts where we cannot sleep, and will 3468 * complain if the GPIO chip functions potentially sleep. 3469 */ 3470 int gpiod_get_raw_value(const struct gpio_desc *desc) 3471 { 3472 VALIDATE_DESC(desc); 3473 /* Should be using gpiod_get_raw_value_cansleep() */ 3474 WARN_ON(desc->gdev->can_sleep); 3475 return gpiod_get_raw_value_commit(desc); 3476 } 3477 EXPORT_SYMBOL_GPL(gpiod_get_raw_value); 3478 3479 /** 3480 * gpiod_get_value() - return a gpio's value 3481 * @desc: gpio whose value will be returned 3482 * 3483 * Returns: 3484 * The GPIO's logical value, i.e. taking the ACTIVE_LOW status into 3485 * account, or negative errno on failure. 3486 * 3487 * This function can be called from contexts where we cannot sleep, and will 3488 * complain if the GPIO chip functions potentially sleep. 3489 */ 3490 int gpiod_get_value(const struct gpio_desc *desc) 3491 { 3492 int value; 3493 3494 VALIDATE_DESC(desc); 3495 /* Should be using gpiod_get_value_cansleep() */ 3496 WARN_ON(desc->gdev->can_sleep); 3497 3498 value = gpiod_get_raw_value_commit(desc); 3499 if (value < 0) 3500 return value; 3501 3502 if (test_bit(FLAG_ACTIVE_LOW, &desc->flags)) 3503 value = !value; 3504 3505 return value; 3506 } 3507 EXPORT_SYMBOL_GPL(gpiod_get_value); 3508 3509 /** 3510 * gpiod_get_raw_array_value() - read raw values from an array of GPIOs 3511 * @array_size: number of elements in the descriptor array / value bitmap 3512 * @desc_array: array of GPIO descriptors whose values will be read 3513 * @array_info: information on applicability of fast bitmap processing path 3514 * @value_bitmap: bitmap to store the read values 3515 * 3516 * Read the raw values of the GPIOs, i.e. the values of the physical lines 3517 * without regard for their ACTIVE_LOW status. 3518 * 3519 * This function can be called from contexts where we cannot sleep, 3520 * and it will complain if the GPIO chip functions potentially sleep. 3521 * 3522 * Returns: 3523 * 0 on success, or negative errno on failure. 3524 */ 3525 int gpiod_get_raw_array_value(unsigned int array_size, 3526 struct gpio_desc **desc_array, 3527 struct gpio_array *array_info, 3528 unsigned long *value_bitmap) 3529 { 3530 if (!desc_array) 3531 return -EINVAL; 3532 return gpiod_get_array_value_complex(true, false, array_size, 3533 desc_array, array_info, 3534 value_bitmap); 3535 } 3536 EXPORT_SYMBOL_GPL(gpiod_get_raw_array_value); 3537 3538 /** 3539 * gpiod_get_array_value() - read values from an array of GPIOs 3540 * @array_size: number of elements in the descriptor array / value bitmap 3541 * @desc_array: array of GPIO descriptors whose values will be read 3542 * @array_info: information on applicability of fast bitmap processing path 3543 * @value_bitmap: bitmap to store the read values 3544 * 3545 * Read the logical values of the GPIOs, i.e. taking their ACTIVE_LOW status 3546 * into account. 3547 * 3548 * This function can be called from contexts where we cannot sleep, 3549 * and it will complain if the GPIO chip functions potentially sleep. 3550 * 3551 * Returns: 3552 * 0 on success, or negative errno on failure. 3553 */ 3554 int gpiod_get_array_value(unsigned int array_size, 3555 struct gpio_desc **desc_array, 3556 struct gpio_array *array_info, 3557 unsigned long *value_bitmap) 3558 { 3559 if (!desc_array) 3560 return -EINVAL; 3561 return gpiod_get_array_value_complex(false, false, array_size, 3562 desc_array, array_info, 3563 value_bitmap); 3564 } 3565 EXPORT_SYMBOL_GPL(gpiod_get_array_value); 3566 3567 /* 3568 * gpio_set_open_drain_value_commit() - Set the open drain gpio's value. 3569 * @desc: gpio descriptor whose state need to be set. 3570 * @value: Non-zero for setting it HIGH otherwise it will set to LOW. 3571 */ 3572 static int gpio_set_open_drain_value_commit(struct gpio_desc *desc, bool value) 3573 { 3574 int ret = 0, offset = gpio_chip_hwgpio(desc); 3575 3576 CLASS(gpio_chip_guard, guard)(desc); 3577 if (!guard.gc) 3578 return -ENODEV; 3579 3580 if (value) { 3581 ret = gpiochip_direction_input(guard.gc, offset); 3582 } else { 3583 ret = gpiochip_direction_output(guard.gc, offset, 0); 3584 if (!ret) 3585 set_bit(FLAG_IS_OUT, &desc->flags); 3586 } 3587 trace_gpio_direction(desc_to_gpio(desc), value, ret); 3588 if (ret < 0) 3589 gpiod_err(desc, 3590 "%s: Error in set_value for open drain err %d\n", 3591 __func__, ret); 3592 3593 return ret; 3594 } 3595 3596 /* 3597 * _gpio_set_open_source_value() - Set the open source gpio's value. 3598 * @desc: gpio descriptor whose state need to be set. 3599 * @value: Non-zero for setting it HIGH otherwise it will set to LOW. 3600 */ 3601 static int gpio_set_open_source_value_commit(struct gpio_desc *desc, bool value) 3602 { 3603 int ret = 0, offset = gpio_chip_hwgpio(desc); 3604 3605 CLASS(gpio_chip_guard, guard)(desc); 3606 if (!guard.gc) 3607 return -ENODEV; 3608 3609 if (value) { 3610 ret = gpiochip_direction_output(guard.gc, offset, 1); 3611 if (!ret) 3612 set_bit(FLAG_IS_OUT, &desc->flags); 3613 } else { 3614 ret = gpiochip_direction_input(guard.gc, offset); 3615 } 3616 trace_gpio_direction(desc_to_gpio(desc), !value, ret); 3617 if (ret < 0) 3618 gpiod_err(desc, 3619 "%s: Error in set_value for open source err %d\n", 3620 __func__, ret); 3621 3622 return ret; 3623 } 3624 3625 static int gpiod_set_raw_value_commit(struct gpio_desc *desc, bool value) 3626 { 3627 if (unlikely(!test_bit(FLAG_IS_OUT, &desc->flags))) 3628 return -EPERM; 3629 3630 CLASS(gpio_chip_guard, guard)(desc); 3631 if (!guard.gc) 3632 return -ENODEV; 3633 3634 trace_gpio_value(desc_to_gpio(desc), 0, value); 3635 return gpiochip_set(guard.gc, gpio_chip_hwgpio(desc), value); 3636 } 3637 3638 /* 3639 * set multiple outputs on the same chip; 3640 * use the chip's set_multiple function if available; 3641 * otherwise set the outputs sequentially; 3642 * @chip: the GPIO chip we operate on 3643 * @mask: bit mask array; one bit per output; BITS_PER_LONG bits per word 3644 * defines which outputs are to be changed 3645 * @bits: bit value array; one bit per output; BITS_PER_LONG bits per word 3646 * defines the values the outputs specified by mask are to be set to 3647 * 3648 * Returns: 0 on success, negative error number on failure. 3649 */ 3650 static int gpiochip_set_multiple(struct gpio_chip *gc, 3651 unsigned long *mask, unsigned long *bits) 3652 { 3653 unsigned int i; 3654 int ret; 3655 3656 lockdep_assert_held(&gc->gpiodev->srcu); 3657 3658 if (gc->set_multiple) { 3659 ret = gc->set_multiple(gc, mask, bits); 3660 if (ret > 0) 3661 ret = -EBADE; 3662 3663 return ret; 3664 } 3665 3666 /* set outputs if the corresponding mask bit is set */ 3667 for_each_set_bit(i, mask, gc->ngpio) { 3668 ret = gpiochip_set(gc, i, test_bit(i, bits)); 3669 if (ret) 3670 break; 3671 } 3672 3673 return ret; 3674 } 3675 3676 int gpiod_set_array_value_complex(bool raw, bool can_sleep, 3677 unsigned int array_size, 3678 struct gpio_desc **desc_array, 3679 struct gpio_array *array_info, 3680 unsigned long *value_bitmap) 3681 { 3682 struct gpio_chip *gc; 3683 int i = 0, ret; 3684 3685 /* 3686 * Validate array_info against desc_array and its size. 3687 * It should immediately follow desc_array if both 3688 * have been obtained from the same gpiod_get_array() call. 3689 */ 3690 if (array_info && array_info->desc == desc_array && 3691 array_size <= array_info->size && 3692 (void *)array_info == desc_array + array_info->size) { 3693 if (!can_sleep) 3694 WARN_ON(array_info->gdev->can_sleep); 3695 3696 for (i = 0; i < array_size; i++) { 3697 if (unlikely(!test_bit(FLAG_IS_OUT, 3698 &desc_array[i]->flags))) 