xref: /linux/drivers/firmware/xilinx/zynqmp.c (revision 2eff01ee2881becc9daaa0d53477ec202136b1f4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Xilinx Zynq MPSoC Firmware layer
4  *
5  *  Copyright (C) 2014-2022 Xilinx, Inc.
6  *  Copyright (C) 2022 - 2024, Advanced Micro Devices, Inc.
7  *
8  *  Michal Simek <michal.simek@amd.com>
9  *  Davorin Mista <davorin.mista@aggios.com>
10  *  Jolly Shah <jollys@xilinx.com>
11  *  Rajan Vaja <rajanv@xilinx.com>
12  */
13 
14 #include <linux/arm-smccc.h>
15 #include <linux/compiler.h>
16 #include <linux/device.h>
17 #include <linux/init.h>
18 #include <linux/mfd/core.h>
19 #include <linux/module.h>
20 #include <linux/of.h>
21 #include <linux/of_platform.h>
22 #include <linux/platform_device.h>
23 #include <linux/slab.h>
24 #include <linux/uaccess.h>
25 #include <linux/hashtable.h>
26 
27 #include <linux/firmware/xlnx-zynqmp.h>
28 #include <linux/firmware/xlnx-event-manager.h>
29 #include "zynqmp-debug.h"
30 
31 /* Max HashMap Order for PM API feature check (1<<7 = 128) */
32 #define PM_API_FEATURE_CHECK_MAX_ORDER  7
33 
34 /* CRL registers and bitfields */
35 #define CRL_APB_BASE			0xFF5E0000U
36 /* BOOT_PIN_CTRL- Used to control the mode pins after boot */
37 #define CRL_APB_BOOT_PIN_CTRL		(CRL_APB_BASE + (0x250U))
38 /* BOOT_PIN_CTRL_MASK- out_val[11:8], out_en[3:0] */
39 #define CRL_APB_BOOTPIN_CTRL_MASK	0xF0FU
40 
41 /* IOCTL/QUERY feature payload size */
42 #define FEATURE_PAYLOAD_SIZE		2
43 
44 static bool feature_check_enabled;
45 static DEFINE_HASHTABLE(pm_api_features_map, PM_API_FEATURE_CHECK_MAX_ORDER);
46 static u32 ioctl_features[FEATURE_PAYLOAD_SIZE];
47 static u32 query_features[FEATURE_PAYLOAD_SIZE];
48 
49 static u32 sip_svc_version;
50 static struct platform_device *em_dev;
51 
52 /**
53  * struct zynqmp_devinfo - Structure for Zynqmp device instance
54  * @dev:		Device Pointer
55  * @feature_conf_id:	Feature conf id
56  */
57 struct zynqmp_devinfo {
58 	struct device *dev;
59 	u32 feature_conf_id;
60 };
61 
62 /**
63  * struct pm_api_feature_data - PM API Feature data
64  * @pm_api_id:		PM API Id, used as key to index into hashmap
65  * @feature_status:	status of PM API feature: valid, invalid
66  * @hentry:		hlist_node that hooks this entry into hashtable
67  */
68 struct pm_api_feature_data {
69 	u32 pm_api_id;
70 	int feature_status;
71 	struct hlist_node hentry;
72 };
73 
74 static const struct mfd_cell firmware_devs[] = {
75 	{
76 		.name = "zynqmp_power_controller",
77 	},
78 };
79 
80 /**
81  * zynqmp_pm_ret_code() - Convert PMU-FW error codes to Linux error codes
82  * @ret_status:		PMUFW return code
83  *
84  * Return: corresponding Linux error code
85  */
86 static int zynqmp_pm_ret_code(u32 ret_status)
87 {
88 	switch (ret_status) {
89 	case XST_PM_SUCCESS:
90 	case XST_PM_DOUBLE_REQ:
91 		return 0;
92 	case XST_PM_NO_FEATURE:
93 		return -ENOTSUPP;
94 	case XST_PM_INVALID_VERSION:
95 		return -EOPNOTSUPP;
96 	case XST_PM_NO_ACCESS:
97 		return -EACCES;
98 	case XST_PM_ABORT_SUSPEND:
99 		return -ECANCELED;
100 	case XST_PM_MULT_USER:
101 		return -EUSERS;
102 	case XST_PM_INTERNAL:
103 	case XST_PM_CONFLICT:
104 	case XST_PM_INVALID_NODE:
105 	case XST_PM_INVALID_CRC:
106 	default:
107 		return -EINVAL;
108 	}
109 }
110 
111 static noinline int do_fw_call_fail(u32 *ret_payload, u32 num_args, ...)
112 {
113 	return -ENODEV;
114 }
115 
116 /*
117  * PM function call wrapper
118  * Invoke do_fw_call_smc or do_fw_call_hvc, depending on the configuration
119  */
120 static int (*do_fw_call)(u32 *ret_payload, u32, ...) = do_fw_call_fail;
121 
122 /**
123  * do_fw_call_smc() - Call system-level platform management layer (SMC)
124  * @num_args:		Number of variable arguments should be <= 8
125  * @ret_payload:	Returned value array
126  *
127  * Invoke platform management function via SMC call (no hypervisor present).
128  *
129  * Return: Returns status, either success or error+reason
130  */
131 static noinline int do_fw_call_smc(u32 *ret_payload, u32 num_args, ...)
132 {
133 	struct arm_smccc_res res;
134 	u64 args[8] = {0};
135 	va_list arg_list;
136 	u8 i;
137 
138 	if (num_args > 8)
139 		return -EINVAL;
140 
141 	va_start(arg_list, num_args);
142 
143 	for (i = 0; i < num_args; i++)
144 		args[i] = va_arg(arg_list, u64);
145 
146 	va_end(arg_list);
147 
148 	arm_smccc_smc(args[0], args[1], args[2], args[3], args[4], args[5], args[6], args[7], &res);
149 
150 	if (ret_payload) {
151 		ret_payload[0] = lower_32_bits(res.a0);
152 		ret_payload[1] = upper_32_bits(res.a0);
153 		ret_payload[2] = lower_32_bits(res.a1);
154 		ret_payload[3] = upper_32_bits(res.a1);
155 		ret_payload[4] = lower_32_bits(res.a2);
156 		ret_payload[5] = upper_32_bits(res.a2);
157 		ret_payload[6] = lower_32_bits(res.a3);
158 	}
159 
160 	return zynqmp_pm_ret_code((enum pm_ret_status)res.a0);
161 }
162 
163 /**
164  * do_fw_call_hvc() - Call system-level platform management layer (HVC)
165  * @num_args:		Number of variable arguments should be <= 8
166  * @ret_payload:	Returned value array
167  *
168  * Invoke platform management function via HVC
169  * HVC-based for communication through hypervisor
170  * (no direct communication with ATF).
171  *
172  * Return: Returns status, either success or error+reason
173  */
174 static noinline int do_fw_call_hvc(u32 *ret_payload, u32 num_args, ...)
175 {
176 	struct arm_smccc_res res;
177 	u64 args[8] = {0};
178 	va_list arg_list;
179 	u8 i;
180 
181 	if (num_args > 8)
182 		return -EINVAL;
183 
184 	va_start(arg_list, num_args);
185 
186 	for (i = 0; i < num_args; i++)
187 		args[i] = va_arg(arg_list, u64);
188 
189 	va_end(arg_list);
190 
191 	arm_smccc_hvc(args[0], args[1], args[2], args[3], args[4], args[5], args[6], args[7], &res);
192 
193 	if (ret_payload) {
194 		ret_payload[0] = lower_32_bits(res.a0);
195 		ret_payload[1] = upper_32_bits(res.a0);
196 		ret_payload[2] = lower_32_bits(res.a1);
197 		ret_payload[3] = upper_32_bits(res.a1);
198 		ret_payload[4] = lower_32_bits(res.a2);
199 		ret_payload[5] = upper_32_bits(res.a2);
200 		ret_payload[6] = lower_32_bits(res.a3);
201 	}
202 
203 	return zynqmp_pm_ret_code((enum pm_ret_status)res.a0);
204 }
205 
206 static int __do_feature_check_call(const u32 api_id, u32 *ret_payload)
207 {
208 	int ret;
209 	u64 smc_arg[2];
210 	u32 module_id;
211 	u32 feature_check_api_id;
212 
213 	module_id = FIELD_GET(MODULE_ID_MASK, api_id);
214 
215 	/*
216 	 * Feature check of APIs belonging to PM, XSEM, and TF-A are handled by calling
217 	 * PM_FEATURE_CHECK API. For other modules, call PM_API_FEATURES API.
218 	 */
219 	if (module_id == PM_MODULE_ID || module_id == XSEM_MODULE_ID || module_id == TF_A_MODULE_ID)
220 		feature_check_api_id = PM_FEATURE_CHECK;
221 	else
222 		feature_check_api_id = PM_API_FEATURES;
223 
224 	/*
225 	 * Feature check of TF-A APIs is done in the TF-A layer and it expects for
226 	 * MODULE_ID_MASK bits of SMC's arg[0] to be the same as PM_MODULE_ID.
