1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/device.h> 4 #include <linux/err.h> 5 #include <linux/errno.h> 6 #include <linux/fs.h> 7 #include <linux/fsi-sbefifo.h> 8 #include <linux/gfp.h> 9 #include <linux/idr.h> 10 #include <linux/kernel.h> 11 #include <linux/list.h> 12 #include <linux/miscdevice.h> 13 #include <linux/mm.h> 14 #include <linux/module.h> 15 #include <linux/mutex.h> 16 #include <linux/fsi-occ.h> 17 #include <linux/of.h> 18 #include <linux/of_platform.h> 19 #include <linux/platform_device.h> 20 #include <linux/sched.h> 21 #include <linux/slab.h> 22 #include <linux/uaccess.h> 23 #include <linux/unaligned.h> 24 25 #define OCC_SRAM_BYTES 4096 26 #define OCC_CMD_DATA_BYTES 4090 27 #define OCC_RESP_DATA_BYTES 4089 28 29 #define OCC_P9_SRAM_CMD_ADDR 0xFFFBE000 30 #define OCC_P9_SRAM_RSP_ADDR 0xFFFBF000 31 32 #define OCC_P10_SRAM_CMD_ADDR 0xFFFFD000 33 #define OCC_P10_SRAM_RSP_ADDR 0xFFFFE000 34 35 #define OCC_P10_SRAM_MODE 0x58 /* Normal mode, OCB channel 2 */ 36 37 #define OCC_TIMEOUT_MS 1000 38 #define OCC_CMD_IN_PRG_WAIT_MS 50 39 40 enum versions { occ_p9, occ_p10 }; 41 42 struct occ { 43 struct device *dev; 44 struct device *sbefifo; 45 char name[32]; 46 int idx; 47 bool platform_hwmon; 48 u8 sequence_number; 49 void *buffer; 50 void *client_buffer; 51 size_t client_buffer_size; 52 size_t client_response_size; 53 enum versions version; 54 struct miscdevice mdev; 55 struct mutex occ_lock; 56 }; 57 58 #define to_occ(x) container_of((x), struct occ, mdev) 59 60 struct occ_response { 61 u8 seq_no; 62 u8 cmd_type; 63 u8 return_status; 64 __be16 data_length; 65 u8 data[OCC_RESP_DATA_BYTES + 2]; /* two bytes checksum */ 66 } __packed; 67 68 struct occ_client { 69 struct occ *occ; 70 struct mutex lock; 71 size_t data_size; 72 size_t read_offset; 73 u8 *buffer; 74 }; 75 76 #define to_client(x) container_of((x), struct occ_client, xfr) 77 78 static DEFINE_IDA(occ_ida); 79 80 static int occ_open(struct inode *inode, struct file *file) 81 { 82 struct occ_client *client = kzalloc(sizeof(*client), GFP_KERNEL); 83 struct miscdevice *mdev = file->private_data; 84 struct occ *occ = to_occ(mdev); 85 86 if (!client) 87 return -ENOMEM; 88 89 client->buffer = (u8 *)__get_free_page(GFP_KERNEL); 90 if (!client->buffer) { 91 kfree(client); 92 return -ENOMEM; 93 } 94 95 client->occ = occ; 96 mutex_init(&client->lock); 97 file->private_data = client; 98 get_device(occ->dev); 99 100 /* We allocate a 1-page buffer, make sure it all fits */ 101 BUILD_BUG_ON((OCC_CMD_DATA_BYTES + 3) > PAGE_SIZE); 102 BUILD_BUG_ON((OCC_RESP_DATA_BYTES + 7) > PAGE_SIZE); 103 104 return 0; 105 } 106 107 static ssize_t occ_read(struct file *file, char __user *buf, size_t len, 108 loff_t *offset) 109 { 110 struct occ_client *client = file->private_data; 111 ssize_t rc = 0; 112 113 if (!client) 114 return -ENODEV; 115 116 if (len > OCC_SRAM_BYTES) 117 return -EINVAL; 118 119 mutex_lock(&client->lock); 120 121 /* This should not be possible ... */ 122 if (WARN_ON_ONCE(client->read_offset > client->data_size)) { 123 rc = -EIO; 124 goto done; 125 } 126 127 /* Grab how much data we have to read */ 128 rc = min(len, client->data_size - client->read_offset); 129 if (copy_to_user(buf, client->buffer + client->read_offset, rc)) 130 rc = -EFAULT; 131 