3699 return -EPERM; 3700 } 3701 3702 guard(srcu)(&array_info->gdev->srcu); 3703 gc = srcu_dereference(array_info->gdev->chip, 3704 &array_info->gdev->srcu); 3705 if (!gc) 3706 return -ENODEV; 3707 3708 if (!raw && !bitmap_empty(array_info->invert_mask, array_size)) 3709 bitmap_xor(value_bitmap, value_bitmap, 3710 array_info->invert_mask, array_size); 3711 3712 ret = gpiochip_set_multiple(gc, array_info->set_mask, 3713 value_bitmap); 3714 if (ret) 3715 return ret; 3716 3717 i = find_first_zero_bit(array_info->set_mask, array_size); 3718 if (i == array_size) 3719 return 0; 3720 } else { 3721 array_info = NULL; 3722 } 3723 3724 while (i < array_size) { 3725 DECLARE_BITMAP(fastpath_mask, FASTPATH_NGPIO); 3726 DECLARE_BITMAP(fastpath_bits, FASTPATH_NGPIO); 3727 unsigned long *mask, *bits; 3728 int count = 0; 3729 3730 CLASS(gpio_chip_guard, guard)(desc_array[i]); 3731 if (!guard.gc) 3732 return -ENODEV; 3733 3734 if (likely(guard.gc->ngpio <= FASTPATH_NGPIO)) { 3735 mask = fastpath_mask; 3736 bits = fastpath_bits; 3737 } else { 3738 gfp_t flags = can_sleep ? GFP_KERNEL : GFP_ATOMIC; 3739 3740 mask = bitmap_alloc(guard.gc->ngpio, flags); 3741 if (!mask) 3742 return -ENOMEM; 3743 3744 bits = bitmap_alloc(guard.gc->ngpio, flags); 3745 if (!bits) { 3746 bitmap_free(mask); 3747 return -ENOMEM; 3748 } 3749 } 3750 3751 bitmap_zero(mask, guard.gc->ngpio); 3752 3753 if (!can_sleep) 3754 WARN_ON(guard.gc->can_sleep); 3755 3756 do { 3757 struct gpio_desc *desc = desc_array[i]; 3758 int hwgpio = gpio_chip_hwgpio(desc); 3759 int value = test_bit(i, value_bitmap); 3760 3761 if (unlikely(!test_bit(FLAG_IS_OUT, &desc->flags))) 3762 return -EPERM; 3763 3764 /* 3765 * Pins applicable for fast input but not for 3766 * fast output processing may have been already 3767 * inverted inside the fast path, skip them. 3768 */ 3769 if (!raw && !(array_info && 3770 test_bit(i, array_info->invert_mask)) && 3771 test_bit(FLAG_ACTIVE_LOW, &desc->flags)) 3772 value = !value; 3773 trace_gpio_value(desc_to_gpio(desc), 0, value); 3774 /* 3775 * collect all normal outputs belonging to the same chip 3776 * open drain and open source outputs are set individually 3777 */ 3778 if (test_bit(FLAG_OPEN_DRAIN, &desc->flags) && !raw) { 3779 gpio_set_open_drain_value_commit(desc, value); 3780 } else if (test_bit(FLAG_OPEN_SOURCE, &desc->flags) && !raw) { 3781 gpio_set_open_source_value_commit(desc, value); 3782 } else { 3783 __set_bit(hwgpio, mask); 3784 __assign_bit(hwgpio, bits, value); 3785 count++; 3786 } 3787 i++; 3788 3789 if (array_info) 3790 i = find_next_zero_bit(array_info->set_mask, 3791 array_size, i); 3792 } while ((i < array_size) && 3793 gpio_device_chip_cmp(desc_array[i]->gdev, guard.gc)); 3794 /* push collected bits to outputs */ 3795 if (count != 0) { 3796 ret = gpiochip_set_multiple(guard.gc, mask, bits); 3797 if (ret) 3798 return ret; 3799 } 3800 3801 if (mask != fastpath_mask) 3802 bitmap_free(mask); 3803 if (bits != fastpath_bits) 3804 bitmap_free(bits); 3805 } 3806 return 0; 3807 } 3808 3809 /** 3810 * gpiod_set_raw_value() - assign a gpio's raw value 3811 * @desc: gpio whose value will be assigned 3812 * @value: value to assign 3813 * 3814 * Set the raw value of the GPIO, i.e. the value of its physical line without 3815 * regard for its ACTIVE_LOW status. 3816 * 3817 * This function can be called from contexts where we cannot sleep, and will 3818 * complain if the GPIO chip functions potentially sleep. 3819 * 3820 * Returns: 3821 * 0 on success, negative error number on failure. 3822 */ 3823 int gpiod_set_raw_value(struct gpio_desc *desc, int value) 3824 { 3825 VALIDATE_DESC(desc); 3826 /* Should be using gpiod_set_raw_value_cansleep() */ 3827 WARN_ON(desc->gdev->can_sleep); 3828 return gpiod_set_raw_value_commit(desc, value); 3829 } 3830 EXPORT_SYMBOL_GPL(gpiod_set_raw_value); 3831 3832 /** 3833 * gpiod_set_value_nocheck() - set a GPIO line value without checking 3834 * @desc: the descriptor to set the value on 3835 * @value: value to set 3836 * 3837 * This sets the value of a GPIO line backing a descriptor, applying 3838 * different semantic quirks like active low and open drain/source 3839 * handling. 3840 * 3841 * Returns: 3842 * 0 on success, negative error number on failure. 3843 */ 3844 static int gpiod_set_value_nocheck(struct gpio_desc *desc, int value) 3845 { 3846 if (test_bit(FLAG_ACTIVE_LOW, &desc->flags)) 3847 value = !value; 3848 3849 if (test_bit(FLAG_OPEN_DRAIN, &desc->flags)) 3850 return gpio_set_open_drain_value_commit(desc, value); 3851 else if (test_bit(FLAG_OPEN_SOURCE, &desc->flags)) 3852 return gpio_set_open_source_value_commit(desc, value); 3853 3854 return gpiod_set_raw_value_commit(desc, value); 3855 } 3856 3857 /** 3858 * gpiod_set_value() - assign a gpio's value 3859 * @desc: gpio whose value will be assigned 3860 * @value: value to assign 3861 * 3862 * Set the logical value of the GPIO, i.e. taking its ACTIVE_LOW, 3863 * OPEN_DRAIN and OPEN_SOURCE flags into account. 3864 * 3865 * This function can be called from contexts where we cannot sleep, and will 3866 * complain if the GPIO chip functions potentially sleep. 3867 * 3868 * Returns: 3869 * 0 on success, negative error number on failure. 3870 */ 3871 int gpiod_set_value(struct gpio_desc *desc, int value) 3872 { 3873 VALIDATE_DESC(desc); 3874 /* Should be using gpiod_set_value_cansleep() */ 3875 WARN_ON(desc->gdev->can_sleep); 3876 return gpiod_set_value_nocheck(desc, value); 3877 } 3878 EXPORT_SYMBOL_GPL(gpiod_set_value); 3879 3880 /** 3881 * gpiod_set_raw_array_value() - assign values to an array of GPIOs 3882 * @array_size: number of elements in the descriptor array / value bitmap 3883 * @desc_array: array of GPIO descriptors whose values will be assigned 3884 * @array_info: information on applicability of fast bitmap processing path 3885 * @value_bitmap: bitmap of values to assign 3886 * 3887 * Set the raw values of the GPIOs, i.e. the values of the physical lines 3888 * without regard for their ACTIVE_LOW status. 3889 * 3890 * This function can be called from contexts where we cannot sleep, and will 3891 * complain if the GPIO chip functions potentially sleep. 3892 * 3893 * Returns: 3894 * 0 on success, or negative errno on failure. 3895 */ 3896 int gpiod_set_raw_array_value(unsigned int array_size, 3897 struct gpio_desc **desc_array, 3898 struct gpio_array *array_info, 3899 unsigned long *value_bitmap) 3900 { 3901 if (!desc_array) 3902 return -EINVAL; 3903 return gpiod_set_array_value_complex(true, false, array_size, 3904 desc_array, array_info, value_bitmap); 3905 } 3906 EXPORT_SYMBOL_GPL(gpiod_set_raw_array_value); 3907 3908 /** 3909 * gpiod_set_array_value() - assign values to an array of GPIOs 3910 * @array_size: number of elements in the descriptor array / value bitmap 3911 * @desc_array: array of GPIO descriptors whose values will be assigned 3912 * @array_info: information on applicability of fast bitmap processing path 3913 * @value_bitmap: bitmap of values to assign 3914 * 3915 * Set the logical values of the GPIOs, i.e. taking their ACTIVE_LOW status 3916 * into account. 3917 * 3918 * This function can be called from contexts where we cannot sleep, and will 3919 * complain if the GPIO chip functions potentially sleep. 3920 * 3921 * Returns: 3922 * 0 on success, or negative errno on failure. 