xref: /linux/drivers/fpga/dfl.c (revision e724e7aaf9ca794670a4d4931af7a7e24e37fec3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Driver for FPGA Device Feature List (DFL) Support
4  *
5  * Copyright (C) 2017-2018 Intel Corporation, Inc.
6  *
7  * Authors:
8  *   Kang Luwei <luwei.kang@intel.com>
9  *   Zhang Yi <yi.z.zhang@intel.com>
10  *   Wu Hao <hao.wu@intel.com>
11  *   Xiao Guangrong <guangrong.xiao@linux.intel.com>
12  */
13 #include <linux/dfl.h>
14 #include <linux/fpga-dfl.h>
15 #include <linux/module.h>
16 #include <linux/overflow.h>
17 #include <linux/uaccess.h>
18 
19 #include "dfl.h"
20 
21 static DEFINE_MUTEX(dfl_id_mutex);
22 
23 /*
24  * when adding a new feature dev support in DFL framework, it's required to
25  * add a new item in enum dfl_id_type and provide related information in below
26  * dfl_devs table which is indexed by dfl_id_type, e.g. name string used for
27  * platform device creation (define name strings in dfl.h, as they could be
28  * reused by platform device drivers).
29  *
30  * if the new feature dev needs chardev support, then it's required to add
31  * a new item in dfl_chardevs table and configure dfl_devs[i].devt_type as
32  * index to dfl_chardevs table. If no chardev support just set devt_type
33  * as one invalid index (DFL_FPGA_DEVT_MAX).
34  */
35 enum dfl_fpga_devt_type {
36 	DFL_FPGA_DEVT_FME,
37 	DFL_FPGA_DEVT_PORT,
38 	DFL_FPGA_DEVT_MAX,
39 };
40 
41 static struct lock_class_key dfl_pdata_keys[DFL_ID_MAX];
42 
43 static const char *dfl_pdata_key_strings[DFL_ID_MAX] = {
44 	"dfl-fme-pdata",
45 	"dfl-port-pdata",
46 };
47 
48 /**
49  * struct dfl_dev_info - dfl feature device information.
50  * @name: name string of the feature platform device.
51  * @dfh_id: id value in Device Feature Header (DFH) register by DFL spec.
52  * @id: idr id of the feature dev.
53  * @devt_type: index to dfl_chrdevs[].
54  */
55 struct dfl_dev_info {
56 	const char *name;
57 	u16 dfh_id;
58 	struct idr id;
59 	enum dfl_fpga_devt_type devt_type;
60 };
61 
62 /* it is indexed by dfl_id_type */
63 static struct dfl_dev_info dfl_devs[] = {
64 	{.name = DFL_FPGA_FEATURE_DEV_FME, .dfh_id = DFH_ID_FIU_FME,
65 	 .devt_type = DFL_FPGA_DEVT_FME},
66 	{.name = DFL_FPGA_FEATURE_DEV_PORT, .dfh_id = DFH_ID_FIU_PORT,
67 	 .devt_type = DFL_FPGA_DEVT_PORT},
68 };
69 
70 /**
71  * struct dfl_chardev_info - chardev information of dfl feature device
72  * @name: nmae string of the char device.
73  * @devt: devt of the char device.
74  */
75 struct dfl_chardev_info {
76 	const char *name;
77 	dev_t devt;
78 };
79 
80 /* indexed by enum dfl_fpga_devt_type */
81 static struct dfl_chardev_info dfl_chrdevs[] = {
82 	{.name = DFL_FPGA_FEATURE_DEV_FME},
83 	{.name = DFL_FPGA_FEATURE_DEV_PORT},
84 };
85 
86 static void dfl_ids_init(void)
87 {
88 	int i;
89 
90 	for (i = 0; i < ARRAY_SIZE(dfl_devs); i++)
91 		idr_init(&dfl_devs[i].id);
92 }
93 
94 static void dfl_ids_destroy(void)
95 {
96 	int i;
97 
98 	for (i = 0; i < ARRAY_SIZE(dfl_devs); i++)
99 		idr_destroy(&dfl_devs[i].id);
100 }
101 
102 static int dfl_id_alloc(enum dfl_id_type type, struct device *dev)
103 {
104 	int id;
105 
106 	WARN_ON(type >= DFL_ID_MAX);
107 	mutex_lock(&dfl_id_mutex);
108 	id = idr_alloc(&dfl_devs[type].id, dev, 0, 0, GFP_KERNEL);
109 	mutex_unlock(&dfl_id_mutex);
110 
111 	return id;
112 }
113 
114 static void dfl_id_free(enum dfl_id_type type, int id)
115 {
116 	WARN_ON(type >= DFL_ID_MAX);
117 	mutex_lock(&dfl_id_mutex);
118 	idr_remove(&dfl_devs[type].id, id);
119 	mutex_unlock(&dfl_id_mutex);
120 }
121 
122 static enum dfl_id_type feature_dev_id_type(struct platform_device *pdev)
123 {
124 	int i;
125 
126 	for (i = 0; i < ARRAY_SIZE(dfl_devs); i++)
127 		if (!strcmp(dfl_devs[i].name, pdev->name))
128 			return i;
129 
130 	return DFL_ID_MAX;
131 }
132 
133 static enum dfl_id_type dfh_id_to_type(u16 id)
134 {
135 	int i;
136 
137 	for (i = 0; i < ARRAY_SIZE(dfl_devs); i++)
138 		if (dfl_devs[i].dfh_id == id)
139 			return i;
140 
141 	return DFL_ID_MAX;
142 }
143 
144 /*
145  * introduce a global port_ops list, it allows port drivers to register ops
146  * in such list, then other feature devices (e.g. FME), could use the port
147  * functions even related port platform device is hidden. Below is one example,
148  * in virtualization case of PCIe-based FPGA DFL device, when SRIOV is
149  * enabled, port (and it's AFU) is turned into VF and port platform device
150  * is hidden from system but it's still required to access port to finish FPGA
151  * reconfiguration function in FME.
152  */
153 
154 static DEFINE_MUTEX(dfl_port_ops_mutex);
155 static LIST_HEAD(dfl_port_ops_list);
156 
157 /**
158  * dfl_fpga_port_ops_get - get matched port ops from the global list
159  * @pdev: platform device to match with associated port ops.
160  * Return: matched port ops on success, NULL otherwise.
161  *
162  * Please note that must dfl_fpga_port_ops_put after use the port_ops.
163  */
164 struct dfl_fpga_port_ops *dfl_fpga_port_ops_get(struct platform_device *pdev)
165 {
166 	struct dfl_fpga_port_ops *ops = NULL;
167 
168 	mutex_lock(&dfl_port_ops_mutex);
169 	if (list_empty(&dfl_port_ops_list))
170 		goto done;
171 
172 	list_for_each_entry(ops, &dfl_port_ops_list, node) {
173 		/* match port_ops using the name of platform device */
174 		if (!strcmp(pdev->name, ops->name)) {
175 			if (!try_module_get(ops->owner))
176 				ops = NULL;
177 			goto done;
178 		}
179 	}
180 
181 	ops = NULL;
182 done:
183 	mutex_unlock(&dfl_port_ops_mutex);
184 	return ops;
185 }
186 EXPORT_SYMBOL_GPL(dfl_fpga_port_ops_get);
187 
188 /**
189  * dfl_fpga_port_ops_put - put port ops
190  * @ops: port ops.
191  */
192 void dfl_fpga_port_ops_put(struct dfl_fpga_port_ops *ops)
193 {
194 	if (ops && ops->owner)
195 		module_put(ops->owner);
196 }
197 EXPORT_SYMBOL_GPL(dfl_fpga_port_ops_put);
198 
199 /**
200  * dfl_fpga_port_ops_add - add port_ops to global list
201  * @ops: port ops to add.
202  */
203 void dfl_fpga_port_ops_add(struct dfl_fpga_port_ops *ops)
204 {
205 	mutex_lock(&dfl_port_ops_mutex);
206 	list_add_tail(&ops->node, &dfl_port_ops_list);
207 	mutex_unlock(&dfl_port_ops_mutex);
208 }
209 EXPORT_SYMBOL_GPL(dfl_fpga_port_ops_add);
210 
211 /**
212  * dfl_fpga_port_ops_del - remove port_ops from global list
213  * @ops: port ops to del.
214  */
215 void dfl_fpga_port_ops_del(struct dfl_fpga_port_ops *ops)
216 {
217 	mutex_lock(&dfl_port_ops_mutex);
218 	list_del(&ops->node);
219 	mutex_unlock(&dfl_port_ops_mutex);
220 }
221 EXPORT_SYMBOL_GPL(dfl_fpga_port_ops_del);
222 
223 /**
224  * dfl_fpga_check_port_id - check the port id
225  * @pdev: port platform device.
226  * @pport_id: port id to compare.
227  *
228  * Return: 1 if port device matches with given port id, otherwise 0.