else 132 client->read_offset += rc; 133 134 done: 135 mutex_unlock(&client->lock); 136 137 return rc; 138 } 139 140 static ssize_t occ_write(struct file *file, const char __user *buf, 141 size_t len, loff_t *offset) 142 { 143 struct occ_client *client = file->private_data; 144 size_t rlen, data_length; 145 ssize_t rc; 146 u8 *cmd; 147 148 if (!client) 149 return -ENODEV; 150 151 if (len > (OCC_CMD_DATA_BYTES + 3) || len < 3) 152 return -EINVAL; 153 154 mutex_lock(&client->lock); 155 156 /* Construct the command */ 157 cmd = client->buffer; 158 159 /* 160 * Copy the user command (assume user data follows the occ command 161 * format) 162 * byte 0: command type 163 * bytes 1-2: data length (msb first) 164 * bytes 3-n: data 165 */ 166 if (copy_from_user(&cmd[1], buf, len)) { 167 rc = -EFAULT; 168 goto done; 169 } 170 171 /* Extract data length */ 172 data_length = (cmd[2] << 8) + cmd[3]; 173 if (data_length > OCC_CMD_DATA_BYTES) { 174 rc = -EINVAL; 175 goto done; 176 } 177 178 /* Submit command; 4 bytes before the data and 2 bytes after */ 179 rlen = PAGE_SIZE; 180 rc = fsi_occ_submit(client->occ->dev, cmd, data_length + 6, cmd, 181 &rlen); 182 if (rc) 183 goto done; 184 185 /* Set read tracking data */ 186 client->data_size = rlen; 187 client->read_offset = 0; 188 189 /* Done */ 190 rc = len; 191 192 done: 193 mutex_unlock(&client->lock); 194 195 return rc; 196 } 197 198 static int occ_release(struct inode *inode, struct file *file) 199 { 200 struct occ_client *client = file->private_data; 201 202 put_device(client->occ->dev); 203 free_page((unsigned long)client->buffer); 204 kfree(client); 205 206 return 0; 207 } 208 209 static const struct file_operations occ_fops = { 210 .owner = THIS_MODULE, 211 .open = occ_open, 212 .read = occ_read, 213 .write = occ_write, 214 .release = occ_release, 215 }; 216 217 static void occ_save_ffdc(struct occ *occ, __be32 *resp, size_t parsed_len, 218 size_t resp_len) 219 { 220 if (resp_len > parsed_len) { 221 size_t dh = resp_len - parsed_len; 222 size_t ffdc_len = (dh - 1) * 4; /* SBE words are four bytes */ 223 __be32 *ffdc = &resp[parsed_len]; 224 225 if (ffdc_len > occ->client_buffer_size) 226 ffdc_len = occ->client_buffer_size; 227 228 memcpy(occ->client_buffer, ffdc, ffdc_len); 229 occ->client_response_size = ffdc_len; 230 } 231 } 232 233 static int occ_verify_checksum(struct occ *occ, struct occ_response *resp, 234 u16 data_length) 235 { 236 /* Fetch the two bytes after the data for the checksum. */ 237 u16 checksum_resp = get_unaligned_be16(&resp->data[data_length]); 238 u16 checksum; 239 u16 i; 240 241 checksum = resp->seq_no; 242 checksum += resp->cmd_type; 243 checksum += resp->return_status; 244 checksum += (data_length >> 8) + (data_length & 0xFF); 245 246 for (i = 0; i < data_length; ++i) 247 checksum += resp->data[i]; 248 249 if (checksum != checksum_resp) { 250 dev_err(occ->dev, "Bad checksum: %04x!=%04x\n", checksum, 251 checksum_resp); 252 return -EBADE; 253 } 254 255 return 0; 256 } 257 258 static int occ_getsram(struct occ *occ, u32 offset, void *data, ssize_t len) 259 { 260 u32 data_len = ((len + 7) / 8) * 8; /* must be multiples of 8 B */ 261 size_t cmd_len, parsed_len, resp_data_len; 262 size_t resp_len = OCC_MAX_RESP_WORDS; 263 __be32 *resp = occ->buffer; 264 __be32 cmd[6]; 265 int idx = 0, rc; 266 267 /* 268 * Magic sequence to do SBE getsram command. SBE will fetch data from 269 * specified SRAM address. 