xref: /linux/drivers/firmware/qcom/qcom_scm.c (revision c6e9dba3be5ef3b701b29b143609561915e5d0e9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2010,2015,2019 The Linux Foundation. All rights reserved.
3  * Copyright (C) 2015 Linaro Ltd.
4  */
5 
6 #include <linux/arm-smccc.h>
7 #include <linux/clk.h>
8 #include <linux/completion.h>
9 #include <linux/cpumask.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/export.h>
12 #include <linux/firmware/qcom/qcom_scm.h>
13 #include <linux/init.h>
14 #include <linux/interconnect.h>
15 #include <linux/interrupt.h>
16 #include <linux/module.h>
17 #include <linux/of.h>
18 #include <linux/of_address.h>
19 #include <linux/of_irq.h>
20 #include <linux/of_platform.h>
21 #include <linux/platform_device.h>
22 #include <linux/reset-controller.h>
23 #include <linux/types.h>
24 
25 #include "qcom_scm.h"
26 
27 static bool download_mode = IS_ENABLED(CONFIG_QCOM_SCM_DOWNLOAD_MODE_DEFAULT);
28 module_param(download_mode, bool, 0);
29 
30 struct qcom_scm {
31 	struct device *dev;
32 	struct clk *core_clk;
33 	struct clk *iface_clk;
34 	struct clk *bus_clk;
35 	struct icc_path *path;
36 	struct completion waitq_comp;
37 	struct reset_controller_dev reset;
38 
39 	/* control access to the interconnect path */
40 	struct mutex scm_bw_lock;
41 	int scm_vote_count;
42 
43 	u64 dload_mode_addr;
44 };
45 
46 struct qcom_scm_current_perm_info {
47 	__le32 vmid;
48 	__le32 perm;
49 	__le64 ctx;
50 	__le32 ctx_size;
51 	__le32 unused;
52 };
53 
54 struct qcom_scm_mem_map_info {
55 	__le64 mem_addr;
56 	__le64 mem_size;
57 };
58 
59 /**
60  * struct qcom_scm_qseecom_resp - QSEECOM SCM call response.
61  * @result:    Result or status of the SCM call. See &enum qcom_scm_qseecom_result.
62  * @resp_type: Type of the response. See &enum qcom_scm_qseecom_resp_type.
63  * @data:      Response data. The type of this data is given in @resp_type.
64  */
65 struct qcom_scm_qseecom_resp {
66 	u64 result;
67 	u64 resp_type;
68 	u64 data;
69 };
70 
71 enum qcom_scm_qseecom_result {
72 	QSEECOM_RESULT_SUCCESS			= 0,
73 	QSEECOM_RESULT_INCOMPLETE		= 1,
74 	QSEECOM_RESULT_BLOCKED_ON_LISTENER	= 2,
75 	QSEECOM_RESULT_FAILURE			= 0xFFFFFFFF,
76 };
77 
78 enum qcom_scm_qseecom_resp_type {
79 	QSEECOM_SCM_RES_APP_ID			= 0xEE01,
80 	QSEECOM_SCM_RES_QSEOS_LISTENER_ID	= 0xEE02,
81 };
82 
83 enum qcom_scm_qseecom_tz_owner {
84 	QSEECOM_TZ_OWNER_SIP			= 2,
85 	QSEECOM_TZ_OWNER_TZ_APPS		= 48,
86 	QSEECOM_TZ_OWNER_QSEE_OS		= 50
87 };
88 
89 enum qcom_scm_qseecom_tz_svc {
90 	QSEECOM_TZ_SVC_APP_ID_PLACEHOLDER	= 0,
91 	QSEECOM_TZ_SVC_APP_MGR			= 1,
92 	QSEECOM_TZ_SVC_INFO			= 6,
93 };
94 
95 enum qcom_scm_qseecom_tz_cmd_app {
96 	QSEECOM_TZ_CMD_APP_SEND			= 1,
97 	QSEECOM_TZ_CMD_APP_LOOKUP		= 3,
98 };
99 
100 enum qcom_scm_qseecom_tz_cmd_info {
101 	QSEECOM_TZ_CMD_INFO_VERSION		= 3,
102 };
103 
104 #define QSEECOM_MAX_APP_NAME_SIZE		64
105 
106 /* Each bit configures cold/warm boot address for one of the 4 CPUs */
107 static const u8 qcom_scm_cpu_cold_bits[QCOM_SCM_BOOT_MAX_CPUS] = {
108 	0, BIT(0), BIT(3), BIT(5)
109 };
110 static const u8 qcom_scm_cpu_warm_bits[QCOM_SCM_BOOT_MAX_CPUS] = {
111 	BIT(2), BIT(1), BIT(4), BIT(6)
112 };
113 
114 #define QCOM_SMC_WAITQ_FLAG_WAKE_ONE	BIT(0)
115 #define QCOM_SMC_WAITQ_FLAG_WAKE_ALL	BIT(1)
116 
117 static const char * const qcom_scm_convention_names[] = {
118 	[SMC_CONVENTION_UNKNOWN] = "unknown",
119 	[SMC_CONVENTION_ARM_32] = "smc arm 32",
120 	[SMC_CONVENTION_ARM_64] = "smc arm 64",
121 	[SMC_CONVENTION_LEGACY] = "smc legacy",
122 };
123 
124 static struct qcom_scm *__scm;
125 
126 static int qcom_scm_clk_enable(void)
127 {
128 	int ret;
129 
130 	ret = clk_prepare_enable(__scm->core_clk);
131 	if (ret)
132 		goto bail;
133 
134 	ret = clk_prepare_enable(__scm->iface_clk);
135 	if (ret)
136 		goto disable_core;
137 
138 	ret = clk_prepare_enable(__scm->bus_clk);
139 	if (ret)
140 		goto disable_iface;
141 
142 	return 0;
143 
144 disable_iface:
145 	clk_disable_unprepare(__scm->iface_clk);
146 disable_core:
147 	clk_disable_unprepare(__scm->core_clk);
148 bail:
149 	return ret;
150 }
151 
152 static void qcom_scm_clk_disable(void)
153 {
154 	clk_disable_unprepare(__scm->core_clk);
155 	clk_disable_unprepare(__scm->iface_clk);
156 	clk_disable_unprepare(__scm->bus_clk);
157 }
158 
159 static int qcom_scm_bw_enable(void)
160 {
161 	int ret = 0;
162 
163 	if (!__scm->path)
164 		return 0;
165 
