xref: /linux/drivers/fsi/fsi-core.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * FSI core driver
4  *
5  * Copyright (C) IBM Corporation 2016
6  *
7  * TODO:
8  *  - Rework topology
9  *  - s/chip_id/chip_loc
10  *  - s/cfam/chip (cfam_id -> chip_id etc...)
11  */
12 
13 #include <linux/crc4.h>
14 #include <linux/device.h>
15 #include <linux/fsi.h>
16 #include <linux/idr.h>
17 #include <linux/module.h>
18 #include <linux/of.h>
19 #include <linux/of_address.h>
20 #include <linux/of_device.h>
21 #include <linux/slab.h>
22 #include <linux/bitops.h>
23 #include <linux/cdev.h>
24 #include <linux/fs.h>
25 #include <linux/uaccess.h>
26 
27 #include "fsi-master.h"
28 #include "fsi-slave.h"
29 
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/fsi.h>
32 
33 #define FSI_SLAVE_CONF_NEXT_MASK	GENMASK(31, 31)
34 #define FSI_SLAVE_CONF_SLOTS_MASK	GENMASK(23, 16)
35 #define FSI_SLAVE_CONF_SLOTS_SHIFT	16
36 #define FSI_SLAVE_CONF_VERSION_MASK	GENMASK(15, 12)
37 #define FSI_SLAVE_CONF_VERSION_SHIFT	12
38 #define FSI_SLAVE_CONF_TYPE_MASK	GENMASK(11, 4)
39 #define FSI_SLAVE_CONF_TYPE_SHIFT	4
40 #define FSI_SLAVE_CONF_CRC_SHIFT	4
41 #define FSI_SLAVE_CONF_CRC_MASK		GENMASK(3, 0)
42 #define FSI_SLAVE_CONF_DATA_BITS	28
43 
44 #define FSI_PEEK_BASE			0x410
45 
46 static const int engine_page_size = 0x400;
47 
48 #define FSI_SLAVE_BASE			0x800
49 
50 /*
51  * FSI slave engine control register offsets
52  */
53 #define FSI_SMODE		0x0	/* R/W: Mode register */
54 #define FSI_SISC		0x8	/* R/W: Interrupt condition */
55 #define FSI_SSTAT		0x14	/* R  : Slave status */
56 #define FSI_SLBUS		0x30	/* W  : LBUS Ownership */
57 #define FSI_LLMODE		0x100	/* R/W: Link layer mode register */
58 
59 /*
60  * SMODE fields
61  */
62 #define FSI_SMODE_WSC		0x80000000	/* Warm start done */
63 #define FSI_SMODE_ECRC		0x20000000	/* Hw CRC check */
64 #define FSI_SMODE_SID_SHIFT	24		/* ID shift */
65 #define FSI_SMODE_SID_MASK	3		/* ID Mask */
66 #define FSI_SMODE_ED_SHIFT	20		/* Echo delay shift */
67 #define FSI_SMODE_ED_MASK	0xf		/* Echo delay mask */
68 #define FSI_SMODE_SD_SHIFT	16		/* Send delay shift */
69 #define FSI_SMODE_SD_MASK	0xf		/* Send delay mask */
70 #define FSI_SMODE_LBCRR_SHIFT	8		/* Clk ratio shift */
71 #define FSI_SMODE_LBCRR_MASK	0xf		/* Clk ratio mask */
72 
73 /*
74  * SLBUS fields
75  */
76 #define FSI_SLBUS_FORCE		0x80000000	/* Force LBUS ownership */
77 
78 /*
79  * LLMODE fields
80  */
81 #define FSI_LLMODE_ASYNC	0x1
82 
83 #define FSI_SLAVE_SIZE_23b		0x800000
84 
85 static DEFINE_IDA(master_ida);
86 
87 static const int slave_retries = 2;
88 static int discard_errors;
89 
90 static dev_t fsi_base_dev;
91 static DEFINE_IDA(fsi_minor_ida);
92 #define FSI_CHAR_MAX_DEVICES	0x1000
93 
94 /* Legacy /dev numbering: 4 devices per chip, 16 chips */
95 #define FSI_CHAR_LEGACY_TOP	64
96 
97 static int fsi_master_read(struct fsi_master *master, int link,
98 		uint8_t slave_id, uint32_t addr, void *val, size_t size);
99 static int fsi_master_write(struct fsi_master *master, int link,
100 		uint8_t slave_id, uint32_t addr, const void *val, size_t size);
101 static int fsi_master_break(struct fsi_master *master, int link);
102 
103 /*
104  * fsi_device_read() / fsi_device_write() / fsi_device_peek()
105  *
106  * FSI endpoint-device support
107  *
108  * Read / write / peek accessors for a client
109  *
110  * Parameters:
111  * dev:  Structure passed to FSI client device drivers on probe().
112  * addr: FSI address of given device.  Client should pass in its base address
113  *       plus desired offset to access its register space.
114  * val:  For read/peek this is the value read at the specified address. For
115  *       write this is value to write to the specified address.
116  *       The data in val must be FSI bus endian (big endian).
117  * size: Size in bytes of the operation.  Sizes supported are 1, 2 and 4 bytes.
118  *       Addresses must be aligned on size boundaries or an error will result.
119  */
120 int fsi_device_read(struct fsi_device *dev, uint32_t addr, void *val,
121 		size_t size)
122 {
123 	if (addr > dev->size || size > dev->size || addr > dev->size - size)
124 		return -EINVAL;
125 
126 	return fsi_slave_read(dev->slave, dev->addr + addr, val, size);
127 }
128 EXPORT_SYMBOL_GPL(fsi_device_read);
129 
130 int fsi_device_write(struct fsi_device *dev, uint32_t addr, const void *val,
131 		size_t size)
132 {
133 	if (addr > dev->size || size > dev->size || addr > dev->size - size)
134 		return -EINVAL;
135 
136 	return fsi_slave_write(dev->slave, dev->addr + addr, val, size);
137 }
138 EXPORT_SYMBOL_GPL(fsi_device_write);
139 
140 int fsi_device_peek(struct fsi_device *dev, void *val)
141 {
142 	uint32_t addr = FSI_PEEK_BASE + ((dev->unit - 2) * sizeof(uint32_t));
143 
144 	return fsi_slave_read(dev->slave, addr, val, sizeof(uint32_t));
145 }
146 
147 static void fsi_device_release(struct device *_device)
148 {
149 	struct fsi_device *device = to_fsi_dev(_device);
150 
151 	of_node_put(device->dev.of_node);
152 	kfree(device);
153 }
154 
155 static struct fsi_device *fsi_create_device(struct fsi_slave *slave)
156 {
157 	struct fsi_device *dev;
158 
159 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
160 	if (!dev)
161 		return NULL;
162 
163 	dev->dev.parent = &slave->dev;
164 	dev->dev.bus = &fsi_bus_type;
165 	dev->dev.release = fsi_device_release;
166 
167 	return dev;
168 }
169 
170 /* FSI slave support */
171 static int fsi_slave_calc_addr(struct fsi_slave *slave, uint32_t *addrp,
172 		uint8_t *idp)
173 {
174 	uint32_t addr = *addrp;
175 	uint8_t id = *idp;
176 
177 	if (addr > slave->size)
178 		return -EINVAL;
179 
180 	/* For 23 bit addressing, we encode the extra two bits in the slave
181 	 * id (and the slave's actual ID needs to be 0).