227 	 */
228 	if (module_id == TF_A_MODULE_ID) {
229 		module_id = PM_MODULE_ID;
230 		smc_arg[1] = api_id;
231 	} else {
232 		smc_arg[1] = (api_id & API_ID_MASK);
233 	}
234 
235 	smc_arg[0] = PM_SIP_SVC | FIELD_PREP(MODULE_ID_MASK, module_id) | feature_check_api_id;
236 
237 	ret = do_fw_call(ret_payload, 2, smc_arg[0], smc_arg[1]);
238 	if (ret)
239 		ret = -EOPNOTSUPP;
240 	else
241 		ret = ret_payload[1];
242 
243 	return ret;
244 }
245 
246 static int do_feature_check_call(const u32 api_id)
247 {
248 	int ret;
249 	u32 ret_payload[PAYLOAD_ARG_CNT];
250 	struct pm_api_feature_data *feature_data;
251 
252 	/* Check for existing entry in hash table for given api */
253 	hash_for_each_possible(pm_api_features_map, feature_data, hentry,
254 			       api_id) {
255 		if (feature_data->pm_api_id == api_id)
256 			return feature_data->feature_status;
257 	}
258 
259 	/* Add new entry if not present */
260 	feature_data = kmalloc(sizeof(*feature_data), GFP_ATOMIC);
261 	if (!feature_data)
262 		return -ENOMEM;
263 
264 	feature_data->pm_api_id = api_id;
265 	ret = __do_feature_check_call(api_id, ret_payload);
266 
267 	feature_data->feature_status = ret;
268 	hash_add(pm_api_features_map, &feature_data->hentry, api_id);
269 
270 	if (api_id == PM_IOCTL)
271 		/* Store supported IOCTL IDs mask */
272 		memcpy(ioctl_features, &ret_payload[2], FEATURE_PAYLOAD_SIZE * 4);
273 	else if (api_id == PM_QUERY_DATA)
274 		/* Store supported QUERY IDs mask */
275 		memcpy(query_features, &ret_payload[2], FEATURE_PAYLOAD_SIZE * 4);
276 
277 	return ret;
278 }
279 
280 /**
281  * zynqmp_pm_feature() - Check whether given feature is supported or not and
282  *			 store supported IOCTL/QUERY ID mask
283  * @api_id:		API ID to check
284  *
285  * Return: Returns status, either success or error+reason
286  */
287 int zynqmp_pm_feature(const u32 api_id)
288 {
289 	int ret;
290 
291 	if (!feature_check_enabled)
292 		return 0;
293 
294 	ret = do_feature_check_call(api_id);
295 
296 	return ret;
297 }
298 EXPORT_SYMBOL_GPL(zynqmp_pm_feature);
299 
300 /**
301  * zynqmp_pm_is_function_supported() - Check whether given IOCTL/QUERY function
302  *				       is supported or not
303  * @api_id:		PM_IOCTL or PM_QUERY_DATA
304  * @id:			IOCTL or QUERY function IDs
305  *
306  * Return: Returns status, either success or error+reason
307  */
308 int zynqmp_pm_is_function_supported(const u32 api_id, const u32 id)
309 {
310 	int ret;
311 	u32 *bit_mask;
312 
313 	/* Input arguments validation */
314 	if (id >= 64 || (api_id != PM_IOCTL && api_id != PM_QUERY_DATA))
315 		return -EINVAL;
316 
317 	/* Check feature check API version */
318 	ret = do_feature_check_call(PM_FEATURE_CHECK);
319 	if (ret < 0)
320 		return ret;
321 
322 	/* Check if feature check version 2 is supported or not */
323 	if ((ret & FIRMWARE_VERSION_MASK) == PM_API_VERSION_2) {
324 		/*
325 		 * Call feature check for IOCTL/QUERY API to get IOCTL ID or
326 		 * QUERY ID feature status.
327 		 */
328 		ret = do_feature_check_call(api_id);
329 		if (ret < 0)
330 			return ret;
331 
332 		bit_mask = (api_id == PM_IOCTL) ? ioctl_features : query_features;
333 
334 		if ((bit_mask[(id / 32)] & BIT((id % 32))) == 0U)
335 			return -EOPNOTSUPP;
336 	} else {
337 		return -ENODATA;
338 	}
339 
340 	return 0;
341 }
342 EXPORT_SYMBOL_GPL(zynqmp_pm_is_function_supported);
343 
344 /**
345  * zynqmp_pm_invoke_fw_fn() - Invoke the system-level platform management layer
346  *			caller function depending on the configuration
347  * @pm_api_id:		Requested PM-API call
348  * @ret_payload:	Returned value array
349  * @num_args:		Number of arguments to requested PM-API call
350  *
351  * Invoke platform management function for SMC or HVC call, depending on
352  * configuration.
353  * Following SMC Calling Convention (SMCCC) for SMC64:
354  * Pm Function Identifier,
355  * PM_SIP_SVC + PASS_THROUGH_FW_CMD_ID =
356  *	((SMC_TYPE_FAST << FUNCID_TYPE_SHIFT)
357  *	((SMC_64) << FUNCID_CC_SHIFT)
358  *	((SIP_START) << FUNCID_OEN_SHIFT)
359  *	(PASS_THROUGH_FW_CMD_ID))
360  *
361  * PM_SIP_SVC - Registered ZynqMP SIP Service Call.
362  * PASS_THROUGH_FW_CMD_ID - Fixed SiP SVC call ID for FW specific calls.
363  *
364  * Return: Returns status, either success or error+reason
365  */
366 int zynqmp_pm_invoke_fw_fn(u32 pm_api_id, u32 *ret_payload, u32 num_args, ...)
367 {
368 	/*
369 	 * Added SIP service call Function Identifier
370 	 * Make sure to stay in x0 register
371 	 */
372 	u64 smc_arg[SMC_ARG_CNT_64];
373 	int ret, i;
374 	va_list arg_list;
375 	u32 args[SMC_ARG_CNT_32] = {0};
376 	u32 module_id;
377 
378 	if (num_args > SMC_ARG_CNT_32)
379 		return -EINVAL;
380 
381 	va_start(arg_list, num_args);
382 
383 	/* Check if feature is supported or not */
384 	ret = zynqmp_pm_feature(pm_api_id);
385 	if (ret < 0)
386 		return ret;
387 
388 	for (i = 0; i < num_args; i++)
389 		args[i] = va_arg(arg_list, u32);
390 
391 	va_end(arg_list);
392 
393 	module_id = FIELD_GET(PLM_MODULE_ID_MASK, pm_api_id);
394 
395 	if (module_id == 0)
396 		module_id = XPM_MODULE_ID;
397 
398 	smc_arg[0] = PM_SIP_SVC | PASS_THROUGH_FW_CMD_ID;
399 	smc_arg[1] = ((u64)args[0] << 32U) | FIELD_PREP(PLM_MODULE_ID_MASK, module_id) |
400 		      (pm_api_id & API_ID_MASK);
401 	for (i = 1; i < (SMC_ARG_CNT_64 - 1); i++)
402 		smc_arg[i + 1] = ((u64)args[(i * 2)] << 32U) | args[(i * 2) - 1];
403 
404 	return do_fw_call(ret_payload, 8, smc_arg[0], smc_arg[1], smc_arg[2], smc_arg[3],
405 			  smc_arg[4], smc_arg[5], smc_arg[6], smc_arg[7]);
406 }
407 
408 /**
409  * zynqmp_pm_invoke_fn() - Invoke the system-level platform management layer
410  *			   caller function depending on the configuration
411  * @pm_api_id:		Requested PM-API call
412  * @ret_payload:	Returned value array
413  * @num_args:		Number of arguments to requested PM-API call
414  *
415  * Invoke platform management function for SMC or HVC call, depending on
416  * configuration.
417  * Following SMC Calling Convention (SMCCC) for SMC64:
418  * Pm Function Identifier,
419  * PM_SIP_SVC + PM_API_ID =
420  *	((SMC_TYPE_FAST << FUNCID_TYPE_SHIFT)
421  *	((SMC_64) << FUNCID_CC_SHIFT)
422  *	((SIP_START) << FUNCID_OEN_SHIFT)
423  *	((PM_API_ID) & FUNCID_NUM_MASK))
424  *
425  * PM_SIP_SVC	- Registered ZynqMP SIP Service Call.
426  * PM_API_ID	- Platform Management API ID.
427  *
428  * Return: Returns status, either success or error+reason
429  */
430 int zynqmp_pm_invoke_fn(u32 pm_api_id, u32 *ret_payload, u32 num_args, ...)
431 {
432 	/*
433 	 * Added SIP service call Function Identifier
434 	 * Make sure to stay in x0 register
435 	 */
436 	u64 smc_arg[8];
437 	int ret, i;
438 	va_list arg_list;
439 	u32 args[14] = {0};
440 
441 	if (num_args > 14)
442 		return -EINVAL;
443 
444 	va_start(arg_list, num_args);
445 
446 	/* Check if feature is supported or not */
447 	ret = zynqmp_pm_feature(pm_api_id);
448 	if (ret < 0)
449 		return ret;
450 
451 	for (i = 0; i < num_args; i++)
452 		args[i] = va_arg(arg_list, u32);
453 
454 	va_end(arg_list);
455 
456 	smc_arg[0] = PM_SIP_SVC | pm_api_id;
457 	for (i = 0; i < 7; i++)
458 		smc_arg[i + 1] = ((u64)args[(i * 2) + 1] << 32) | args[i * 2];
459 
460 	return do_fw_call(ret_payload, 8, smc_arg[0], smc_arg[1], smc_arg[2], smc_arg[3],
461 			  smc_arg[4], smc_arg[5], smc_arg[6], smc_arg[7]);
462 }
463 
464 static u32 pm_api_version;
465 static u32 pm_tz_version;
466 static u32 pm_family_code;
467 static u32 pm_sub_family_code;
468 
469 int zynqmp_pm_register_sgi(u32 sgi_num, u32 reset)
470 {
471 	int ret;
472 
473 	ret = zynqmp_pm_invoke_fn(TF_A_PM_REGISTER_SGI, NULL, 2, sgi_num, reset);
474 	if (ret != -EOPNOTSUPP && !ret)
475 		return ret;
476 
477 	/* try old implementation as fallback strategy if above fails */
478 	return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 3, IOCTL_REGISTER_SGI, sgi_num, reset);
479 }
480 
481 /**
482  * zynqmp_pm_get_api_version() - Get version number of PMU PM firmware
483  * @version:	Returned version value
484  *
485  * Return: Returns status, either success or error+reason
486  */
487 int zynqmp_pm_get_api_version(u32 *version)
488 {
489 	u32 ret_payload[PAYLOAD_ARG_CNT];
490 	int ret;
491 
492 	if (!version)
493 		return -EINVAL;
494 
495 	/* Check is PM API version already verified */
496 	if (pm_api_version > 0) {
497 		*version = pm_api_version;
498 		return 0;
499 	}
500 	ret = zynqmp_pm_invoke_fn(PM_GET_API_VERSION, ret_payload, 0);
501 	*version = ret_payload[1];
502 
503 	return ret;
504 }
505 EXPORT_SYMBOL_GPL(zynqmp_pm_get_api_version);
506 
507 /**
508  * zynqmp_pm_get_chipid - Get silicon ID registers
509  * @idcode:     IDCODE register
510  * @version:    version register
511  *
512  * Return:      Returns the status of the operation and the idcode and version
513  *              registers in @idcode and @version.