3923 */ 3924 int gpiod_set_array_value(unsigned int array_size, 3925 struct gpio_desc **desc_array, 3926 struct gpio_array *array_info, 3927 unsigned long *value_bitmap) 3928 { 3929 if (!desc_array) 3930 return -EINVAL; 3931 return gpiod_set_array_value_complex(false, false, array_size, 3932 desc_array, array_info, 3933 value_bitmap); 3934 } 3935 EXPORT_SYMBOL_GPL(gpiod_set_array_value); 3936 3937 /** 3938 * gpiod_cansleep() - report whether gpio value access may sleep 3939 * @desc: gpio to check 3940 * 3941 * Returns: 3942 * 0 for non-sleepable, 1 for sleepable, or an error code in case of error. 3943 */ 3944 int gpiod_cansleep(const struct gpio_desc *desc) 3945 { 3946 VALIDATE_DESC(desc); 3947 return desc->gdev->can_sleep; 3948 } 3949 EXPORT_SYMBOL_GPL(gpiod_cansleep); 3950 3951 /** 3952 * gpiod_set_consumer_name() - set the consumer name for the descriptor 3953 * @desc: gpio to set the consumer name on 3954 * @name: the new consumer name 3955 * 3956 * Returns: 3957 * 0 on success, or negative errno on failure. 3958 */ 3959 int gpiod_set_consumer_name(struct gpio_desc *desc, const char *name) 3960 { 3961 int ret; 3962 3963 VALIDATE_DESC(desc); 3964 3965 ret = desc_set_label(desc, name); 3966 if (ret == 0) 3967 gpiod_line_state_notify(desc, GPIO_V2_LINE_CHANGED_CONFIG); 3968 3969 return ret; 3970 } 3971 EXPORT_SYMBOL_GPL(gpiod_set_consumer_name); 3972 3973 /** 3974 * gpiod_to_irq() - return the IRQ corresponding to a GPIO 3975 * @desc: gpio whose IRQ will be returned (already requested) 3976 * 3977 * Returns: 3978 * The IRQ corresponding to the passed GPIO, or an error code in case of error. 3979 */ 3980 int gpiod_to_irq(const struct gpio_desc *desc) 3981 { 3982 struct gpio_device *gdev; 3983 struct gpio_chip *gc; 3984 int offset; 3985 int ret; 3986 3987 ret = validate_desc(desc, __func__); 3988 if (ret <= 0) 3989 return -EINVAL; 3990 3991 gdev = desc->gdev; 3992 /* FIXME Cannot use gpio_chip_guard due to const desc. */ 3993 guard(srcu)(&gdev->srcu); 3994 gc = srcu_dereference(gdev->chip, &gdev->srcu); 3995 if (!gc) 3996 return -ENODEV; 3997 3998 offset = gpio_chip_hwgpio(desc); 3999 if (gc->to_irq) { 4000 ret = gc->to_irq(gc, offset); 4001 if (ret) 4002 return ret; 4003 4004 /* Zero means NO_IRQ */ 4005 return -ENXIO; 4006 } 4007 #ifdef CONFIG_GPIOLIB_IRQCHIP 4008 if (gc->irq.chip) { 4009 /* 4010 * Avoid race condition with other code, which tries to lookup 4011 * an IRQ before the irqchip has been properly registered, 4012 * i.e. while gpiochip is still being brought up. 4013 */ 4014 return -EPROBE_DEFER; 4015 } 4016 #endif 4017 return -ENXIO; 4018 } 4019 EXPORT_SYMBOL_GPL(gpiod_to_irq); 4020 4021 /** 4022 * gpiochip_lock_as_irq() - lock a GPIO to be used as IRQ 4023 * @gc: the chip the GPIO to lock belongs to 4024 * @offset: the offset of the GPIO to lock as IRQ 4025 * 4026 * This is used directly by GPIO drivers that want to lock down 4027 * a certain GPIO line to be used for IRQs. 4028 * 4029 * Returns: 4030 * 0 on success, or negative errno on failure. 4031 */ 4032 int gpiochip_lock_as_irq(struct gpio_chip *gc, unsigned int offset) 4033 { 4034 struct gpio_desc *desc; 4035 4036 desc = gpiochip_get_desc(gc, offset); 4037 if (IS_ERR(desc)) 4038 return PTR_ERR(desc); 4039 4040 /* 4041 * If it's fast: flush the direction setting if something changed 4042 * behind our back 4043 */ 4044 if (!gc->can_sleep && gc->get_direction) { 4045 int dir = gpiod_get_direction(desc); 4046 4047 if (dir < 0) { 4048 chip_err(gc, "%s: cannot get GPIO direction\n", 4049 __func__); 4050 return dir; 4051 } 4052 } 4053 4054 /* To be valid for IRQ the line needs to be input or open drain */ 4055 if (test_bit(FLAG_IS_OUT, &desc->flags) && 4056 !test_bit(FLAG_OPEN_DRAIN, &desc->flags)) { 4057 chip_err(gc, 4058 "%s: tried to flag a GPIO set as output for IRQ\n", 4059 __func__); 4060 return -EIO; 4061 } 4062 4063 set_bit(FLAG_USED_AS_IRQ, &desc->flags); 4064 set_bit(FLAG_IRQ_IS_ENABLED, &desc->flags); 4065 4066 return 0; 4067 } 4068 EXPORT_SYMBOL_GPL(gpiochip_lock_as_irq); 4069 4070 /** 4071 * gpiochip_unlock_as_irq() - unlock a GPIO used as IRQ 4072 * @gc: the chip the GPIO to lock belongs to 4073 * @offset: the offset of the GPIO to lock as IRQ 4074 * 4075 * This is used directly by GPIO drivers that want to indicate 4076 * that a certain GPIO is no longer used exclusively for IRQ. 4077 */ 4078 void gpiochip_unlock_as_irq(struct gpio_chip *gc, unsigned int offset) 4079 { 4080 struct gpio_desc *desc; 4081 4082 desc = gpiochip_get_desc(gc, offset); 4083 if (IS_ERR(desc)) 4084 return; 4085 4086 clear_bit(FLAG_USED_AS_IRQ, &desc->flags); 4087 clear_bit(FLAG_IRQ_IS_ENABLED, &desc->flags); 4088 } 4089 EXPORT_SYMBOL_GPL(gpiochip_unlock_as_irq); 4090 4091 void gpiochip_disable_irq(struct gpio_chip *gc, unsigned int offset) 4092 { 4093 struct gpio_desc *desc = gpiochip_get_desc(gc, offset); 4094 4095 if (!IS_ERR(desc) && 4096 !WARN_ON(!test_bit(FLAG_USED_AS_IRQ, &desc->flags))) 4097 clear_bit(FLAG_IRQ_IS_ENABLED, &desc->flags); 4098 } 4099 EXPORT_SYMBOL_GPL(gpiochip_disable_irq); 4100 4101 void gpiochip_enable_irq(struct gpio_chip *gc, unsigned int offset) 4102 { 4103 struct gpio_desc *desc = gpiochip_get_desc(gc, offset); 4104 4105 if (!IS_ERR(desc) && 4106 !WARN_ON(!test_bit(FLAG_USED_AS_IRQ, &desc->flags))) { 4107 /* 4108 * We must not be output when using IRQ UNLESS we are 4109 * open drain. 4110 */ 4111 WARN_ON(test_bit(FLAG_IS_OUT, &desc->flags) && 4112 !test_bit(FLAG_OPEN_DRAIN, &desc->flags)); 4113 set_bit(FLAG_IRQ_IS_ENABLED, &desc->flags); 4114 } 4115 } 4116 EXPORT_SYMBOL_GPL(gpiochip_enable_irq); 4117 4118 bool gpiochip_line_is_irq(struct gpio_chip *gc, unsigned int offset) 4119 { 4120 if (offset >= gc->ngpio) 4121 return false; 4122 4123 return test_bit(FLAG_USED_AS_IRQ, &gc->gpiodev->descs[offset].flags); 4124 } 4125 EXPORT_SYMBOL_GPL(gpiochip_line_is_irq); 4126 4127 int gpiochip_reqres_irq(struct gpio_chip *gc, unsigned int offset) 4128 { 4129 int ret; 4130 4131 if (!try_module_get(gc->gpiodev->owner)) 4132 return -ENODEV; 4133 4134 ret = gpiochip_lock_as_irq(gc, offset); 4135 if (ret) { 4136 chip_err(gc, "unable to lock HW IRQ %u for IRQ\n", offset); 4137 module_put(gc->gpiodev->owner); 4138 return ret; 4139 } 4140 return 0; 4141 } 4142 EXPORT_SYMBOL_GPL(gpiochip_reqres_irq); 4143 4144 void gpiochip_relres_irq(struct gpio_chip *gc, unsigned int offset) 4145 { 4146 gpiochip_unlock_as_irq(gc, offset); 4147 module_put(gc->gpiodev->owner); 4148 } 4149 EXPORT_SYMBOL_GPL(gpiochip_relres_irq); 4150 4151 bool gpiochip_line_is_open_drain(struct gpio_chip *gc, unsigned int offset) 4152 { 4153 if (offset >= gc->ngpio) 4154 return false; 4155 4156 return test_bit(FLAG_OPEN_DRAIN, &gc->gpiodev->descs[offset].flags); 4157 } 4158 EXPORT_SYMBOL_GPL(gpiochip_line_is_open_drain); 4159 4160 bool gpiochip_line_is_open_source(struct gpio_chip *gc, unsigned int offset) 4161 { 4162 if (offset >= gc->ngpio) 4163 return false; 4164 4165 return test_bit(FLAG_OPEN_SOURCE, &gc->gpiodev->descs[offset].flags); 4166 } 4167 EXPORT_SYMBOL_GPL(gpiochip_line_is_open_source); 4168 4169 bool gpiochip_line_is_persistent(struct gpio_chip *gc, unsigned int offset) 4170 { 4171 if (offset >= gc->ngpio) 4172 return false; 4173 4174 return !test_bit(FLAG_TRANSITORY, &gc->gpiodev->descs[offset].flags); 4175 } 4176 EXPORT_SYMBOL_GPL(gpiochip_line_is_persistent); 4177 4178 /** 4179 * gpiod_get_raw_value_cansleep() - return a gpio's raw value 4180 * @desc: gpio whose value will be returned 4181 * 4182 * Returns: 4183 * The GPIO's raw value, i.e. the value of the physical line disregarding 4184 * its ACTIVE_LOW status, or negative errno on failure. 4185 * 4186 * This function is to be called from contexts that can sleep. 