229  */
230 int dfl_fpga_check_port_id(struct platform_device *pdev, void *pport_id)
231 {
232 	struct dfl_feature_platform_data *pdata = dev_get_platdata(&pdev->dev);
233 	struct dfl_fpga_port_ops *port_ops;
234 
235 	if (pdata->id != FEATURE_DEV_ID_UNUSED)
236 		return pdata->id == *(int *)pport_id;
237 
238 	port_ops = dfl_fpga_port_ops_get(pdev);
239 	if (!port_ops || !port_ops->get_id)
240 		return 0;
241 
242 	pdata->id = port_ops->get_id(pdev);
243 	dfl_fpga_port_ops_put(port_ops);
244 
245 	return pdata->id == *(int *)pport_id;
246 }
247 EXPORT_SYMBOL_GPL(dfl_fpga_check_port_id);
248 
249 static DEFINE_IDA(dfl_device_ida);
250 
251 static const struct dfl_device_id *
252 dfl_match_one_device(const struct dfl_device_id *id, struct dfl_device *ddev)
253 {
254 	if (id->type == ddev->type && id->feature_id == ddev->feature_id)
255 		return id;
256 
257 	return NULL;
258 }
259 
260 static int dfl_bus_match(struct device *dev, struct device_driver *drv)
261 {
262 	struct dfl_device *ddev = to_dfl_dev(dev);
263 	struct dfl_driver *ddrv = to_dfl_drv(drv);
264 	const struct dfl_device_id *id_entry;
265 
266 	id_entry = ddrv->id_table;
267 	if (id_entry) {
268 		while (id_entry->feature_id) {
269 			if (dfl_match_one_device(id_entry, ddev)) {
270 				ddev->id_entry = id_entry;
271 				return 1;
272 			}
273 			id_entry++;
274 		}
275 	}
276 
277 	return 0;
278 }
279 
280 static int dfl_bus_probe(struct device *dev)
281 {
282 	struct dfl_driver *ddrv = to_dfl_drv(dev->driver);
283 	struct dfl_device *ddev = to_dfl_dev(dev);
284 
285 	return ddrv->probe(ddev);
286 }
287 
288 static void dfl_bus_remove(struct device *dev)
289 {
290 	struct dfl_driver *ddrv = to_dfl_drv(dev->driver);
291 	struct dfl_device *ddev = to_dfl_dev(dev);
292 
293 	if (ddrv->remove)
294 		ddrv->remove(ddev);
295 }
296 
297 static int dfl_bus_uevent(const struct device *dev, struct kobj_uevent_env *env)
298 {
299 	const struct dfl_device *ddev = to_dfl_dev(dev);
300 
301 	return add_uevent_var(env, "MODALIAS=dfl:t%04Xf%04X",
302 			      ddev->type, ddev->feature_id);
303 }
304 
305 static ssize_t
306 type_show(struct device *dev, struct device_attribute *attr, char *buf)
307 {
308 	struct dfl_device *ddev = to_dfl_dev(dev);
309 
310 	return sprintf(buf, "0x%x\n", ddev->type);
311 }
312 static DEVICE_ATTR_RO(type);
313 
314 static ssize_t
315 feature_id_show(struct device *dev, struct device_attribute *attr, char *buf)
316 {
317 	struct dfl_device *ddev = to_dfl_dev(dev);
318 
319 	return sprintf(buf, "0x%x\n", ddev->feature_id);
320 }
321 static DEVICE_ATTR_RO(feature_id);
322 
323 static struct attribute *dfl_dev_attrs[] = {
324 	&dev_attr_type.attr,
325 	&dev_attr_feature_id.attr,
326 	NULL,
327 };
328 ATTRIBUTE_GROUPS(dfl_dev);
329 
330 static struct bus_type dfl_bus_type = {
331 	.name		= "dfl",
332 	.match		= dfl_bus_match,
333 	.probe		= dfl_bus_probe,
334 	.remove		= dfl_bus_remove,
335 	.uevent		= dfl_bus_uevent,
336 	.dev_groups	= dfl_dev_groups,
337 };
338 
339 static void release_dfl_dev(struct device *dev)
340 {
341 	struct dfl_device *ddev = to_dfl_dev(dev);
342 
343 	if (ddev->mmio_res.parent)
344 		release_resource(&ddev->mmio_res);
345 
346 	kfree(ddev->params);
347 
348 	ida_free(&dfl_device_ida, ddev->id);
349 	kfree(ddev->irqs);
350 	kfree(ddev);
351 }
352 
353 static struct dfl_device *
354 dfl_dev_add(struct dfl_feature_platform_data *pdata,
355 	    struct dfl_feature *feature)
356 {
357 	struct platform_device *pdev = pdata->dev;
358 	struct resource *parent_res;
359 	struct dfl_device *ddev;
360 	int id, i, ret;
361 
362 	ddev = kzalloc(sizeof(*ddev), GFP_KERNEL);
363 	if (!ddev)
364 		return ERR_PTR(-ENOMEM);
365 
366 	id = ida_alloc(&dfl_device_ida, GFP_KERNEL);
367 	if (id < 0) {
368 		dev_err(&pdev->dev, "unable to get id\n");
369 		kfree(ddev);
370 		return ERR_PTR(id);
371 	}
372 
373 	/* freeing resources by put_device() after device_initialize() */
374 	device_initialize(&ddev->dev);
375 	ddev->dev.parent = &pdev->dev;
376 	ddev->dev.bus = &dfl_bus_type;
377 	ddev->dev.release = release_dfl_dev;
378 	ddev->id = id;
379 	ret = dev_set_name(&ddev->dev, "dfl_dev.%d", id);
380 	if (ret)
381 		goto put_dev;
382 
383 	ddev->type = feature_dev_id_type(pdev);
384 	ddev->feature_id = feature->id;
385 	ddev->revision = feature->revision;
386 	ddev->dfh_version = feature->dfh_version;
387 	ddev->cdev = pdata->dfl_cdev;
388 	if (feature->param_size) {
389 		ddev->params = kmemdup(feature->params, feature->param_size, GFP_KERNEL);
390 		if (!ddev->params) {
391 			ret = -ENOMEM;
392 			goto put_dev;
393 		}
394 		ddev->param_size = feature->param_size;
395 	}
396 
397 	/* add mmio resource */
398 	parent_res = &pdev->resource[feature->resource_index];
399 	ddev->mmio_res.flags = IORESOURCE_MEM;
400 	ddev->mmio_res.start = parent_res->start;
401 	ddev->mmio_res.end = parent_res->end;
402 	ddev->mmio_res.name = dev_name(&ddev->dev);
403 	ret = insert_resource(parent_res, &ddev->mmio_res);
404 	if (ret) {
405 		dev_err(&pdev->dev, "%s failed to claim resource: %pR\n",
406 			dev_name(&ddev->dev), &ddev->mmio_res);
407 		goto put_dev;
408 	}
409 
410 	/* then add irq resource */
411 	if (feature->nr_irqs) {
412 		ddev->irqs = kcalloc(feature->nr_irqs,
413 				     sizeof(*ddev->irqs), GFP_KERNEL);
414 		if (!ddev->irqs) {
415 			ret = -ENOMEM;
416 			goto put_dev;
417 		}
418 
419 		for (i = 0; i < feature->nr_irqs; i++)
420 			ddev->irqs[i] = feature->irq_ctx[i].irq;
421 
422 		ddev->num_irqs = feature->nr_irqs;
423 	}
424 
425 	ret = device_add(&ddev->dev);
426 	if (ret)
427 		goto put_dev;
428 
429 	dev_dbg(&pdev->dev, "add dfl_dev: %s\n", dev_name(&ddev->dev));
430 	return ddev;
431 
432 put_dev:
433 	/* calls release_dfl_dev() which does the clean up  */
434 	put_device(&ddev->dev);
435 	return ERR_PTR(ret);
436 }
437 
438 static void dfl_devs_remove(struct dfl_feature_platform_data *pdata)
439 {
440 	struct dfl_feature *feature;
441 
442 	dfl_fpga_dev_for_each_feature(pdata, feature) {
443 		if (feature->ddev) {
444 			device_unregister(&feature->ddev->dev);
445 			feature->ddev = NULL;
446 		}
447 	}
448 }
449 
450 static int dfl_devs_add(struct dfl_feature_platform_data *pdata)
451 {
452 	struct dfl_feature *feature;
453 	struct dfl_device *ddev;
454 	int ret;
455 
456 	dfl_fpga_dev_for_each_feature(pdata, feature) {
457 		if (feature->ioaddr)
458 			continue;
459 
460 		if (feature->ddev) {
461 			ret = -EEXIST;
462 			goto err;
463 		}
464 
465 		ddev = dfl_dev_add(pdata, feature);
466 		if (IS_ERR(ddev)) {
467 			ret = PTR_ERR(ddev);
468 			goto err;
469 		}
470 
471 		feature->ddev = ddev;
472 	}
473 
474 	return 0;
475 
476 err:
477 	dfl_devs_remove(pdata);
478 	return ret;
479 }
480 
481 int __dfl_driver_register(struct dfl_driver *dfl_drv, struct module *owner)
482 {
483 	if (!dfl_drv || !dfl_drv->probe || !dfl_drv->id_table)
484 		return -EINVAL;
485 
486 	dfl_drv->drv.owner = owner;
487 	dfl_drv->drv.bus = &dfl_bus_type;
488 
489 	return driver_register(&dfl_drv->drv);
490 }
491 EXPORT_SYMBOL(__dfl_driver_register);
492 
493 void dfl_driver_unregister(struct dfl_driver *dfl_drv)
494 {
495 	driver_unregister(&dfl_drv->drv);
496 }
497 EXPORT_SYMBOL(dfl_driver_unregister);
498 
499 #define is_header_feature(feature) ((feature)->id == FEATURE_ID_FIU_HEADER)
500 
501 /**
502  * dfl_fpga_dev_feature_uinit - uinit for sub features of dfl feature device
503  * @pdev: feature device.