182 	 */
183 	if (addr > 0x1fffff) {
184 		if (slave->id != 0)
185 			return -EINVAL;
186 		id = (addr >> 21) & 0x3;
187 		addr &= 0x1fffff;
188 	}
189 
190 	*addrp = addr;
191 	*idp = id;
192 	return 0;
193 }
194 
195 static int fsi_slave_report_and_clear_errors(struct fsi_slave *slave)
196 {
197 	struct fsi_master *master = slave->master;
198 	__be32 irq, stat;
199 	int rc, link;
200 	uint8_t id;
201 
202 	link = slave->link;
203 	id = slave->id;
204 
205 	rc = fsi_master_read(master, link, id, FSI_SLAVE_BASE + FSI_SISC,
206 			&irq, sizeof(irq));
207 	if (rc)
208 		return rc;
209 
210 	rc =  fsi_master_read(master, link, id, FSI_SLAVE_BASE + FSI_SSTAT,
211 			&stat, sizeof(stat));
212 	if (rc)
213 		return rc;
214 
215 	dev_dbg(&slave->dev, "status: 0x%08x, sisc: 0x%08x\n",
216 			be32_to_cpu(stat), be32_to_cpu(irq));
217 
218 	/* clear interrupts */
219 	return fsi_master_write(master, link, id, FSI_SLAVE_BASE + FSI_SISC,
220 			&irq, sizeof(irq));
221 }
222 
223 /* Encode slave local bus echo delay */
224 static inline uint32_t fsi_smode_echodly(int x)
225 {
226 	return (x & FSI_SMODE_ED_MASK) << FSI_SMODE_ED_SHIFT;
227 }
228 
229 /* Encode slave local bus send delay */
230 static inline uint32_t fsi_smode_senddly(int x)
231 {
232 	return (x & FSI_SMODE_SD_MASK) << FSI_SMODE_SD_SHIFT;
233 }
234 
235 /* Encode slave local bus clock rate ratio */
236 static inline uint32_t fsi_smode_lbcrr(int x)
237 {
238 	return (x & FSI_SMODE_LBCRR_MASK) << FSI_SMODE_LBCRR_SHIFT;
239 }
240 
241 /* Encode slave ID */
242 static inline uint32_t fsi_smode_sid(int x)
243 {
244 	return (x & FSI_SMODE_SID_MASK) << FSI_SMODE_SID_SHIFT;
245 }
246 
247 static uint32_t fsi_slave_smode(int id, u8 t_senddly, u8 t_echodly)
248 {
249 	return FSI_SMODE_WSC | FSI_SMODE_ECRC
250 		| fsi_smode_sid(id)
251 		| fsi_smode_echodly(t_echodly - 1) | fsi_smode_senddly(t_senddly - 1)
252 		| fsi_smode_lbcrr(0x8);
253 }
254 
255 static int fsi_slave_set_smode(struct fsi_slave *slave)
256 {
257 	uint32_t smode;
258 	__be32 data;
259 
260 	/* set our smode register with the slave ID field to 0; this enables
261 	 * extended slave addressing
262 	 */
263 	smode = fsi_slave_smode(slave->id, slave->t_send_delay, slave->t_echo_delay);
264 	data = cpu_to_be32(smode);
265 
266 	return fsi_master_write(slave->master, slave->link, slave->id,
267 				FSI_SLAVE_BASE + FSI_SMODE,
268 				&data, sizeof(data));
269 }
270 
271 static int fsi_slave_handle_error(struct fsi_slave *slave, bool write,
272 				  uint32_t addr, size_t size)
273 {
274 	struct fsi_master *master = slave->master;
275 	int rc, link;
276 	uint32_t reg;
277 	uint8_t id, send_delay, echo_delay;
278 
279 	if (discard_errors)
280 		return -1;
281 
282 	link = slave->link;
283 	id = slave->id;
284 
285 	dev_dbg(&slave->dev, "handling error on %s to 0x%08x[%zd]",
286 			write ? "write" : "read", addr, size);
287 
288 	/* try a simple clear of error conditions, which may fail if we've lost
289 	 * communication with the slave
290 	 */
291 	rc = fsi_slave_report_and_clear_errors(slave);
292 	if (!rc)
293 		return 0;
294 
295 	/* send a TERM and retry */
296 	if (master->term) {
297 		rc = master->term(master, link, id);
298 		if (!rc) {
299 			rc = fsi_master_read(master, link, id, 0,
300 					&reg, sizeof(reg));
301 			if (!rc)
302 				rc = fsi_slave_report_and_clear_errors(slave);
303 			if (!rc)
304 				return 0;
305 		}
306 	}
307 
308 	send_delay = slave->t_send_delay;
309 	echo_delay = slave->t_echo_delay;
310 
311 	/* getting serious, reset the slave via BREAK */
312 	rc = fsi_master_break(master, link);
313 	if (rc)
314 		return rc;
315 
316 	slave->t_send_delay = send_delay;
317 	slave->t_echo_delay = echo_delay;
318 
319 	rc = fsi_slave_set_smode(slave);
320 	if (rc)
321 		return rc;
322 
323 	if (master->link_config)
324 		master->link_config(master, link,
325 				    slave->t_send_delay,
326 				    slave->t_echo_delay);
327 
328 	return fsi_slave_report_and_clear_errors(slave);
329 }
330 
331 int fsi_slave_read(struct fsi_slave *slave, uint32_t addr,
332 			void *val, size_t size)
333 {
334 	uint8_t id = slave->id;
335 	int rc, err_rc, i;
336 
337 	rc = fsi_slave_calc_addr(slave, &addr, &id);
338 	if (rc)
339 		return rc;
340 
341 	for (i = 0; i < slave_retries; i++) {
342 		rc = fsi_master_read(slave->master, slave->link,
343 				id, addr, val, size);
344 		if (!rc)
345 			break;
346 
347 		err_rc = fsi_slave_handle_error(slave, false, addr, size);
348 		if (err_rc)
349 			break;
350 	}
351 
352 	return rc;
353 }
354 EXPORT_SYMBOL_GPL(fsi_slave_read);
355 
356 int fsi_slave_write(struct fsi_slave *slave, uint32_t addr,
357 			const void *val, size_t size)
358 {
359 	uint8_t id = slave->id;
360 	int rc, err_rc, i;
361 
362 	rc = fsi_slave_calc_addr(slave, &addr, &id);
363 	if (rc)
364 		return rc;
365 
366 	for (i = 0; i < slave_retries; i++) {