270 */ 271 switch (occ->version) { 272 default: 273 case occ_p9: 274 cmd_len = 5; 275 cmd[2] = cpu_to_be32(1); /* Normal mode */ 276 cmd[3] = cpu_to_be32(OCC_P9_SRAM_RSP_ADDR + offset); 277 break; 278 case occ_p10: 279 idx = 1; 280 cmd_len = 6; 281 cmd[2] = cpu_to_be32(OCC_P10_SRAM_MODE); 282 cmd[3] = 0; 283 cmd[4] = cpu_to_be32(OCC_P10_SRAM_RSP_ADDR + offset); 284 break; 285 } 286 287 cmd[0] = cpu_to_be32(cmd_len); 288 cmd[1] = cpu_to_be32(SBEFIFO_CMD_GET_OCC_SRAM); 289 cmd[4 + idx] = cpu_to_be32(data_len); 290 291 rc = sbefifo_submit(occ->sbefifo, cmd, cmd_len, resp, &resp_len); 292 if (rc) 293 return rc; 294 295 rc = sbefifo_parse_status(occ->sbefifo, SBEFIFO_CMD_GET_OCC_SRAM, 296 resp, resp_len, &parsed_len); 297 if (rc > 0) { 298 dev_err(occ->dev, "SRAM read returned failure status: %08x\n", 299 rc); 300 occ_save_ffdc(occ, resp, parsed_len, resp_len); 301 return -ECOMM; 302 } else if (rc) { 303 return rc; 304 } 305 306 resp_data_len = be32_to_cpu(resp[parsed_len - 1]); 307 if (resp_data_len != data_len) { 308 dev_err(occ->dev, "SRAM read expected %d bytes got %zd\n", 309 data_len, resp_data_len); 310 rc = -EBADMSG; 311 } else { 312 memcpy(data, resp, len); 313 } 314 315 return rc; 316 } 317 318 static int occ_putsram(struct occ *occ, const void *data, ssize_t len, 319 u8 seq_no, u16 checksum) 320 { 321 u32 data_len = ((len + 7) / 8) * 8; /* must be multiples of 8 B */ 322 size_t cmd_len, parsed_len, resp_data_len; 323 size_t resp_len = OCC_MAX_RESP_WORDS; 324 __be32 *buf = occ->buffer; 325 u8 *byte_buf; 326 int idx = 0, rc; 327 328 cmd_len = (occ->version == occ_p10) ? 6 : 5; 329 cmd_len += data_len >> 2; 330 331 /* 332 * Magic sequence to do SBE putsram command. SBE will transfer 333 * data to specified SRAM address. 334 */ 335 buf[0] = cpu_to_be32(cmd_len); 336 buf[1] = cpu_to_be32(SBEFIFO_CMD_PUT_OCC_SRAM); 337 338 switch (occ->version) { 339 default: 340 case occ_p9: 341 buf[2] = cpu_to_be32(1); /* Normal mode */ 342 buf[3] = cpu_to_be32(OCC_P9_SRAM_CMD_ADDR); 343 break; 344 case occ_p10: 345 idx = 1; 346 buf[2] = cpu_to_be32(OCC_P10_SRAM_MODE); 347 buf[3] = 0; 348 buf[4] = cpu_to_be32(OCC_P10_SRAM_CMD_ADDR); 349 break; 350 } 351 352 buf[4 + idx] = cpu_to_be32(data_len); 353 memcpy(&buf[5 + idx], data, len); 354 355 byte_buf = (u8 *)&buf[5 + idx]; 356 /* 357 * Overwrite the first byte with our sequence number and the last two 358 * bytes with the checksum. 359 */ 360 byte_buf[0] = seq_no; 361 byte_buf[len - 2] = checksum >> 8; 362 byte_buf[len - 1] = checksum & 0xff; 363 364 rc = sbefifo_submit(occ->sbefifo, buf, cmd_len, buf, &resp_len); 365 if (rc) 366 return rc; 367 368 rc = sbefifo_parse_status(occ->sbefifo, SBEFIFO_CMD_PUT_OCC_SRAM, 369 buf, resp_len, &parsed_len); 370 if (rc > 0) { 371 dev_err(occ->dev, "SRAM write returned failure status: %08x\n", 372 rc); 373 occ_save_ffdc(occ, buf, parsed_len, resp_len); 374 return -ECOMM; 375 } else if (rc) { 376 return rc; 377 } 378 379 if (parsed_len != 1) { 380 dev_err(occ->dev, "SRAM write response length invalid: %zd\n", 381 parsed_len); 382 rc = -EBADMSG; 383 } else { 384 resp_data_len = be32_to_cpu(buf[0]); 