504  */
505 void dfl_fpga_dev_feature_uinit(struct platform_device *pdev)
506 {
507 	struct dfl_feature_platform_data *pdata = dev_get_platdata(&pdev->dev);
508 	struct dfl_feature *feature;
509 
510 	dfl_devs_remove(pdata);
511 
512 	dfl_fpga_dev_for_each_feature(pdata, feature) {
513 		if (feature->ops) {
514 			if (feature->ops->uinit)
515 				feature->ops->uinit(pdev, feature);
516 			feature->ops = NULL;
517 		}
518 	}
519 }
520 EXPORT_SYMBOL_GPL(dfl_fpga_dev_feature_uinit);
521 
522 static int dfl_feature_instance_init(struct platform_device *pdev,
523 				     struct dfl_feature_platform_data *pdata,
524 				     struct dfl_feature *feature,
525 				     struct dfl_feature_driver *drv)
526 {
527 	void __iomem *base;
528 	int ret = 0;
529 
530 	if (!is_header_feature(feature)) {
531 		base = devm_platform_ioremap_resource(pdev,
532 						      feature->resource_index);
533 		if (IS_ERR(base)) {
534 			dev_err(&pdev->dev,
535 				"ioremap failed for feature 0x%x!\n",
536 				feature->id);
537 			return PTR_ERR(base);
538 		}
539 
540 		feature->ioaddr = base;
541 	}
542 
543 	if (drv->ops->init) {
544 		ret = drv->ops->init(pdev, feature);
545 		if (ret)
546 			return ret;
547 	}
548 
549 	feature->ops = drv->ops;
550 
551 	return ret;
552 }
553 
554 static bool dfl_feature_drv_match(struct dfl_feature *feature,
555 				  struct dfl_feature_driver *driver)
556 {
557 	const struct dfl_feature_id *ids = driver->id_table;
558 
559 	if (ids) {
560 		while (ids->id) {
561 			if (ids->id == feature->id)
562 				return true;
563 			ids++;
564 		}
565 	}
566 	return false;
567 }
568 
569 /**
570  * dfl_fpga_dev_feature_init - init for sub features of dfl feature device
571  * @pdev: feature device.
572  * @feature_drvs: drvs for sub features.
573  *
574  * This function will match sub features with given feature drvs list and
575  * use matched drv to init related sub feature.
576  *
577  * Return: 0 on success, negative error code otherwise.
578  */
579 int dfl_fpga_dev_feature_init(struct platform_device *pdev,
580 			      struct dfl_feature_driver *feature_drvs)
581 {
582 	struct dfl_feature_platform_data *pdata = dev_get_platdata(&pdev->dev);
583 	struct dfl_feature_driver *drv = feature_drvs;
584 	struct dfl_feature *feature;
585 	int ret;
586 
587 	while (drv->ops) {
588 		dfl_fpga_dev_for_each_feature(pdata, feature) {
589 			if (dfl_feature_drv_match(feature, drv)) {
590 				ret = dfl_feature_instance_init(pdev, pdata,
591 								feature, drv);
592 				if (ret)
593 					goto exit;
594 			}
595 		}
596 		drv++;
597 	}
598 
599 	ret = dfl_devs_add(pdata);
600 	if (ret)
601 		goto exit;
602 
603 	return 0;
604 exit:
605 	dfl_fpga_dev_feature_uinit(pdev);
606 	return ret;
607 }
608 EXPORT_SYMBOL_GPL(dfl_fpga_dev_feature_init);
609 
610 static void dfl_chardev_uinit(void)
611 {
612 	int i;
613 
614 	for (i = 0; i < DFL_FPGA_DEVT_MAX; i++)
615 		if (MAJOR(dfl_chrdevs[i].devt)) {
616 			unregister_chrdev_region(dfl_chrdevs[i].devt,
617 						 MINORMASK + 1);
618 			dfl_chrdevs[i].devt = MKDEV(0, 0);
619 		}
620 }
621 
622 static int dfl_chardev_init(void)
623 {
624 	int i, ret;
625 
626 	for (i = 0; i < DFL_FPGA_DEVT_MAX; i++) {
627 		ret = alloc_chrdev_region(&dfl_chrdevs[i].devt, 0,
628 					  MINORMASK + 1, dfl_chrdevs[i].name);
629 		if (ret)
630 			goto exit;
631 	}
632 
633 	return 0;
634 
635 exit:
636 	dfl_chardev_uinit();
637 	return ret;
638 }
639 
640 static dev_t dfl_get_devt(enum dfl_fpga_devt_type type, int id)
641 {
642 	if (type >= DFL_FPGA_DEVT_MAX)
643 		return 0;
644 
645 	return MKDEV(MAJOR(dfl_chrdevs[type].devt), id);
646 }
647 
648 /**
649  * dfl_fpga_dev_ops_register - register cdev ops for feature dev
650  *
651  * @pdev: feature dev.
652  * @fops: file operations for feature dev's cdev.
653  * @owner: owning module/driver.
654  *
655  * Return: 0 on success, negative error code otherwise.
656  */
657 int dfl_fpga_dev_ops_register(struct platform_device *pdev,
658 			      const struct file_operations *fops,
659 			      struct module *owner)
660 {
661 	struct dfl_feature_platform_data *pdata = dev_get_platdata(&pdev->dev);
662 
663 	cdev_init(&pdata->cdev, fops);
664 	pdata->cdev.owner = owner;
665 
666 	/*
667 	 * set parent to the feature device so that its refcount is
668 	 * decreased after the last refcount of cdev is gone, that
669 	 * makes sure the feature device is valid during device
670 	 * file's life-cycle.
671 	 */
672 	pdata->cdev.kobj.parent = &pdev->dev.kobj;
673 
674 	return cdev_add(&pdata->cdev, pdev->dev.devt, 1);
675 }
676 EXPORT_SYMBOL_GPL(dfl_fpga_dev_ops_register);
677 
678 /**
679  * dfl_fpga_dev_ops_unregister - unregister cdev ops for feature dev
680  * @pdev: feature dev.
681  */
682 void dfl_fpga_dev_ops_unregister(struct platform_device *pdev)
683 {
684 	struct dfl_feature_platform_data *pdata = dev_get_platdata(&pdev->dev);
685 
686 	cdev_del(&pdata->cdev);
687 }
688 EXPORT_SYMBOL_GPL(dfl_fpga_dev_ops_unregister);
689 
690 /**
691  * struct build_feature_devs_info - info collected during feature dev build.
692  *
693  * @dev: device to enumerate.
694  * @cdev: the container device for all feature devices.
695  * @nr_irqs: number of irqs for all feature devices.
696  * @irq_table: Linux IRQ numbers for all irqs, indexed by local irq index of
697  *	       this device.
698  * @feature_dev: current feature device.
699  * @ioaddr: header register region address of current FIU in enumeration.
700  * @start: register resource start of current FIU.
701  * @len: max register resource length of current FIU.
702  * @sub_features: a sub features linked list for feature device in enumeration.
703  * @feature_num: number of sub features for feature device in enumeration.
704  */
705 struct build_feature_devs_info {
706 	struct device *dev;
707 	struct dfl_fpga_cdev *cdev;
708 	unsigned int nr_irqs;
709 	int *irq_table;
710 
711 	struct platform_device *feature_dev;
712 	void __iomem *ioaddr;
713 	resource_size_t start;
714 	resource_size_t len;
715 	struct list_head sub_features;
716 	int feature_num;
717 };
718 
719 /**
720  * struct dfl_feature_info - sub feature info collected during feature dev build
721  *
722  * @fid: id of this sub feature.
723  * @revision: revision of this sub feature
724  * @dfh_version: version of Device Feature Header (DFH)
725  * @mmio_res: mmio resource of this sub feature.
726  * @ioaddr: mapped base address of mmio resource.
727  * @node: node in sub_features linked list.
728  * @irq_base: start of irq index in this sub feature.
729  * @nr_irqs: number of irqs of this sub feature.
730  * @param_size: size DFH parameters.
731  * @params: DFH parameter data.
732  */
733 struct dfl_feature_info {
734 	u16 fid;
735 	u8 revision;
736 	u8 dfh_version;
737 	struct resource mmio_res;
738 	void __iomem *ioaddr;
739 	struct list_head node;
740 	unsigned int irq_base;
741 	unsigned int nr_irqs;
742 	unsigned int param_size;
743 	u64 params[];
744 };
745 
746 static void dfl_fpga_cdev_add_port_dev(struct dfl_fpga_cdev *cdev,
747 				       struct platform_device *port)
748 {
749 	struct dfl_feature_platform_data *pdata = dev_get_platdata(&port->dev);
750 
751 	mutex_lock(&cdev->lock);
752 	list_add(&pdata->node, &cdev->port_dev_list);
753 	get_device(&pdata->dev->dev);
754 	mutex_unlock(&cdev->lock);
755 }
756 
757 /*
758  * register current feature device, it is called when we need to switch to
759  * another feature parsing or we have parsed all features on given device
760  * feature list.
761  */
762 static int build_info_commit_dev(struct build_feature_devs_info *binfo)
763 {
764 	struct platform_device *fdev = binfo->feature_dev;
765 	struct dfl_feature_platform_data *pdata;
766 	struct dfl_feature_info *finfo, *p;
767 	enum dfl_id_type type;
768 	int ret, index = 0, res_idx = 0;
769 
770 	type = feature_dev_id_type(fdev);
771 	if (WARN_ON_ONCE(type >= DFL_ID_MAX))
772 		return -EINVAL;
773 
774 	/*
775 	 * we do not need to care for the memory which is associated with
776 	 * the platform device. After calling platform_device_unregister(),
777 	 * it will be automatically freed by device's release() callback,
778 	 * platform_device_release().
779 	 */
780 	pdata = kzalloc(struct_size(pdata, features, binfo->feature_num), GFP_KERNEL);
781 	if (!pdata)
782 		return -ENOMEM;
783 
784 	pdata->dev = fdev;
785 	pdata->num = binfo->feature_num;
786 	pdata->dfl_cdev = binfo->cdev;
787 	pdata->id = FEATURE_DEV_ID_UNUSED;
788 	mutex_init(&pdata->lock);
789 	lockdep_set_class_and_name(&pdata->lock, &dfl_pdata_keys[type],
790 				   dfl_pdata_key_strings[type]);
791 
792 	/*
793 	 * the count should be initialized to 0 to make sure
794 	 *__fpga_port_enable() following __fpga_port_disable()
795 	 * works properly for port device.