4187 */ 4188 int gpiod_get_raw_value_cansleep(const struct gpio_desc *desc) 4189 { 4190 might_sleep(); 4191 VALIDATE_DESC(desc); 4192 return gpiod_get_raw_value_commit(desc); 4193 } 4194 EXPORT_SYMBOL_GPL(gpiod_get_raw_value_cansleep); 4195 4196 /** 4197 * gpiod_get_value_cansleep() - return a gpio's value 4198 * @desc: gpio whose value will be returned 4199 * 4200 * Returns: 4201 * The GPIO's logical value, i.e. taking the ACTIVE_LOW status into 4202 * account, or negative errno on failure. 4203 * 4204 * This function is to be called from contexts that can sleep. 4205 */ 4206 int gpiod_get_value_cansleep(const struct gpio_desc *desc) 4207 { 4208 int value; 4209 4210 might_sleep(); 4211 VALIDATE_DESC(desc); 4212 value = gpiod_get_raw_value_commit(desc); 4213 if (value < 0) 4214 return value; 4215 4216 if (test_bit(FLAG_ACTIVE_LOW, &desc->flags)) 4217 value = !value; 4218 4219 return value; 4220 } 4221 EXPORT_SYMBOL_GPL(gpiod_get_value_cansleep); 4222 4223 /** 4224 * gpiod_get_raw_array_value_cansleep() - read raw values from an array of GPIOs 4225 * @array_size: number of elements in the descriptor array / value bitmap 4226 * @desc_array: array of GPIO descriptors whose values will be read 4227 * @array_info: information on applicability of fast bitmap processing path 4228 * @value_bitmap: bitmap to store the read values 4229 * 4230 * Read the raw values of the GPIOs, i.e. the values of the physical lines 4231 * without regard for their ACTIVE_LOW status. 4232 * 4233 * This function is to be called from contexts that can sleep. 4234 * 4235 * Returns: 4236 * 0 on success, or negative errno on failure. 4237 */ 4238 int gpiod_get_raw_array_value_cansleep(unsigned int array_size, 4239 struct gpio_desc **desc_array, 4240 struct gpio_array *array_info, 4241 unsigned long *value_bitmap) 4242 { 4243 might_sleep(); 4244 if (!desc_array) 4245 return -EINVAL; 4246 return gpiod_get_array_value_complex(true, true, array_size, 4247 desc_array, array_info, 4248 value_bitmap); 4249 } 4250 EXPORT_SYMBOL_GPL(gpiod_get_raw_array_value_cansleep); 4251 4252 /** 4253 * gpiod_get_array_value_cansleep() - read values from an array of GPIOs 4254 * @array_size: number of elements in the descriptor array / value bitmap 4255 * @desc_array: array of GPIO descriptors whose values will be read 4256 * @array_info: information on applicability of fast bitmap processing path 4257 * @value_bitmap: bitmap to store the read values 4258 * 4259 * Read the logical values of the GPIOs, i.e. taking their ACTIVE_LOW status 4260 * into account. 4261 * 4262 * This function is to be called from contexts that can sleep. 4263 * 4264 * Returns: 4265 * 0 on success, or negative errno on failure. 4266 */ 4267 int gpiod_get_array_value_cansleep(unsigned int array_size, 4268 struct gpio_desc **desc_array, 4269 struct gpio_array *array_info, 4270 unsigned long *value_bitmap) 4271 { 4272 might_sleep(); 4273 if (!desc_array) 4274 return -EINVAL; 4275 return gpiod_get_array_value_complex(false, true, array_size, 4276 desc_array, array_info, 4277 value_bitmap); 4278 } 4279 EXPORT_SYMBOL_GPL(gpiod_get_array_value_cansleep); 4280 4281 /** 4282 * gpiod_set_raw_value_cansleep() - assign a gpio's raw value 4283 * @desc: gpio whose value will be assigned 4284 * @value: value to assign 4285 * 4286 * Set the raw value of the GPIO, i.e. the value of its physical line without 4287 * regard for its ACTIVE_LOW status. 4288 * 4289 * This function is to be called from contexts that can sleep. 4290 * 4291 * Returns: 4292 * 0 on success, negative error number on failure. 4293 */ 4294 int gpiod_set_raw_value_cansleep(struct gpio_desc *desc, int value) 4295 { 4296 might_sleep(); 4297 VALIDATE_DESC(desc); 4298 return gpiod_set_raw_value_commit(desc, value); 4299 } 4300 EXPORT_SYMBOL_GPL(gpiod_set_raw_value_cansleep); 4301 4302 /** 4303 * gpiod_set_value_cansleep() - assign a gpio's value 4304 * @desc: gpio whose value will be assigned 4305 * @value: value to assign 4306 * 4307 * Set the logical value of the GPIO, i.e. taking its ACTIVE_LOW status into 4308 * account 4309 * 4310 * This function is to be called from contexts that can sleep. 4311 * 4312 * Returns: 4313 * 0 on success, negative error number on failure. 4314 */ 4315 int gpiod_set_value_cansleep(struct gpio_desc *desc, int value) 4316 { 4317 might_sleep(); 4318 VALIDATE_DESC(desc); 4319 return gpiod_set_value_nocheck(desc, value); 4320 } 4321 EXPORT_SYMBOL_GPL(gpiod_set_value_cansleep); 4322 4323 /** 4324 * gpiod_set_raw_array_value_cansleep() - assign values to an array of GPIOs 4325 * @array_size: number of elements in the descriptor array / value bitmap 4326 * @desc_array: array of GPIO descriptors whose values will be assigned 4327 * @array_info: information on applicability of fast bitmap processing path 4328 * @value_bitmap: bitmap of values to assign 4329 * 4330 * Set the raw values of the GPIOs, i.e. the values of the physical lines 4331 * without regard for their ACTIVE_LOW status. 4332 * 4333 * This function is to be called from contexts that can sleep. 4334 * 4335 * Returns: 4336 * 0 on success, or negative errno on failure. 4337 */ 4338 int gpiod_set_raw_array_value_cansleep(unsigned int array_size, 4339 struct gpio_desc **desc_array, 4340 struct gpio_array *array_info, 4341 unsigned long *value_bitmap) 4342 { 4343 might_sleep(); 4344 if (!desc_array) 4345 return -EINVAL; 4346 return gpiod_set_array_value_complex(true, true, array_size, desc_array, 4347 array_info, value_bitmap); 4348 } 4349 EXPORT_SYMBOL_GPL(gpiod_set_raw_array_value_cansleep); 4350 4351 /** 4352 * gpiod_add_lookup_tables() - register GPIO device consumers 4353 * @tables: list of tables of consumers to register 4354 * @n: number of tables in the list 4355 */ 4356 void gpiod_add_lookup_tables(struct gpiod_lookup_table **tables, size_t n) 4357 { 4358 unsigned int i; 4359 4360 guard(mutex)(&gpio_lookup_lock); 4361 4362 for (i = 0; i < n; i++) 4363 list_add_tail(&tables[i]->list, &gpio_lookup_list); 4364 } 4365 4366 /** 4367 * gpiod_set_array_value_cansleep() - assign values to an array of GPIOs 4368 * @array_size: number of elements in the descriptor array / value bitmap 4369 * @desc_array: array of GPIO descriptors whose values will be assigned 4370 * @array_info: information on applicability of fast bitmap processing path 4371 * @value_bitmap: bitmap of values to assign 4372 * 4373 * Set the logical values of the GPIOs, i.e. taking their ACTIVE_LOW status 4374 * into account. 4375 * 4376 * This function is to be called from contexts that can sleep. 4377 * 4378 * Returns: 4379 * 0 on success, or negative errno on failure. 