166 	if (IS_ERR(__scm->path))
167 		return -EINVAL;
168 
169 	mutex_lock(&__scm->scm_bw_lock);
170 	if (!__scm->scm_vote_count) {
171 		ret = icc_set_bw(__scm->path, 0, UINT_MAX);
172 		if (ret < 0) {
173 			dev_err(__scm->dev, "failed to set bandwidth request\n");
174 			goto err_bw;
175 		}
176 	}
177 	__scm->scm_vote_count++;
178 err_bw:
179 	mutex_unlock(&__scm->scm_bw_lock);
180 
181 	return ret;
182 }
183 
184 static void qcom_scm_bw_disable(void)
185 {
186 	if (IS_ERR_OR_NULL(__scm->path))
187 		return;
188 
189 	mutex_lock(&__scm->scm_bw_lock);
190 	if (__scm->scm_vote_count-- == 1)
191 		icc_set_bw(__scm->path, 0, 0);
192 	mutex_unlock(&__scm->scm_bw_lock);
193 }
194 
195 enum qcom_scm_convention qcom_scm_convention = SMC_CONVENTION_UNKNOWN;
196 static DEFINE_SPINLOCK(scm_query_lock);
197 
198 static enum qcom_scm_convention __get_convention(void)
199 {
200 	unsigned long flags;
201 	struct qcom_scm_desc desc = {
202 		.svc = QCOM_SCM_SVC_INFO,
203 		.cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
204 		.args[0] = SCM_SMC_FNID(QCOM_SCM_SVC_INFO,
205 					   QCOM_SCM_INFO_IS_CALL_AVAIL) |
206 			   (ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT),
207 		.arginfo = QCOM_SCM_ARGS(1),
208 		.owner = ARM_SMCCC_OWNER_SIP,
209 	};
210 	struct qcom_scm_res res;
211 	enum qcom_scm_convention probed_convention;
212 	int ret;
213 	bool forced = false;
214 
215 	if (likely(qcom_scm_convention != SMC_CONVENTION_UNKNOWN))
216 		return qcom_scm_convention;
217 
218 	/*
219 	 * Per the "SMC calling convention specification", the 64-bit calling
220 	 * convention can only be used when the client is 64-bit, otherwise
221 	 * system will encounter the undefined behaviour.
222 	 */
223 #if IS_ENABLED(CONFIG_ARM64)
224 	/*
225 	 * Device isn't required as there is only one argument - no device
226 	 * needed to dma_map_single to secure world
227 	 */
228 	probed_convention = SMC_CONVENTION_ARM_64;
229 	ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true);
230 	if (!ret && res.result[0] == 1)
231 		goto found;
232 
233 	/*
234 	 * Some SC7180 firmwares didn't implement the
235 	 * QCOM_SCM_INFO_IS_CALL_AVAIL call, so we fallback to forcing ARM_64
236 	 * calling conventions on these firmwares. Luckily we don't make any
237 	 * early calls into the firmware on these SoCs so the device pointer
238 	 * will be valid here to check if the compatible matches.
239 	 */
240 	if (of_device_is_compatible(__scm ? __scm->dev->of_node : NULL, "qcom,scm-sc7180")) {
241 		forced = true;
242 		goto found;
243 	}
244 #endif
245 
246 	probed_convention = SMC_CONVENTION_ARM_32;
247 	ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true);
248 	if (!ret && res.result[0] == 1)
249 		goto found;
250 
251 	probed_convention = SMC_CONVENTION_LEGACY;
252 found:
253 	spin_lock_irqsave(&scm_query_lock, flags);
254 	if (probed_convention != qcom_scm_convention) {
255 		qcom_scm_convention = probed_convention;
256 		pr_info("qcom_scm: convention: %s%s\n",
257 			qcom_scm_convention_names[qcom_scm_convention],
258 			forced ? " (forced)" : "");
259 	}
260 	spin_unlock_irqrestore(&scm_query_lock, flags);
261 
262 	return qcom_scm_convention;
263 }
264 
265 /**
266  * qcom_scm_call() - Invoke a syscall in the secure world
267  * @dev:	device
268  * @desc:	Descriptor structure containing arguments and return values
269  * @res:        Structure containing results from SMC/HVC call
270  *
271  * Sends a command to the SCM and waits for the command to finish processing.
272  * This should *only* be called in pre-emptible context.
273  */
274 static int qcom_scm_call(struct device *dev, const struct qcom_scm_desc *desc,
275 			 struct qcom_scm_res *res)
276 {
277 	might_sleep();
278 	switch (__get_convention()) {
279 	case SMC_CONVENTION_ARM_32:
280 	case SMC_CONVENTION_ARM_64:
281 		return scm_smc_call(dev, desc, res, false);
282 	case SMC_CONVENTION_LEGACY:
283 		return scm_legacy_call(dev, desc, res);
284 	default:
285 		pr_err("Unknown current SCM calling convention.\n");
286 		return -EINVAL;
287 	}
288 }
289 
290 /**
291  * qcom_scm_call_atomic() - atomic variation of qcom_scm_call()
292  * @dev:	device
293  * @desc:	Descriptor structure containing arguments and return values
294  * @res:	Structure containing results from SMC/HVC call
295  *
296  * Sends a command to the SCM and waits for the command to finish processing.
297  * This can be called in atomic context.