367 		rc = fsi_master_write(slave->master, slave->link,
368 				id, addr, val, size);
369 		if (!rc)
370 			break;
371 
372 		err_rc = fsi_slave_handle_error(slave, true, addr, size);
373 		if (err_rc)
374 			break;
375 	}
376 
377 	return rc;
378 }
379 EXPORT_SYMBOL_GPL(fsi_slave_write);
380 
381 int fsi_slave_claim_range(struct fsi_slave *slave,
382 			  uint32_t addr, uint32_t size)
383 {
384 	if (addr + size < addr)
385 		return -EINVAL;
386 
387 	if (addr + size > slave->size)
388 		return -EINVAL;
389 
390 	/* todo: check for overlapping claims */
391 	return 0;
392 }
393 EXPORT_SYMBOL_GPL(fsi_slave_claim_range);
394 
395 void fsi_slave_release_range(struct fsi_slave *slave,
396 			     uint32_t addr, uint32_t size)
397 {
398 }
399 EXPORT_SYMBOL_GPL(fsi_slave_release_range);
400 
401 static bool fsi_device_node_matches(struct device *dev, struct device_node *np,
402 		uint32_t addr, uint32_t size)
403 {
404 	u64 paddr, psize;
405 
406 	if (of_property_read_reg(np, 0, &paddr, &psize))
407 		return false;
408 
409 	if (paddr != addr)
410 		return false;
411 
412 	if (psize != size) {
413 		dev_warn(dev,
414 			"node %pOF matches probed address, but not size (got 0x%llx, expected 0x%x)",
415 			np, psize, size);
416 	}
417 
418 	return true;
419 }
420 
421 /* Find a matching node for the slave engine at @address, using @size bytes
422  * of space. Returns NULL if not found, or a matching node with refcount
423  * already incremented.
424  */
425 static struct device_node *fsi_device_find_of_node(struct fsi_device *dev)
426 {
427 	struct device_node *parent, *np;
428 
429 	parent = dev_of_node(&dev->slave->dev);
430 	if (!parent)
431 		return NULL;
432 
433 	for_each_child_of_node(parent, np) {
434 		if (fsi_device_node_matches(&dev->dev, np,
435 					dev->addr, dev->size))
436 			return np;
437 	}
438 
439 	return NULL;
440 }
441 
442 static int fsi_slave_scan(struct fsi_slave *slave)
443 {
444 	uint32_t engine_addr;
445 	int rc, i;
446 
447 	/*
448 	 * scan engines
449 	 *
450 	 * We keep the peek mode and slave engines for the core; so start
451 	 * at the third slot in the configuration table. We also need to
452 	 * skip the chip ID entry at the start of the address space.
453 	 */
454 	engine_addr = engine_page_size * 3;
455 	for (i = 2; i < engine_page_size / sizeof(uint32_t); i++) {
456 		uint8_t slots, version, type, crc;
457 		struct fsi_device *dev;
458 		uint32_t conf;
459 		__be32 data;
460 
461 		rc = fsi_slave_read(slave, (i + 1) * sizeof(data),
462 				&data, sizeof(data));
463 		if (rc) {
464 			dev_warn(&slave->dev,
465 				"error reading slave registers\n");
466 			return -1;
467 		}
468 		conf = be32_to_cpu(data);
469 
470 		crc = crc4(0, conf, 32);
471 		if (crc) {
472 			dev_warn(&slave->dev,
473 				"crc error in slave register at 0x%04x\n",
474 				i);
475 			return -1;
476 		}
477 
478 		slots = (conf & FSI_SLAVE_CONF_SLOTS_MASK)
479 			>> FSI_SLAVE_CONF_SLOTS_SHIFT;
480 		version = (conf & FSI_SLAVE_CONF_VERSION_MASK)
481 			>> FSI_SLAVE_CONF_VERSION_SHIFT;
482 		type = (conf & FSI_SLAVE_CONF_TYPE_MASK)
483 			>> FSI_SLAVE_CONF_TYPE_SHIFT;
484 
485 		/*
486 		 * Unused address areas are marked by a zero type value; this
487 		 * skips the defined address areas
488 		 */
489 		if (type != 0 && slots != 0) {
490 
491 			/* create device */
492 			dev = fsi_create_device(slave);
493 			if (!dev)
494 				return -ENOMEM;
495 
496 			dev->slave = slave;
497 			dev->engine_type = type;
498 			dev->version = version;
499 			dev->unit = i;
500 			dev->addr = engine_addr;
501 			dev->size = slots * engine_page_size;
502 
503 			trace_fsi_dev_init(dev);
504 
505 			dev_dbg(&slave->dev,
506 			"engine[%i]: type %x, version %x, addr %x size %x\n",
507 					dev->unit, dev->engine_type, version,
508 					dev->addr, dev->size);
509 
510 			dev_set_name(&dev->dev, "%02x:%02x:%02x:%02x",
511 					slave->master->idx, slave->link,
512 					slave->id, i - 2);
513 			dev->dev.of_node = fsi_device_find_of_node(dev);
514 
515 			rc = device_register(&dev->dev);
516 			if (rc) {
517 				dev_warn(&slave->dev, "add failed: %d\n", rc);
518 				put_device(&dev->dev);
519 			}
520 		}
521 
522 		engine_addr += slots * engine_page_size;
523 
524 		if (!(conf & FSI_SLAVE_CONF_NEXT_MASK))
525 			break;
526 	}
527 
528 	return 0;
529 }
530 
531 static unsigned long aligned_access_size(size_t offset, size_t count)
532 {
533 	unsigned long offset_unit, count_unit;
534 
535 	/* Criteria:
536 	 *
537 	 * 1. Access size must be less than or equal to the maximum access
538 	 *    width or the highest power-of-two factor of offset
539 	 * 2. Access size must be less than or equal to the amount specified by
540 	 *    count
541 	 *
542 	 * The access width is optimal if we can calculate 1 to be strictly
543 	 * equal while still satisfying 2.