385 if (resp_data_len != data_len) { 386 dev_err(occ->dev, 387 "SRAM write expected %d bytes got %zd\n", 388 data_len, resp_data_len); 389 rc = -EBADMSG; 390 } 391 } 392 393 return rc; 394 } 395 396 static int occ_trigger_attn(struct occ *occ) 397 { 398 __be32 *buf = occ->buffer; 399 size_t cmd_len, parsed_len, resp_data_len; 400 size_t resp_len = OCC_MAX_RESP_WORDS; 401 int idx = 0, rc; 402 403 switch (occ->version) { 404 default: 405 case occ_p9: 406 cmd_len = 7; 407 buf[2] = cpu_to_be32(3); /* Circular mode */ 408 buf[3] = 0; 409 break; 410 case occ_p10: 411 idx = 1; 412 cmd_len = 8; 413 buf[2] = cpu_to_be32(0xd0); /* Circular mode, OCB Channel 1 */ 414 buf[3] = 0; 415 buf[4] = 0; 416 break; 417 } 418 419 buf[0] = cpu_to_be32(cmd_len); /* Chip-op length in words */ 420 buf[1] = cpu_to_be32(SBEFIFO_CMD_PUT_OCC_SRAM); 421 buf[4 + idx] = cpu_to_be32(8); /* Data length in bytes */ 422 buf[5 + idx] = cpu_to_be32(0x20010000); /* Trigger OCC attention */ 423 buf[6 + idx] = 0; 424 425 rc = sbefifo_submit(occ->sbefifo, buf, cmd_len, buf, &resp_len); 426 if (rc) 427 return rc; 428 429 rc = sbefifo_parse_status(occ->sbefifo, SBEFIFO_CMD_PUT_OCC_SRAM, 430 buf, resp_len, &parsed_len); 431 if (rc > 0) { 432 dev_err(occ->dev, "SRAM attn returned failure status: %08x\n", 433 rc); 434 occ_save_ffdc(occ, buf, parsed_len, resp_len); 435 return -ECOMM; 436 } else if (rc) { 437 return rc; 438 } 439 440 if (parsed_len != 1) { 441 dev_err(occ->dev, "SRAM attn response length invalid: %zd\n", 442 parsed_len); 443 rc = -EBADMSG; 444 } else { 445 resp_data_len = be32_to_cpu(buf[0]); 446 if (resp_data_len != 8) { 447 dev_err(occ->dev, 448 "SRAM attn expected 8 bytes got %zd\n", 449 resp_data_len); 450 rc = -EBADMSG; 451 } 452 } 453 454 return rc; 455 } 456 457 static bool fsi_occ_response_not_ready(struct occ_response *resp, u8 seq_no, 458 u8 cmd_type) 459 { 460 return resp->return_status == OCC_RESP_CMD_IN_PRG || 461 resp->return_status == OCC_RESP_CRIT_INIT || 462 resp->seq_no != seq_no || resp->cmd_type != cmd_type; 463 } 464 465 int fsi_occ_submit(struct device *dev, const void *request, size_t req_len, 466 void *response, size_t *resp_len) 467 { 468 const unsigned long timeout = msecs_to_jiffies(OCC_TIMEOUT_MS); 469 const unsigned long wait_time = 470 msecs_to_jiffies(OCC_CMD_IN_PRG_WAIT_MS); 471 struct occ *occ = dev_get_drvdata(dev); 472 struct occ_response *resp = response; 473 size_t user_resp_len = *resp_len; 474 u8 seq_no; 475 u8 cmd_type; 476 u16 checksum = 0; 477 u16 resp_data_length; 478 const u8 *byte_request = (const u8 *)request; 479 unsigned long end; 480 int rc; 481 size_t i; 482 483 *resp_len = 0; 484 485 if (!occ) 486 return -ENODEV; 487 488 if (user_resp_len < 7) { 489 dev_dbg(dev, "Bad resplen %zd\n", user_resp_len); 490 return -EINVAL; 491 } 492 493 cmd_type = byte_request[1]; 494 495 /* Checksum the request, ignoring first byte (sequence number). */ 496 for (i = 1; i < req_len - 2; ++i) 497 checksum += byte_request[i]; 498 499 rc = mutex_lock_interruptible(&occ->occ_lock); 500 if (rc) 501 return rc; 502 503 occ->client_buffer = response; 504 occ->client_buffer_size = user_resp_len; 505 occ->client_response_size = 0; 506 507 if (!occ->buffer) { 508 rc = -ENOENT; 509 goto done; 510 } 511 512 /* 513 * Get a sequence number and update the counter. Avoid a sequence 514 * number of 0 which would pass the response check below even if the 515 * OCC response is uninitialized. Any sequence number the user is 516 * trying to send is overwritten since this function is the only common 517 * interface to the OCC and therefore the only place we can guarantee 518 * unique sequence numbers. 