298  */
299 static int qcom_scm_call_atomic(struct device *dev,
300 				const struct qcom_scm_desc *desc,
301 				struct qcom_scm_res *res)
302 {
303 	switch (__get_convention()) {
304 	case SMC_CONVENTION_ARM_32:
305 	case SMC_CONVENTION_ARM_64:
306 		return scm_smc_call(dev, desc, res, true);
307 	case SMC_CONVENTION_LEGACY:
308 		return scm_legacy_call_atomic(dev, desc, res);
309 	default:
310 		pr_err("Unknown current SCM calling convention.\n");
311 		return -EINVAL;
312 	}
313 }
314 
315 static bool __qcom_scm_is_call_available(struct device *dev, u32 svc_id,
316 					 u32 cmd_id)
317 {
318 	int ret;
319 	struct qcom_scm_desc desc = {
320 		.svc = QCOM_SCM_SVC_INFO,
321 		.cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
322 		.owner = ARM_SMCCC_OWNER_SIP,
323 	};
324 	struct qcom_scm_res res;
325 
326 	desc.arginfo = QCOM_SCM_ARGS(1);
327 	switch (__get_convention()) {
328 	case SMC_CONVENTION_ARM_32:
329 	case SMC_CONVENTION_ARM_64:
330 		desc.args[0] = SCM_SMC_FNID(svc_id, cmd_id) |
331 				(ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT);
332 		break;
333 	case SMC_CONVENTION_LEGACY:
334 		desc.args[0] = SCM_LEGACY_FNID(svc_id, cmd_id);
335 		break;
336 	default:
337 		pr_err("Unknown SMC convention being used\n");
338 		return false;
339 	}
340 
341 	ret = qcom_scm_call(dev, &desc, &res);
342 
343 	return ret ? false : !!res.result[0];
344 }
345 
346 static int qcom_scm_set_boot_addr(void *entry, const u8 *cpu_bits)
347 {
348 	int cpu;
349 	unsigned int flags = 0;
350 	struct qcom_scm_desc desc = {
351 		.svc = QCOM_SCM_SVC_BOOT,
352 		.cmd = QCOM_SCM_BOOT_SET_ADDR,
353 		.arginfo = QCOM_SCM_ARGS(2),
354 		.owner = ARM_SMCCC_OWNER_SIP,
355 	};
356 
357 	for_each_present_cpu(cpu) {
358 		if (cpu >= QCOM_SCM_BOOT_MAX_CPUS)
359 			return -EINVAL;
360 		flags |= cpu_bits[cpu];
361 	}
362 
363 	desc.args[0] = flags;
364 	desc.args[1] = virt_to_phys(entry);
365 
366 	return qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
367 }
368 
369 static int qcom_scm_set_boot_addr_mc(void *entry, unsigned int flags)
370 {
371 	struct qcom_scm_desc desc = {
372 		.svc = QCOM_SCM_SVC_BOOT,
373 		.cmd = QCOM_SCM_BOOT_SET_ADDR_MC,
374 		.owner = ARM_SMCCC_OWNER_SIP,
375 		.arginfo = QCOM_SCM_ARGS(6),
376 		.args = {
377 			virt_to_phys(entry),
378 			/* Apply to all CPUs in all affinity levels */
379 			~0ULL, ~0ULL, ~0ULL, ~0ULL,
380 			flags,
381 		},
382 	};
383 
384 	/* Need a device for DMA of the additional arguments */
385 	if (!__scm || __get_convention() == SMC_CONVENTION_LEGACY)
386 		return -EOPNOTSUPP;
387 
388 	return qcom_scm_call(__scm->dev, &desc, NULL);
389 }
390 
391 /**
392  * qcom_scm_set_warm_boot_addr() - Set the warm boot address for all cpus
393  * @entry: Entry point function for the cpus
394  *
395  * Set the Linux entry point for the SCM to transfer control to when coming
396  * out of a power down. CPU power down may be executed on cpuidle or hotplug.
397  */
398 int qcom_scm_set_warm_boot_addr(void *entry)
399 {
400 	if (qcom_scm_set_boot_addr_mc(entry, QCOM_SCM_BOOT_MC_FLAG_WARMBOOT))
401 		/* Fallback to old SCM call */
402 		return qcom_scm_set_boot_addr(entry, qcom_scm_cpu_warm_bits);
403 	return 0;
404 }
405 EXPORT_SYMBOL_GPL(qcom_scm_set_warm_boot_addr);
406 
407 /**
408  * qcom_scm_set_cold_boot_addr() - Set the cold boot address for all cpus
409  * @entry: Entry point function for the cpus
410  */
411 int qcom_scm_set_cold_boot_addr(void *entry)
412 {
413 	if (qcom_scm_set_boot_addr_mc(entry, QCOM_SCM_BOOT_MC_FLAG_COLDBOOT))
414 		/* Fallback to old SCM call */
415 		return qcom_scm_set_boot_addr(entry, qcom_scm_cpu_cold_bits);
416 	return 0;
417 }
418 EXPORT_SYMBOL_GPL(qcom_scm_set_cold_boot_addr);
419 
420 /**
421  * qcom_scm_cpu_power_down() - Power down the cpu
422  * @flags:	Flags to flush cache
423  *
424  * This is an end point to power down cpu. If there was a pending interrupt,
425  * the control would return from this function, otherwise, the cpu jumps to the
426  * warm boot entry point set for this cpu upon reset.
427  */
428 void qcom_scm_cpu_power_down(u32 flags)
429 {
430 	struct qcom_scm_desc desc = {
431 		.svc = QCOM_SCM_SVC_BOOT,
432 		.cmd = QCOM_SCM_BOOT_TERMINATE_PC,
433 		.args[0] = flags & QCOM_SCM_FLUSH_FLAG_MASK,
434 		.arginfo = QCOM_SCM_ARGS(1),
435 		.owner = ARM_SMCCC_OWNER_SIP,
436 	};
437 
438 	qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
439 }
440 EXPORT_SYMBOL_GPL(qcom_scm_cpu_power_down);
441 
442 int qcom_scm_set_remote_state(u32 state, u32 id)
443 {
444 	struct qcom_scm_desc desc = {
445 		.svc = QCOM_SCM_SVC_BOOT,
446 		.cmd = QCOM_SCM_BOOT_SET_REMOTE_STATE,
447 		.arginfo = QCOM_SCM_ARGS(2),
448 		.args[0] = state,
449 		.args[1] = id,
450 		.owner = ARM_SMCCC_OWNER_SIP,
451 	};
452 	struct qcom_scm_res res;
453 	int ret;
454 
455 	ret = qcom_scm_call(__scm->dev, &desc, &res);
456 
457 	return ret ? : res.result[0];
458 }
459 EXPORT_SYMBOL_GPL(qcom_scm_set_remote_state);
460 
461 static int qcom_scm_disable_sdi(void)
462 {
463 	int ret;
464 	struct qcom_scm_desc desc = {
465 		.svc = QCOM_SCM_SVC_BOOT,
466 		.cmd = QCOM_SCM_BOOT_SDI_CONFIG,
467 		.args[0] = 1, /* Disable watchdog debug */
468 		.args[1] = 0, /* Disable SDI */
469 		.arginfo = QCOM_SCM_ARGS(2),
470 		.owner = ARM_SMCCC_OWNER_SIP,
471 	};
472 	struct qcom_scm_res res;
473 
474 	ret = qcom_scm_clk_enable();
475 	if (ret)
476 		return ret;
477 	ret = qcom_scm_call(__scm->dev, &desc, &res);
478 
479 	qcom_scm_clk_disable();
480 
481 	return ret ? : res.result[0];
482 }
483 
484 static int __qcom_scm_set_dload_mode(struct device *dev, bool enable)
485 {
486 	struct qcom_scm_desc desc = {
487 		.svc = QCOM_SCM_SVC_BOOT,
488 		.cmd = QCOM_SCM_BOOT_SET_DLOAD_MODE,
489 		.arginfo = QCOM_SCM_ARGS(2),
490 		.args[0] = QCOM_SCM_BOOT_SET_DLOAD_MODE,
491 		.owner = ARM_SMCCC_OWNER_SIP,
492 	};
493 
494 	desc.args[1] = enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0;
495 
496 	return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
497 }
498 
499 static void qcom_scm_set_download_mode(bool enable)
500 {
501 	bool avail;
502 	int ret = 0;
503 
504 	avail = __qcom_scm_is_call_available(__scm->dev,
505 					     QCOM_SCM_SVC_BOOT,
506 					     QCOM_SCM_BOOT_SET_DLOAD_MODE);
507 	if (avail) {
508 		ret = __qcom_scm_set_dload_mode(__scm->dev, enable);
509 	} else if (__scm->dload_mode_addr) {
510 		ret = qcom_scm_io_writel(__scm->dload_mode_addr,
511 				enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0);
512 	} else {
513 		dev_err(__scm->dev,
514 			"No available mechanism for setting download mode\n");
515 	}
516 
517 	if (ret)
518 		dev_err(__scm->dev, "failed to set download mode: %d\n", ret);
519 }
520 
521 /**
522  * qcom_scm_pas_init_image() - Initialize peripheral authentication service
523  *			       state machine for a given peripheral, using the
524  *			       metadata
525  * @peripheral: peripheral id
526  * @metadata:	pointer to memory containing ELF header, program header table
527  *		and optional blob of data used for authenticating the metadata
528  *		and the rest of the firmware
529  * @size:	size of the metadata
530  * @ctx:	optional metadata context
531  *
532  * Return: 0 on success.