514  */
515 int zynqmp_pm_get_chipid(u32 *idcode, u32 *version)
516 {
517 	u32 ret_payload[PAYLOAD_ARG_CNT];
518 	int ret;
519 
520 	if (!idcode || !version)
521 		return -EINVAL;
522 
523 	ret = zynqmp_pm_invoke_fn(PM_GET_CHIPID, ret_payload, 0);
524 	*idcode = ret_payload[1];
525 	*version = ret_payload[2];
526 
527 	return ret;
528 }
529 EXPORT_SYMBOL_GPL(zynqmp_pm_get_chipid);
530 
531 /**
532  * zynqmp_pm_get_family_info() - Get family info of platform
533  * @family:	Returned family code value
534  * @subfamily:	Returned sub-family code value
535  *
536  * Return: Returns status, either success or error+reason
537  */
538 int zynqmp_pm_get_family_info(u32 *family, u32 *subfamily)
539 {
540 	u32 ret_payload[PAYLOAD_ARG_CNT];
541 	u32 idcode;
542 	int ret;
543 
544 	/* Check is family or sub-family code already received */
545 	if (pm_family_code && pm_sub_family_code) {
546 		*family = pm_family_code;
547 		*subfamily = pm_sub_family_code;
548 		return 0;
549 	}
550 
551 	ret = zynqmp_pm_invoke_fn(PM_GET_CHIPID, ret_payload, 0);
552 	if (ret < 0)
553 		return ret;
554 
555 	idcode = ret_payload[1];
556 	pm_family_code = FIELD_GET(FAMILY_CODE_MASK, idcode);
557 	pm_sub_family_code = FIELD_GET(SUB_FAMILY_CODE_MASK, idcode);
558 	*family = pm_family_code;
559 	*subfamily = pm_sub_family_code;
560 
561 	return 0;
562 }
563 EXPORT_SYMBOL_GPL(zynqmp_pm_get_family_info);
564 
565 /**
566  * zynqmp_pm_get_sip_svc_version() - Get SiP service call version
567  * @version:	Returned version value
568  *
569  * Return: Returns status, either success or error+reason
570  */
571 static int zynqmp_pm_get_sip_svc_version(u32 *version)
572 {
573 	struct arm_smccc_res res;
574 	u64 args[SMC_ARG_CNT_64] = {0};
575 
576 	if (!version)
577 		return -EINVAL;
578 
579 	/* Check if SiP SVC version already verified */
580 	if (sip_svc_version > 0) {
581 		*version = sip_svc_version;
582 		return 0;
583 	}
584 
585 	args[0] = GET_SIP_SVC_VERSION;
586 
587 	arm_smccc_smc(args[0], args[1], args[2], args[3], args[4], args[5], args[6], args[7], &res);
588 
589 	*version = ((lower_32_bits(res.a0) << 16U) | lower_32_bits(res.a1));
590 
591 	return zynqmp_pm_ret_code(XST_PM_SUCCESS);
592 }
593 
594 /**
595  * zynqmp_pm_get_trustzone_version() - Get secure trustzone firmware version
596  * @version:	Returned version value
597  *
598  * Return: Returns status, either success or error+reason
599  */
600 static int zynqmp_pm_get_trustzone_version(u32 *version)
601 {
602 	u32 ret_payload[PAYLOAD_ARG_CNT];
603 	int ret;
604 
605 	if (!version)
606 		return -EINVAL;
607 
608 	/* Check is PM trustzone version already verified */
609 	if (pm_tz_version > 0) {
610 		*version = pm_tz_version;
611 		return 0;
612 	}
613 	ret = zynqmp_pm_invoke_fn(PM_GET_TRUSTZONE_VERSION, ret_payload, 0);
614 	*version = ret_payload[1];
615 
616 	return ret;
617 }
618 
619 /**
620  * get_set_conduit_method() - Choose SMC or HVC based communication
621  * @np:		Pointer to the device_node structure
622  *
623  * Use SMC or HVC-based functions to communicate with EL2/EL3.
624  *
625  * Return: Returns 0 on success or error code
626  */
627 static int get_set_conduit_method(struct device_node *np)
628 {
629 	const char *method;
630 
631 	if (of_property_read_string(np, "method", &method)) {
632 		pr_warn("%s missing \"method\" property\n", __func__);
633 		return -ENXIO;
634 	}
635 
636 	if (!strcmp("hvc", method)) {
637 		do_fw_call = do_fw_call_hvc;
638 	} else if (!strcmp("smc", method)) {
639 		do_fw_call = do_fw_call_smc;
640 	} else {
641 		pr_warn("%s Invalid \"method\" property: %s\n",
642 			__func__, method);
643 		return -EINVAL;
644 	}
645 
646 	return 0;
647 }
648 
649 /**
650  * zynqmp_pm_query_data() - Get query data from firmware
651  * @qdata:	Variable to the zynqmp_pm_query_data structure
652  * @out:	Returned output value
653  *
654  * Return: Returns status, either success or error+reason
655  */
656 int zynqmp_pm_query_data(struct zynqmp_pm_query_data qdata, u32 *out)
657 {
658 	int ret, i = 0;
659 	u32 ret_payload[PAYLOAD_ARG_CNT] = {0};
660 
661 	if (sip_svc_version >= SIP_SVC_PASSTHROUGH_VERSION) {
662 		ret = zynqmp_pm_invoke_fw_fn(PM_QUERY_DATA, ret_payload, 4,
663 					     qdata.qid, qdata.arg1,
664 					     qdata.arg2, qdata.arg3);
665 		/* To support backward compatibility */
666 		if (!ret && !ret_payload[0]) {
667 			/*
668 			 * TF-A passes return status on 0th index but
669 			 * api to get clock name reads data from 0th
670 			 * index so pass data at 0th index instead of
671 			 * return status
672 			 */
673 			if (qdata.qid == PM_QID_CLOCK_GET_NAME ||
674 			    qdata.qid == PM_QID_PINCTRL_GET_FUNCTION_NAME)
675 				i = 1;
676 
677 			for (; i < PAYLOAD_ARG_CNT; i++, out++)
678 				*out = ret_payload[i];
679 
680 			return ret;
681 		}
682 	}
683 
684 	ret = zynqmp_pm_invoke_fn(PM_QUERY_DATA, out, 4, qdata.qid,
685 				  qdata.arg1, qdata.arg2, qdata.arg3);
686 
687 	/*
688 	 * For clock name query, all bytes in SMC response are clock name
689 	 * characters and return code is always success. For invalid clocks,
690 	 * clock name bytes would be zeros.
691 	 */
692 	return qdata.qid == PM_QID_CLOCK_GET_NAME ? 0 : ret;
693 }
694 EXPORT_SYMBOL_GPL(zynqmp_pm_query_data);
695 
696 /**
697  * zynqmp_pm_clock_enable() - Enable the clock for given id
698  * @clock_id:	ID of the clock to be enabled
699  *
700  * This function is used by master to enable the clock
701  * including peripherals and PLL clocks.
702  *
703  * Return: Returns status, either success or error+reason
704  */
705 int zynqmp_pm_clock_enable(u32 clock_id)
706 {
707 	return zynqmp_pm_invoke_fn(PM_CLOCK_ENABLE, NULL, 1, clock_id);
708 }
709 EXPORT_SYMBOL_GPL(zynqmp_pm_clock_enable);
710 
711 /**
712  * zynqmp_pm_clock_disable() - Disable the clock for given id
713  * @clock_id:	ID of the clock to be disable
714  *
715  * This function is used by master to disable the clock
716  * including peripherals and PLL clocks.
717  *
718  * Return: Returns status, either success or error+reason
719  */
720 int zynqmp_pm_clock_disable(u32 clock_id)
721 {
722 	return zynqmp_pm_invoke_fn(PM_CLOCK_DISABLE, NULL, 1, clock_id);
723 }
724 EXPORT_SYMBOL_GPL(zynqmp_pm_clock_disable);
725 
726 /**
727  * zynqmp_pm_clock_getstate() - Get the clock state for given id
728  * @clock_id:	ID of the clock to be queried
729  * @state:	1/0 (Enabled/Disabled)
730  *
731  * This function is used by master to get the state of clock
732  * including peripherals and PLL clocks.
733  *
734  * Return: Returns status, either success or error+reason
735  */
736 int zynqmp_pm_clock_getstate(u32 clock_id, u32 *state)
737 {
738 	u32 ret_payload[PAYLOAD_ARG_CNT];
739 	int ret;
740 
741 	ret = zynqmp_pm_invoke_fn(PM_CLOCK_GETSTATE, ret_payload, 1, clock_id);
742 	*state = ret_payload[1];
743 
744 	return ret;
745 }
746 EXPORT_SYMBOL_GPL(zynqmp_pm_clock_getstate);
747 
748 /**
749  * zynqmp_pm_clock_setdivider() - Set the clock divider for given id
750  * @clock_id:	ID of the clock
751  * @divider:	divider value
752  *
753  * This function is used by master to set divider for any clock
754  * to achieve desired rate.
755  *
756  * Return: Returns status, either success or error+reason
757  */
758 int zynqmp_pm_clock_setdivider(u32 clock_id, u32 divider)
759 {
760 	return zynqmp_pm_invoke_fn(PM_CLOCK_SETDIVIDER, NULL, 2, clock_id, divider);
761 }
762 EXPORT_SYMBOL_GPL(zynqmp_pm_clock_setdivider);
763 
764 /**
765  * zynqmp_pm_clock_getdivider() - Get the clock divider for given id
766  * @clock_id:	ID of the clock
767  * @divider:	divider value
768  *
769  * This function is used by master to get divider values
770  * for any clock.
771  *
772  * Return: Returns status, either success or error+reason
773  */
774 int zynqmp_pm_clock_getdivider(u32 clock_id, u32 *divider)
775 {
776 	u32 ret_payload[PAYLOAD_ARG_CNT];
777 	int ret;
778 
779 	ret = zynqmp_pm_invoke_fn(PM_CLOCK_GETDIVIDER, ret_payload, 1, clock_id);
780 	*divider = ret_payload[1];
781 
782 	return ret;
783 }
784 EXPORT_SYMBOL_GPL(zynqmp_pm_clock_getdivider);
785 
786 /**
787  * zynqmp_pm_clock_setparent() - Set the clock parent for given id
788  * @clock_id:	ID of the clock
789  * @parent_id:	parent id
790  *
791  * This function is used by master to set parent for any clock.
792  *
793  * Return: Returns status, either success or error+reason
794  */
795 int zynqmp_pm_clock_setparent(u32 clock_id, u32 parent_id)
796 {
797 	return zynqmp_pm_invoke_fn(PM_CLOCK_SETPARENT, NULL, 2, clock_id, parent_id);
798 }
799 EXPORT_SYMBOL_GPL(zynqmp_pm_clock_setparent);
800 
801 /**
802  * zynqmp_pm_clock_getparent() - Get the clock parent for given id
803  * @clock_id:	ID of the clock
804  * @parent_id:	parent id
805  *
806  * This function is used by master to get parent index
807  * for any clock.