796 	 * and it should always be 0 for fme device.
797 	 */
798 	WARN_ON(pdata->disable_count);
799 
800 	fdev->dev.platform_data = pdata;
801 
802 	/* each sub feature has one MMIO resource */
803 	fdev->num_resources = binfo->feature_num;
804 	fdev->resource = kcalloc(binfo->feature_num, sizeof(*fdev->resource),
805 				 GFP_KERNEL);
806 	if (!fdev->resource)
807 		return -ENOMEM;
808 
809 	/* fill features and resource information for feature dev */
810 	list_for_each_entry_safe(finfo, p, &binfo->sub_features, node) {
811 		struct dfl_feature *feature = &pdata->features[index++];
812 		struct dfl_feature_irq_ctx *ctx;
813 		unsigned int i;
814 
815 		/* save resource information for each feature */
816 		feature->dev = fdev;
817 		feature->id = finfo->fid;
818 		feature->revision = finfo->revision;
819 		feature->dfh_version = finfo->dfh_version;
820 
821 		if (finfo->param_size) {
822 			feature->params = devm_kmemdup(binfo->dev,
823 						       finfo->params, finfo->param_size,
824 						       GFP_KERNEL);
825 			if (!feature->params)
826 				return -ENOMEM;
827 
828 			feature->param_size = finfo->param_size;
829 		}
830 		/*
831 		 * the FIU header feature has some fundamental functions (sriov
832 		 * set, port enable/disable) needed for the dfl bus device and
833 		 * other sub features. So its mmio resource should be mapped by
834 		 * DFL bus device. And we should not assign it to feature
835 		 * devices (dfl-fme/afu) again.
836 		 */
837 		if (is_header_feature(feature)) {
838 			feature->resource_index = -1;
839 			feature->ioaddr =
840 				devm_ioremap_resource(binfo->dev,
841 						      &finfo->mmio_res);
842 			if (IS_ERR(feature->ioaddr))
843 				return PTR_ERR(feature->ioaddr);
844 		} else {
845 			feature->resource_index = res_idx;
846 			fdev->resource[res_idx++] = finfo->mmio_res;
847 		}
848 
849 		if (finfo->nr_irqs) {
850 			ctx = devm_kcalloc(binfo->dev, finfo->nr_irqs,
851 					   sizeof(*ctx), GFP_KERNEL);
852 			if (!ctx)
853 				return -ENOMEM;
854 
855 			for (i = 0; i < finfo->nr_irqs; i++)
856 				ctx[i].irq =
857 					binfo->irq_table[finfo->irq_base + i];
858 
859 			feature->irq_ctx = ctx;
860 			feature->nr_irqs = finfo->nr_irqs;
861 		}
862 
863 		list_del(&finfo->node);
864 		kfree(finfo);
865 	}
866 
867 	ret = platform_device_add(binfo->feature_dev);
868 	if (!ret) {
869 		if (type == PORT_ID)
870 			dfl_fpga_cdev_add_port_dev(binfo->cdev,
871 						   binfo->feature_dev);
872 		else
873 			binfo->cdev->fme_dev =
874 					get_device(&binfo->feature_dev->dev);
875 		/*
876 		 * reset it to avoid build_info_free() freeing their resource.
877 		 *
878 		 * The resource of successfully registered feature devices
879 		 * will be freed by platform_device_unregister(). See the
880 		 * comments in build_info_create_dev().
881 		 */
882 		binfo->feature_dev = NULL;
883 	}
884 
885 	return ret;
886 }
887 
888 static int
889 build_info_create_dev(struct build_feature_devs_info *binfo,
890 		      enum dfl_id_type type)
891 {
892 	struct platform_device *fdev;
893 
894 	if (type >= DFL_ID_MAX)
895 		return -EINVAL;
896 
897 	/*
898 	 * we use -ENODEV as the initialization indicator which indicates
899 	 * whether the id need to be reclaimed
900 	 */
901 	fdev = platform_device_alloc(dfl_devs[type].name, -ENODEV);
902 	if (!fdev)
903 		return -ENOMEM;
904 
905 	binfo->feature_dev = fdev;
906 	binfo->feature_num = 0;
907 
908 	INIT_LIST_HEAD(&binfo->sub_features);
909 
910 	fdev->id = dfl_id_alloc(type, &fdev->dev);
911 	if (fdev->id < 0)
912 		return fdev->id;
913 
914 	fdev->dev.parent = &binfo->cdev->region->dev;
915 	fdev->dev.devt = dfl_get_devt(dfl_devs[type].devt_type, fdev->id);
916 
917 	return 0;
918 }
919 
920 static void build_info_free(struct build_feature_devs_info *binfo)
921 {
922 	struct dfl_feature_info *finfo, *p;
923 
924 	/*
925 	 * it is a valid id, free it. See comments in
926 	 * build_info_create_dev()
927 	 */
928 	if (binfo->feature_dev && binfo->feature_dev->id >= 0) {
929 		dfl_id_free(feature_dev_id_type(binfo->feature_dev),
930 			    binfo->feature_dev->id);
931 
932 		list_for_each_entry_safe(finfo, p, &binfo->sub_features, node) {
933 			list_del(&finfo->node);
934 			kfree(finfo);
935 		}
936 	}
937 
938 	platform_device_put(binfo->feature_dev);
939 
940 	devm_kfree(binfo->dev, binfo);
941 }
942 
943 static inline u32 feature_size(u64 value)
944 {
945 	u32 ofst = FIELD_GET(DFH_NEXT_HDR_OFST, value);
946 	/* workaround for private features with invalid size, use 4K instead */
947 	return ofst ? ofst : 4096;
948 }
949 
950 static u16 feature_id(u64 value)
951 {
952 	u16 id = FIELD_GET(DFH_ID, value);
953 	u8 type = FIELD_GET(DFH_TYPE, value);
954 
955 	if (type == DFH_TYPE_FIU)
956 		return FEATURE_ID_FIU_HEADER;
957 	else if (type == DFH_TYPE_PRIVATE)
958 		return id;
959 	else if (type == DFH_TYPE_AFU)
960 		return FEATURE_ID_AFU;
961 
962 	WARN_ON(1);
963 	return 0;
964 }
965 
966 static u64 *find_param(u64 *params, resource_size_t max, int param_id)
967 {
968 	u64 *end = params + max / sizeof(u64);
969 	u64 v, next;
970 
971 	while (params < end) {
972 		v = *params;
973 		if (param_id == FIELD_GET(DFHv1_PARAM_HDR_ID, v))
974 			return params;
975 
976 		if (FIELD_GET(DFHv1_PARAM_HDR_NEXT_EOP, v))
977 			break;
978 
979 		next = FIELD_GET(DFHv1_PARAM_HDR_NEXT_OFFSET, v);
980 		params += next;
981 	}
982 
983 	return NULL;
984 }
985 
986 /**
987  * dfh_find_param() - find parameter block for the given parameter id
988  * @dfl_dev: dfl device
989  * @param_id: id of dfl parameter
990  * @psize: destination to store size of parameter data in bytes
991  *
992  * Return: pointer to start of parameter data, PTR_ERR otherwise.
993  */
994 void *dfh_find_param(struct dfl_device *dfl_dev, int param_id, size_t *psize)
995 {
996 	u64 *phdr = find_param(dfl_dev->params, dfl_dev->param_size, param_id);
997 
998 	if (!phdr)
999 		return ERR_PTR(-ENOENT);
1000 
1001 	if (psize)
1002 		*psize = (FIELD_GET(DFHv1_PARAM_HDR_NEXT_OFFSET, *phdr) - 1) * sizeof(u64);
1003 
1004 	return phdr + 1;
1005 }
1006 EXPORT_SYMBOL_GPL(dfh_find_param);
1007 
1008 static int parse_feature_irqs(struct build_feature_devs_info *binfo,
1009 			      resource_size_t ofst, struct dfl_feature_info *finfo)
1010 {
1011 	void __iomem *base = binfo->ioaddr + ofst;
1012 	unsigned int i, ibase, inr = 0;
1013 	void *params = finfo->params;
1014 	enum dfl_id_type type;
1015 	u16 fid = finfo->fid;
1016 	int virq;
1017 	u64 *p;
1018 	u64 v;
1019 
1020 	switch (finfo->dfh_version) {
1021 	case 0:
1022 		/*
1023 		 * DFHv0 only provides MMIO resource information for each feature
1024 		 * in the DFL header.  There is no generic interrupt information.
1025 		 * Instead, features with interrupt functionality provide
1026 		 * the information in feature specific registers.
1027 		 */
1028 		type = feature_dev_id_type(binfo->feature_dev);
1029 		if (type == PORT_ID) {
1030 			switch (fid) {
1031 			case PORT_FEATURE_ID_UINT:
1032 				v = readq(base + PORT_UINT_CAP);
1033 				ibase = FIELD_GET(PORT_UINT_CAP_FST_VECT, v);
1034 				inr = FIELD_GET(PORT_UINT_CAP_INT_NUM, v);
1035 				break;
1036 			case PORT_FEATURE_ID_ERROR:
1037 				v = readq(base + PORT_ERROR_CAP);
1038 				ibase = FIELD_GET(PORT_ERROR_CAP_INT_VECT, v);
1039 				inr = FIELD_GET(PORT_ERROR_CAP_SUPP_INT, v);
1040 				break;
1041 			}
1042 		} else if (type == FME_ID) {
1043 			switch (fid) {
1044 			case FME_FEATURE_ID_GLOBAL_ERR:
1045 				v = readq(base + FME_ERROR_CAP);
1046 				ibase = FIELD_GET(FME_ERROR_CAP_INT_VECT, v);
1047 				inr = FIELD_GET(FME_ERROR_CAP_SUPP_INT, v);
1048 				break;
1049 			}
1050 		}
1051 		break;
1052 
1053 	case 1:
1054 		/*
1055 		 * DFHv1 provides interrupt resource information in DFHv1
1056 		 * parameter blocks.