533  *
534  * Upon successful return, the PAS metadata context (@ctx) will be used to
535  * track the metadata allocation, this needs to be released by invoking
536  * qcom_scm_pas_metadata_release() by the caller.
537  */
538 int qcom_scm_pas_init_image(u32 peripheral, const void *metadata, size_t size,
539 			    struct qcom_scm_pas_metadata *ctx)
540 {
541 	dma_addr_t mdata_phys;
542 	void *mdata_buf;
543 	int ret;
544 	struct qcom_scm_desc desc = {
545 		.svc = QCOM_SCM_SVC_PIL,
546 		.cmd = QCOM_SCM_PIL_PAS_INIT_IMAGE,
547 		.arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_VAL, QCOM_SCM_RW),
548 		.args[0] = peripheral,
549 		.owner = ARM_SMCCC_OWNER_SIP,
550 	};
551 	struct qcom_scm_res res;
552 
553 	/*
554 	 * During the scm call memory protection will be enabled for the meta
555 	 * data blob, so make sure it's physically contiguous, 4K aligned and
556 	 * non-cachable to avoid XPU violations.
557 	 */
558 	mdata_buf = dma_alloc_coherent(__scm->dev, size, &mdata_phys,
559 				       GFP_KERNEL);
560 	if (!mdata_buf) {
561 		dev_err(__scm->dev, "Allocation of metadata buffer failed.\n");
562 		return -ENOMEM;
563 	}
564 	memcpy(mdata_buf, metadata, size);
565 
566 	ret = qcom_scm_clk_enable();
567 	if (ret)
568 		goto out;
569 
570 	ret = qcom_scm_bw_enable();
571 	if (ret)
572 		return ret;
573 
574 	desc.args[1] = mdata_phys;
575 
576 	ret = qcom_scm_call(__scm->dev, &desc, &res);
577 
578 	qcom_scm_bw_disable();
579 	qcom_scm_clk_disable();
580 
581 out:
582 	if (ret < 0 || !ctx) {
583 		dma_free_coherent(__scm->dev, size, mdata_buf, mdata_phys);
584 	} else if (ctx) {
585 		ctx->ptr = mdata_buf;
586 		ctx->phys = mdata_phys;
587 		ctx->size = size;
588 	}
589 
590 	return ret ? : res.result[0];
591 }
592 EXPORT_SYMBOL_GPL(qcom_scm_pas_init_image);
593 
594 /**
595  * qcom_scm_pas_metadata_release() - release metadata context
596  * @ctx:	metadata context
597  */
598 void qcom_scm_pas_metadata_release(struct qcom_scm_pas_metadata *ctx)
599 {
600 	if (!ctx->ptr)
601 		return;
602 
603 	dma_free_coherent(__scm->dev, ctx->size, ctx->ptr, ctx->phys);
604 
605 	ctx->ptr = NULL;
606 	ctx->phys = 0;
607 	ctx->size = 0;
608 }
609 EXPORT_SYMBOL_GPL(qcom_scm_pas_metadata_release);
610 
611 /**
612  * qcom_scm_pas_mem_setup() - Prepare the memory related to a given peripheral
613  *			      for firmware loading
614  * @peripheral:	peripheral id
615  * @addr:	start address of memory area to prepare
616  * @size:	size of the memory area to prepare
617  *
618  * Returns 0 on success.
619  */
620 int qcom_scm_pas_mem_setup(u32 peripheral, phys_addr_t addr, phys_addr_t size)
621 {
622 	int ret;
623 	struct qcom_scm_desc desc = {
624 		.svc = QCOM_SCM_SVC_PIL,
625 		.cmd = QCOM_SCM_PIL_PAS_MEM_SETUP,
626 		.arginfo = QCOM_SCM_ARGS(3),
627 		.args[0] = peripheral,
628 		.args[1] = addr,
629 		.args[2] = size,
630 		.owner = ARM_SMCCC_OWNER_SIP,
631 	};
632 	struct qcom_scm_res res;
633 
634 	ret = qcom_scm_clk_enable();
635 	if (ret)
636 		return ret;
637 
638 	ret = qcom_scm_bw_enable();
639 	if (ret)
640 		return ret;
641 
642 	ret = qcom_scm_call(__scm->dev, &desc, &res);
643 	qcom_scm_bw_disable();
644 	qcom_scm_clk_disable();
645 
646 	return ret ? : res.result[0];
647 }
648 EXPORT_SYMBOL_GPL(qcom_scm_pas_mem_setup);
649 
650 /**
651  * qcom_scm_pas_auth_and_reset() - Authenticate the given peripheral firmware
652  *				   and reset the remote processor
653  * @peripheral:	peripheral id
654  *
655  * Return 0 on success.