544 	 */
545 
546 	/* Find 1 by the bottom bit of offset (with a 4 byte access cap) */
547 	offset_unit = BIT(__builtin_ctzl(offset | 4));
548 
549 	/* Find 2 by the top bit of count */
550 	count_unit = BIT(8 * sizeof(unsigned long) - 1 - __builtin_clzl(count));
551 
552 	/* Constrain the maximum access width to the minimum of both criteria */
553 	return BIT(__builtin_ctzl(offset_unit | count_unit));
554 }
555 
556 static ssize_t fsi_slave_sysfs_raw_read(struct file *file,
557 		struct kobject *kobj, struct bin_attribute *attr, char *buf,
558 		loff_t off, size_t count)
559 {
560 	struct fsi_slave *slave = to_fsi_slave(kobj_to_dev(kobj));
561 	size_t total_len, read_len;
562 	int rc;
563 
564 	if (off < 0)
565 		return -EINVAL;
566 
567 	if (off > 0xffffffff || count > 0xffffffff || off + count > 0xffffffff)
568 		return -EINVAL;
569 
570 	for (total_len = 0; total_len < count; total_len += read_len) {
571 		read_len = aligned_access_size(off, count - total_len);
572 
573 		rc = fsi_slave_read(slave, off, buf + total_len, read_len);
574 		if (rc)
575 			return rc;
576 
577 		off += read_len;
578 	}
579 
580 	return count;
581 }
582 
583 static ssize_t fsi_slave_sysfs_raw_write(struct file *file,
584 		struct kobject *kobj, struct bin_attribute *attr,
585 		char *buf, loff_t off, size_t count)
586 {
587 	struct fsi_slave *slave = to_fsi_slave(kobj_to_dev(kobj));
588 	size_t total_len, write_len;
589 	int rc;
590 
591 	if (off < 0)
592 		return -EINVAL;
593 
594 	if (off > 0xffffffff || count > 0xffffffff || off + count > 0xffffffff)
595 		return -EINVAL;
596 
597 	for (total_len = 0; total_len < count; total_len += write_len) {
598 		write_len = aligned_access_size(off, count - total_len);
599 
600 		rc = fsi_slave_write(slave, off, buf + total_len, write_len);
601 		if (rc)
602 			return rc;
603 
604 		off += write_len;
605 	}
606 
607 	return count;
608 }
609 
610 static const struct bin_attribute fsi_slave_raw_attr = {
611 	.attr = {
612 		.name = "raw",
613 		.mode = 0600,
614 	},
615 	.size = 0,
616 	.read = fsi_slave_sysfs_raw_read,
617 	.write = fsi_slave_sysfs_raw_write,
618 };
619 
620 static void fsi_slave_release(struct device *dev)
621 {
622 	struct fsi_slave *slave = to_fsi_slave(dev);
623 
624 	fsi_free_minor(slave->dev.devt);
625 	of_node_put(dev->of_node);
626 	kfree(slave);
627 }
628 
629 static bool fsi_slave_node_matches(struct device_node *np,
630 		int link, uint8_t id)
631 {
632 	u64 addr;
633 
634 	if (of_property_read_reg(np, 0, &addr, NULL))
635 		return false;
636 
637 	return addr == (((u64)link << 32) | id);
638 }
639 
640 /* Find a matching node for the slave at (link, id). Returns NULL if none
641  * found, or a matching node with refcount already incremented.
642  */
643 static struct device_node *fsi_slave_find_of_node(struct fsi_master *master,
644 		int link, uint8_t id)
645 {
646 	struct device_node *parent, *np;
647 
648 	parent = dev_of_node(&master->dev);
649 	if (!parent)
650 		return NULL;
651 
652 	for_each_child_of_node(parent, np) {
653 		if (fsi_slave_node_matches(np, link, id))
654 			return np;
655 	}
656 
657 	return NULL;
658 }
659 
660 static ssize_t cfam_read(struct file *filep, char __user *buf, size_t count,
661 			 loff_t *offset)
662 {
663 	struct fsi_slave *slave = filep->private_data;
664 	size_t total_len, read_len;
665 	loff_t off = *offset;
666 	ssize_t rc;
667 
668 	if (off < 0)
669 		return -EINVAL;
670 
671 	if (off > 0xffffffff || count > 0xffffffff || off + count > 0xffffffff)
672 		return -EINVAL;
673 
674 	for (total_len = 0; total_len < count; total_len += read_len) {
675 		__be32 data;
676 
677 		read_len = min_t(size_t, count, 4);
678 		read_len -= off & 0x3;
679 
680 		rc = fsi_slave_read(slave, off, &data, read_len);
681 		if (rc)
682 			goto fail;
683 		rc = copy_to_user(buf + total_len, &data, read_len);
684 		if (rc) {
685 			rc = -EFAULT;
686 			goto fail;
687 		}
688 		off += read_len;
689 	}
690 	rc = count;
691  fail:
692 	*offset = off;
693 	return rc;
694 }
695 
696 static ssize_t cfam_write(struct file *filep, const char __user *buf,
697 			  size_t count, loff_t *offset)
698 {
699 	struct fsi_slave *slave = filep->private_data;
700 	size_t total_len, write_len;
701 	loff_t off = *offset;
702 	ssize_t rc;
703 
704 
705 	if (off < 0)
706 		return -EINVAL;
707 
708 	if (off > 0xffffffff || count > 0xffffffff || off + count > 0xffffffff)
709 		return -EINVAL;
710 
711 	for (total_len = 0; total_len < count; total_len += write_len) {
712 		__be32 data;
713 
714 		write_len = min_t(size_t, count, 4);
715 		write_len -= off & 0x3;
716 
717 		rc = copy_from_user(&data, buf + total_len, write_len);
718 		if (rc) {
719 			rc = -EFAULT;
720 			goto fail;
721 		}
722 		rc = fsi_slave_write(slave, off, &data, write_len);
723 		if (rc)
724 			goto fail;
725 		off += write_len;
726 	}
727 	rc = count;
728  fail:
729 	*offset = off;
730 	return rc;
731 }
732 