808  *
809  * Return: Returns status, either success or error+reason
810  */
811 int zynqmp_pm_clock_getparent(u32 clock_id, u32 *parent_id)
812 {
813 	u32 ret_payload[PAYLOAD_ARG_CNT];
814 	int ret;
815 
816 	ret = zynqmp_pm_invoke_fn(PM_CLOCK_GETPARENT, ret_payload, 1, clock_id);
817 	*parent_id = ret_payload[1];
818 
819 	return ret;
820 }
821 EXPORT_SYMBOL_GPL(zynqmp_pm_clock_getparent);
822 
823 /**
824  * zynqmp_pm_set_pll_frac_mode() - PM API for set PLL mode
825  *
826  * @clk_id:	PLL clock ID
827  * @mode:	PLL mode (PLL_MODE_FRAC/PLL_MODE_INT)
828  *
829  * This function sets PLL mode
830  *
831  * Return: Returns status, either success or error+reason
832  */
833 int zynqmp_pm_set_pll_frac_mode(u32 clk_id, u32 mode)
834 {
835 	return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 4, 0, IOCTL_SET_PLL_FRAC_MODE, clk_id, mode);
836 }
837 EXPORT_SYMBOL_GPL(zynqmp_pm_set_pll_frac_mode);
838 
839 /**
840  * zynqmp_pm_get_pll_frac_mode() - PM API for get PLL mode
841  *
842  * @clk_id:	PLL clock ID
843  * @mode:	PLL mode
844  *
845  * This function return current PLL mode
846  *
847  * Return: Returns status, either success or error+reason
848  */
849 int zynqmp_pm_get_pll_frac_mode(u32 clk_id, u32 *mode)
850 {
851 	return zynqmp_pm_invoke_fn(PM_IOCTL, mode, 3, 0, IOCTL_GET_PLL_FRAC_MODE, clk_id);
852 }
853 EXPORT_SYMBOL_GPL(zynqmp_pm_get_pll_frac_mode);
854 
855 /**
856  * zynqmp_pm_set_pll_frac_data() - PM API for setting pll fraction data
857  *
858  * @clk_id:	PLL clock ID
859  * @data:	fraction data
860  *
861  * This function sets fraction data.
862  * It is valid for fraction mode only.
863  *
864  * Return: Returns status, either success or error+reason
865  */
866 int zynqmp_pm_set_pll_frac_data(u32 clk_id, u32 data)
867 {
868 	return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 4, 0, IOCTL_SET_PLL_FRAC_DATA, clk_id, data);
869 }
870 EXPORT_SYMBOL_GPL(zynqmp_pm_set_pll_frac_data);
871 
872 /**
873  * zynqmp_pm_get_pll_frac_data() - PM API for getting pll fraction data
874  *
875  * @clk_id:	PLL clock ID
876  * @data:	fraction data
877  *
878  * This function returns fraction data value.
879  *
880  * Return: Returns status, either success or error+reason
881  */
882 int zynqmp_pm_get_pll_frac_data(u32 clk_id, u32 *data)
883 {
884 	return zynqmp_pm_invoke_fn(PM_IOCTL, data, 3, 0, IOCTL_GET_PLL_FRAC_DATA, clk_id);
885 }
886 EXPORT_SYMBOL_GPL(zynqmp_pm_get_pll_frac_data);
887 
888 /**
889  * zynqmp_pm_set_sd_tapdelay() -  Set tap delay for the SD device
890  *
891  * @node_id:	Node ID of the device
892  * @type:	Type of tap delay to set (input/output)
893  * @value:	Value to set fot the tap delay
894  *
895  * This function sets input/output tap delay for the SD device.
896  *
897  * Return:	Returns status, either success or error+reason
898  */
899 int zynqmp_pm_set_sd_tapdelay(u32 node_id, u32 type, u32 value)
900 {
901 	u32 reg = (type == PM_TAPDELAY_INPUT) ? SD_ITAPDLY : SD_OTAPDLYSEL;
902 	u32 mask = (node_id == NODE_SD_0) ? GENMASK(15, 0) : GENMASK(31, 16);
903 
904 	if (value) {
905 		return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 4, node_id, IOCTL_SET_SD_TAPDELAY, type,
906 					   value);
907 	}
908 
909 	/*
910 	 * Work around completely misdesigned firmware API on Xilinx ZynqMP.
911 	 * The IOCTL_SET_SD_TAPDELAY firmware call allows the caller to only
912 	 * ever set IOU_SLCR SD_ITAPDLY Register SD0_ITAPDLYENA/SD1_ITAPDLYENA
913 	 * bits, but there is no matching call to clear those bits. If those
914 	 * bits are not cleared, SDMMC tuning may fail.
915 	 *
916 	 * Luckily, there are PM_MMIO_READ/PM_MMIO_WRITE calls which seem to
917 	 * allow complete unrestricted access to all address space, including
918 	 * IOU_SLCR SD_ITAPDLY Register and all the other registers, access
919 	 * to which was supposed to be protected by the current firmware API.
920 	 *
921 	 * Use PM_MMIO_READ/PM_MMIO_WRITE to re-implement the missing counter
922 	 * part of IOCTL_SET_SD_TAPDELAY which clears SDx_ITAPDLYENA bits.
923 	 */
924 	return zynqmp_pm_invoke_fn(PM_MMIO_WRITE, NULL, 2, reg, mask);
925 }
926 EXPORT_SYMBOL_GPL(zynqmp_pm_set_sd_tapdelay);
927 
928 /**
929  * zynqmp_pm_sd_dll_reset() - Reset DLL logic
930  *
931  * @node_id:	Node ID of the device
932  * @type:	Reset type
933  *
934  * This function resets DLL logic for the SD device.
935  *
936  * Return:	Returns status, either success or error+reason
937  */
938 int zynqmp_pm_sd_dll_reset(u32 node_id, u32 type)
939 {
940 	return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 3, node_id, IOCTL_SD_DLL_RESET, type);
941 }
942 EXPORT_SYMBOL_GPL(zynqmp_pm_sd_dll_reset);
943 
944 /**
945  * zynqmp_pm_ospi_mux_select() - OSPI Mux selection
946  *
947  * @dev_id:	Device Id of the OSPI device.
948  * @select:	OSPI Mux select value.
949  *
950  * This function select the OSPI Mux.
951  *
952  * Return:	Returns status, either success or error+reason
953  */
954 int zynqmp_pm_ospi_mux_select(u32 dev_id, u32 select)
955 {
956 	return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 3, dev_id, IOCTL_OSPI_MUX_SELECT, select);
957 }
958 EXPORT_SYMBOL_GPL(zynqmp_pm_ospi_mux_select);
959 
960 /**
961  * zynqmp_pm_write_ggs() - PM API for writing global general storage (ggs)
962  * @index:	GGS register index
963  * @value:	Register value to be written
964  *
965  * This function writes value to GGS register.
966  *
967  * Return:      Returns status, either success or error+reason
968  */
969 int zynqmp_pm_write_ggs(u32 index, u32 value)
970 {
971 	return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 4, 0, IOCTL_WRITE_GGS, index, value);
972 }
973 EXPORT_SYMBOL_GPL(zynqmp_pm_write_ggs);
974 
975 /**
976  * zynqmp_pm_read_ggs() - PM API for reading global general storage (ggs)
977  * @index:	GGS register index
978  * @value:	Register value to be written
979  *
980  * This function returns GGS register value.
981  *
982  * Return:	Returns status, either success or error+reason
983  */
984 int zynqmp_pm_read_ggs(u32 index, u32 *value)
985 {
986 	return zynqmp_pm_invoke_fn(PM_IOCTL, value, 3, 0, IOCTL_READ_GGS, index);
987 }
988 EXPORT_SYMBOL_GPL(zynqmp_pm_read_ggs);
989 
990 /**
991  * zynqmp_pm_write_pggs() - PM API for writing persistent global general
992  *			     storage (pggs)
993  * @index:	PGGS register index
994  * @value:	Register value to be written
995  *
996  * This function writes value to PGGS register.
997  *
998  * Return:	Returns status, either success or error+reason
999  */
1000 int zynqmp_pm_write_pggs(u32 index, u32 value)
1001 {
1002 	return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 4, 0, IOCTL_WRITE_PGGS, index, value);
1003 }
1004 EXPORT_SYMBOL_GPL(zynqmp_pm_write_pggs);
1005 
1006 /**
1007  * zynqmp_pm_read_pggs() - PM API for reading persistent global general
1008  *			     storage (pggs)
1009  * @index:	PGGS register index
1010  * @value:	Register value to be written
1011  *
1012  * This function returns PGGS register value.
1013  *
1014  * Return:	Returns status, either success or error+reason
1015  */
1016 int zynqmp_pm_read_pggs(u32 index, u32 *value)
1017 {
1018 	return zynqmp_pm_invoke_fn(PM_IOCTL, value, 3, 0, IOCTL_READ_PGGS, index);
1019 }
1020 EXPORT_SYMBOL_GPL(zynqmp_pm_read_pggs);
1021 
1022 int zynqmp_pm_set_tapdelay_bypass(u32 index, u32 value)
1023 {
1024 	return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 4, 0, IOCTL_SET_TAPDELAY_BYPASS, index, value);
1025 }
1026 EXPORT_SYMBOL_GPL(zynqmp_pm_set_tapdelay_bypass);
1027 
1028 /**
1029  * zynqmp_pm_set_boot_health_status() - PM API for setting healthy boot status
1030  * @value:	Status value to be written
1031  *
1032  * This function sets healthy bit value to indicate boot health status
1033  * to firmware.
1034  *
1035  * Return:	Returns status, either success or error+reason
1036  */
1037 int zynqmp_pm_set_boot_health_status(u32 value)
1038 {
1039 	return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 3, 0, IOCTL_SET_BOOT_HEALTH_STATUS, value);
1040 }
1041 
1042 /**
1043  * zynqmp_pm_reset_assert - Request setting of reset (1 - assert, 0 - release)
1044  * @reset:		Reset to be configured
1045  * @assert_flag:	Flag stating should reset be asserted (1) or
1046  *			released (0)
1047  *
1048  * Return: Returns status, either success or error+reason
1049  */
1050 int zynqmp_pm_reset_assert(const u32 reset,
1051 			   const enum zynqmp_pm_reset_action assert_flag)
1052 {
1053 	return zynqmp_pm_invoke_fn(PM_RESET_ASSERT, NULL, 2, reset, assert_flag);
1054 }
1055 EXPORT_SYMBOL_GPL(zynqmp_pm_reset_assert);
1056 
1057 /**
1058  * zynqmp_pm_reset_get_status - Get status of the reset
1059  * @reset:      Reset whose status should be returned
1060  * @status:     Returned status
1061  *
1062  * Return: Returns status, either success or error+reason
1063  */
1064 int zynqmp_pm_reset_get_status(const u32 reset, u32 *status)
1065 {
1066 	u32 ret_payload[PAYLOAD_ARG_CNT];
1067 	int ret;
1068 
1069 	if (!status)
1070 		return -EINVAL;
1071 
1072 	ret = zynqmp_pm_invoke_fn(PM_RESET_GET_STATUS, ret_payload, 1, reset);
1073 	*status = ret_payload[1];
1074 
1075 	return ret;
1076 }
1077 EXPORT_SYMBOL_GPL(zynqmp_pm_reset_get_status);
1078 
1079 /**
1080  * zynqmp_pm_fpga_load - Perform the fpga load
1081  * @address:	Address to write to
1082  * @size:	pl bitstream size
1083  * @flags:	Bitstream type
1084  *	-XILINX_ZYNQMP_PM_FPGA_FULL:  FPGA full reconfiguration
1085  *	-XILINX_ZYNQMP_PM_FPGA_PARTIAL: FPGA partial reconfiguration
1086  *
1087  * This function provides access to pmufw. To transfer
1088  * the required bitstream into PL.