656  */
657 int qcom_scm_pas_auth_and_reset(u32 peripheral)
658 {
659 	int ret;
660 	struct qcom_scm_desc desc = {
661 		.svc = QCOM_SCM_SVC_PIL,
662 		.cmd = QCOM_SCM_PIL_PAS_AUTH_AND_RESET,
663 		.arginfo = QCOM_SCM_ARGS(1),
664 		.args[0] = peripheral,
665 		.owner = ARM_SMCCC_OWNER_SIP,
666 	};
667 	struct qcom_scm_res res;
668 
669 	ret = qcom_scm_clk_enable();
670 	if (ret)
671 		return ret;
672 
673 	ret = qcom_scm_bw_enable();
674 	if (ret)
675 		return ret;
676 
677 	ret = qcom_scm_call(__scm->dev, &desc, &res);
678 	qcom_scm_bw_disable();
679 	qcom_scm_clk_disable();
680 
681 	return ret ? : res.result[0];
682 }
683 EXPORT_SYMBOL_GPL(qcom_scm_pas_auth_and_reset);
684 
685 /**
686  * qcom_scm_pas_shutdown() - Shut down the remote processor
687  * @peripheral: peripheral id
688  *
689  * Returns 0 on success.
690  */
691 int qcom_scm_pas_shutdown(u32 peripheral)
692 {
693 	int ret;
694 	struct qcom_scm_desc desc = {
695 		.svc = QCOM_SCM_SVC_PIL,
696 		.cmd = QCOM_SCM_PIL_PAS_SHUTDOWN,
697 		.arginfo = QCOM_SCM_ARGS(1),
698 		.args[0] = peripheral,
699 		.owner = ARM_SMCCC_OWNER_SIP,
700 	};
701 	struct qcom_scm_res res;
702 
703 	ret = qcom_scm_clk_enable();
704 	if (ret)
705 		return ret;
706 
707 	ret = qcom_scm_bw_enable();
708 	if (ret)
709 		return ret;
710 
711 	ret = qcom_scm_call(__scm->dev, &desc, &res);
712 
713 	qcom_scm_bw_disable();
714 	qcom_scm_clk_disable();
715 
716 	return ret ? : res.result[0];
717 }
718 EXPORT_SYMBOL_GPL(qcom_scm_pas_shutdown);
719 
720 /**
721  * qcom_scm_pas_supported() - Check if the peripheral authentication service is
722  *			      available for the given peripherial
723  * @peripheral:	peripheral id
724  *
725  * Returns true if PAS is supported for this peripheral, otherwise false.
726  */
727 bool qcom_scm_pas_supported(u32 peripheral)
728 {
729 	int ret;
730 	struct qcom_scm_desc desc = {
731 		.svc = QCOM_SCM_SVC_PIL,
732 		.cmd = QCOM_SCM_PIL_PAS_IS_SUPPORTED,
733 		.arginfo = QCOM_SCM_ARGS(1),
734 		.args[0] = peripheral,
735 		.owner = ARM_SMCCC_OWNER_SIP,
736 	};
737 	struct qcom_scm_res res;
738 
739 	if (!__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_PIL,
740 					  QCOM_SCM_PIL_PAS_IS_SUPPORTED))
741 		return false;
742 
743 	ret = qcom_scm_call(__scm->dev, &desc, &res);
744 
745 	return ret ? false : !!res.result[0];
746 }
747 EXPORT_SYMBOL_GPL(qcom_scm_pas_supported);
748 
749 static int __qcom_scm_pas_mss_reset(struct device *dev, bool reset)
750 {
751 	struct qcom_scm_desc desc = {
752 		.svc = QCOM_SCM_SVC_PIL,
753 		.cmd = QCOM_SCM_PIL_PAS_MSS_RESET,
754 		.arginfo = QCOM_SCM_ARGS(2),
755 		.args[0] = reset,
756 		.args[1] = 0,
757 		.owner = ARM_SMCCC_OWNER_SIP,
758 	};
759 	struct qcom_scm_res res;
760 	int ret;
761 
762 	ret = qcom_scm_call(__scm->dev, &desc, &res);
763 
764 	return ret ? : res.result[0];
765 }
766 
767 static int qcom_scm_pas_reset_assert(struct reset_controller_dev *rcdev,
768 				     unsigned long idx)
769 {
770 	if (idx != 0)
771 		return -EINVAL;
772 
773 	return __qcom_scm_pas_mss_reset(__scm->dev, 1);
774 }
775 
776 static int qcom_scm_pas_reset_deassert(struct reset_controller_dev *rcdev,
777 				       unsigned long idx)
778 {
779 	if (idx != 0)
780 		return -EINVAL;
781 
782 	return __qcom_scm_pas_mss_reset(__scm->dev, 0);
783 }
784 
785 static const struct reset_control_ops qcom_scm_pas_reset_ops = {
786 	.assert = qcom_scm_pas_reset_assert,
787 	.deassert = qcom_scm_pas_reset_deassert,
788 };
789 
790 int qcom_scm_io_readl(phys_addr_t addr, unsigned int *val)
791 {
792 	struct qcom_scm_desc desc = {
793 		.svc = QCOM_SCM_SVC_IO,
794 		.cmd = QCOM_SCM_IO_READ,
795 		.arginfo = QCOM_SCM_ARGS(1),
796 		.args[0] = addr,
797 		.owner = ARM_SMCCC_OWNER_SIP,
798 	};
799 	struct qcom_scm_res res;
800 	int ret;
801 
802 
803 	ret = qcom_scm_call_atomic(__scm->dev, &desc, &res);
804 	if (ret >= 0)
805 		*val = res.result[0];
806 
807 	return ret < 0 ? ret : 0;
808 }
809 EXPORT_SYMBOL_GPL(qcom_scm_io_readl);
810 
811 int qcom_scm_io_writel(phys_addr_t addr, unsigned int val)
812 {
813 	struct qcom_scm_desc desc = {
814 		.svc = QCOM_SCM_SVC_IO,
815 		.cmd = QCOM_SCM_IO_WRITE,
816 		.arginfo = QCOM_SCM_ARGS(2),
817 		.args[0] = addr,
818 		.args[1] = val,
819 		.owner = ARM_SMCCC_OWNER_SIP,
820 	};
821 
822 	return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
823 }
824 EXPORT_SYMBOL_GPL(qcom_scm_io_writel);
825 
826 /**
827  * qcom_scm_restore_sec_cfg_available() - Check if secure environment
828  * supports restore security config interface.
829  *
830  * Return true if restore-cfg interface is supported, false if not.