733 static loff_t cfam_llseek(struct file *file, loff_t offset, int whence)
734 {
735 	switch (whence) {
736 	case SEEK_CUR:
737 		break;
738 	case SEEK_SET:
739 		file->f_pos = offset;
740 		break;
741 	default:
742 		return -EINVAL;
743 	}
744 
745 	return offset;
746 }
747 
748 static int cfam_open(struct inode *inode, struct file *file)
749 {
750 	struct fsi_slave *slave = container_of(inode->i_cdev, struct fsi_slave, cdev);
751 
752 	file->private_data = slave;
753 
754 	return 0;
755 }
756 
757 static const struct file_operations cfam_fops = {
758 	.owner		= THIS_MODULE,
759 	.open		= cfam_open,
760 	.llseek		= cfam_llseek,
761 	.read		= cfam_read,
762 	.write		= cfam_write,
763 };
764 
765 static ssize_t send_term_store(struct device *dev,
766 			       struct device_attribute *attr,
767 			       const char *buf, size_t count)
768 {
769 	struct fsi_slave *slave = to_fsi_slave(dev);
770 	struct fsi_master *master = slave->master;
771 
772 	if (!master->term)
773 		return -ENODEV;
774 
775 	master->term(master, slave->link, slave->id);
776 	return count;
777 }
778 
779 static DEVICE_ATTR_WO(send_term);
780 
781 static ssize_t slave_send_echo_show(struct device *dev,
782 				    struct device_attribute *attr,
783 				    char *buf)
784 {
785 	struct fsi_slave *slave = to_fsi_slave(dev);
786 
787 	return sprintf(buf, "%u\n", slave->t_send_delay);
788 }
789 
790 static ssize_t slave_send_echo_store(struct device *dev,
791 		struct device_attribute *attr, const char *buf, size_t count)
792 {
793 	struct fsi_slave *slave = to_fsi_slave(dev);
794 	struct fsi_master *master = slave->master;
795 	unsigned long val;
796 	int rc;
797 
798 	if (kstrtoul(buf, 0, &val) < 0)
799 		return -EINVAL;
800 
801 	if (val < 1 || val > 16)
802 		return -EINVAL;
803 
804 	if (!master->link_config)
805 		return -ENXIO;
806 
807 	/* Current HW mandates that send and echo delay are identical */
808 	slave->t_send_delay = val;
809 	slave->t_echo_delay = val;
810 
811 	rc = fsi_slave_set_smode(slave);
812 	if (rc < 0)
813 		return rc;
814 	if (master->link_config)
815 		master->link_config(master, slave->link,
816 				    slave->t_send_delay,
817 				    slave->t_echo_delay);
818 
819 	return count;
820 }
821 
822 static DEVICE_ATTR(send_echo_delays, 0600,
823 		   slave_send_echo_show, slave_send_echo_store);
824 
825 static ssize_t chip_id_show(struct device *dev,
826 			    struct device_attribute *attr,
827 			    char *buf)
828 {
829 	struct fsi_slave *slave = to_fsi_slave(dev);
830 
831 	return sprintf(buf, "%d\n", slave->chip_id);
832 }
833 
834 static DEVICE_ATTR_RO(chip_id);
835 
836 static ssize_t cfam_id_show(struct device *dev,
837 			    struct device_attribute *attr,
838 			    char *buf)
839 {
840 	struct fsi_slave *slave = to_fsi_slave(dev);
841 
842 	return sprintf(buf, "0x%x\n", slave->cfam_id);
843 }
844 
845 static DEVICE_ATTR_RO(cfam_id);
846 
847 static struct attribute *cfam_attr[] = {
848 	&dev_attr_send_echo_delays.attr,
849 	&dev_attr_chip_id.attr,
850 	&dev_attr_cfam_id.attr,
851 	&dev_attr_send_term.attr,
852 	NULL,
853 };
854 
855 static const struct attribute_group cfam_attr_group = {
856 	.attrs = cfam_attr,
857 };
858 
859 static const struct attribute_group *cfam_attr_groups[] = {
860 	&cfam_attr_group,
861 	NULL,
862 };
863 
864 static char *cfam_devnode(const struct device *dev, umode_t *mode,
865 			  kuid_t *uid, kgid_t *gid)
866 {
867 	const struct fsi_slave *slave = to_fsi_slave(dev);
868 
869 #ifdef CONFIG_FSI_NEW_DEV_NODE
870 	return kasprintf(GFP_KERNEL, "fsi/cfam%d", slave->cdev_idx);
871 #else
872 	return kasprintf(GFP_KERNEL, "cfam%d", slave->cdev_idx);
873 #endif
874 }
875 
876 static const struct device_type cfam_type = {
877 	.name = "cfam",
878 	.devnode = cfam_devnode,
879 	.groups = cfam_attr_groups
880 };
881 
882 static char *fsi_cdev_devnode(const struct device *dev, umode_t *mode,
883 			      kuid_t *uid, kgid_t *gid)
884 {
885 #ifdef CONFIG_FSI_NEW_DEV_NODE
886 	return kasprintf(GFP_KERNEL, "fsi/%s", dev_name(dev));
887 #else
888 	return kasprintf(GFP_KERNEL, "%s", dev_name(dev));
889 #endif
890 }
891 
892 const struct device_type fsi_cdev_type = {
893 	.name = "fsi-cdev",
894 	.devnode = fsi_cdev_devnode,
895 };
896 EXPORT_SYMBOL_GPL(fsi_cdev_type);
897 
898 /* Backward compatible /dev/ numbering in "old style" mode */
899 static int fsi_adjust_index(int index)
900 {
901 #ifdef CONFIG_FSI_NEW_DEV_NODE
902 	return index;
903 #else
904 	return index + 1;
905 #endif
906 }
907 
908 static int __fsi_get_new_minor(struct fsi_slave *slave, enum fsi_dev_type type,
909 			       dev_t *out_dev, int *out_index)
910 {
911 	int cid = slave->chip_id;
912 	int id;
913 
914 	/* Check if we qualify for legacy numbering */
915 	if (cid >= 0 && cid < 16 && type < 4) {
916 		/*
917 		 * Try reserving the legacy number, which has 0 - 0x3f reserved
918 		 * in the ida range. cid goes up to 0xf and type contains two
919 		 * bits, so construct the id with the below two bit shift.