4380 */ 4381 int gpiod_set_array_value_cansleep(unsigned int array_size, 4382 struct gpio_desc **desc_array, 4383 struct gpio_array *array_info, 4384 unsigned long *value_bitmap) 4385 { 4386 might_sleep(); 4387 if (!desc_array) 4388 return -EINVAL; 4389 return gpiod_set_array_value_complex(false, true, array_size, 4390 desc_array, array_info, 4391 value_bitmap); 4392 } 4393 EXPORT_SYMBOL_GPL(gpiod_set_array_value_cansleep); 4394 4395 void gpiod_line_state_notify(struct gpio_desc *desc, unsigned long action) 4396 { 4397 guard(read_lock_irqsave)(&desc->gdev->line_state_lock); 4398 4399 raw_notifier_call_chain(&desc->gdev->line_state_notifier, action, desc); 4400 } 4401 4402 /** 4403 * gpiod_add_lookup_table() - register GPIO device consumers 4404 * @table: table of consumers to register 4405 */ 4406 void gpiod_add_lookup_table(struct gpiod_lookup_table *table) 4407 { 4408 gpiod_add_lookup_tables(&table, 1); 4409 } 4410 EXPORT_SYMBOL_GPL(gpiod_add_lookup_table); 4411 4412 /** 4413 * gpiod_remove_lookup_table() - unregister GPIO device consumers 4414 * @table: table of consumers to unregister 4415 */ 4416 void gpiod_remove_lookup_table(struct gpiod_lookup_table *table) 4417 { 4418 /* Nothing to remove */ 4419 if (!table) 4420 return; 4421 4422 guard(mutex)(&gpio_lookup_lock); 4423 4424 list_del(&table->list); 4425 } 4426 EXPORT_SYMBOL_GPL(gpiod_remove_lookup_table); 4427 4428 /** 4429 * gpiod_add_hogs() - register a set of GPIO hogs from machine code 4430 * @hogs: table of gpio hog entries with a zeroed sentinel at the end 4431 */ 4432 void gpiod_add_hogs(struct gpiod_hog *hogs) 4433 { 4434 struct gpiod_hog *hog; 4435 4436 guard(mutex)(&gpio_machine_hogs_mutex); 4437 4438 for (hog = &hogs[0]; hog->chip_label; hog++) { 4439 list_add_tail(&hog->list, &gpio_machine_hogs); 4440 4441 /* 4442 * The chip may have been registered earlier, so check if it 4443 * exists and, if so, try to hog the line now. 4444 */ 4445 struct gpio_device *gdev __free(gpio_device_put) = 4446 gpio_device_find_by_label(hog->chip_label); 4447 if (gdev) 4448 gpiochip_machine_hog(gpio_device_get_chip(gdev), hog); 4449 } 4450 } 4451 EXPORT_SYMBOL_GPL(gpiod_add_hogs); 4452 4453 void gpiod_remove_hogs(struct gpiod_hog *hogs) 4454 { 4455 struct gpiod_hog *hog; 4456 4457 guard(mutex)(&gpio_machine_hogs_mutex); 4458 4459 for (hog = &hogs[0]; hog->chip_label; hog++) 4460 list_del(&hog->list); 4461 } 4462 EXPORT_SYMBOL_GPL(gpiod_remove_hogs); 4463 4464 static struct gpiod_lookup_table *gpiod_find_lookup_table(struct device *dev) 4465 { 4466 const char *dev_id = dev ? dev_name(dev) : NULL; 4467 struct gpiod_lookup_table *table; 4468 4469 list_for_each_entry(table, &gpio_lookup_list, list) { 4470 if (table->dev_id && dev_id) { 4471 /* 4472 * Valid strings on both ends, must be identical to have 4473 * a match 4474 */ 4475 if (!strcmp(table->dev_id, dev_id)) 4476 return table; 4477 } else { 4478 /* 4479 * One of the pointers is NULL, so both must be to have 4480 * a match 4481 */ 4482 if (dev_id == table->dev_id) 4483 return table; 4484 } 4485 } 4486 4487 return NULL; 4488 } 4489 4490 static struct gpio_desc *gpiod_find(struct device *dev, const char *con_id, 4491 unsigned int idx, unsigned long *flags) 4492 { 4493 struct gpio_desc *desc = ERR_PTR(-ENOENT); 4494 struct gpiod_lookup_table *table; 4495 struct gpiod_lookup *p; 4496 struct gpio_chip *gc; 4497 4498 guard(mutex)(&gpio_lookup_lock); 4499 4500 table = gpiod_find_lookup_table(dev); 4501 if (!table) 4502 return desc; 4503 4504 for (p = &table->table[0]; p->key; p++) { 4505 /* idx must always match exactly */ 4506 if (p->idx != idx) 4507 continue; 4508 4509 /* If the lookup entry has a con_id, require exact match */ 4510 if (p->con_id && (!con_id || strcmp(p->con_id, con_id))) 4511 continue; 4512 4513 if (p->chip_hwnum == U16_MAX) { 4514 desc = gpio_name_to_desc(p->key); 4515 if (desc) { 4516 *flags = p->flags; 4517 return desc; 4518 } 4519 4520 dev_warn(dev, "cannot find GPIO line %s, deferring\n", 4521 p->key); 4522 return ERR_PTR(-EPROBE_DEFER); 4523 } 4524 4525 struct gpio_device *gdev __free(gpio_device_put) = 4526 gpio_device_find_by_label(p->key); 4527 if (!gdev) { 4528 /* 4529 * As the lookup table indicates a chip with 4530 * p->key should exist, assume it may 4531 * still appear later and let the interested 4532 * consumer be probed again or let the Deferred 4533 * Probe infrastructure handle the error. 4534 */ 4535 dev_warn(dev, "cannot find GPIO chip %s, deferring\n", 4536 p->key); 4537 return ERR_PTR(-EPROBE_DEFER); 4538 } 4539 4540 gc = gpio_device_get_chip(gdev); 4541 4542 if (gc->ngpio <= p->chip_hwnum) { 4543 dev_err(dev, 4544 "requested GPIO %u (%u) is out of range [0..%u] for chip %s\n", 4545 idx, p->chip_hwnum, gc->ngpio - 1, 4546 gc->label); 4547 return ERR_PTR(-EINVAL); 4548 } 4549 4550 desc = gpio_device_get_desc(gdev, p->chip_hwnum); 4551 *flags = p->flags; 4552 4553 return desc; 4554 } 4555 4556 return desc; 4557 } 4558 4559 static int platform_gpio_count(struct device *dev, const char *con_id) 4560 { 4561 struct gpiod_lookup_table *table; 4562 struct gpiod_lookup *p; 4563 unsigned int count = 0; 4564 4565 scoped_guard(mutex, &gpio_lookup_lock) { 4566 table = gpiod_find_lookup_table(dev); 4567 if (!table) 4568 return -ENOENT; 4569 4570 for (p = &table->table[0]; p->key; p++) { 4571 if ((con_id && p->con_id && !strcmp(con_id, p->con_id)) || 4572 (!con_id && !p->con_id)) 4573 count++; 4574 } 4575 } 4576 4577 if (!count) 4578 return -ENOENT; 4579 4580 return count; 4581 } 4582 4583 static struct gpio_desc *gpiod_find_by_fwnode(struct fwnode_handle *fwnode, 4584 struct device *consumer, 4585 const char *con_id, 4586 unsigned int idx, 4587 enum gpiod_flags *flags, 4588 unsigned long *lookupflags) 4589 { 4590 const char *name = function_name_or_default(con_id); 4591 struct gpio_desc *desc = ERR_PTR(-ENOENT); 4592 4593 if (is_of_node(fwnode)) { 4594 dev_dbg(consumer, "using DT '%pfw' for '%s' GPIO lookup\n", fwnode, name); 4595 desc = of_find_gpio(to_of_node(fwnode), con_id, idx, lookupflags); 4596 } else if (is_acpi_node(fwnode)) { 4597 dev_dbg(consumer, "using ACPI '%pfw' for '%s' GPIO lookup\n", fwnode, name); 4598 desc = acpi_find_gpio(fwnode, con_id, idx, flags, lookupflags); 4599 } else if (is_software_node(fwnode)) { 4600 dev_dbg(consumer, "using swnode '%pfw' for '%s' GPIO lookup\n", fwnode, name); 4601 desc = swnode_find_gpio(fwnode, con_id, idx, lookupflags); 4602 } 4603 4604 return desc; 4605 } 4606 4607 struct gpio_desc *gpiod_find_and_request(struct device *consumer, 4608 struct fwnode_handle *fwnode, 4609 const char *con_id, 4610 unsigned int idx, 4611 enum gpiod_flags flags, 4612 const char *label, 4613 bool platform_lookup_allowed) 4614 { 4615 unsigned long lookupflags = GPIO_LOOKUP_FLAGS_DEFAULT; 4616 const char *name = function_name_or_default(con_id); 4617 /* 4618 * scoped_guard() is implemented as a for loop, meaning static 4619 * analyzers will complain about these two not being initialized. 4620 */ 4621 struct gpio_desc *desc = NULL; 4622 int ret = 0; 4623 4624 scoped_guard(srcu, &gpio_devices_srcu) { 4625 desc = gpiod_find_by_fwnode(fwnode, consumer, con_id, idx, 4626 &flags, &lookupflags); 4627 if (gpiod_not_found(desc) && platform_lookup_allowed) { 4628 /* 4629 * Either we are not using DT or ACPI, or their lookup 4630 * did not return a result. In that case, use platform 4631 * lookup as a fallback. 4632 */ 4633 dev_dbg(consumer, 4634 "using lookup tables for GPIO lookup\n"); 4635 desc = gpiod_find(consumer, con_id, idx, &lookupflags); 4636 } 4637 4638 if (IS_ERR(desc)) { 4639 dev_dbg(consumer, "No GPIO consumer %s found\n", name); 4640 return desc; 4641 } 4642 4643 /* 4644 * If a connection label was passed use that, else attempt to use 4645 * the device name as label 4646 */ 4647 ret = gpiod_request(desc, label); 4648 } 4649 if (ret) { 4650 if (!(ret == -EBUSY && flags & GPIOD_FLAGS_BIT_NONEXCLUSIVE)) 4651 return ERR_PTR(ret); 4652 4653 /* 4654 * This happens when there are several consumers for 4655 * the same GPIO line: we just return here without 4656 * further initialization. It is a bit of a hack. 4657 * This is necessary to support fixed regulators. 