831  */
832 bool qcom_scm_restore_sec_cfg_available(void)
833 {
834 	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_MP,
835 					    QCOM_SCM_MP_RESTORE_SEC_CFG);
836 }
837 EXPORT_SYMBOL_GPL(qcom_scm_restore_sec_cfg_available);
838 
839 int qcom_scm_restore_sec_cfg(u32 device_id, u32 spare)
840 {
841 	struct qcom_scm_desc desc = {
842 		.svc = QCOM_SCM_SVC_MP,
843 		.cmd = QCOM_SCM_MP_RESTORE_SEC_CFG,
844 		.arginfo = QCOM_SCM_ARGS(2),
845 		.args[0] = device_id,
846 		.args[1] = spare,
847 		.owner = ARM_SMCCC_OWNER_SIP,
848 	};
849 	struct qcom_scm_res res;
850 	int ret;
851 
852 	ret = qcom_scm_call(__scm->dev, &desc, &res);
853 
854 	return ret ? : res.result[0];
855 }
856 EXPORT_SYMBOL_GPL(qcom_scm_restore_sec_cfg);
857 
858 int qcom_scm_iommu_secure_ptbl_size(u32 spare, size_t *size)
859 {
860 	struct qcom_scm_desc desc = {
861 		.svc = QCOM_SCM_SVC_MP,
862 		.cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_SIZE,
863 		.arginfo = QCOM_SCM_ARGS(1),
864 		.args[0] = spare,
865 		.owner = ARM_SMCCC_OWNER_SIP,
866 	};
867 	struct qcom_scm_res res;
868 	int ret;
869 
870 	ret = qcom_scm_call(__scm->dev, &desc, &res);
871 
872 	if (size)
873 		*size = res.result[0];
874 
875 	return ret ? : res.result[1];
876 }
877 EXPORT_SYMBOL_GPL(qcom_scm_iommu_secure_ptbl_size);
878 
879 int qcom_scm_iommu_secure_ptbl_init(u64 addr, u32 size, u32 spare)
880 {
881 	struct qcom_scm_desc desc = {
882 		.svc = QCOM_SCM_SVC_MP,
883 		.cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_INIT,
884 		.arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_RW, QCOM_SCM_VAL,
885 					 QCOM_SCM_VAL),
886 		.args[0] = addr,
887 		.args[1] = size,
888 		.args[2] = spare,
889 		.owner = ARM_SMCCC_OWNER_SIP,
890 	};
891 	int ret;
892 
893 	ret = qcom_scm_call(__scm->dev, &desc, NULL);
894 
895 	/* the pg table has been initialized already, ignore the error */
896 	if (ret == -EPERM)
897 		ret = 0;
898 
899 	return ret;
900 }
901 EXPORT_SYMBOL_GPL(qcom_scm_iommu_secure_ptbl_init);
902 
903 int qcom_scm_iommu_set_cp_pool_size(u32 spare, u32 size)
904 {
905 	struct qcom_scm_desc desc = {
906 		.svc = QCOM_SCM_SVC_MP,
907 		.cmd = QCOM_SCM_MP_IOMMU_SET_CP_POOL_SIZE,
908 		.arginfo = QCOM_SCM_ARGS(2),
909 		.args[0] = size,
910 		.args[1] = spare,
911 		.owner = ARM_SMCCC_OWNER_SIP,
912 	};
913 
914 	return qcom_scm_call(__scm->dev, &desc, NULL);
915 }
916 EXPORT_SYMBOL_GPL(qcom_scm_iommu_set_cp_pool_size);
917 
918 int qcom_scm_mem_protect_video_var(u32 cp_start, u32 cp_size,
919 				   u32 cp_nonpixel_start,
920 				   u32 cp_nonpixel_size)
921 {
922 	int ret;
923 	struct qcom_scm_desc desc = {
924 		.svc = QCOM_SCM_SVC_MP,
925 		.cmd = QCOM_SCM_MP_VIDEO_VAR,
926 		.arginfo = QCOM_SCM_ARGS(4, QCOM_SCM_VAL, QCOM_SCM_VAL,
927 					 QCOM_SCM_VAL, QCOM_SCM_VAL),
928 		.args[0] = cp_start,
929 		.args[1] = cp_size,
930 		.args[2] = cp_nonpixel_start,
931 		.args[3] = cp_nonpixel_size,
932 		.owner = ARM_SMCCC_OWNER_SIP,
933 	};
934 	struct qcom_scm_res res;
935 
936 	ret = qcom_scm_call(__scm->dev, &desc, &res);
937 
938 	return ret ? : res.result[0];
939 }
940 EXPORT_SYMBOL_GPL(qcom_scm_mem_protect_video_var);
941 
942 static int __qcom_scm_assign_mem(struct device *dev, phys_addr_t mem_region,
943 				 size_t mem_sz, phys_addr_t src, size_t src_sz,
944 				 phys_addr_t dest, size_t dest_sz)
945 {
946 	int ret;
947 	struct qcom_scm_desc desc = {
948 		.svc = QCOM_SCM_SVC_MP,
949 		.cmd = QCOM_SCM_MP_ASSIGN,
950 		.arginfo = QCOM_SCM_ARGS(7, QCOM_SCM_RO, QCOM_SCM_VAL,
951 					 QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_RO,
952 					 QCOM_SCM_VAL, QCOM_SCM_VAL),
953 		.args[0] = mem_region,
954 		.args[1] = mem_sz,
955 		.args[2] = src,
956 		.args[3] = src_sz,
957 		.args[4] = dest,
958 		.args[5] = dest_sz,
959 		.args[6] = 0,
960 		.owner = ARM_SMCCC_OWNER_SIP,
961 	};
962 	struct qcom_scm_res res;
963 
964 	ret = qcom_scm_call(dev, &desc, &res);
965 
966 	return ret ? : res.result[0];
967 }
968 
969 /**
970  * qcom_scm_assign_mem() - Make a secure call to reassign memory ownership
971  * @mem_addr: mem region whose ownership need to be reassigned
972  * @mem_sz:   size of the region.
973  * @srcvm:    vmid for current set of owners, each set bit in
974  *            flag indicate a unique owner
975  * @newvm:    array having new owners and corresponding permission
976  *            flags
977  * @dest_cnt: number of owners in next set.
978  *
979  * Return negative errno on failure or 0 on success with @srcvm updated.