1089  *
1090  * Return: Returns status, either success or error+reason
1091  */
1092 int zynqmp_pm_fpga_load(const u64 address, const u32 size, const u32 flags)
1093 {
1094 	u32 ret_payload[PAYLOAD_ARG_CNT];
1095 	int ret;
1096 
1097 	ret = zynqmp_pm_invoke_fn(PM_FPGA_LOAD, ret_payload, 4, lower_32_bits(address),
1098 				  upper_32_bits(address), size, flags);
1099 	if (ret_payload[0])
1100 		return -ret_payload[0];
1101 
1102 	return ret;
1103 }
1104 EXPORT_SYMBOL_GPL(zynqmp_pm_fpga_load);
1105 
1106 /**
1107  * zynqmp_pm_fpga_get_status - Read value from PCAP status register
1108  * @value: Value to read
1109  *
1110  * This function provides access to the pmufw to get the PCAP
1111  * status
1112  *
1113  * Return: Returns status, either success or error+reason
1114  */
1115 int zynqmp_pm_fpga_get_status(u32 *value)
1116 {
1117 	u32 ret_payload[PAYLOAD_ARG_CNT];
1118 	int ret;
1119 
1120 	if (!value)
1121 		return -EINVAL;
1122 
1123 	ret = zynqmp_pm_invoke_fn(PM_FPGA_GET_STATUS, ret_payload, 0);
1124 	*value = ret_payload[1];
1125 
1126 	return ret;
1127 }
1128 EXPORT_SYMBOL_GPL(zynqmp_pm_fpga_get_status);
1129 
1130 /**
1131  * zynqmp_pm_fpga_get_config_status - Get the FPGA configuration status.
1132  * @value: Buffer to store FPGA configuration status.
1133  *
1134  * This function provides access to the pmufw to get the FPGA configuration
1135  * status
1136  *
1137  * Return: 0 on success, a negative value on error
1138  */
1139 int zynqmp_pm_fpga_get_config_status(u32 *value)
1140 {
1141 	u32 ret_payload[PAYLOAD_ARG_CNT];
1142 	u32 buf, lower_addr, upper_addr;
1143 	int ret;
1144 
1145 	if (!value)
1146 		return -EINVAL;
1147 
1148 	lower_addr = lower_32_bits((u64)&buf);
1149 	upper_addr = upper_32_bits((u64)&buf);
1150 
1151 	ret = zynqmp_pm_invoke_fn(PM_FPGA_READ, ret_payload, 4,
1152 				  XILINX_ZYNQMP_PM_FPGA_CONFIG_STAT_OFFSET, lower_addr, upper_addr,
1153 				  XILINX_ZYNQMP_PM_FPGA_READ_CONFIG_REG);
1154 
1155 	*value = ret_payload[1];
1156 
1157 	return ret;
1158 }
1159 EXPORT_SYMBOL_GPL(zynqmp_pm_fpga_get_config_status);
1160 
1161 /**
1162  * zynqmp_pm_pinctrl_request - Request Pin from firmware
1163  * @pin: Pin number to request
1164  *
1165  * This function requests pin from firmware.
1166  *
1167  * Return: Returns status, either success or error+reason.
1168  */
1169 int zynqmp_pm_pinctrl_request(const u32 pin)
1170 {
1171 	return zynqmp_pm_invoke_fn(PM_PINCTRL_REQUEST, NULL, 1, pin);
1172 }
1173 EXPORT_SYMBOL_GPL(zynqmp_pm_pinctrl_request);
1174 
1175 /**
1176  * zynqmp_pm_pinctrl_release - Inform firmware that Pin control is released
1177  * @pin: Pin number to release
1178  *
1179  * This function release pin from firmware.
1180  *
1181  * Return: Returns status, either success or error+reason.
1182  */
1183 int zynqmp_pm_pinctrl_release(const u32 pin)
1184 {
1185 	return zynqmp_pm_invoke_fn(PM_PINCTRL_RELEASE, NULL, 1, pin);
1186 }
1187 EXPORT_SYMBOL_GPL(zynqmp_pm_pinctrl_release);
1188 
1189 /**
1190  * zynqmp_pm_pinctrl_set_function - Set requested function for the pin
1191  * @pin: Pin number
1192  * @id: Function ID to set
1193  *
1194  * This function sets requested function for the given pin.
1195  *
1196  * Return: Returns status, either success or error+reason.
1197  */
1198 int zynqmp_pm_pinctrl_set_function(const u32 pin, const u32 id)
1199 {
1200 	return zynqmp_pm_invoke_fn(PM_PINCTRL_SET_FUNCTION, NULL, 2, pin, id);
1201 }
1202 EXPORT_SYMBOL_GPL(zynqmp_pm_pinctrl_set_function);
1203 
1204 /**
1205  * zynqmp_pm_pinctrl_get_config - Get configuration parameter for the pin
1206  * @pin: Pin number
1207  * @param: Parameter to get
1208  * @value: Buffer to store parameter value
1209  *
1210  * This function gets requested configuration parameter for the given pin.
1211  *
1212  * Return: Returns status, either success or error+reason.
1213  */
1214 int zynqmp_pm_pinctrl_get_config(const u32 pin, const u32 param,
1215 				 u32 *value)
1216 {
1217 	u32 ret_payload[PAYLOAD_ARG_CNT];
1218 	int ret;
1219 
1220 	if (!value)
1221 		return -EINVAL;
1222 
1223 	ret = zynqmp_pm_invoke_fn(PM_PINCTRL_CONFIG_PARAM_GET, ret_payload, 2, pin, param);
1224 	*value = ret_payload[1];
1225 
1226 	return ret;
1227 }
1228 EXPORT_SYMBOL_GPL(zynqmp_pm_pinctrl_get_config);
1229 
1230 /**
1231  * zynqmp_pm_pinctrl_set_config - Set configuration parameter for the pin
1232  * @pin: Pin number
1233  * @param: Parameter to set
1234  * @value: Parameter value to set
1235  *
1236  * This function sets requested configuration parameter for the given pin.
1237  *
1238  * Return: Returns status, either success or error+reason.
1239  */
1240 int zynqmp_pm_pinctrl_set_config(const u32 pin, const u32 param,
1241 				 u32 value)
1242 {
1243 	int ret;
1244 
1245 	if (pm_family_code == ZYNQMP_FAMILY_CODE &&
1246 	    param == PM_PINCTRL_CONFIG_TRI_STATE) {
1247 		ret = zynqmp_pm_feature(PM_PINCTRL_CONFIG_PARAM_SET);
1248 		if (ret < PM_PINCTRL_PARAM_SET_VERSION) {
1249 			pr_warn("The requested pinctrl feature is not supported in the current firmware.\n"
1250 				"Expected firmware version is 2023.1 and above for this feature to work.\r\n");
1251 			return -EOPNOTSUPP;
1252 		}
1253 	}
1254 
1255 	return zynqmp_pm_invoke_fn(PM_PINCTRL_CONFIG_PARAM_SET, NULL, 3, pin, param, value);
1256 }
1257 EXPORT_SYMBOL_GPL(zynqmp_pm_pinctrl_set_config);
1258 
1259 /**
1260  * zynqmp_pm_bootmode_read() - PM Config API for read bootpin status
1261  * @ps_mode: Returned output value of ps_mode
1262  *
1263  * This API function is to be used for notify the power management controller
1264  * to read bootpin status.
1265  *
1266  * Return: status, either success or error+reason
1267  */
1268 unsigned int zynqmp_pm_bootmode_read(u32 *ps_mode)
1269 {
1270 	unsigned int ret;
1271 	u32 ret_payload[PAYLOAD_ARG_CNT];
1272 
1273 	ret = zynqmp_pm_invoke_fn(PM_MMIO_READ, ret_payload, 1, CRL_APB_BOOT_PIN_CTRL);
1274 
1275 	*ps_mode = ret_payload[1];
1276 
1277 	return ret;
1278 }
1279 EXPORT_SYMBOL_GPL(zynqmp_pm_bootmode_read);
1280 
1281 /**
1282  * zynqmp_pm_bootmode_write() - PM Config API for Configure bootpin
1283  * @ps_mode: Value to be written to the bootpin ctrl register
1284  *
1285  * This API function is to be used for notify the power management controller
1286  * to configure bootpin.
1287  *
1288  * Return: Returns status, either success or error+reason
1289  */
1290 int zynqmp_pm_bootmode_write(u32 ps_mode)
1291 {
1292 	return zynqmp_pm_invoke_fn(PM_MMIO_WRITE, NULL, 3, CRL_APB_BOOT_PIN_CTRL,
1293 				   CRL_APB_BOOTPIN_CTRL_MASK, ps_mode);
1294 }
1295 EXPORT_SYMBOL_GPL(zynqmp_pm_bootmode_write);
1296 
1297 /**
1298  * zynqmp_pm_init_finalize() - PM call to inform firmware that the caller
1299  *			       master has initialized its own power management
1300  *
1301  * Return: Returns status, either success or error+reason
1302  *
1303  * This API function is to be used for notify the power management controller
1304  * about the completed power management initialization.
1305  */
1306 int zynqmp_pm_init_finalize(void)
1307 {
1308 	return zynqmp_pm_invoke_fn(PM_PM_INIT_FINALIZE, NULL, 0);
1309 }
1310 EXPORT_SYMBOL_GPL(zynqmp_pm_init_finalize);
1311 
1312 /**
1313  * zynqmp_pm_set_suspend_mode()	- Set system suspend mode
1314  * @mode:	Mode to set for system suspend
1315  *
1316  * This API function is used to set mode of system suspend.
1317  *
1318  * Return: Returns status, either success or error+reason
1319  */
1320 int zynqmp_pm_set_suspend_mode(u32 mode)
1321 {
1322 	return zynqmp_pm_invoke_fn(PM_SET_SUSPEND_MODE, NULL, 1, mode);
1323 }
1324 EXPORT_SYMBOL_GPL(zynqmp_pm_set_suspend_mode);
1325 
1326 /**
1327  * zynqmp_pm_request_node() - Request a node with specific capabilities
1328  * @node:		Node ID of the slave
1329  * @capabilities:	Requested capabilities of the slave
1330  * @qos:		Quality of service (not supported)
1331  * @ack:		Flag to specify whether acknowledge is requested
1332  *
1333  * This function is used by master to request particular node from firmware.