1057 		 */
1058 		p = find_param(params, finfo->param_size, DFHv1_PARAM_ID_MSI_X);
1059 		if (!p)
1060 			break;
1061 
1062 		p++;
1063 		ibase = FIELD_GET(DFHv1_PARAM_MSI_X_STARTV, *p);
1064 		inr = FIELD_GET(DFHv1_PARAM_MSI_X_NUMV, *p);
1065 		break;
1066 
1067 	default:
1068 		dev_warn(binfo->dev, "unexpected DFH version %d\n", finfo->dfh_version);
1069 		break;
1070 	}
1071 
1072 	if (!inr) {
1073 		finfo->irq_base = 0;
1074 		finfo->nr_irqs = 0;
1075 		return 0;
1076 	}
1077 
1078 	dev_dbg(binfo->dev, "feature: 0x%x, irq_base: %u, nr_irqs: %u\n",
1079 		fid, ibase, inr);
1080 
1081 	if (ibase + inr > binfo->nr_irqs) {
1082 		dev_err(binfo->dev,
1083 			"Invalid interrupt number in feature 0x%x\n", fid);
1084 		return -EINVAL;
1085 	}
1086 
1087 	for (i = 0; i < inr; i++) {
1088 		virq = binfo->irq_table[ibase + i];
1089 		if (virq < 0 || virq > NR_IRQS) {
1090 			dev_err(binfo->dev,
1091 				"Invalid irq table entry for feature 0x%x\n",
1092 				fid);
1093 			return -EINVAL;
1094 		}
1095 	}
1096 
1097 	finfo->irq_base = ibase;
1098 	finfo->nr_irqs = inr;
1099 
1100 	return 0;
1101 }
1102 
1103 static int dfh_get_param_size(void __iomem *dfh_base, resource_size_t max)
1104 {
1105 	int size = 0;
1106 	u64 v, next;
1107 
1108 	if (!FIELD_GET(DFHv1_CSR_SIZE_GRP_HAS_PARAMS,
1109 		       readq(dfh_base + DFHv1_CSR_SIZE_GRP)))
1110 		return 0;
1111 
1112 	while (size + DFHv1_PARAM_HDR < max) {
1113 		v = readq(dfh_base + DFHv1_PARAM_HDR + size);
1114 
1115 		next = FIELD_GET(DFHv1_PARAM_HDR_NEXT_OFFSET, v);
1116 		if (!next)
1117 			return -EINVAL;
1118 
1119 		size += next * sizeof(u64);
1120 
1121 		if (FIELD_GET(DFHv1_PARAM_HDR_NEXT_EOP, v))
1122 			return size;
1123 	}
1124 
1125 	return -ENOENT;
1126 }
1127 
1128 /*
1129  * when create sub feature instances, for private features, it doesn't need
1130  * to provide resource size and feature id as they could be read from DFH
1131  * register. For afu sub feature, its register region only contains user
1132  * defined registers, so never trust any information from it, just use the
1133  * resource size information provided by its parent FIU.
1134  */
1135 static int
1136 create_feature_instance(struct build_feature_devs_info *binfo,
1137 			resource_size_t ofst, resource_size_t size, u16 fid)
1138 {
1139 	struct dfl_feature_info *finfo;
1140 	resource_size_t start, end;
1141 	int dfh_psize = 0;
1142 	u8 revision = 0;
1143 	u64 v, addr_off;
1144 	u8 dfh_ver = 0;
1145 	int ret;
1146 
1147 	if (fid != FEATURE_ID_AFU) {
1148 		v = readq(binfo->ioaddr + ofst);
1149 		revision = FIELD_GET(DFH_REVISION, v);
1150 		dfh_ver = FIELD_GET(DFH_VERSION, v);
1151 		/* read feature size and id if inputs are invalid */
1152 		size = size ? size : feature_size(v);
1153 		fid = fid ? fid : feature_id(v);
1154 		if (dfh_ver == 1) {
1155 			dfh_psize = dfh_get_param_size(binfo->ioaddr + ofst, size);
1156 			if (dfh_psize < 0) {
1157 				dev_err(binfo->dev,
1158 					"failed to read size of DFHv1 parameters %d\n",
1159 					dfh_psize);
1160 				return dfh_psize;
1161 			}
1162 			dev_dbg(binfo->dev, "dfhv1_psize %d\n", dfh_psize);
1163 		}
1164 	}
1165 
1166 	if (binfo->len - ofst < size)
1167 		return -EINVAL;
1168 
1169 	finfo = kzalloc(struct_size(finfo, params, dfh_psize / sizeof(u64)), GFP_KERNEL);
1170 	if (!finfo)
1171 		return -ENOMEM;
1172 
1173 	memcpy_fromio(finfo->params, binfo->ioaddr + ofst + DFHv1_PARAM_HDR, dfh_psize);
1174 	finfo->param_size = dfh_psize;
1175 
1176 	finfo->fid = fid;
1177 	finfo->revision = revision;
1178 	finfo->dfh_version = dfh_ver;
1179 	if (dfh_ver == 1) {
1180 		v = readq(binfo->ioaddr + ofst + DFHv1_CSR_ADDR);
1181 		addr_off = FIELD_GET(DFHv1_CSR_ADDR_MASK, v);
1182 		if (FIELD_GET(DFHv1_CSR_ADDR_REL, v))
1183 			start = addr_off << 1;
1184 		else
1185 			start = binfo->start + ofst + addr_off;
1186 
1187 		v = readq(binfo->ioaddr + ofst + DFHv1_CSR_SIZE_GRP);
1188 		end = start + FIELD_GET(DFHv1_CSR_SIZE_GRP_SIZE, v) - 1;
1189 	} else {
1190 		start = binfo->start + ofst;
1191 		end = start + size - 1;
1192 	}
1193 	finfo->mmio_res.flags = IORESOURCE_MEM;
1194 	finfo->mmio_res.start = start;
1195 	finfo->mmio_res.end = end;
1196 
1197 	ret = parse_feature_irqs(binfo, ofst, finfo);
1198 	if (ret) {
1199 		kfree(finfo);
1200 		return ret;
1201 	}
1202 
1203 	list_add_tail(&finfo->node, &binfo->sub_features);
1204 	binfo->feature_num++;
1205 
1206 	return 0;
1207 }
1208 
1209 static int parse_feature_port_afu(struct build_feature_devs_info *binfo,
1210 				  resource_size_t ofst)
1211 {
1212 	u64 v = readq(binfo->ioaddr + PORT_HDR_CAP);
1213 	u32 size = FIELD_GET(PORT_CAP_MMIO_SIZE, v) << 10;
1214 
1215 	WARN_ON(!size);
1216 
1217 	return create_feature_instance(binfo, ofst, size, FEATURE_ID_AFU);
1218 }
1219 
1220 #define is_feature_dev_detected(binfo) (!!(binfo)->feature_dev)
1221 
1222 static int parse_feature_afu(struct build_feature_devs_info *binfo,
1223 			     resource_size_t ofst)
1224 {
1225 	if (!is_feature_dev_detected(binfo)) {
1226 		dev_err(binfo->dev, "this AFU does not belong to any FIU.\n");
1227 		return -EINVAL;
1228 	}
1229 
1230 	switch (feature_dev_id_type(binfo->feature_dev)) {
1231 	case PORT_ID:
1232 		return parse_feature_port_afu(binfo, ofst);
1233 	default:
1234 		dev_info(binfo->dev, "AFU belonging to FIU %s is not supported yet.\n",
1235 			 binfo->feature_dev->name);
1236 	}
1237 
1238 	return 0;
1239 }
1240 
1241 static int build_info_prepare(struct build_feature_devs_info *binfo,
1242 			      resource_size_t start, resource_size_t len)
1243 {
1244 	struct device *dev = binfo->dev;
1245 	void __iomem *ioaddr;
1246 
1247 	if (!devm_request_mem_region(dev, start, len, dev_name(dev))) {
1248 		dev_err(dev, "request region fail, start:%pa, len:%pa\n",
1249 			&start, &len);
1250 		return -EBUSY;
1251 	}
1252 
1253 	ioaddr = devm_ioremap(dev, start, len);
1254 	if (!ioaddr) {
1255 		dev_err(dev, "ioremap region fail, start:%pa, len:%pa\n",
1256 			&start, &len);
1257 		return -ENOMEM;
1258 	}
1259 
1260 	binfo->start = start;
1261 	binfo->len = len;
1262 	binfo->ioaddr = ioaddr;
1263 
1264 	return 0;
1265 }
1266 
1267 static void build_info_complete(struct build_feature_devs_info *binfo)
1268 {
1269 	devm_iounmap(binfo->dev, binfo->ioaddr);
1270 	devm_release_mem_region(binfo->dev, binfo->start, binfo->len);
1271 }
1272 
1273 static int parse_feature_fiu(struct build_feature_devs_info *binfo,
1274 			     resource_size_t ofst)
1275 {
1276 	int ret = 0;
1277 	u32 offset;
1278 	u16 id;
1279 	u64 v;
1280 
1281 	if (is_feature_dev_detected(binfo)) {
1282 		build_info_complete(binfo);
1283 
1284 		ret = build_info_commit_dev(binfo);
1285 		if (ret)
1286 			return ret;
1287 
1288 		ret = build_info_prepare(binfo, binfo->start + ofst,
1289 					 binfo->len - ofst);
1290 		if (ret)
1291 			return ret;
1292 	}
1293 
1294 	v = readq(binfo->ioaddr + DFH);
1295 	id = FIELD_GET(DFH_ID, v);
1296 
1297 	/* create platform device for dfl feature dev */
1298 	ret = build_info_create_dev(binfo, dfh_id_to_type(id));
1299 	if (ret)
1300 		return ret;
1301 
1302 	ret = create_feature_instance(binfo, 0, 0, 0);
1303 	if (ret)
1304 		return ret;
1305 	/*
1306 	 * find and parse FIU's child AFU via its NEXT_AFU register.