980  */
981 int qcom_scm_assign_mem(phys_addr_t mem_addr, size_t mem_sz,
982 			u64 *srcvm,
983 			const struct qcom_scm_vmperm *newvm,
984 			unsigned int dest_cnt)
985 {
986 	struct qcom_scm_current_perm_info *destvm;
987 	struct qcom_scm_mem_map_info *mem_to_map;
988 	phys_addr_t mem_to_map_phys;
989 	phys_addr_t dest_phys;
990 	dma_addr_t ptr_phys;
991 	size_t mem_to_map_sz;
992 	size_t dest_sz;
993 	size_t src_sz;
994 	size_t ptr_sz;
995 	int next_vm;
996 	__le32 *src;
997 	void *ptr;
998 	int ret, i, b;
999 	u64 srcvm_bits = *srcvm;
1000 
1001 	src_sz = hweight64(srcvm_bits) * sizeof(*src);
1002 	mem_to_map_sz = sizeof(*mem_to_map);
1003 	dest_sz = dest_cnt * sizeof(*destvm);
1004 	ptr_sz = ALIGN(src_sz, SZ_64) + ALIGN(mem_to_map_sz, SZ_64) +
1005 			ALIGN(dest_sz, SZ_64);
1006 
1007 	ptr = dma_alloc_coherent(__scm->dev, ptr_sz, &ptr_phys, GFP_KERNEL);
1008 	if (!ptr)
1009 		return -ENOMEM;
1010 
1011 	/* Fill source vmid detail */
1012 	src = ptr;
1013 	i = 0;
1014 	for (b = 0; b < BITS_PER_TYPE(u64); b++) {
1015 		if (srcvm_bits & BIT(b))
1016 			src[i++] = cpu_to_le32(b);
1017 	}
1018 
1019 	/* Fill details of mem buff to map */
1020 	mem_to_map = ptr + ALIGN(src_sz, SZ_64);
1021 	mem_to_map_phys = ptr_phys + ALIGN(src_sz, SZ_64);
1022 	mem_to_map->mem_addr = cpu_to_le64(mem_addr);
1023 	mem_to_map->mem_size = cpu_to_le64(mem_sz);
1024 
1025 	next_vm = 0;
1026 	/* Fill details of next vmid detail */
1027 	destvm = ptr + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
1028 	dest_phys = ptr_phys + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
1029 	for (i = 0; i < dest_cnt; i++, destvm++, newvm++) {
1030 		destvm->vmid = cpu_to_le32(newvm->vmid);
1031 		destvm->perm = cpu_to_le32(newvm->perm);
1032 		destvm->ctx = 0;
1033 		destvm->ctx_size = 0;
1034 		next_vm |= BIT(newvm->vmid);
1035 	}
1036 
1037 	ret = __qcom_scm_assign_mem(__scm->dev, mem_to_map_phys, mem_to_map_sz,
1038 				    ptr_phys, src_sz, dest_phys, dest_sz);
1039 	dma_free_coherent(__scm->dev, ptr_sz, ptr, ptr_phys);
1040 	if (ret) {
1041 		dev_err(__scm->dev,
1042 			"Assign memory protection call failed %d\n", ret);
1043 		return -EINVAL;
1044 	}
1045 
1046 	*srcvm = next_vm;
1047 	return 0;
1048 }
1049 EXPORT_SYMBOL_GPL(qcom_scm_assign_mem);
1050 
1051 /**
1052  * qcom_scm_ocmem_lock_available() - is OCMEM lock/unlock interface available
1053  */
1054 bool qcom_scm_ocmem_lock_available(void)
1055 {
1056 	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_OCMEM,
1057 					    QCOM_SCM_OCMEM_LOCK_CMD);
1058 }
1059 EXPORT_SYMBOL_GPL(qcom_scm_ocmem_lock_available);
1060 
1061 /**
1062  * qcom_scm_ocmem_lock() - call OCMEM lock interface to assign an OCMEM
1063  * region to the specified initiator
1064  *
1065  * @id:     tz initiator id
1066  * @offset: OCMEM offset
1067  * @size:   OCMEM size
1068  * @mode:   access mode (WIDE/NARROW)
1069  */
1070 int qcom_scm_ocmem_lock(enum qcom_scm_ocmem_client id, u32 offset, u32 size,
1071 			u32 mode)
1072 {
1073 	struct qcom_scm_desc desc = {
1074 		.svc = QCOM_SCM_SVC_OCMEM,
1075 		.cmd = QCOM_SCM_OCMEM_LOCK_CMD,
1076 		.args[0] = id,
1077 		.args[1] = offset,
1078 		.args[2] = size,
1079 		.args[3] = mode,
1080 		.arginfo = QCOM_SCM_ARGS(4),
1081 	};
1082 
1083 	return qcom_scm_call(__scm->dev, &desc, NULL);
1084 }
1085 EXPORT_SYMBOL_GPL(qcom_scm_ocmem_lock);
1086 
1087 /**
1088  * qcom_scm_ocmem_unlock() - call OCMEM unlock interface to release an OCMEM
1089  * region from the specified initiator
1090  *
1091  * @id:     tz initiator id
1092  * @offset: OCMEM offset
1093  * @size:   OCMEM size
1094  */
1095 int qcom_scm_ocmem_unlock(enum qcom_scm_ocmem_client id, u32 offset, u32 size)
1096 {
1097 	struct qcom_scm_desc desc = {
1098 		.svc = QCOM_SCM_SVC_OCMEM,
1099 		.cmd = QCOM_SCM_OCMEM_UNLOCK_CMD,
1100 		.args[0] = id,
1101 		.args[1] = offset,
1102 		.args[2] = size,
1103 		.arginfo = QCOM_SCM_ARGS(3),
1104 	};
1105 
1106 	return qcom_scm_call(__scm->dev, &desc, NULL);
1107 }
1108 EXPORT_SYMBOL_GPL(qcom_scm_ocmem_unlock);
1109 
1110 /**
1111  * qcom_scm_ice_available() - Is the ICE key programming interface available?
1112  *
1113  * Return: true iff the SCM calls wrapped by qcom_scm_ice_invalidate_key() and
1114  *	   qcom_scm_ice_set_key() are available.
1115  */
1116 bool qcom_scm_ice_available(void)
1117 {
1118 	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
1119 					    QCOM_SCM_ES_INVALIDATE_ICE_KEY) &&
1120 		__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
1121 					     QCOM_SCM_ES_CONFIG_SET_ICE_KEY);
1122 }
1123 EXPORT_SYMBOL_GPL(qcom_scm_ice_available);
1124 
1125 /**
1126  * qcom_scm_ice_invalidate_key() - Invalidate an inline encryption key
1127  * @index: the keyslot to invalidate
1128  *
1129  * The UFSHCI and eMMC standards define a standard way to do this, but it
1130  * doesn't work on these SoCs; only this SCM call does.
1131  *
1132  * It is assumed that the SoC has only one ICE instance being used, as this SCM
1133  * call doesn't specify which ICE instance the keyslot belongs to.
1134  *
1135  * Return: 0 on success; -errno on failure.