1334  * Every master must request node before using it.
1335  *
1336  * Return: Returns status, either success or error+reason
1337  */
1338 int zynqmp_pm_request_node(const u32 node, const u32 capabilities,
1339 			   const u32 qos, const enum zynqmp_pm_request_ack ack)
1340 {
1341 	return zynqmp_pm_invoke_fn(PM_REQUEST_NODE, NULL, 4, node, capabilities, qos, ack);
1342 }
1343 EXPORT_SYMBOL_GPL(zynqmp_pm_request_node);
1344 
1345 /**
1346  * zynqmp_pm_release_node() - Release a node
1347  * @node:	Node ID of the slave
1348  *
1349  * This function is used by master to inform firmware that master
1350  * has released node. Once released, master must not use that node
1351  * without re-request.
1352  *
1353  * Return: Returns status, either success or error+reason
1354  */
1355 int zynqmp_pm_release_node(const u32 node)
1356 {
1357 	return zynqmp_pm_invoke_fn(PM_RELEASE_NODE, NULL, 1, node);
1358 }
1359 EXPORT_SYMBOL_GPL(zynqmp_pm_release_node);
1360 
1361 /**
1362  * zynqmp_pm_get_rpu_mode() - Get RPU mode
1363  * @node_id:	Node ID of the device
1364  * @rpu_mode:	return by reference value
1365  *		either split or lockstep
1366  *
1367  * Return:	return 0 on success or error+reason.
1368  *		if success, then  rpu_mode will be set
1369  *		to current rpu mode.
1370  */
1371 int zynqmp_pm_get_rpu_mode(u32 node_id, enum rpu_oper_mode *rpu_mode)
1372 {
1373 	u32 ret_payload[PAYLOAD_ARG_CNT];
1374 	int ret;
1375 
1376 	ret = zynqmp_pm_invoke_fn(PM_IOCTL, ret_payload, 2, node_id, IOCTL_GET_RPU_OPER_MODE);
1377 
1378 	/* only set rpu_mode if no error */
1379 	if (ret == XST_PM_SUCCESS)
1380 		*rpu_mode = ret_payload[0];
1381 
1382 	return ret;
1383 }
1384 EXPORT_SYMBOL_GPL(zynqmp_pm_get_rpu_mode);
1385 
1386 /**
1387  * zynqmp_pm_set_rpu_mode() - Set RPU mode
1388  * @node_id:	Node ID of the device
1389  * @rpu_mode:	Argument 1 to requested IOCTL call. either split or lockstep
1390  *
1391  *		This function is used to set RPU mode to split or
1392  *		lockstep
1393  *
1394  * Return:	Returns status, either success or error+reason
1395  */
1396 int zynqmp_pm_set_rpu_mode(u32 node_id, enum rpu_oper_mode rpu_mode)
1397 {
1398 	return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 3, node_id, IOCTL_SET_RPU_OPER_MODE,
1399 				   (u32)rpu_mode);
1400 }
1401 EXPORT_SYMBOL_GPL(zynqmp_pm_set_rpu_mode);
1402 
1403 /**
1404  * zynqmp_pm_set_tcm_config - configure TCM
1405  * @node_id:	Firmware specific TCM subsystem ID
1406  * @tcm_mode:	Argument 1 to requested IOCTL call
1407  *              either PM_RPU_TCM_COMB or PM_RPU_TCM_SPLIT
1408  *
1409  * This function is used to set RPU mode to split or combined
1410  *
1411  * Return: status: 0 for success, else failure
1412  */
1413 int zynqmp_pm_set_tcm_config(u32 node_id, enum rpu_tcm_comb tcm_mode)
1414 {
1415 	return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 3, node_id, IOCTL_TCM_COMB_CONFIG,
1416 				   (u32)tcm_mode);
1417 }
1418 EXPORT_SYMBOL_GPL(zynqmp_pm_set_tcm_config);
1419 
1420 /**
1421  * zynqmp_pm_force_pwrdwn - PM call to request for another PU or subsystem to
1422  *             be powered down forcefully
1423  * @node:  Node ID of the targeted PU or subsystem
1424  * @ack:   Flag to specify whether acknowledge is requested
1425  *
1426  * Return: status, either success or error+reason
1427  */
1428 int zynqmp_pm_force_pwrdwn(const u32 node,
1429 			   const enum zynqmp_pm_request_ack ack)
1430 {
1431 	return zynqmp_pm_invoke_fn(PM_FORCE_POWERDOWN, NULL, 2, node, ack);
1432 }
1433 EXPORT_SYMBOL_GPL(zynqmp_pm_force_pwrdwn);
1434 
1435 /**
1436  * zynqmp_pm_request_wake - PM call to wake up selected master or subsystem
1437  * @node:  Node ID of the master or subsystem
1438  * @set_addr:  Specifies whether the address argument is relevant
1439  * @address:   Address from which to resume when woken up
1440  * @ack:   Flag to specify whether acknowledge requested
1441  *
1442  * Return: status, either success or error+reason
1443  */
1444 int zynqmp_pm_request_wake(const u32 node,
1445 			   const bool set_addr,
1446 			   const u64 address,
1447 			   const enum zynqmp_pm_request_ack ack)
1448 {
1449 	/* set_addr flag is encoded into 1st bit of address */
1450 	return zynqmp_pm_invoke_fn(PM_REQUEST_WAKEUP, NULL, 4, node, address | set_addr,
1451 				   address >> 32, ack);
1452 }
1453 EXPORT_SYMBOL_GPL(zynqmp_pm_request_wake);
1454 
1455 /**
1456  * zynqmp_pm_set_requirement() - PM call to set requirement for PM slaves
1457  * @node:		Node ID of the slave
1458  * @capabilities:	Requested capabilities of the slave
1459  * @qos:		Quality of service (not supported)
1460  * @ack:		Flag to specify whether acknowledge is requested
1461  *
1462  * This API function is to be used for slaves a PU already has requested
1463  * to change its capabilities.
1464  *
1465  * Return: Returns status, either success or error+reason
1466  */
1467 int zynqmp_pm_set_requirement(const u32 node, const u32 capabilities,
1468 			      const u32 qos,
1469 			      const enum zynqmp_pm_request_ack ack)
1470 {
1471 	return zynqmp_pm_invoke_fn(PM_SET_REQUIREMENT, NULL, 4, node, capabilities, qos, ack);
1472 }
1473 EXPORT_SYMBOL_GPL(zynqmp_pm_set_requirement);
1474 
1475 /**
1476  * zynqmp_pm_load_pdi - Load and process PDI
1477  * @src:	Source device where PDI is located
1478  * @address:	PDI src address
1479  *
1480  * This function provides support to load PDI from linux
1481  *
1482  * Return: Returns status, either success or error+reason
1483  */
1484 int zynqmp_pm_load_pdi(const u32 src, const u64 address)
1485 {
1486 	return zynqmp_pm_invoke_fn(PM_LOAD_PDI, NULL, 3, src, lower_32_bits(address),
1487 				   upper_32_bits(address));
1488 }
1489 EXPORT_SYMBOL_GPL(zynqmp_pm_load_pdi);
1490 
1491 /**
1492  * zynqmp_pm_aes_engine - Access AES hardware to encrypt/decrypt the data using
1493  * AES-GCM core.
1494  * @address:	Address of the AesParams structure.
1495  * @out:	Returned output value
1496  *
1497  * Return:	Returns status, either success or error code.
1498  */
1499 int zynqmp_pm_aes_engine(const u64 address, u32 *out)
1500 {
1501 	u32 ret_payload[PAYLOAD_ARG_CNT];
1502 	int ret;
1503 
1504 	if (!out)
1505 		return -EINVAL;
1506 
1507 	ret = zynqmp_pm_invoke_fn(PM_SECURE_AES, ret_payload, 2, upper_32_bits(address),
1508 				  lower_32_bits(address));
1509 	*out = ret_payload[1];
1510 
1511 	return ret;
1512 }
1513 EXPORT_SYMBOL_GPL(zynqmp_pm_aes_engine);
1514 
1515 /**
1516  * zynqmp_pm_efuse_access - Provides access to efuse memory.
1517  * @address:	Address of the efuse params structure
1518  * @out:		Returned output value
1519  *
1520  * Return:	Returns status, either success or error code.
1521  */
1522 int zynqmp_pm_efuse_access(const u64 address, u32 *out)
1523 {
1524 	u32 ret_payload[PAYLOAD_ARG_CNT];
1525 	int ret;
1526 
1527 	if (!out)
1528 		return -EINVAL;
1529 
1530 	ret = zynqmp_pm_invoke_fn(PM_EFUSE_ACCESS, ret_payload, 2,
1531 				  upper_32_bits(address),
1532 				  lower_32_bits(address));
1533 	*out = ret_payload[1];
1534 
1535 	return ret;
1536 }
1537 EXPORT_SYMBOL_GPL(zynqmp_pm_efuse_access);
1538 
1539 /**
1540  * zynqmp_pm_sha_hash - Access the SHA engine to calculate the hash
1541  * @address:	Address of the data/ Address of output buffer where
1542  *		hash should be stored.
1543  * @size:	Size of the data.
1544  * @flags:
1545  *	BIT(0) - for initializing csudma driver and SHA3(Here address
1546  *		 and size inputs can be NULL).
1547  *	BIT(1) - to call Sha3_Update API which can be called multiple
1548  *		 times when data is not contiguous.
1549  *	BIT(2) - to get final hash of the whole updated data.
1550  *		 Hash will be overwritten at provided address with
1551  *		 48 bytes.
1552  *
1553  * Return:	Returns status, either success or error code.
1554  */
1555 int zynqmp_pm_sha_hash(const u64 address, const u32 size, const u32 flags)
1556 {
1557 	u32 lower_addr = lower_32_bits(address);
1558 	u32 upper_addr = upper_32_bits(address);
1559 
1560 	return zynqmp_pm_invoke_fn(PM_SECURE_SHA, NULL, 4, upper_addr, lower_addr, size, flags);
1561 }
1562 EXPORT_SYMBOL_GPL(zynqmp_pm_sha_hash);
1563 
1564 /**
1565  * zynqmp_pm_register_notifier() - PM API for register a subsystem
1566  *                                to be notified about specific
1567  *                                event/error.
1568  * @node:	Node ID to which the event is related.
1569  * @event:	Event Mask of Error events for which wants to get notified.
1570  * @wake:	Wake subsystem upon capturing the event if value 1
1571  * @enable:	Enable the registration for value 1, disable for value 0
1572  *
1573  * This function is used to register/un-register for particular node-event
1574  * combination in firmware.