4658 * 4659 * FIXME: Make this more sane and safe. 4660 */ 4661 dev_info(consumer, "nonexclusive access to GPIO for %s\n", name); 4662 return desc; 4663 } 4664 4665 ret = gpiod_configure_flags(desc, con_id, lookupflags, flags); 4666 if (ret < 0) { 4667 gpiod_put(desc); 4668 dev_err(consumer, "setup of GPIO %s failed: %d\n", name, ret); 4669 return ERR_PTR(ret); 4670 } 4671 4672 gpiod_line_state_notify(desc, GPIO_V2_LINE_CHANGED_REQUESTED); 4673 4674 return desc; 4675 } 4676 4677 /** 4678 * fwnode_gpiod_get_index - obtain a GPIO from firmware node 4679 * @fwnode: handle of the firmware node 4680 * @con_id: function within the GPIO consumer 4681 * @index: index of the GPIO to obtain for the consumer 4682 * @flags: GPIO initialization flags 4683 * @label: label to attach to the requested GPIO 4684 * 4685 * This function can be used for drivers that get their configuration 4686 * from opaque firmware. 4687 * 4688 * The function properly finds the corresponding GPIO using whatever is the 4689 * underlying firmware interface and then makes sure that the GPIO 4690 * descriptor is requested before it is returned to the caller. 4691 * 4692 * Returns: 4693 * On successful request the GPIO pin is configured in accordance with 4694 * provided @flags. 4695 * 4696 * In case of error an ERR_PTR() is returned. 4697 */ 4698 struct gpio_desc *fwnode_gpiod_get_index(struct fwnode_handle *fwnode, 4699 const char *con_id, 4700 int index, 4701 enum gpiod_flags flags, 4702 const char *label) 4703 { 4704 return gpiod_find_and_request(NULL, fwnode, con_id, index, flags, label, false); 4705 } 4706 EXPORT_SYMBOL_GPL(fwnode_gpiod_get_index); 4707 4708 /** 4709 * gpiod_count - return the number of GPIOs associated with a device / function 4710 * @dev: GPIO consumer, can be NULL for system-global GPIOs 4711 * @con_id: function within the GPIO consumer 4712 * 4713 * Returns: 4714 * The number of GPIOs associated with a device / function or -ENOENT if no 4715 * GPIO has been assigned to the requested function. 4716 */ 4717 int gpiod_count(struct device *dev, const char *con_id) 4718 { 4719 const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL; 4720 int count = -ENOENT; 4721 4722 if (is_of_node(fwnode)) 4723 count = of_gpio_count(fwnode, con_id); 4724 else if (is_acpi_node(fwnode)) 4725 count = acpi_gpio_count(fwnode, con_id); 4726 else if (is_software_node(fwnode)) 4727 count = swnode_gpio_count(fwnode, con_id); 4728 4729 if (count < 0) 4730 count = platform_gpio_count(dev, con_id); 4731 4732 return count; 4733 } 4734 EXPORT_SYMBOL_GPL(gpiod_count); 4735 4736 /** 4737 * gpiod_get - obtain a GPIO for a given GPIO function 4738 * @dev: GPIO consumer, can be NULL for system-global GPIOs 4739 * @con_id: function within the GPIO consumer 4740 * @flags: optional GPIO initialization flags 4741 * 4742 * Returns: 4743 * The GPIO descriptor corresponding to the function @con_id of device 4744 * dev, -ENOENT if no GPIO has been assigned to the requested function, or 4745 * another IS_ERR() code if an error occurred while trying to acquire the GPIO. 4746 */ 4747 struct gpio_desc *__must_check gpiod_get(struct device *dev, const char *con_id, 4748 enum gpiod_flags flags) 4749 { 4750 return gpiod_get_index(dev, con_id, 0, flags); 4751 } 4752 EXPORT_SYMBOL_GPL(gpiod_get); 4753 4754 /** 4755 * gpiod_get_optional - obtain an optional GPIO for a given GPIO function 4756 * @dev: GPIO consumer, can be NULL for system-global GPIOs 4757 * @con_id: function within the GPIO consumer 4758 * @flags: optional GPIO initialization flags 4759 * 4760 * This is equivalent to gpiod_get(), except that when no GPIO was assigned to 4761 * the requested function it will return NULL. This is convenient for drivers 4762 * that need to handle optional GPIOs. 4763 * 4764 * Returns: 4765 * The GPIO descriptor corresponding to the function @con_id of device 4766 * dev, NULL if no GPIO has been assigned to the requested function, or 4767 * another IS_ERR() code if an error occurred while trying to acquire the GPIO. 4768 */ 4769 struct gpio_desc *__must_check gpiod_get_optional(struct device *dev, 4770 const char *con_id, 4771 enum gpiod_flags flags) 4772 { 4773 return gpiod_get_index_optional(dev, con_id, 0, flags); 4774 } 4775 EXPORT_SYMBOL_GPL(gpiod_get_optional); 4776 4777 4778 /** 4779 * gpiod_configure_flags - helper function to configure a given GPIO 4780 * @desc: gpio whose value will be assigned 4781 * @con_id: function within the GPIO consumer 4782 * @lflags: bitmask of gpio_lookup_flags GPIO_* values - returned from 4783 * of_find_gpio() or of_get_gpio_hog() 4784 * @dflags: gpiod_flags - optional GPIO initialization flags 4785 * 4786 * Returns: 4787 * 0 on success, -ENOENT if no GPIO has been assigned to the 4788 * requested function and/or index, or another IS_ERR() code if an error 4789 * occurred while trying to acquire the GPIO. 4790 */ 4791 int gpiod_configure_flags(struct gpio_desc *desc, const char *con_id, 4792 unsigned long lflags, enum gpiod_flags dflags) 4793 { 4794 const char *name = function_name_or_default(con_id); 4795 int ret; 4796 4797 if (lflags & GPIO_ACTIVE_LOW) 4798 set_bit(FLAG_ACTIVE_LOW, &desc->flags); 4799 4800 if (lflags & GPIO_OPEN_DRAIN) 4801 set_bit(FLAG_OPEN_DRAIN, &desc->flags); 4802 else if (dflags & GPIOD_FLAGS_BIT_OPEN_DRAIN) { 4803 /* 4804 * This enforces open drain mode from the consumer side. 4805 * This is necessary for some busses like I2C, but the lookup 4806 * should *REALLY* have specified them as open drain in the 4807 * first place, so print a little warning here. 4808 */ 4809 set_bit(FLAG_OPEN_DRAIN, &desc->flags); 4810 gpiod_warn(desc, 4811 "enforced open drain please flag it properly in DT/ACPI DSDT/board file\n"); 4812 } 4813 4814 if (lflags & GPIO_OPEN_SOURCE) 4815 set_bit(FLAG_OPEN_SOURCE, &desc->flags); 4816 4817 if (((lflags & GPIO_PULL_UP) && (lflags & GPIO_PULL_DOWN)) || 4818 ((lflags & GPIO_PULL_UP) && (lflags & GPIO_PULL_DISABLE)) || 4819 ((lflags & GPIO_PULL_DOWN) && (lflags & GPIO_PULL_DISABLE))) { 4820 gpiod_err(desc, 4821 "multiple pull-up, pull-down or pull-disable enabled, invalid configuration\n"); 4822 return -EINVAL; 4823 } 4824 4825 if (lflags & GPIO_PULL_UP) 4826 set_bit(FLAG_PULL_UP, &desc->flags); 4827 else if (lflags & GPIO_PULL_DOWN) 4828 set_bit(FLAG_PULL_DOWN, &desc->flags); 4829 else if (lflags & GPIO_PULL_DISABLE) 4830 set_bit(FLAG_BIAS_DISABLE, &desc->flags); 4831 4832 ret = gpiod_set_transitory(desc, (lflags & GPIO_TRANSITORY)); 4833 if (ret < 0) 4834 return ret; 4835 4836 /* No particular flag request, return here... */ 4837 if (!(dflags & GPIOD_FLAGS_BIT_DIR_SET)) { 4838 gpiod_dbg(desc, "no flags found for GPIO %s\n", name); 4839 return 0; 4840 } 4841 4842 /* Process flags */ 4843 if (dflags & GPIOD_FLAGS_BIT_DIR_OUT) 4844 ret = gpiod_direction_output_nonotify(desc, 4845 !!(dflags & GPIOD_FLAGS_BIT_DIR_VAL)); 4846 else 4847 ret = gpiod_direction_input_nonotify(desc); 4848 4849 return ret; 4850 } 4851 4852 /** 4853 * gpiod_get_index - obtain a GPIO from a multi-index GPIO function 4854 * @dev: GPIO consumer, can be NULL for system-global GPIOs 4855 * @con_id: function within the GPIO consumer 4856 * @idx: index of the GPIO to obtain in the consumer 4857 * @flags: optional GPIO initialization flags 4858 * 4859 * This variant of gpiod_get() allows to access GPIOs other than the first 4860 * defined one for functions that define several GPIOs. 