1307 	 * please note that only Port has valid NEXT_AFU pointer per spec.
1308 	 */
1309 	v = readq(binfo->ioaddr + NEXT_AFU);
1310 
1311 	offset = FIELD_GET(NEXT_AFU_NEXT_DFH_OFST, v);
1312 	if (offset)
1313 		return parse_feature_afu(binfo, offset);
1314 
1315 	dev_dbg(binfo->dev, "No AFUs detected on FIU %d\n", id);
1316 
1317 	return ret;
1318 }
1319 
1320 static int parse_feature_private(struct build_feature_devs_info *binfo,
1321 				 resource_size_t ofst)
1322 {
1323 	if (!is_feature_dev_detected(binfo)) {
1324 		dev_err(binfo->dev, "the private feature 0x%x does not belong to any AFU.\n",
1325 			feature_id(readq(binfo->ioaddr + ofst)));
1326 		return -EINVAL;
1327 	}
1328 
1329 	return create_feature_instance(binfo, ofst, 0, 0);
1330 }
1331 
1332 /**
1333  * parse_feature - parse a feature on given device feature list
1334  *
1335  * @binfo: build feature devices information.
1336  * @ofst: offset to current FIU header
1337  */
1338 static int parse_feature(struct build_feature_devs_info *binfo,
1339 			 resource_size_t ofst)
1340 {
1341 	u64 v;
1342 	u32 type;
1343 
1344 	v = readq(binfo->ioaddr + ofst + DFH);
1345 	type = FIELD_GET(DFH_TYPE, v);
1346 
1347 	switch (type) {
1348 	case DFH_TYPE_AFU:
1349 		return parse_feature_afu(binfo, ofst);
1350 	case DFH_TYPE_PRIVATE:
1351 		return parse_feature_private(binfo, ofst);
1352 	case DFH_TYPE_FIU:
1353 		return parse_feature_fiu(binfo, ofst);
1354 	default:
1355 		dev_info(binfo->dev,
1356 			 "Feature Type %x is not supported.\n", type);
1357 	}
1358 
1359 	return 0;
1360 }
1361 
1362 static int parse_feature_list(struct build_feature_devs_info *binfo,
1363 			      resource_size_t start, resource_size_t len)
1364 {
1365 	resource_size_t end = start + len;
1366 	int ret = 0;
1367 	u32 ofst = 0;
1368 	u64 v;
1369 
1370 	ret = build_info_prepare(binfo, start, len);
1371 	if (ret)
1372 		return ret;
1373 
1374 	/* walk through the device feature list via DFH's next DFH pointer. */
1375 	for (; start < end; start += ofst) {
1376 		if (end - start < DFH_SIZE) {
1377 			dev_err(binfo->dev, "The region is too small to contain a feature.\n");
1378 			return -EINVAL;
1379 		}
1380 
1381 		ret = parse_feature(binfo, start - binfo->start);
1382 		if (ret)
1383 			return ret;
1384 
1385 		v = readq(binfo->ioaddr + start - binfo->start + DFH);
1386 		ofst = FIELD_GET(DFH_NEXT_HDR_OFST, v);
1387 
1388 		/* stop parsing if EOL(End of List) is set or offset is 0 */
1389 		if ((v & DFH_EOL) || !ofst)
1390 			break;
1391 	}
1392 
1393 	/* commit current feature device when reach the end of list */
1394 	build_info_complete(binfo);
1395 
1396 	if (is_feature_dev_detected(binfo))
1397 		ret = build_info_commit_dev(binfo);
1398 
1399 	return ret;
1400 }
1401 
1402 struct dfl_fpga_enum_info *dfl_fpga_enum_info_alloc(struct device *dev)
1403 {
1404 	struct dfl_fpga_enum_info *info;
1405 
1406 	get_device(dev);
1407 
1408 	info = devm_kzalloc(dev, sizeof(*info), GFP_KERNEL);
1409 	if (!info) {
1410 		put_device(dev);
1411 		return NULL;
1412 	}
1413 
1414 	info->dev = dev;
1415 	INIT_LIST_HEAD(&info->dfls);
1416 
1417 	return info;
1418 }
1419 EXPORT_SYMBOL_GPL(dfl_fpga_enum_info_alloc);
1420 
1421 void dfl_fpga_enum_info_free(struct dfl_fpga_enum_info *info)
1422 {
1423 	struct dfl_fpga_enum_dfl *tmp, *dfl;
1424 	struct device *dev;
1425 
1426 	if (!info)
1427 		return;
1428 
1429 	dev = info->dev;
1430 
1431 	/* remove all device feature lists in the list. */
1432 	list_for_each_entry_safe(dfl, tmp, &info->dfls, node) {
1433 		list_del(&dfl->node);
1434 		devm_kfree(dev, dfl);
1435 	}
1436 
1437 	/* remove irq table */
1438 	if (info->irq_table)
1439 		devm_kfree(dev, info->irq_table);
1440 
1441 	devm_kfree(dev, info);
1442 	put_device(dev);
1443 }
1444 EXPORT_SYMBOL_GPL(dfl_fpga_enum_info_free);
1445 
1446 /**
1447  * dfl_fpga_enum_info_add_dfl - add info of a device feature list to enum info
1448  *
1449  * @info: ptr to dfl_fpga_enum_info
1450  * @start: mmio resource address of the device feature list.
1451  * @len: mmio resource length of the device feature list.
1452  *
1453  * One FPGA device may have one or more Device Feature Lists (DFLs), use this
1454  * function to add information of each DFL to common data structure for next
1455  * step enumeration.
1456  *
1457  * Return: 0 on success, negative error code otherwise.
1458  */
1459 int dfl_fpga_enum_info_add_dfl(struct dfl_fpga_enum_info *info,
1460 			       resource_size_t start, resource_size_t len)
1461 {
1462 	struct dfl_fpga_enum_dfl *dfl;
1463 
1464 	dfl = devm_kzalloc(info->dev, sizeof(*dfl), GFP_KERNEL);
1465 	if (!dfl)
1466 		return -ENOMEM;
1467 
1468 	dfl->start = start;
1469 	dfl->len = len;
1470 
1471 	list_add_tail(&dfl->node, &info->dfls);
1472 
1473 	return 0;
1474 }
1475 EXPORT_SYMBOL_GPL(dfl_fpga_enum_info_add_dfl);
1476 
1477 /**
1478  * dfl_fpga_enum_info_add_irq - add irq table to enum info
1479  *
1480  * @info: ptr to dfl_fpga_enum_info
1481  * @nr_irqs: number of irqs of the DFL fpga device to be enumerated.
1482  * @irq_table: Linux IRQ numbers for all irqs, indexed by local irq index of
1483  *	       this device.
1484  *
1485  * One FPGA device may have several interrupts. This function adds irq
1486  * information of the DFL fpga device to enum info for next step enumeration.
1487  * This function should be called before dfl_fpga_feature_devs_enumerate().
1488  * As we only support one irq domain for all DFLs in the same enum info, adding
1489  * irq table a second time for the same enum info will return error.
1490  *
1491  * If we need to enumerate DFLs which belong to different irq domains, we
1492  * should fill more enum info and enumerate them one by one.
1493  *
1494  * Return: 0 on success, negative error code otherwise.
1495  */
1496 int dfl_fpga_enum_info_add_irq(struct dfl_fpga_enum_info *info,
1497 			       unsigned int nr_irqs, int *irq_table)
1498 {
1499 	if (!nr_irqs || !irq_table)
1500 		return -EINVAL;
1501 
1502 	if (info->irq_table)
1503 		return -EEXIST;
1504 
1505 	info->irq_table = devm_kmemdup(info->dev, irq_table,
1506 				       sizeof(int) * nr_irqs, GFP_KERNEL);
1507 	if (!info->irq_table)
1508 		return -ENOMEM;
1509 
1510 	info->nr_irqs = nr_irqs;
1511 
1512 	return 0;
1513 }
1514 EXPORT_SYMBOL_GPL(dfl_fpga_enum_info_add_irq);
1515 
1516 static int remove_feature_dev(struct device *dev, void *data)
1517 {
1518 	struct platform_device *pdev = to_platform_device(dev);
1519 	enum dfl_id_type type = feature_dev_id_type(pdev);
1520 	int id = pdev->id;
1521 
1522 	platform_device_unregister(pdev);
1523 
1524 	dfl_id_free(type, id);
1525 
1526 	return 0;
1527 }
1528 
1529 static void remove_feature_devs(struct dfl_fpga_cdev *cdev)
1530 {
1531 	device_for_each_child(&cdev->region->dev, NULL, remove_feature_dev);
1532 }
1533 
1534 /**
1535  * dfl_fpga_feature_devs_enumerate - enumerate feature devices
1536  * @info: information for enumeration.
1537  *
1538  * This function creates a container device (base FPGA region), enumerates
1539  * feature devices based on the enumeration info and creates platform devices
1540  * under the container device.