920 		 */
921 		id = (cid << 2) | type;
922 		id = ida_alloc_range(&fsi_minor_ida, id, id, GFP_KERNEL);
923 		if (id >= 0) {
924 			*out_index = fsi_adjust_index(cid);
925 			*out_dev = fsi_base_dev + id;
926 			return 0;
927 		}
928 		/* Other failure */
929 		if (id != -ENOSPC)
930 			return id;
931 		/* Fallback to non-legacy allocation */
932 	}
933 	id = ida_alloc_range(&fsi_minor_ida, FSI_CHAR_LEGACY_TOP,
934 			     FSI_CHAR_MAX_DEVICES - 1, GFP_KERNEL);
935 	if (id < 0)
936 		return id;
937 	*out_index = fsi_adjust_index(id);
938 	*out_dev = fsi_base_dev + id;
939 	return 0;
940 }
941 
942 static const char *const fsi_dev_type_names[] = {
943 	"cfam",
944 	"sbefifo",
945 	"scom",
946 	"occ",
947 };
948 
949 int fsi_get_new_minor(struct fsi_device *fdev, enum fsi_dev_type type,
950 		      dev_t *out_dev, int *out_index)
951 {
952 	if (fdev->dev.of_node) {
953 		int aid = of_alias_get_id(fdev->dev.of_node, fsi_dev_type_names[type]);
954 
955 		if (aid >= 0) {
956 			/* Use the same scheme as the legacy numbers. */
957 			int id = (aid << 2) | type;
958 
959 			id = ida_alloc_range(&fsi_minor_ida, id, id, GFP_KERNEL);
960 			if (id >= 0) {
961 				*out_index = aid;
962 				*out_dev = fsi_base_dev + id;
963 				return 0;
964 			}
965 
966 			if (id != -ENOSPC)
967 				return id;
968 		}
969 	}
970 
971 	return __fsi_get_new_minor(fdev->slave, type, out_dev, out_index);
972 }
973 EXPORT_SYMBOL_GPL(fsi_get_new_minor);
974 
975 void fsi_free_minor(dev_t dev)
976 {
977 	ida_free(&fsi_minor_ida, MINOR(dev));
978 }
979 EXPORT_SYMBOL_GPL(fsi_free_minor);
980 
981 static int fsi_slave_init(struct fsi_master *master, int link, uint8_t id)
982 {
983 	uint32_t cfam_id;
984 	struct fsi_slave *slave;
985 	uint8_t crc;
986 	__be32 data, llmode, slbus;
987 	int rc;
988 
989 	/* Currently, we only support single slaves on a link, and use the
990 	 * full 23-bit address range
991 	 */
992 	if (id != 0)
993 		return -EINVAL;
994 
995 	rc = fsi_master_read(master, link, id, 0, &data, sizeof(data));
996 	if (rc) {
997 		dev_dbg(&master->dev, "can't read slave %02x:%02x %d\n",
998 				link, id, rc);
999 		return -ENODEV;
1000 	}
1001 	cfam_id = be32_to_cpu(data);
1002 
1003 	crc = crc4(0, cfam_id, 32);
1004 	if (crc) {
1005 		trace_fsi_slave_invalid_cfam(master, link, cfam_id);
1006 		dev_warn(&master->dev, "slave %02x:%02x invalid cfam id CRC!\n",
1007 				link, id);
1008 		return -EIO;
1009 	}
1010 
1011 	dev_dbg(&master->dev, "fsi: found chip %08x at %02x:%02x:%02x\n",
1012 			cfam_id, master->idx, link, id);
1013 
1014 	/* If we're behind a master that doesn't provide a self-running bus
1015 	 * clock, put the slave into async mode
1016 	 */
1017 	if (master->flags & FSI_MASTER_FLAG_SWCLOCK) {
1018 		llmode = cpu_to_be32(FSI_LLMODE_ASYNC);
1019 		rc = fsi_master_write(master, link, id,
1020 				FSI_SLAVE_BASE + FSI_LLMODE,
1021 				&llmode, sizeof(llmode));
1022 		if (rc)
1023 			dev_warn(&master->dev,
1024 				"can't set llmode on slave:%02x:%02x %d\n",
1025 				link, id, rc);
1026 	}
1027 
1028 	/* We can communicate with a slave; create the slave device and
1029 	 * register.
1030 	 */
1031 	slave = kzalloc(sizeof(*slave), GFP_KERNEL);
1032 	if (!slave)
1033 		return -ENOMEM;
1034 
1035 	dev_set_name(&slave->dev, "slave@%02x:%02x", link, id);
1036 	slave->dev.type = &cfam_type;
1037 	slave->dev.parent = &master->dev;
1038 	slave->dev.of_node = fsi_slave_find_of_node(master, link, id);
1039 	slave->dev.release = fsi_slave_release;
1040 	device_initialize(&slave->dev);
1041 	slave->cfam_id = cfam_id;
1042 	slave->master = master;
1043 	slave->link = link;
1044 	slave->id = id;
1045 	slave->size = FSI_SLAVE_SIZE_23b;
1046 	slave->t_send_delay = 16;
1047 	slave->t_echo_delay = 16;
1048 
1049 	/* Get chip ID if any */
1050 	slave->chip_id = -1;
1051 	if (slave->dev.of_node) {
1052 		uint32_t prop;
1053 		if (!of_property_read_u32(slave->dev.of_node, "chip-id", &prop))
1054 			slave->chip_id = prop;
1055 
1056 	}
1057 
1058 	slbus = cpu_to_be32(FSI_SLBUS_FORCE);
1059 	rc = fsi_master_write(master, link, id, FSI_SLAVE_BASE + FSI_SLBUS,
1060 			      &slbus, sizeof(slbus));
1061 	if (rc)
1062 		dev_warn(&master->dev,
1063 			 "can't set slbus on slave:%02x:%02x %d\n", link, id,
1064 			 rc);
1065 
1066 	rc = fsi_slave_set_smode(slave);
1067 	if (rc) {
1068 		dev_warn(&master->dev,
1069 				"can't set smode on slave:%02x:%02x %d\n",
1070 				link, id, rc);
1071 		goto err_free;
1072 	}
1073 
1074 	/* Allocate a minor in the FSI space */
1075 	rc = __fsi_get_new_minor(slave, fsi_dev_cfam, &slave->dev.devt,
1076 				 &slave->cdev_idx);
1077 	if (rc)
1078 		goto err_free;
1079 
1080 	trace_fsi_slave_init(slave);
1081 
1082 	/* Create chardev for userspace access */
1083 	cdev_init(&slave->cdev, &cfam_fops);
1084 	rc = cdev_device_add(&slave->cdev, &slave->dev);
1085 	if (rc) {
1086 		dev_err(&slave->dev, "Error %d creating slave device\n", rc);
1087 		goto err_free_ida;
1088 	}
1089 
1090 	/* Now that we have the cdev registered with the core, any fatal
1091 	 * failures beyond this point will need to clean up through
1092 	 * cdev_device_del(). Fortunately though, nothing past here is fatal.