4861 * 4862 * Returns: 4863 * A valid GPIO descriptor, -ENOENT if no GPIO has been assigned to the 4864 * requested function and/or index, or another IS_ERR() code if an error 4865 * occurred while trying to acquire the GPIO. 4866 */ 4867 struct gpio_desc *__must_check gpiod_get_index(struct device *dev, 4868 const char *con_id, 4869 unsigned int idx, 4870 enum gpiod_flags flags) 4871 { 4872 struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL; 4873 const char *devname = dev ? dev_name(dev) : "?"; 4874 const char *label = con_id ?: devname; 4875 4876 return gpiod_find_and_request(dev, fwnode, con_id, idx, flags, label, true); 4877 } 4878 EXPORT_SYMBOL_GPL(gpiod_get_index); 4879 4880 /** 4881 * gpiod_get_index_optional - obtain an optional GPIO from a multi-index GPIO 4882 * function 4883 * @dev: GPIO consumer, can be NULL for system-global GPIOs 4884 * @con_id: function within the GPIO consumer 4885 * @index: index of the GPIO to obtain in the consumer 4886 * @flags: optional GPIO initialization flags 4887 * 4888 * This is equivalent to gpiod_get_index(), except that when no GPIO with the 4889 * specified index was assigned to the requested function it will return NULL. 4890 * This is convenient for drivers that need to handle optional GPIOs. 4891 * 4892 * Returns: 4893 * A valid GPIO descriptor, NULL if no GPIO has been assigned to the 4894 * requested function and/or index, or another IS_ERR() code if an error 4895 * occurred while trying to acquire the GPIO. 4896 */ 4897 struct gpio_desc *__must_check gpiod_get_index_optional(struct device *dev, 4898 const char *con_id, 4899 unsigned int index, 4900 enum gpiod_flags flags) 4901 { 4902 struct gpio_desc *desc; 4903 4904 desc = gpiod_get_index(dev, con_id, index, flags); 4905 if (gpiod_not_found(desc)) 4906 return NULL; 4907 4908 return desc; 4909 } 4910 EXPORT_SYMBOL_GPL(gpiod_get_index_optional); 4911 4912 /** 4913 * gpiod_hog - Hog the specified GPIO desc given the provided flags 4914 * @desc: gpio whose value will be assigned 4915 * @name: gpio line name 4916 * @lflags: bitmask of gpio_lookup_flags GPIO_* values - returned from 4917 * of_find_gpio() or of_get_gpio_hog() 4918 * @dflags: gpiod_flags - optional GPIO initialization flags 4919 * 4920 * Returns: 4921 * 0 on success, or negative errno on failure. 4922 */ 4923 int gpiod_hog(struct gpio_desc *desc, const char *name, 4924 unsigned long lflags, enum gpiod_flags dflags) 4925 { 4926 struct gpio_device *gdev = desc->gdev; 4927 struct gpio_desc *local_desc; 4928 int hwnum; 4929 int ret; 4930 4931 CLASS(gpio_chip_guard, guard)(desc); 4932 if (!guard.gc) 4933 return -ENODEV; 4934 4935 if (test_and_set_bit(FLAG_IS_HOGGED, &desc->flags)) 4936 return 0; 4937 4938 hwnum = gpio_chip_hwgpio(desc); 4939 4940 local_desc = gpiochip_request_own_desc(guard.gc, hwnum, name, 4941 lflags, dflags); 4942 if (IS_ERR(local_desc)) { 4943 clear_bit(FLAG_IS_HOGGED, &desc->flags); 4944 ret = PTR_ERR(local_desc); 4945 pr_err("requesting hog GPIO %s (chip %s, offset %d) failed, %d\n", 4946 name, gdev->label, hwnum, ret); 4947 return ret; 4948 } 4949 4950 gpiod_dbg(desc, "hogged as %s/%s\n", 4951 (dflags & GPIOD_FLAGS_BIT_DIR_OUT) ? "output" : "input", 4952 (dflags & GPIOD_FLAGS_BIT_DIR_OUT) ? 4953 str_high_low(dflags & GPIOD_FLAGS_BIT_DIR_VAL) : "?"); 4954 4955 return 0; 4956 } 4957 4958 /** 4959 * gpiochip_free_hogs - Scan gpio-controller chip and release GPIO hog 4960 * @gc: gpio chip to act on 4961 */ 4962 static void gpiochip_free_hogs(struct gpio_chip *gc) 4963 { 4964 struct gpio_desc *desc; 4965 4966 for_each_gpio_desc_with_flag(gc, desc, FLAG_IS_HOGGED) 4967 gpiochip_free_own_desc(desc); 4968 } 4969 4970 /** 4971 * gpiod_get_array - obtain multiple GPIOs from a multi-index GPIO function 4972 * @dev: GPIO consumer, can be NULL for system-global GPIOs 4973 * @con_id: function within the GPIO consumer 4974 * @flags: optional GPIO initialization flags 4975 * 4976 * This function acquires all the GPIOs defined under a given function. 4977 * 4978 * Returns: 4979 * The GPIO descriptors corresponding to the function @con_id of device 4980 * dev, -ENOENT if no GPIO has been assigned to the requested function, 4981 * or another IS_ERR() code if an error occurred while trying to acquire 4982 * the GPIOs. 4983 */ 4984 struct gpio_descs *__must_check gpiod_get_array(struct device *dev, 4985 const char *con_id, 4986 enum gpiod_flags flags) 4987 { 4988 struct gpio_desc *desc; 4989 struct gpio_descs *descs; 4990 struct gpio_device *gdev; 4991 struct gpio_array *array_info = NULL; 4992 int count, bitmap_size; 4993 unsigned long dflags; 4994 size_t descs_size; 4995 4996 count = gpiod_count(dev, con_id); 4997 if (count < 0) 4998 return ERR_PTR(count); 4999 5000 descs_size = struct_size(descs, desc, count); 5001 descs = kzalloc(descs_size, GFP_KERNEL); 5002 if (!descs) 5003 return ERR_PTR(-ENOMEM); 5004 5005 for (descs->ndescs = 0; descs->ndescs < count; descs->ndescs++) { 5006 desc = gpiod_get_index(dev, con_id, descs->ndescs, flags); 5007 if (IS_ERR(desc)) { 5008 gpiod_put_array(descs); 5009 return ERR_CAST(desc); 5010 } 5011 5012 descs->desc[descs->ndescs] = desc; 5013 5014 gdev = gpiod_to_gpio_device(desc); 5015 /* 5016 * If pin hardware number of array member 0 is also 0, select 5017 * its chip as a candidate for fast bitmap processing path. 5018 */ 5019 if (descs->ndescs == 0 && gpio_chip_hwgpio(desc) == 0) { 5020 struct gpio_descs *array; 5021 5022 bitmap_size = BITS_TO_LONGS(gdev->ngpio > count ? 5023 gdev->ngpio : count); 5024 5025 array = krealloc(descs, descs_size + 5026 struct_size(array_info, invert_mask, 3 * bitmap_size), 5027 GFP_KERNEL | __GFP_ZERO); 5028 if (!array) { 5029 gpiod_put_array(descs); 5030 return ERR_PTR(-ENOMEM); 5031 } 5032 5033 descs = array; 5034 5035 array_info = (void *)descs + descs_size; 5036 array_info->get_mask = array_info->invert_mask + 5037 bitmap_size; 5038 array_info->set_mask = array_info->get_mask + 5039 bitmap_size; 5040 5041 array_info->desc = descs->desc; 5042 array_info->size = count; 5043 array_info->gdev = gdev; 5044 bitmap_set(array_info->get_mask, descs->ndescs, 5045 count - descs->ndescs); 5046 bitmap_set(array_info->set_mask, descs->ndescs, 5047 count - descs->ndescs); 5048 descs->info = array_info; 5049 } 5050 5051 /* If there is no cache for fast bitmap processing path, continue */ 5052 if (!array_info) 5053 continue; 5054 5055 /* Unmark array members which don't belong to the 'fast' chip */ 5056 if (array_info->gdev != gdev) { 5057 __clear_bit(descs->ndescs, array_info->get_mask); 5058 __clear_bit(descs->ndescs, array_info->set_mask); 5059 } 5060 /* 5061 * Detect array members which belong to the 'fast' chip 5062 * but their pins are not in hardware order. 5063 */ 5064 else if (gpio_chip_hwgpio(desc) != descs->ndescs) { 5065 /* 5066 * Don't use fast path if all array members processed so 5067 * far belong to the same chip as this one but its pin 5068 * hardware number is different from its array index. 5069 */ 5070 if (bitmap_full(array_info->get_mask, descs->ndescs)) { 5071 array_info = NULL; 5072 } else { 5073 __clear_bit(descs->ndescs, 5074 array_info->get_mask); 5075 __clear_bit(descs->ndescs, 5076 array_info->set_mask); 5077 } 5078 } else { 5079 dflags = READ_ONCE(desc->flags); 5080 /* Exclude open drain or open source from fast output */ 5081 if (test_bit(FLAG_OPEN_DRAIN, &dflags) || 5082 test_bit(FLAG_OPEN_SOURCE, &dflags)) 5083 __clear_bit(descs->ndescs, 5084 array_info->set_mask); 5085 /* Identify 'fast' pins which require invertion */ 5086 if (gpiod_is_active_low(desc)) 5087 __set_bit(descs->ndescs, 5088 array_info->invert_mask); 5089 } 5090 } 5091 if (array_info) 5092 dev_dbg(dev, 5093 "GPIO array info: chip=%s, size=%d, get_mask=%lx, set_mask=%lx, invert_mask=%lx\n", 5094 array_info->gdev->label, array_info->size, 5095 *array_info->get_mask, *array_info->set_mask, 5096 *array_info->invert_mask); 5097 return descs; 5098 } 5099 EXPORT_SYMBOL_GPL(gpiod_get_array); 5100 5101 /** 5102 * gpiod_get_array_optional - obtain multiple GPIOs from a multi-index GPIO 5103 * function 5104 * @dev: GPIO consumer, can be NULL for system-global GPIOs 5105 * @con_id: function within the GPIO consumer 5106 * @flags: optional GPIO initialization flags 5107 * 5108 * This is equivalent to gpiod_get_array(), except that when no GPIO was 5109 * assigned to the requested function it will return NULL. 5110 * 5111 * Returns: 5112 * The GPIO descriptors corresponding to the function @con_id of device 5113 * dev, NULL if no GPIO has been assigned to the requested function, 5114 * or another IS_ERR() code if an error occurred while trying to acquire 5115 * the GPIOs. 