1575  *
1576  * Return: Returns status, either success or error+reason
1577  */
1578 
1579 int zynqmp_pm_register_notifier(const u32 node, const u32 event,
1580 				const u32 wake, const u32 enable)
1581 {
1582 	return zynqmp_pm_invoke_fn(PM_REGISTER_NOTIFIER, NULL, 4, node, event, wake, enable);
1583 }
1584 EXPORT_SYMBOL_GPL(zynqmp_pm_register_notifier);
1585 
1586 /**
1587  * zynqmp_pm_system_shutdown - PM call to request a system shutdown or restart
1588  * @type:	Shutdown or restart? 0 for shutdown, 1 for restart
1589  * @subtype:	Specifies which system should be restarted or shut down
1590  *
1591  * Return:	Returns status, either success or error+reason
1592  */
1593 int zynqmp_pm_system_shutdown(const u32 type, const u32 subtype)
1594 {
1595 	return zynqmp_pm_invoke_fn(PM_SYSTEM_SHUTDOWN, NULL, 2, type, subtype);
1596 }
1597 
1598 /**
1599  * zynqmp_pm_set_feature_config - PM call to request IOCTL for feature config
1600  * @id:         The config ID of the feature to be configured
1601  * @value:      The config value of the feature to be configured
1602  *
1603  * Return:      Returns 0 on success or error value on failure.
1604  */
1605 int zynqmp_pm_set_feature_config(enum pm_feature_config_id id, u32 value)
1606 {
1607 	return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 4, 0, IOCTL_SET_FEATURE_CONFIG, id, value);
1608 }
1609 
1610 /**
1611  * zynqmp_pm_get_feature_config - PM call to get value of configured feature
1612  * @id:         The config id of the feature to be queried
1613  * @payload:    Returned value array
1614  *
1615  * Return:      Returns 0 on success or error value on failure.
1616  */
1617 int zynqmp_pm_get_feature_config(enum pm_feature_config_id id,
1618 				 u32 *payload)
1619 {
1620 	return zynqmp_pm_invoke_fn(PM_IOCTL, payload, 3, 0, IOCTL_GET_FEATURE_CONFIG, id);
1621 }
1622 
1623 /**
1624  * zynqmp_pm_set_sd_config - PM call to set value of SD config registers
1625  * @node:	SD node ID
1626  * @config:	The config type of SD registers
1627  * @value:	Value to be set
1628  *
1629  * Return:	Returns 0 on success or error value on failure.
1630  */
1631 int zynqmp_pm_set_sd_config(u32 node, enum pm_sd_config_type config, u32 value)
1632 {
1633 	return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 4, node, IOCTL_SET_SD_CONFIG, config, value);
1634 }
1635 EXPORT_SYMBOL_GPL(zynqmp_pm_set_sd_config);
1636 
1637 /**
1638  * zynqmp_pm_set_gem_config - PM call to set value of GEM config registers
1639  * @node:	GEM node ID
1640  * @config:	The config type of GEM registers
1641  * @value:	Value to be set
1642  *
1643  * Return:	Returns 0 on success or error value on failure.
1644  */
1645 int zynqmp_pm_set_gem_config(u32 node, enum pm_gem_config_type config,
1646 			     u32 value)
1647 {
1648 	return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 4, node, IOCTL_SET_GEM_CONFIG, config, value);
1649 }
1650 EXPORT_SYMBOL_GPL(zynqmp_pm_set_gem_config);
1651 
1652 /**
1653  * struct zynqmp_pm_shutdown_scope - Struct for shutdown scope
1654  * @subtype:	Shutdown subtype
1655  * @name:	Matching string for scope argument
1656  *
1657  * This struct encapsulates mapping between shutdown scope ID and string.
1658  */
1659 struct zynqmp_pm_shutdown_scope {
1660 	const enum zynqmp_pm_shutdown_subtype subtype;
1661 	const char *name;
1662 };
1663 
1664 static struct zynqmp_pm_shutdown_scope shutdown_scopes[] = {
1665 	[ZYNQMP_PM_SHUTDOWN_SUBTYPE_SUBSYSTEM] = {
1666 		.subtype = ZYNQMP_PM_SHUTDOWN_SUBTYPE_SUBSYSTEM,
1667 		.name = "subsystem",
1668 	},
1669 	[ZYNQMP_PM_SHUTDOWN_SUBTYPE_PS_ONLY] = {
1670 		.subtype = ZYNQMP_PM_SHUTDOWN_SUBTYPE_PS_ONLY,
1671 		.name = "ps_only",
1672 	},
1673 	[ZYNQMP_PM_SHUTDOWN_SUBTYPE_SYSTEM] = {
1674 		.subtype = ZYNQMP_PM_SHUTDOWN_SUBTYPE_SYSTEM,
1675 		.name = "system",
1676 	},
1677 };
1678 
1679 static struct zynqmp_pm_shutdown_scope *selected_scope =
1680 		&shutdown_scopes[ZYNQMP_PM_SHUTDOWN_SUBTYPE_SYSTEM];
1681 
1682 /**
1683  * zynqmp_pm_is_shutdown_scope_valid - Check if shutdown scope string is valid
1684  * @scope_string:	Shutdown scope string
1685  *
1686  * Return:		Return pointer to matching shutdown scope struct from
1687  *			array of available options in system if string is valid,
1688  *			otherwise returns NULL.
1689  */
1690 static struct zynqmp_pm_shutdown_scope*
1691 		zynqmp_pm_is_shutdown_scope_valid(const char *scope_string)
1692 {
1693 	int count;
1694 
1695 	for (count = 0; count < ARRAY_SIZE(shutdown_scopes); count++)
1696 		if (sysfs_streq(scope_string, shutdown_scopes[count].name))
1697 			return &shutdown_scopes[count];
1698 
1699 	return NULL;
1700 }
1701 
1702 static ssize_t shutdown_scope_show(struct device *device,
1703 				   struct device_attribute *attr,
1704 				   char *buf)
1705 {
1706 	int i;
1707 
1708 	for (i = 0; i < ARRAY_SIZE(shutdown_scopes); i++) {
1709 		if (&shutdown_scopes[i] == selected_scope) {
1710 			strcat(buf, "[");
1711 			strcat(buf, shutdown_scopes[i].name);
1712 			strcat(buf, "]");
1713 		} else {
1714 			strcat(buf, shutdown_scopes[i].name);
1715 		}
1716 		strcat(buf, " ");
1717 	}
1718 	strcat(buf, "\n");
1719 
1720 	return strlen(buf);
1721 }
1722 
1723 static ssize_t shutdown_scope_store(struct device *device,
1724 				    struct device_attribute *attr,
1725 				    const char *buf, size_t count)
1726 {
1727 	int ret;
1728 	struct zynqmp_pm_shutdown_scope *scope;
1729 
1730 	scope = zynqmp_pm_is_shutdown_scope_valid(buf);
1731 	if (!scope)
1732 		return -EINVAL;
1733 
1734 	ret = zynqmp_pm_system_shutdown(ZYNQMP_PM_SHUTDOWN_TYPE_SETSCOPE_ONLY,
1735 					scope->subtype);
1736 	if (ret) {
1737 		pr_err("unable to set shutdown scope %s\n", buf);
1738 		return ret;
1739 	}
1740 
1741 	selected_scope = scope;
1742 
1743 	return count;
1744 }
1745 
1746 static DEVICE_ATTR_RW(shutdown_scope);
1747 
1748 static ssize_t health_status_store(struct device *device,
1749 				   struct device_attribute *attr,
1750 				   const char *buf, size_t count)
1751 {
1752 	int ret;
1753 	unsigned int value;
1754 
1755 	ret = kstrtouint(buf, 10, &value);
1756 	if (ret)
1757 		return ret;
1758 
1759 	ret = zynqmp_pm_set_boot_health_status(value);
1760 	if (ret) {
1761 		dev_err(device, "unable to set healthy bit value to %u\n",
1762 			value);
1763 		return ret;
1764 	}
1765 
1766 	return count;
1767 }
1768 
1769 static DEVICE_ATTR_WO(health_status);
1770 
1771 static ssize_t ggs_show(struct device *device,
1772 			struct device_attribute *attr,
1773 			char *buf,
1774 			u32 reg)
1775 {
1776 	int ret;
1777 	u32 ret_payload[PAYLOAD_ARG_CNT];
1778 
1779 	ret = zynqmp_pm_read_ggs(reg, ret_payload);
1780 	if (ret)
1781 		return ret;
1782 
1783 	return sprintf(buf, "0x%x\n", ret_payload[1]);
1784 }
1785 
1786 static ssize_t ggs_store(struct device *device,
1787 			 struct device_attribute *attr,
1788 			 const char *buf, size_t count,
1789 			 u32 reg)
1790 {
1791 	long value;
1792 	int ret;
1793 
1794 	if (reg >= GSS_NUM_REGS)
1795 		return -EINVAL;
1796 
1797 	ret = kstrtol(buf, 16, &value);
1798 	if (ret) {
1799 		count = -EFAULT;
1800 		goto err;
1801 	}
1802 
1803 	ret = zynqmp_pm_write_ggs(reg, value);
1804 	if (ret)
1805 		count = -EFAULT;
1806 err:
1807 	return count;
1808 }
1809 
1810 /* GGS register show functions */
1811 #define GGS0_SHOW(N)						\
1812 	ssize_t ggs##N##_show(struct device *device,		\
1813 			      struct device_attribute *attr,	\
1814 			      char *buf)			\
1815 	{							\
1816 		return ggs_show(device, attr, buf, N);		\
1817 	}
1818 
1819 static GGS0_SHOW(0);
1820 static GGS0_SHOW(1);
1821 static GGS0_SHOW(2);
1822 static GGS0_SHOW(3);
1823 
1824 /* GGS register store function */
1825 #define GGS0_STORE(N)						\
1826 	ssize_t ggs##N##_store(struct device *device,		\
1827 			       struct device_attribute *attr,	\
1828 			       const char *buf,			\
1829 			       size_t count)			\
1830 	{							\
1831 		return ggs_store(device, attr, buf, count, N);	\
1832 	}
1833 
1834 static GGS0_STORE(0);
1835 static GGS0_STORE(1);
1836 static GGS0_STORE(2);
1837 static GGS0_STORE(3);
1838 
1839 static ssize_t pggs_show(struct device *device,
1840 			 struct device_attribute *attr,
1841 			 char *buf,