1093 	 */
1094 
1095 	if (master->link_config)
1096 		master->link_config(master, link,
1097 				    slave->t_send_delay,
1098 				    slave->t_echo_delay);
1099 
1100 	/* Legacy raw file -> to be removed */
1101 	rc = device_create_bin_file(&slave->dev, &fsi_slave_raw_attr);
1102 	if (rc)
1103 		dev_warn(&slave->dev, "failed to create raw attr: %d\n", rc);
1104 
1105 
1106 	rc = fsi_slave_scan(slave);
1107 	if (rc)
1108 		dev_dbg(&master->dev, "failed during slave scan with: %d\n",
1109 				rc);
1110 
1111 	return 0;
1112 
1113 err_free_ida:
1114 	fsi_free_minor(slave->dev.devt);
1115 err_free:
1116 	of_node_put(slave->dev.of_node);
1117 	kfree(slave);
1118 	return rc;
1119 }
1120 
1121 /* FSI master support */
1122 static int fsi_check_access(uint32_t addr, size_t size)
1123 {
1124 	if (size == 4) {
1125 		if (addr & 0x3)
1126 			return -EINVAL;
1127 	} else if (size == 2) {
1128 		if (addr & 0x1)
1129 			return -EINVAL;
1130 	} else if (size != 1)
1131 		return -EINVAL;
1132 
1133 	return 0;
1134 }
1135 
1136 static int fsi_master_read(struct fsi_master *master, int link,
1137 		uint8_t slave_id, uint32_t addr, void *val, size_t size)
1138 {
1139 	int rc;
1140 
1141 	trace_fsi_master_read(master, link, slave_id, addr, size);
1142 
1143 	rc = fsi_check_access(addr, size);
1144 	if (!rc)
1145 		rc = master->read(master, link, slave_id, addr, val, size);
1146 
1147 	trace_fsi_master_rw_result(master, link, slave_id, addr, size,
1148 			false, val, rc);
1149 
1150 	return rc;
1151 }
1152 
1153 static int fsi_master_write(struct fsi_master *master, int link,
1154 		uint8_t slave_id, uint32_t addr, const void *val, size_t size)
1155 {
1156 	int rc;
1157 
1158 	trace_fsi_master_write(master, link, slave_id, addr, size, val);
1159 
1160 	rc = fsi_check_access(addr, size);
1161 	if (!rc)
1162 		rc = master->write(master, link, slave_id, addr, val, size);
1163 
1164 	trace_fsi_master_rw_result(master, link, slave_id, addr, size,
1165 			true, val, rc);
1166 
1167 	return rc;
1168 }
1169 
1170 static int fsi_master_link_disable(struct fsi_master *master, int link)
1171 {
1172 	if (master->link_enable)
1173 		return master->link_enable(master, link, false);
1174 
1175 	return 0;
1176 }
1177 
1178 static int fsi_master_link_enable(struct fsi_master *master, int link)
1179 {
1180 	if (master->link_enable)
1181 		return master->link_enable(master, link, true);
1182 
1183 	return 0;
1184 }
1185 
1186 /*
1187  * Issue a break command on this link
1188  */
1189 static int fsi_master_break(struct fsi_master *master, int link)
1190 {
1191 	int rc = 0;
1192 
1193 	trace_fsi_master_break(master, link);
1194 
1195 	if (master->send_break)
1196 		rc = master->send_break(master, link);
1197 	if (master->link_config)
1198 		master->link_config(master, link, 16, 16);
1199 
1200 	return rc;
1201 }
1202 
1203 static int fsi_master_scan(struct fsi_master *master)
1204 {
1205 	int link, rc;
1206 
1207 	trace_fsi_master_scan(master, true);
1208 	for (link = 0; link < master->n_links; link++) {
1209 		rc = fsi_master_link_enable(master, link);
1210 		if (rc) {
1211 			dev_dbg(&master->dev,
1212 				"enable link %d failed: %d\n", link, rc);
1213 			continue;
1214 		}
1215 		rc = fsi_master_break(master, link);
1216 		if (rc) {
1217 			fsi_master_link_disable(master, link);
1218 			dev_dbg(&master->dev,
1219 				"break to link %d failed: %d\n", link, rc);
1220 			continue;
1221 		}
1222 
1223 		rc = fsi_slave_init(master, link, 0);
1224 		if (rc)
1225 			fsi_master_link_disable(master, link);
1226 	}
1227 
1228 	return 0;
1229 }
1230 
1231 static int fsi_slave_remove_device(struct device *dev, void *arg)
1232 {
1233 	device_unregister(dev);
1234 	return 0;
1235 }
1236 
1237 static int fsi_master_remove_slave(struct device *dev, void *arg)
1238 {
1239 	struct fsi_slave *slave = to_fsi_slave(dev);
1240 
1241 	device_for_each_child(dev, NULL, fsi_slave_remove_device);
1242 	cdev_device_del(&slave->cdev, &slave->dev);
1243 	put_device(dev);
1244 	return 0;
1245 }
1246 
1247 static void fsi_master_unscan(struct fsi_master *master)
1248 {
1249 	trace_fsi_master_scan(master, false);
1250 	device_for_each_child(&master->dev, NULL, fsi_master_remove_slave);
1251 }
1252 
1253 int fsi_master_rescan(struct fsi_master *master)
1254 {
1255 	int rc;
1256 
1257 	mutex_lock(&master->scan_lock);
1258 	fsi_master_unscan(master);
1259 	rc = fsi_master_scan(master);
1260 	mutex_unlock(&master->scan_lock);
1261 
1262 	return rc;
1263 }
1264 EXPORT_SYMBOL_GPL(fsi_master_rescan);
1265 
1266 static ssize_t master_rescan_store(struct device *dev,
1267 		struct device_attribute *attr, const char *buf, size_t count)
1268 {
1269 	struct fsi_master *master = to_fsi_master(dev);
1270 	int rc;