519 */ 520 seq_no = occ->sequence_number++; 521 if (!occ->sequence_number) 522 occ->sequence_number = 1; 523 checksum += seq_no; 524 525 rc = occ_putsram(occ, request, req_len, seq_no, checksum); 526 if (rc) 527 goto done; 528 529 rc = occ_trigger_attn(occ); 530 if (rc) 531 goto done; 532 533 end = jiffies + timeout; 534 while (true) { 535 /* Read occ response header */ 536 rc = occ_getsram(occ, 0, resp, 8); 537 if (rc) 538 goto done; 539 540 if (fsi_occ_response_not_ready(resp, seq_no, cmd_type)) { 541 if (time_after(jiffies, end)) { 542 dev_err(occ->dev, 543 "resp timeout status=%02x seq=%d cmd=%d, our seq=%d cmd=%d\n", 544 resp->return_status, resp->seq_no, 545 resp->cmd_type, seq_no, cmd_type); 546 rc = -ETIMEDOUT; 547 goto done; 548 } 549 550 set_current_state(TASK_UNINTERRUPTIBLE); 551 schedule_timeout(wait_time); 552 } else { 553 /* Extract size of response data */ 554 resp_data_length = 555 get_unaligned_be16(&resp->data_length); 556 557 /* 558 * Message size is data length + 5 bytes header + 2 559 * bytes checksum 560 */ 561 if ((resp_data_length + 7) > user_resp_len) { 562 rc = -EMSGSIZE; 563 goto done; 564 } 565 566 /* 567 * Get the entire response including the header again, 568 * in case it changed 569 */ 570 if (resp_data_length > 1) { 571 rc = occ_getsram(occ, 0, resp, 572 resp_data_length + 7); 573 if (rc) 574 goto done; 575 576 if (!fsi_occ_response_not_ready(resp, seq_no, 577 cmd_type)) 578 break; 579 } else { 580 break; 581 } 582 } 583 } 584 585 dev_dbg(dev, "resp_status=%02x resp_data_len=%d\n", 586 resp->return_status, resp_data_length); 587 588 rc = occ_verify_checksum(occ, resp, resp_data_length); 589 if (rc) 590 goto done; 591 592 occ->client_response_size = resp_data_length + 7; 593 594 done: 595 *resp_len = occ->client_response_size; 596 mutex_unlock(&occ->occ_lock); 597 598 return rc; 599 } 600 EXPORT_SYMBOL_GPL(fsi_occ_submit); 601 602 static int occ_unregister_platform_child(struct device *dev, void *data) 603 { 604 struct platform_device *hwmon_dev = to_platform_device(dev); 605 606 platform_device_unregister(hwmon_dev); 607 608 return 0; 609 } 610 611 static int occ_unregister_of_child(struct device *dev, void *data) 612 { 613 struct platform_device *hwmon_dev = to_platform_device(dev); 614 615 of_device_unregister(hwmon_dev); 616 if (dev->of_node) 617 of_node_clear_flag(dev->of_node, OF_POPULATED); 618 619 return 0; 620 } 621 622 static int occ_probe(struct platform_device *pdev) 623 { 624 int rc; 625 u32 reg; 626 char child_name[32]; 627 struct occ *occ; 628 struct platform_device *hwmon_dev = NULL; 629 struct device_node *hwmon_node; 630 struct device *dev = &pdev->dev; 631 struct platform_device_info hwmon_dev_info = { 632 .parent = dev, 633 .name = "occ-hwmon", 634 }; 635 636 occ = devm_kzalloc(dev, sizeof(*occ), GFP_KERNEL); 637 if (!occ) 638 return -ENOMEM; 639 640 /* SBE words are always four bytes */ 641 occ->buffer = kvmalloc(OCC_MAX_RESP_WORDS * 4, GFP_KERNEL); 642 if (!occ->buffer) 643 return -ENOMEM; 644 645 occ->version = (uintptr_t)of_device_get_match_data(dev); 646 occ->dev = dev; 647 occ->sbefifo = dev->parent; 648 /* 649 * Quickly derive a pseudo-random number from jiffies so that 650 * re-probing the driver doesn't accidentally overlap sequence numbers. 