1541  *
1542  * Return: dfl_fpga_cdev struct on success, -errno on failure
1543  */
1544 struct dfl_fpga_cdev *
1545 dfl_fpga_feature_devs_enumerate(struct dfl_fpga_enum_info *info)
1546 {
1547 	struct build_feature_devs_info *binfo;
1548 	struct dfl_fpga_enum_dfl *dfl;
1549 	struct dfl_fpga_cdev *cdev;
1550 	int ret = 0;
1551 
1552 	if (!info->dev)
1553 		return ERR_PTR(-ENODEV);
1554 
1555 	cdev = devm_kzalloc(info->dev, sizeof(*cdev), GFP_KERNEL);
1556 	if (!cdev)
1557 		return ERR_PTR(-ENOMEM);
1558 
1559 	cdev->parent = info->dev;
1560 	mutex_init(&cdev->lock);
1561 	INIT_LIST_HEAD(&cdev->port_dev_list);
1562 
1563 	cdev->region = fpga_region_register(info->dev, NULL, NULL);
1564 	if (IS_ERR(cdev->region)) {
1565 		ret = PTR_ERR(cdev->region);
1566 		goto free_cdev_exit;
1567 	}
1568 
1569 	/* create and init build info for enumeration */
1570 	binfo = devm_kzalloc(info->dev, sizeof(*binfo), GFP_KERNEL);
1571 	if (!binfo) {
1572 		ret = -ENOMEM;
1573 		goto unregister_region_exit;
1574 	}
1575 
1576 	binfo->dev = info->dev;
1577 	binfo->cdev = cdev;
1578 
1579 	binfo->nr_irqs = info->nr_irqs;
1580 	if (info->nr_irqs)
1581 		binfo->irq_table = info->irq_table;
1582 
1583 	/*
1584 	 * start enumeration for all feature devices based on Device Feature
1585 	 * Lists.
1586 	 */
1587 	list_for_each_entry(dfl, &info->dfls, node) {
1588 		ret = parse_feature_list(binfo, dfl->start, dfl->len);
1589 		if (ret) {
1590 			remove_feature_devs(cdev);
1591 			build_info_free(binfo);
1592 			goto unregister_region_exit;
1593 		}
1594 	}
1595 
1596 	build_info_free(binfo);
1597 
1598 	return cdev;
1599 
1600 unregister_region_exit:
1601 	fpga_region_unregister(cdev->region);
1602 free_cdev_exit:
1603 	devm_kfree(info->dev, cdev);
1604 	return ERR_PTR(ret);
1605 }
1606 EXPORT_SYMBOL_GPL(dfl_fpga_feature_devs_enumerate);
1607 
1608 /**
1609  * dfl_fpga_feature_devs_remove - remove all feature devices
1610  * @cdev: fpga container device.
1611  *
1612  * Remove the container device and all feature devices under given container
1613  * devices.
1614  */
1615 void dfl_fpga_feature_devs_remove(struct dfl_fpga_cdev *cdev)
1616 {
1617 	struct dfl_feature_platform_data *pdata, *ptmp;
1618 
1619 	mutex_lock(&cdev->lock);
1620 	if (cdev->fme_dev)
1621 		put_device(cdev->fme_dev);
1622 
1623 	list_for_each_entry_safe(pdata, ptmp, &cdev->port_dev_list, node) {
1624 		struct platform_device *port_dev = pdata->dev;
1625 
1626 		/* remove released ports */
1627 		if (!device_is_registered(&port_dev->dev)) {
1628 			dfl_id_free(feature_dev_id_type(port_dev),
1629 				    port_dev->id);
1630 			platform_device_put(port_dev);
1631 		}
1632 
1633 		list_del(&pdata->node);
1634 		put_device(&port_dev->dev);
1635 	}
1636 	mutex_unlock(&cdev->lock);
1637 
1638 	remove_feature_devs(cdev);
1639 
1640 	fpga_region_unregister(cdev->region);
1641 	devm_kfree(cdev->parent, cdev);
1642 }
1643 EXPORT_SYMBOL_GPL(dfl_fpga_feature_devs_remove);
1644 
1645 /**
1646  * __dfl_fpga_cdev_find_port - find a port under given container device
1647  *
1648  * @cdev: container device
1649  * @data: data passed to match function
1650  * @match: match function used to find specific port from the port device list
1651  *
1652  * Find a port device under container device. This function needs to be
1653  * invoked with lock held.
1654  *
1655  * Return: pointer to port's platform device if successful, NULL otherwise.
1656  *
1657  * NOTE: you will need to drop the device reference with put_device() after use.
1658  */
1659 struct platform_device *
1660 __dfl_fpga_cdev_find_port(struct dfl_fpga_cdev *cdev, void *data,
1661 			  int (*match)(struct platform_device *, void *))
1662 {
1663 	struct dfl_feature_platform_data *pdata;
1664 	struct platform_device *port_dev;
1665 
1666 	list_for_each_entry(pdata, &cdev->port_dev_list, node) {
1667 		port_dev = pdata->dev;
1668 
1669 		if (match(port_dev, data) && get_device(&port_dev->dev))
1670 			return port_dev;
1671 	}
1672 
1673 	return NULL;
1674 }
1675 EXPORT_SYMBOL_GPL(__dfl_fpga_cdev_find_port);
1676 
1677 static int __init dfl_fpga_init(void)
1678 {
1679 	int ret;
1680 
1681 	ret = bus_register(&dfl_bus_type);
1682 	if (ret)
1683 		return ret;
1684 
1685 	dfl_ids_init();
1686 
1687 	ret = dfl_chardev_init();
1688 	if (ret) {
1689 		dfl_ids_destroy();
1690 		bus_unregister(&dfl_bus_type);
1691 	}
1692 
1693 	return ret;
1694 }
1695 
1696 /**
1697  * dfl_fpga_cdev_release_port - release a port platform device
1698  *
1699  * @cdev: parent container device.
1700  * @port_id: id of the port platform device.
1701  *
1702  * This function allows user to release a port platform device. This is a
1703  * mandatory step before turn a port from PF into VF for SRIOV support.
1704  *
1705  * Return: 0 on success, negative error code otherwise.
1706  */
1707 int dfl_fpga_cdev_release_port(struct dfl_fpga_cdev *cdev, int port_id)
1708 {
1709 	struct dfl_feature_platform_data *pdata;
1710 	struct platform_device *port_pdev;
1711 	int ret = -ENODEV;
1712 
1713 	mutex_lock(&cdev->lock);
1714 	port_pdev = __dfl_fpga_cdev_find_port(cdev, &port_id,
1715 					      dfl_fpga_check_port_id);
1716 	if (!port_pdev)
1717 		goto unlock_exit;
1718 
1719 	if (!device_is_registered(&port_pdev->dev)) {
1720 		ret = -EBUSY;
1721 		goto put_dev_exit;
1722 	}
1723 
1724 	pdata = dev_get_platdata(&port_pdev->dev);
1725 
1726 	mutex_lock(&pdata->lock);
1727 	ret = dfl_feature_dev_use_begin(pdata, true);
1728 	mutex_unlock(&pdata->lock);
1729 	if (ret)
1730 		goto put_dev_exit;
1731 
1732 	platform_device_del(port_pdev);
1733 	cdev->released_port_num++;
1734 put_dev_exit:
1735 	put_device(&port_pdev->dev);
1736 unlock_exit:
1737 	mutex_unlock(&cdev->lock);
1738 	return ret;
1739 }
1740 EXPORT_SYMBOL_GPL(dfl_fpga_cdev_release_port);
1741 
1742 /**
1743  * dfl_fpga_cdev_assign_port - assign a port platform device back
1744  *
1745  * @cdev: parent container device.
1746  * @port_id: id of the port platform device.
1747  *
1748  * This function allows user to assign a port platform device back. This is
1749  * a mandatory step after disable SRIOV support.
1750  *
1751  * Return: 0 on success, negative error code otherwise.
1752  */
1753 int dfl_fpga_cdev_assign_port(struct dfl_fpga_cdev *cdev, int port_id)
1754 {
1755 	struct dfl_feature_platform_data *pdata;
1756 	struct platform_device *port_pdev;
1757 	int ret = -ENODEV;
1758 
1759 	mutex_lock(&cdev->lock);
1760 	port_pdev = __dfl_fpga_cdev_find_port(cdev, &port_id,
1761 					      dfl_fpga_check_port_id);
1762 	if (!port_pdev)
1763 		goto unlock_exit;
1764 
1765 	if (device_is_registered(&port_pdev->dev)) {
1766 		ret = -EBUSY;
1767 		goto put_dev_exit;
1768 	}
1769 
1770 	ret = platform_device_add(port_pdev);
1771 	if (ret)
1772 		goto put_dev_exit;
1773 
1774 	pdata = dev_get_platdata(&port_pdev->dev);
1775 
1776 	mutex_lock(&pdata->lock);
1777 	dfl_feature_dev_use_end(pdata);
1778 	mutex_unlock(&pdata->lock);
1779 
1780 	cdev->released_port_num--;
1781 put_dev_exit:
1782 	put_device(&port_pdev->dev);
1783 unlock_exit:
1784 	mutex_unlock(&cdev->lock);
1785 	return ret;
1786 }
1787 EXPORT_SYMBOL_GPL(dfl_fpga_cdev_assign_port);
1788 
1789 static void config_port_access_mode(struct device *fme_dev, int port_id,
1790 				    bool is_vf)
1791 {
1792 	void __iomem *base;
1793 	u64 v;
1794 
1795 	base = dfl_get_feature_ioaddr_by_id(fme_dev, FME_FEATURE_ID_HEADER);
1796 
1797 	v = readq(base + FME_HDR_PORT_OFST(port_id));
1798 
1799 	v &= ~FME_PORT_OFST_ACC_CTRL;
1800 	v |= FIELD_PREP(FME_PORT_OFST_ACC_CTRL,
1801 			is_vf ? FME_PORT_OFST_ACC_VF : FME_PORT_OFST_ACC_PF);
1802 
1803 	writeq(v, base + FME_HDR_PORT_OFST(port_id));
1804 }
1805 
1806 #define config_port_vf_mode(dev, id) config_port_access_mode(dev, id, true)
1807 #define config_port_pf_mode(dev, id) config_port_access_mode(dev, id, false)
1808 
1809 /**
1810  * dfl_fpga_cdev_config_ports_pf - configure ports to PF access mode
1811  *
1812  * @cdev: parent container device.