1271 
1272 	rc = fsi_master_rescan(master);
1273 	if (rc < 0)
1274 		return rc;
1275 
1276 	return count;
1277 }
1278 
1279 static DEVICE_ATTR(rescan, 0200, NULL, master_rescan_store);
1280 
1281 static ssize_t master_break_store(struct device *dev,
1282 		struct device_attribute *attr, const char *buf, size_t count)
1283 {
1284 	struct fsi_master *master = to_fsi_master(dev);
1285 
1286 	fsi_master_break(master, 0);
1287 
1288 	return count;
1289 }
1290 
1291 static DEVICE_ATTR(break, 0200, NULL, master_break_store);
1292 
1293 static struct attribute *master_attrs[] = {
1294 	&dev_attr_break.attr,
1295 	&dev_attr_rescan.attr,
1296 	NULL
1297 };
1298 
1299 ATTRIBUTE_GROUPS(master);
1300 
1301 static struct class fsi_master_class = {
1302 	.name = "fsi-master",
1303 	.dev_groups = master_groups,
1304 };
1305 
1306 int fsi_master_register(struct fsi_master *master)
1307 {
1308 	int rc;
1309 	struct device_node *np;
1310 
1311 	mutex_init(&master->scan_lock);
1312 
1313 	/* Alloc the requested index if it's non-zero */
1314 	if (master->idx) {
1315 		master->idx = ida_alloc_range(&master_ida, master->idx,
1316 					      master->idx, GFP_KERNEL);
1317 	} else {
1318 		master->idx = ida_alloc(&master_ida, GFP_KERNEL);
1319 	}
1320 
1321 	if (master->idx < 0)
1322 		return master->idx;
1323 
1324 	if (!dev_name(&master->dev))
1325 		dev_set_name(&master->dev, "fsi%d", master->idx);
1326 
1327 	master->dev.class = &fsi_master_class;
1328 
1329 	mutex_lock(&master->scan_lock);
1330 	rc = device_register(&master->dev);
1331 	if (rc) {
1332 		ida_free(&master_ida, master->idx);
1333 		goto out;
1334 	}
1335 
1336 	np = dev_of_node(&master->dev);
1337 	if (!of_property_read_bool(np, "no-scan-on-init")) {
1338 		fsi_master_scan(master);
1339 	}
1340 out:
1341 	mutex_unlock(&master->scan_lock);
1342 	return rc;
1343 }
1344 EXPORT_SYMBOL_GPL(fsi_master_register);
1345 
1346 void fsi_master_unregister(struct fsi_master *master)
1347 {
1348 	int idx = master->idx;
1349 
1350 	trace_fsi_master_unregister(master);
1351 
1352 	mutex_lock(&master->scan_lock);
1353 	fsi_master_unscan(master);
1354 	master->n_links = 0;
1355 	mutex_unlock(&master->scan_lock);
1356 
1357 	device_unregister(&master->dev);
1358 	ida_free(&master_ida, idx);
1359 }
1360 EXPORT_SYMBOL_GPL(fsi_master_unregister);
1361 
1362 /* FSI core & Linux bus type definitions */
1363 
1364 static int fsi_bus_match(struct device *dev, const struct device_driver *drv)
1365 {
1366 	struct fsi_device *fsi_dev = to_fsi_dev(dev);
1367 	const struct fsi_driver *fsi_drv = to_fsi_drv(drv);
1368 	const struct fsi_device_id *id;
1369 
1370 	if (!fsi_drv->id_table)
1371 		return 0;
1372 
1373 	for (id = fsi_drv->id_table; id->engine_type; id++) {
1374 		if (id->engine_type != fsi_dev->engine_type)
1375 			continue;
1376 		if (id->version == FSI_VERSION_ANY ||
1377 		    id->version == fsi_dev->version) {
1378 			if (drv->of_match_table) {
1379 				if (of_driver_match_device(dev, drv))
1380 					return 1;
1381 			} else {
1382 				return 1;
1383 			}
1384 		}
1385 	}
1386 
1387 	return 0;
1388 }
1389 
1390 int fsi_driver_register(struct fsi_driver *fsi_drv)
1391 {
1392 	if (!fsi_drv)
1393 		return -EINVAL;
1394 	if (!fsi_drv->id_table)
1395 		return -EINVAL;
1396 
1397 	return driver_register(&fsi_drv->drv);
1398 }
1399 EXPORT_SYMBOL_GPL(fsi_driver_register);
1400 
1401 void fsi_driver_unregister(struct fsi_driver *fsi_drv)
1402 {
1403 	driver_unregister(&fsi_drv->drv);
1404 }
1405 EXPORT_SYMBOL_GPL(fsi_driver_unregister);
1406 
1407 struct bus_type fsi_bus_type = {
1408 	.name		= "fsi",
1409 	.match		= fsi_bus_match,
1410 };
1411 EXPORT_SYMBOL_GPL(fsi_bus_type);
1412 
1413 static int __init fsi_init(void)
1414 {
1415 	int rc;
1416 
1417 	rc = alloc_chrdev_region(&fsi_base_dev, 0, FSI_CHAR_MAX_DEVICES, "fsi");
1418 	if (rc)
1419 		return rc;
1420 	rc = bus_register(&fsi_bus_type);
1421 	if (rc)
1422 		goto fail_bus;
1423 
1424 	rc = class_register(&fsi_master_class);
1425 	if (rc)
1426 		goto fail_class;
1427 
1428 	return 0;
1429 
1430  fail_class:
1431 	bus_unregister(&fsi_bus_type);
1432  fail_bus:
1433 	unregister_chrdev_region(fsi_base_dev, FSI_CHAR_MAX_DEVICES);
1434 	return rc;
1435 }
1436 postcore_initcall(fsi_init);
1437 
1438 static void fsi_exit(void)
1439 {
1440 	class_unregister(&fsi_master_class);
1441 	bus_unregister(&fsi_bus_type);
1442 	unregister_chrdev_region(fsi_base_dev, FSI_CHAR_MAX_DEVICES);
1443 	ida_destroy(&fsi_minor_ida);
1444 }
1445 module_exit(fsi_exit);
1446 module_param(discard_errors, int, 0664);
1447 MODULE_DESCRIPTION("FSI core driver");
1448 MODULE_LICENSE("GPL");
1449 MODULE_PARM_DESC(discard_errors, "Don't invoke error handling on bus accesses");
1450