651 */ 652 occ->sequence_number = (u8)((jiffies % 0xff) + 1); 653 mutex_init(&occ->occ_lock); 654 655 if (dev->of_node) { 656 rc = of_property_read_u32(dev->of_node, "reg", ®); 657 if (!rc) { 658 /* make sure we don't have a duplicate from dts */ 659 occ->idx = ida_alloc_range(&occ_ida, reg, reg, 660 GFP_KERNEL); 661 if (occ->idx < 0) 662 occ->idx = ida_alloc_min(&occ_ida, 1, 663 GFP_KERNEL); 664 } else { 665 occ->idx = ida_alloc_min(&occ_ida, 1, GFP_KERNEL); 666 } 667 } else { 668 occ->idx = ida_alloc_min(&occ_ida, 1, GFP_KERNEL); 669 } 670 671 platform_set_drvdata(pdev, occ); 672 673 snprintf(occ->name, sizeof(occ->name), "occ%d", occ->idx); 674 occ->mdev.fops = &occ_fops; 675 occ->mdev.minor = MISC_DYNAMIC_MINOR; 676 occ->mdev.name = occ->name; 677 occ->mdev.parent = dev; 678 679 rc = misc_register(&occ->mdev); 680 if (rc) { 681 dev_err(dev, "failed to register miscdevice: %d\n", rc); 682 ida_free(&occ_ida, occ->idx); 683 kvfree(occ->buffer); 684 return rc; 685 } 686 687 hwmon_node = of_get_child_by_name(dev->of_node, hwmon_dev_info.name); 688 if (hwmon_node) { 689 snprintf(child_name, sizeof(child_name), "%s.%d", hwmon_dev_info.name, occ->idx); 690 hwmon_dev = of_platform_device_create(hwmon_node, child_name, dev); 691 of_node_put(hwmon_node); 692 } 693 694 if (!hwmon_dev) { 695 occ->platform_hwmon = true; 696 hwmon_dev_info.id = occ->idx; 697 hwmon_dev = platform_device_register_full(&hwmon_dev_info); 698 if (IS_ERR(hwmon_dev)) 699 dev_warn(dev, "failed to create hwmon device\n"); 700 } 701 702 return 0; 703 } 704 705 static void occ_remove(struct platform_device *pdev) 706 { 707 struct occ *occ = platform_get_drvdata(pdev); 708 709 misc_deregister(&occ->mdev); 710 711 mutex_lock(&occ->occ_lock); 712 kvfree(occ->buffer); 713 occ->buffer = NULL; 714 mutex_unlock(&occ->occ_lock); 715 716 if (occ->platform_hwmon) 717 device_for_each_child(&pdev->dev, NULL, occ_unregister_platform_child); 718 else 719 device_for_each_child(&pdev->dev, NULL, occ_unregister_of_child); 720 721 ida_free(&occ_ida, occ->idx); 722 } 723 724 static const struct of_device_id occ_match[] = { 725 { 726 .compatible = "ibm,p9-occ", 727 .data = (void *)occ_p9 728 }, 729 { 730 .compatible = "ibm,p10-occ", 731 .data = (void *)occ_p10 732 }, 733 { }, 734 }; 735 MODULE_DEVICE_TABLE(of, occ_match); 736 737 static struct platform_driver occ_driver = { 738 .driver = { 739 .name = "occ", 740 .of_match_table = occ_match, 741 }, 742 .probe = occ_probe, 743 .remove_new = occ_remove, 744 }; 745 746 static int occ_init(void) 747 { 748 return platform_driver_register(&occ_driver); 749 } 750 751 static void occ_exit(void) 752 { 753 platform_driver_unregister(&occ_driver); 754 755 ida_destroy(&occ_ida); 756 } 757 758 module_init(occ_init); 759 module_exit(occ_exit); 760 761 MODULE_AUTHOR("Eddie James <eajames@linux.ibm.com>"); 762 MODULE_DESCRIPTION("BMC P9 OCC driver"); 763 MODULE_LICENSE("GPL"); 764