1813  *
1814  * This function is needed in sriov configuration routine. It could be used to
1815  * configure the all released ports from VF access mode to PF.
1816  */
1817 void dfl_fpga_cdev_config_ports_pf(struct dfl_fpga_cdev *cdev)
1818 {
1819 	struct dfl_feature_platform_data *pdata;
1820 
1821 	mutex_lock(&cdev->lock);
1822 	list_for_each_entry(pdata, &cdev->port_dev_list, node) {
1823 		if (device_is_registered(&pdata->dev->dev))
1824 			continue;
1825 
1826 		config_port_pf_mode(cdev->fme_dev, pdata->id);
1827 	}
1828 	mutex_unlock(&cdev->lock);
1829 }
1830 EXPORT_SYMBOL_GPL(dfl_fpga_cdev_config_ports_pf);
1831 
1832 /**
1833  * dfl_fpga_cdev_config_ports_vf - configure ports to VF access mode
1834  *
1835  * @cdev: parent container device.
1836  * @num_vfs: VF device number.
1837  *
1838  * This function is needed in sriov configuration routine. It could be used to
1839  * configure the released ports from PF access mode to VF.
1840  *
1841  * Return: 0 on success, negative error code otherwise.
1842  */
1843 int dfl_fpga_cdev_config_ports_vf(struct dfl_fpga_cdev *cdev, int num_vfs)
1844 {
1845 	struct dfl_feature_platform_data *pdata;
1846 	int ret = 0;
1847 
1848 	mutex_lock(&cdev->lock);
1849 	/*
1850 	 * can't turn multiple ports into 1 VF device, only 1 port for 1 VF
1851 	 * device, so if released port number doesn't match VF device number,
1852 	 * then reject the request with -EINVAL error code.
1853 	 */
1854 	if (cdev->released_port_num != num_vfs) {
1855 		ret = -EINVAL;
1856 		goto done;
1857 	}
1858 
1859 	list_for_each_entry(pdata, &cdev->port_dev_list, node) {
1860 		if (device_is_registered(&pdata->dev->dev))
1861 			continue;
1862 
1863 		config_port_vf_mode(cdev->fme_dev, pdata->id);
1864 	}
1865 done:
1866 	mutex_unlock(&cdev->lock);
1867 	return ret;
1868 }
1869 EXPORT_SYMBOL_GPL(dfl_fpga_cdev_config_ports_vf);
1870 
1871 static irqreturn_t dfl_irq_handler(int irq, void *arg)
1872 {
1873 	struct eventfd_ctx *trigger = arg;
1874 
1875 	eventfd_signal(trigger, 1);
1876 	return IRQ_HANDLED;
1877 }
1878 
1879 static int do_set_irq_trigger(struct dfl_feature *feature, unsigned int idx,
1880 			      int fd)
1881 {
1882 	struct platform_device *pdev = feature->dev;
1883 	struct eventfd_ctx *trigger;
1884 	int irq, ret;
1885 
1886 	irq = feature->irq_ctx[idx].irq;
1887 
1888 	if (feature->irq_ctx[idx].trigger) {
1889 		free_irq(irq, feature->irq_ctx[idx].trigger);
1890 		kfree(feature->irq_ctx[idx].name);
1891 		eventfd_ctx_put(feature->irq_ctx[idx].trigger);
1892 		feature->irq_ctx[idx].trigger = NULL;
1893 	}
1894 
1895 	if (fd < 0)
1896 		return 0;
1897 
1898 	feature->irq_ctx[idx].name =
1899 		kasprintf(GFP_KERNEL, "fpga-irq[%u](%s-%x)", idx,
1900 			  dev_name(&pdev->dev), feature->id);
1901 	if (!feature->irq_ctx[idx].name)
1902 		return -ENOMEM;
1903 
1904 	trigger = eventfd_ctx_fdget(fd);
1905 	if (IS_ERR(trigger)) {
1906 		ret = PTR_ERR(trigger);
1907 		goto free_name;
1908 	}
1909 
1910 	ret = request_irq(irq, dfl_irq_handler, 0,
1911 			  feature->irq_ctx[idx].name, trigger);
1912 	if (!ret) {
1913 		feature->irq_ctx[idx].trigger = trigger;
1914 		return ret;
1915 	}
1916 
1917 	eventfd_ctx_put(trigger);
1918 free_name:
1919 	kfree(feature->irq_ctx[idx].name);
1920 
1921 	return ret;
1922 }
1923 
1924 /**
1925  * dfl_fpga_set_irq_triggers - set eventfd triggers for dfl feature interrupts
1926  *
1927  * @feature: dfl sub feature.
1928  * @start: start of irq index in this dfl sub feature.
1929  * @count: number of irqs.
1930  * @fds: eventfds to bind with irqs. unbind related irq if fds[n] is negative.
1931  *	 unbind "count" specified number of irqs if fds ptr is NULL.
1932  *
1933  * Bind given eventfds with irqs in this dfl sub feature. Unbind related irq if
1934  * fds[n] is negative. Unbind "count" specified number of irqs if fds ptr is
1935  * NULL.
1936  *
1937  * Return: 0 on success, negative error code otherwise.
1938  */
1939 int dfl_fpga_set_irq_triggers(struct dfl_feature *feature, unsigned int start,
1940 			      unsigned int count, int32_t *fds)
1941 {
1942 	unsigned int i;
1943 	int ret = 0;
1944 
1945 	/* overflow */
1946 	if (unlikely(start + count < start))
1947 		return -EINVAL;
1948 
1949 	/* exceeds nr_irqs */
1950 	if (start + count > feature->nr_irqs)
1951 		return -EINVAL;
1952 
1953 	for (i = 0; i < count; i++) {
1954 		int fd = fds ? fds[i] : -1;
1955 
1956 		ret = do_set_irq_trigger(feature, start + i, fd);
1957 		if (ret) {
1958 			while (i--)
1959 				do_set_irq_trigger(feature, start + i, -1);
1960 			break;
1961 		}
1962 	}
1963 
1964 	return ret;
1965 }
1966 EXPORT_SYMBOL_GPL(dfl_fpga_set_irq_triggers);
1967 
1968 /**
1969  * dfl_feature_ioctl_get_num_irqs - dfl feature _GET_IRQ_NUM ioctl interface.
1970  * @pdev: the feature device which has the sub feature
1971  * @feature: the dfl sub feature
1972  * @arg: ioctl argument
1973  *
1974  * Return: 0 on success, negative error code otherwise.
1975  */
1976 long dfl_feature_ioctl_get_num_irqs(struct platform_device *pdev,
1977 				    struct dfl_feature *feature,
1978 				    unsigned long arg)
1979 {
1980 	return put_user(feature->nr_irqs, (__u32 __user *)arg);
1981 }
1982 EXPORT_SYMBOL_GPL(dfl_feature_ioctl_get_num_irqs);
1983 
1984 /**
1985  * dfl_feature_ioctl_set_irq - dfl feature _SET_IRQ ioctl interface.
1986  * @pdev: the feature device which has the sub feature
1987  * @feature: the dfl sub feature
1988  * @arg: ioctl argument
1989  *
1990  * Return: 0 on success, negative error code otherwise.
1991  */
1992 long dfl_feature_ioctl_set_irq(struct platform_device *pdev,
1993 			       struct dfl_feature *feature,
1994 			       unsigned long arg)
1995 {
1996 	struct dfl_feature_platform_data *pdata = dev_get_platdata(&pdev->dev);
1997 	struct dfl_fpga_irq_set hdr;
1998 	s32 *fds;
1999 	long ret;
2000 
2001 	if (!feature->nr_irqs)
2002 		return -ENOENT;
2003 
2004 	if (copy_from_user(&hdr, (void __user *)arg, sizeof(hdr)))
2005 		return -EFAULT;
2006 
2007 	if (!hdr.count || (hdr.start + hdr.count > feature->nr_irqs) ||
2008 	    (hdr.start + hdr.count < hdr.start))
2009 		return -EINVAL;
2010 
2011 	fds = memdup_user((void __user *)(arg + sizeof(hdr)),
2012 			  array_size(hdr.count, sizeof(s32)));
2013 	if (IS_ERR(fds))
2014 		return PTR_ERR(fds);
2015 
2016 	mutex_lock(&pdata->lock);
2017 	ret = dfl_fpga_set_irq_triggers(feature, hdr.start, hdr.count, fds);
2018 	mutex_unlock(&pdata->lock);
2019 
2020 	kfree(fds);
2021 	return ret;
2022 }
2023 EXPORT_SYMBOL_GPL(dfl_feature_ioctl_set_irq);
2024 
2025 static void __exit dfl_fpga_exit(void)
2026 {
2027 	dfl_chardev_uinit();
2028 	dfl_ids_destroy();
2029 	bus_unregister(&dfl_bus_type);
2030 }
2031 
2032 module_init(dfl_fpga_init);
2033 module_exit(dfl_fpga_exit);
2034 
2035 MODULE_DESCRIPTION("FPGA Device Feature List (DFL) Support");
2036 MODULE_AUTHOR("Intel Corporation");
2037 MODULE_LICENSE("GPL v2");
2038