1842 			 u32 reg)
1843 {
1844 	int ret;
1845 	u32 ret_payload[PAYLOAD_ARG_CNT];
1846 
1847 	ret = zynqmp_pm_read_pggs(reg, ret_payload);
1848 	if (ret)
1849 		return ret;
1850 
1851 	return sprintf(buf, "0x%x\n", ret_payload[1]);
1852 }
1853 
1854 static ssize_t pggs_store(struct device *device,
1855 			  struct device_attribute *attr,
1856 			  const char *buf, size_t count,
1857 			  u32 reg)
1858 {
1859 	long value;
1860 	int ret;
1861 
1862 	if (reg >= GSS_NUM_REGS)
1863 		return -EINVAL;
1864 
1865 	ret = kstrtol(buf, 16, &value);
1866 	if (ret) {
1867 		count = -EFAULT;
1868 		goto err;
1869 	}
1870 
1871 	ret = zynqmp_pm_write_pggs(reg, value);
1872 	if (ret)
1873 		count = -EFAULT;
1874 
1875 err:
1876 	return count;
1877 }
1878 
1879 #define PGGS0_SHOW(N)						\
1880 	ssize_t pggs##N##_show(struct device *device,		\
1881 			       struct device_attribute *attr,	\
1882 			       char *buf)			\
1883 	{							\
1884 		return pggs_show(device, attr, buf, N);		\
1885 	}
1886 
1887 #define PGGS0_STORE(N)						\
1888 	ssize_t pggs##N##_store(struct device *device,		\
1889 				struct device_attribute *attr,	\
1890 				const char *buf,		\
1891 				size_t count)			\
1892 	{							\
1893 		return pggs_store(device, attr, buf, count, N);	\
1894 	}
1895 
1896 /* PGGS register show functions */
1897 static PGGS0_SHOW(0);
1898 static PGGS0_SHOW(1);
1899 static PGGS0_SHOW(2);
1900 static PGGS0_SHOW(3);
1901 
1902 /* PGGS register store functions */
1903 static PGGS0_STORE(0);
1904 static PGGS0_STORE(1);
1905 static PGGS0_STORE(2);
1906 static PGGS0_STORE(3);
1907 
1908 /* GGS register attributes */
1909 static DEVICE_ATTR_RW(ggs0);
1910 static DEVICE_ATTR_RW(ggs1);
1911 static DEVICE_ATTR_RW(ggs2);
1912 static DEVICE_ATTR_RW(ggs3);
1913 
1914 /* PGGS register attributes */
1915 static DEVICE_ATTR_RW(pggs0);
1916 static DEVICE_ATTR_RW(pggs1);
1917 static DEVICE_ATTR_RW(pggs2);
1918 static DEVICE_ATTR_RW(pggs3);
1919 
1920 static ssize_t feature_config_id_show(struct device *device,
1921 				      struct device_attribute *attr,
1922 				      char *buf)
1923 {
1924 	struct zynqmp_devinfo *devinfo = dev_get_drvdata(device);
1925 
1926 	return sysfs_emit(buf, "%d\n", devinfo->feature_conf_id);
1927 }
1928 
1929 static ssize_t feature_config_id_store(struct device *device,
1930 				       struct device_attribute *attr,
1931 				       const char *buf, size_t count)
1932 {
1933 	u32 config_id;
1934 	int ret;
1935 	struct zynqmp_devinfo *devinfo = dev_get_drvdata(device);
1936 
1937 	if (!buf)
1938 		return -EINVAL;
1939 
1940 	ret = kstrtou32(buf, 10, &config_id);
1941 	if (ret)
1942 		return ret;
1943 
1944 	devinfo->feature_conf_id = config_id;
1945 
1946 	return count;
1947 }
1948 
1949 static DEVICE_ATTR_RW(feature_config_id);
1950 
1951 static ssize_t feature_config_value_show(struct device *device,
1952 					 struct device_attribute *attr,
1953 					 char *buf)
1954 {
1955 	int ret;
1956 	u32 ret_payload[PAYLOAD_ARG_CNT];
1957 	struct zynqmp_devinfo *devinfo = dev_get_drvdata(device);
1958 
1959 	ret = zynqmp_pm_get_feature_config(devinfo->feature_conf_id,
1960 					   ret_payload);
1961 	if (ret)
1962 		return ret;
1963 
1964 	return sysfs_emit(buf, "%d\n", ret_payload[1]);
1965 }
1966 
1967 static ssize_t feature_config_value_store(struct device *device,
1968 					  struct device_attribute *attr,
1969 					  const char *buf, size_t count)
1970 {
1971 	u32 value;
1972 	int ret;
1973 	struct zynqmp_devinfo *devinfo = dev_get_drvdata(device);
1974 
1975 	if (!buf)
1976 		return -EINVAL;
1977 
1978 	ret = kstrtou32(buf, 10, &value);
1979 	if (ret)
1980 		return ret;
1981 
1982 	ret = zynqmp_pm_set_feature_config(devinfo->feature_conf_id,
1983 					   value);
1984 	if (ret)
1985 		return ret;
1986 
1987 	return count;
1988 }
1989 
1990 static DEVICE_ATTR_RW(feature_config_value);
1991 
1992 static struct attribute *zynqmp_firmware_attrs[] = {
1993 	&dev_attr_ggs0.attr,
1994 	&dev_attr_ggs1.attr,
1995 	&dev_attr_ggs2.attr,
1996 	&dev_attr_ggs3.attr,
1997 	&dev_attr_pggs0.attr,
1998 	&dev_attr_pggs1.attr,
1999 	&dev_attr_pggs2.attr,
2000 	&dev_attr_pggs3.attr,
2001 	&dev_attr_shutdown_scope.attr,
2002 	&dev_attr_health_status.attr,
2003 	&dev_attr_feature_config_id.attr,
2004 	&dev_attr_feature_config_value.attr,
2005 	NULL,
2006 };
2007 
2008 ATTRIBUTE_GROUPS(zynqmp_firmware);
2009 
2010 static int zynqmp_firmware_probe(struct platform_device *pdev)
2011 {
2012 	struct device *dev = &pdev->dev;
2013 	struct zynqmp_devinfo *devinfo;
2014 	int ret;
2015 
2016 	ret = get_set_conduit_method(dev->of_node);
2017 	if (ret)
2018 		return ret;
2019 
2020 	/* Get SiP SVC version number */
2021 	ret = zynqmp_pm_get_sip_svc_version(&sip_svc_version);
2022 	if (ret)
2023 		return ret;
2024 
2025 	ret = do_feature_check_call(PM_FEATURE_CHECK);
2026 	if (ret >= 0 && ((ret & FIRMWARE_VERSION_MASK) >= PM_API_VERSION_1))
2027 		feature_check_enabled = true;
2028 
2029 	devinfo = devm_kzalloc(dev, sizeof(*devinfo), GFP_KERNEL);
2030 	if (!devinfo)
2031 		return -ENOMEM;
2032 
2033 	devinfo->dev = dev;
2034 
2035 	platform_set_drvdata(pdev, devinfo);
2036 
2037 	/* Check PM API version number */
2038 	ret = zynqmp_pm_get_api_version(&pm_api_version);
2039 	if (ret)
2040 		return ret;
2041 
2042 	if (pm_api_version < ZYNQMP_PM_VERSION) {
2043 		panic("%s Platform Management API version error. Expected: v%d.%d - Found: v%d.%d\n",
2044 		      __func__,
2045 		      ZYNQMP_PM_VERSION_MAJOR, ZYNQMP_PM_VERSION_MINOR,
2046 		      pm_api_version >> 16, pm_api_version & 0xFFFF);
2047 	}
2048 
2049 	pr_info("%s Platform Management API v%d.%d\n", __func__,
2050 		pm_api_version >> 16, pm_api_version & 0xFFFF);
2051 
2052 	/* Get the Family code and sub family code of platform */
2053 	ret = zynqmp_pm_get_family_info(&pm_family_code, &pm_sub_family_code);
2054 	if (ret < 0)
2055 		return ret;
2056 
2057 	/* Check trustzone version number */
2058 	ret = zynqmp_pm_get_trustzone_version(&pm_tz_version);
2059 	if (ret)
2060 		panic("Legacy trustzone found without version support\n");
2061 
2062 	if (pm_tz_version < ZYNQMP_TZ_VERSION)
2063 		panic("%s Trustzone version error. Expected: v%d.%d - Found: v%d.%d\n",
2064 		      __func__,
2065 		      ZYNQMP_TZ_VERSION_MAJOR, ZYNQMP_TZ_VERSION_MINOR,
2066 		      pm_tz_version >> 16, pm_tz_version & 0xFFFF);
2067 
2068 	pr_info("%s Trustzone version v%d.%d\n", __func__,
2069 		pm_tz_version >> 16, pm_tz_version & 0xFFFF);
2070 
2071 	ret = mfd_add_devices(&pdev->dev, PLATFORM_DEVID_NONE, firmware_devs,
2072 			      ARRAY_SIZE(firmware_devs), NULL, 0, NULL);
2073 	if (ret) {
2074 		dev_err(&pdev->dev, "failed to add MFD devices %d\n", ret);
2075 		return ret;
2076 	}
2077 
2078 	zynqmp_pm_api_debugfs_init();
2079 
2080 	if (pm_family_code == VERSAL_FAMILY_CODE) {
2081 		em_dev = platform_device_register_data(&pdev->dev, "xlnx_event_manager",
2082 						       -1, NULL, 0);
2083 		if (IS_ERR(em_dev))
2084 			dev_err_probe(&pdev->dev, PTR_ERR(em_dev), "EM register fail with error\n");
2085 	}
2086 
2087 	return of_platform_populate(dev->of_node, NULL, NULL, dev);
2088 }
2089 
2090 static void zynqmp_firmware_remove(struct platform_device *pdev)
2091 {
2092 	struct pm_api_feature_data *feature_data;
2093 	struct hlist_node *tmp;
2094 	int i;
2095 
2096 	mfd_remove_devices(&pdev->dev);
2097 	zynqmp_pm_api_debugfs_exit();
2098 
2099 	hash_for_each_safe(pm_api_features_map, i, tmp, feature_data, hentry) {
2100 		hash_del(&feature_data->hentry);
2101 		kfree(feature_data);
2102 	}
2103 
2104 	platform_device_unregister(em_dev);
2105 }
2106 
2107 static const struct of_device_id zynqmp_firmware_of_match[] = {
2108 	{.compatible = "xlnx,zynqmp-firmware"},
2109 	{.compatible = "xlnx,versal-firmware"},
2110 	{},
2111 };
2112 MODULE_DEVICE_TABLE(of, zynqmp_firmware_of_match);
2113 
2114 static struct platform_driver zynqmp_firmware_driver = {
2115 	.driver = {
2116 		.name = "zynqmp_firmware",
2117 		.of_match_table = zynqmp_firmware_of_match,
2118 		.dev_groups = zynqmp_firmware_groups,
2119 	},
2120 	.probe = zynqmp_firmware_probe,
2121 	.remove = zynqmp_firmware_remove,
2122 };
2123 module_platform_driver(zynqmp_firmware_driver);
2124