5116 */ 5117 struct gpio_descs *__must_check gpiod_get_array_optional(struct device *dev, 5118 const char *con_id, 5119 enum gpiod_flags flags) 5120 { 5121 struct gpio_descs *descs; 5122 5123 descs = gpiod_get_array(dev, con_id, flags); 5124 if (gpiod_not_found(descs)) 5125 return NULL; 5126 5127 return descs; 5128 } 5129 EXPORT_SYMBOL_GPL(gpiod_get_array_optional); 5130 5131 /** 5132 * gpiod_put - dispose of a GPIO descriptor 5133 * @desc: GPIO descriptor to dispose of 5134 * 5135 * No descriptor can be used after gpiod_put() has been called on it. 5136 */ 5137 void gpiod_put(struct gpio_desc *desc) 5138 { 5139 gpiod_free(desc); 5140 } 5141 EXPORT_SYMBOL_GPL(gpiod_put); 5142 5143 /** 5144 * gpiod_put_array - dispose of multiple GPIO descriptors 5145 * @descs: struct gpio_descs containing an array of descriptors 5146 */ 5147 void gpiod_put_array(struct gpio_descs *descs) 5148 { 5149 unsigned int i; 5150 5151 for (i = 0; i < descs->ndescs; i++) 5152 gpiod_put(descs->desc[i]); 5153 5154 kfree(descs); 5155 } 5156 EXPORT_SYMBOL_GPL(gpiod_put_array); 5157 5158 static int gpio_stub_drv_probe(struct device *dev) 5159 { 5160 /* 5161 * The DT node of some GPIO chips have a "compatible" property, but 5162 * never have a struct device added and probed by a driver to register 5163 * the GPIO chip with gpiolib. In such cases, fw_devlink=on will cause 5164 * the consumers of the GPIO chip to get probe deferred forever because 5165 * they will be waiting for a device associated with the GPIO chip 5166 * firmware node to get added and bound to a driver. 5167 * 5168 * To allow these consumers to probe, we associate the struct 5169 * gpio_device of the GPIO chip with the firmware node and then simply 5170 * bind it to this stub driver. 5171 */ 5172 return 0; 5173 } 5174 5175 static struct device_driver gpio_stub_drv = { 5176 .name = "gpio_stub_drv", 5177 .bus = &gpio_bus_type, 5178 .probe = gpio_stub_drv_probe, 5179 }; 5180 5181 static int __init gpiolib_dev_init(void) 5182 { 5183 int ret; 5184 5185 /* Register GPIO sysfs bus */ 5186 ret = bus_register(&gpio_bus_type); 5187 if (ret < 0) { 5188 pr_err("gpiolib: could not register GPIO bus type\n"); 5189 return ret; 5190 } 5191 5192 ret = driver_register(&gpio_stub_drv); 5193 if (ret < 0) { 5194 pr_err("gpiolib: could not register GPIO stub driver\n"); 5195 bus_unregister(&gpio_bus_type); 5196 return ret; 5197 } 5198 5199 ret = alloc_chrdev_region(&gpio_devt, 0, GPIO_DEV_MAX, GPIOCHIP_NAME); 5200 if (ret < 0) { 5201 pr_err("gpiolib: failed to allocate char dev region\n"); 5202 driver_unregister(&gpio_stub_drv); 5203 bus_unregister(&gpio_bus_type); 5204 return ret; 5205 } 5206 5207 gpiolib_initialized = true; 5208 gpiochip_setup_devs(); 5209 5210 #if IS_ENABLED(CONFIG_OF_DYNAMIC) && IS_ENABLED(CONFIG_OF_GPIO) 5211 WARN_ON(of_reconfig_notifier_register(&gpio_of_notifier)); 5212 #endif /* CONFIG_OF_DYNAMIC && CONFIG_OF_GPIO */ 5213 5214 return ret; 5215 } 5216 core_initcall(gpiolib_dev_init); 5217 5218 #ifdef CONFIG_DEBUG_FS 5219 5220 static void gpiolib_dbg_show(struct seq_file *s, struct gpio_device *gdev) 5221 { 5222 bool active_low, is_irq, is_out; 5223 struct gpio_desc *desc; 5224 unsigned int gpio = 0; 5225 struct gpio_chip *gc; 5226 unsigned long flags; 5227 int value; 5228 5229 guard(srcu)(&gdev->srcu); 5230 5231 gc = srcu_dereference(gdev->chip, &gdev->srcu); 5232 if (!gc) { 5233 seq_puts(s, "Underlying GPIO chip is gone\n"); 5234 return; 5235 } 5236 5237 for_each_gpio_desc(gc, desc) { 5238 guard(srcu)(&desc->gdev->desc_srcu); 5239 flags = READ_ONCE(desc->flags); 5240 is_irq = test_bit(FLAG_USED_AS_IRQ, &flags); 5241 if (is_irq || test_bit(FLAG_REQUESTED, &flags)) { 5242 gpiod_get_direction(desc); 5243 is_out = test_bit(FLAG_IS_OUT, &flags); 5244 value = gpio_chip_get_value(gc, desc); 5245 active_low = test_bit(FLAG_ACTIVE_LOW, &flags); 5246 seq_printf(s, " gpio-%-3u (%-20.20s|%-20.20s) %s %s %s%s\n", 5247 gpio, desc->name ?: "", gpiod_get_label(desc), 5248 is_out ? "out" : "in ", 5249 value >= 0 ? str_hi_lo(value) : "? ", 5250 is_irq ? "IRQ " : "", 5251 active_low ? "ACTIVE LOW" : ""); 5252 } else if (desc->name) { 5253 seq_printf(s, " gpio-%-3u (%-20.20s)\n", gpio, desc->name); 5254 } 5255 5256 gpio++; 5257 } 5258 } 5259 5260 struct gpiolib_seq_priv { 5261 bool newline; 5262 int idx; 5263 }; 5264 5265 static void *gpiolib_seq_start(struct seq_file *s, loff_t *pos) 5266 { 5267 struct gpiolib_seq_priv *priv; 5268 struct gpio_device *gdev; 5269 loff_t index = *pos; 5270 5271 priv = kzalloc(sizeof(*priv), GFP_KERNEL); 5272 if (!priv) 5273 return NULL; 5274 5275 s->private = priv; 5276 if (*pos > 0) 5277 priv->newline = true; 5278 priv->idx = srcu_read_lock(&gpio_devices_srcu); 5279 5280 list_for_each_entry_srcu(gdev, &gpio_devices, list, 5281 srcu_read_lock_held(&gpio_devices_srcu)) { 5282 if (index-- == 0) 5283 return gdev; 5284 } 5285 5286 return NULL; 5287 } 5288 5289 static void *gpiolib_seq_next(struct seq_file *s, void *v, loff_t *pos) 5290 { 5291 struct gpiolib_seq_priv *priv = s->private; 5292 struct gpio_device *gdev = v, *next; 5293 5294 next = list_entry_rcu(gdev->list.next, struct gpio_device, list); 5295 gdev = &next->list == &gpio_devices ? NULL : next; 5296 priv->newline = true; 5297 ++*pos; 5298 5299 return gdev; 5300 } 5301 5302 static void gpiolib_seq_stop(struct seq_file *s, void *v) 5303 { 5304 struct gpiolib_seq_priv *priv = s->private; 5305 5306 srcu_read_unlock(&gpio_devices_srcu, priv->idx); 5307 kfree(priv); 5308 } 5309 5310 static int gpiolib_seq_show(struct seq_file *s, void *v) 5311 { 5312 struct gpiolib_seq_priv *priv = s->private; 5313 struct gpio_device *gdev = v; 5314 struct gpio_chip *gc; 5315 struct device *parent; 5316 5317 if (priv->newline) 5318 seq_putc(s, '\n'); 5319 5320 guard(srcu)(&gdev->srcu); 5321 5322 gc = srcu_dereference(gdev->chip, &gdev->srcu); 5323 if (!gc) { 5324 seq_printf(s, "%s: (dangling chip)\n", dev_name(&gdev->dev)); 5325 return 0; 5326 } 5327 5328 seq_printf(s, "%s: %u GPIOs", dev_name(&gdev->dev), gdev->ngpio); 5329 parent = gc->parent; 5330 if (parent) 5331 seq_printf(s, ", parent: %s/%s", 5332 parent->bus ? parent->bus->name : "no-bus", 5333 dev_name(parent)); 5334 if (gc->label) 5335 seq_printf(s, ", %s", gc->label); 5336 if (gc->can_sleep) 5337 seq_printf(s, ", can sleep"); 5338 seq_printf(s, ":\n"); 5339 5340 if (gc->dbg_show) 5341 gc->dbg_show(s, gc); 5342 else 5343 gpiolib_dbg_show(s, gdev); 5344 5345 return 0; 5346 } 5347 5348 static const struct seq_operations gpiolib_sops = { 5349 .start = gpiolib_seq_start, 5350 .next = gpiolib_seq_next, 5351 .stop = gpiolib_seq_stop, 5352 .show = gpiolib_seq_show, 5353 }; 5354 DEFINE_SEQ_ATTRIBUTE(gpiolib); 5355 5356 static int __init gpiolib_debugfs_init(void) 5357 { 5358 /* /sys/kernel/debug/gpio */ 5359 debugfs_create_file("gpio", 0444, NULL, NULL, &gpiolib_fops); 5360 return 0; 5361 } 5362 subsys_initcall(gpiolib_debugfs_init); 5363 5364 #endif /* DEBUG_FS */ 5365