1136  */
1137 int qcom_scm_ice_invalidate_key(u32 index)
1138 {
1139 	struct qcom_scm_desc desc = {
1140 		.svc = QCOM_SCM_SVC_ES,
1141 		.cmd = QCOM_SCM_ES_INVALIDATE_ICE_KEY,
1142 		.arginfo = QCOM_SCM_ARGS(1),
1143 		.args[0] = index,
1144 		.owner = ARM_SMCCC_OWNER_SIP,
1145 	};
1146 
1147 	return qcom_scm_call(__scm->dev, &desc, NULL);
1148 }
1149 EXPORT_SYMBOL_GPL(qcom_scm_ice_invalidate_key);
1150 
1151 /**
1152  * qcom_scm_ice_set_key() - Set an inline encryption key
1153  * @index: the keyslot into which to set the key
1154  * @key: the key to program
1155  * @key_size: the size of the key in bytes
1156  * @cipher: the encryption algorithm the key is for
1157  * @data_unit_size: the encryption data unit size, i.e. the size of each
1158  *		    individual plaintext and ciphertext.  Given in 512-byte
1159  *		    units, e.g. 1 = 512 bytes, 8 = 4096 bytes, etc.
1160  *
1161  * Program a key into a keyslot of Qualcomm ICE (Inline Crypto Engine), where it
1162  * can then be used to encrypt/decrypt UFS or eMMC I/O requests inline.
1163  *
1164  * The UFSHCI and eMMC standards define a standard way to do this, but it
1165  * doesn't work on these SoCs; only this SCM call does.
1166  *
1167  * It is assumed that the SoC has only one ICE instance being used, as this SCM
1168  * call doesn't specify which ICE instance the keyslot belongs to.
1169  *
1170  * Return: 0 on success; -errno on failure.
1171  */
1172 int qcom_scm_ice_set_key(u32 index, const u8 *key, u32 key_size,
1173 			 enum qcom_scm_ice_cipher cipher, u32 data_unit_size)
1174 {
1175 	struct qcom_scm_desc desc = {
1176 		.svc = QCOM_SCM_SVC_ES,
1177 		.cmd = QCOM_SCM_ES_CONFIG_SET_ICE_KEY,
1178 		.arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_VAL, QCOM_SCM_RW,
1179 					 QCOM_SCM_VAL, QCOM_SCM_VAL,
1180 					 QCOM_SCM_VAL),
1181 		.args[0] = index,
1182 		.args[2] = key_size,
1183 		.args[3] = cipher,
1184 		.args[4] = data_unit_size,
1185 		.owner = ARM_SMCCC_OWNER_SIP,
1186 	};
1187 	void *keybuf;
1188 	dma_addr_t key_phys;
1189 	int ret;
1190 
1191 	/*
1192 	 * 'key' may point to vmalloc()'ed memory, but we need to pass a
1193 	 * physical address that's been properly flushed.  The sanctioned way to
1194 	 * do this is by using the DMA API.  But as is best practice for crypto
1195 	 * keys, we also must wipe the key after use.  This makes kmemdup() +
1196 	 * dma_map_single() not clearly correct, since the DMA API can use
1197 	 * bounce buffers.  Instead, just use dma_alloc_coherent().  Programming
1198 	 * keys is normally rare and thus not performance-critical.
1199 	 */
1200 
1201 	keybuf = dma_alloc_coherent(__scm->dev, key_size, &key_phys,
1202 				    GFP_KERNEL);
1203 	if (!keybuf)
1204 		return -ENOMEM;
1205 	memcpy(keybuf, key, key_size);
1206 	desc.args[1] = key_phys;
1207 
1208 	ret = qcom_scm_call(__scm->dev, &desc, NULL);
1209 
1210 	memzero_explicit(keybuf, key_size);
1211 
1212 	dma_free_coherent(__scm->dev, key_size, keybuf, key_phys);
1213 	return ret;
1214 }
1215 EXPORT_SYMBOL_GPL(qcom_scm_ice_set_key);
1216 
1217 /**
1218  * qcom_scm_hdcp_available() - Check if secure environment supports HDCP.
1219  *
1220  * Return true if HDCP is supported, false if not.
1221  */
1222 bool qcom_scm_hdcp_available(void)
1223 {
1224 	bool avail;
1225 	int ret = qcom_scm_clk_enable();
1226 
1227 	if (ret)
1228 		return ret;
1229 
1230 	avail = __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_HDCP,
1231 						QCOM_SCM_HDCP_INVOKE);
1232 
1233 	qcom_scm_clk_disable();
1234 
1235 	return avail;
1236 }
1237 EXPORT_SYMBOL_GPL(qcom_scm_hdcp_available);
1238 
1239 /**
1240  * qcom_scm_hdcp_req() - Send HDCP request.
1241  * @req: HDCP request array
1242  * @req_cnt: HDCP request array count
1243  * @resp: response buffer passed to SCM
1244  *
1245  * Write HDCP register(s) through SCM.
1246  */
1247 int qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt, u32 *resp)
1248 {
1249 	int ret;
1250 	struct qcom_scm_desc desc = {
1251 		.svc = QCOM_SCM_SVC_HDCP,
1252 		.cmd = QCOM_SCM_HDCP_INVOKE,
1253 		.arginfo = QCOM_SCM_ARGS(10),
1254 		.args = {
1255 			req[0].addr,
1256 			req[0].val,
1257 			req[1].addr,
1258 			req[1].val,
1259 			req[2].addr,
1260 			req[2].val,
1261 			req[3].addr,
1262 			req[3].val,
1263 			req[4].addr,
1264 			req[4].val
1265 		},
1266 		.owner = ARM_SMCCC_OWNER_SIP,
1267 	};
1268 	struct qcom_scm_res res;
1269 
1270 	if (req_cnt > QCOM_SCM_HDCP_MAX_REQ_CNT)
1271 		return -ERANGE;
1272 
1273 	ret = qcom_scm_clk_enable();
1274 	if (ret)
1275 		return ret;
1276 
1277 	ret = qcom_scm_call(__scm->dev, &desc, &res);
1278 	*resp = res.result[0];
1279 
1280 	qcom_scm_clk_disable();
1281 
1282 	return ret;
1283 }
1284 EXPORT_SYMBOL_GPL(qcom_scm_hdcp_req);
1285 
1286 int qcom_scm_iommu_set_pt_format(u32 sec_id, u32 ctx_num, u32 pt_fmt)
1287 {
1288 	struct qcom_scm_desc desc = {
1289 		.svc = QCOM_SCM_SVC_SMMU_PROGRAM,
1290 		.cmd = QCOM_SCM_SMMU_PT_FORMAT,
1291 		.arginfo = QCOM_SCM_ARGS(3),
1292 		.args[0] = sec_id,
1293 		.args[1] = ctx_num,
1294 		.args[2] = pt_fmt, /* 0: LPAE AArch32 - 1: AArch64 */
1295 		.owner = ARM_SMCCC_OWNER_SIP,
1296 	};
1297 
1298 	return qcom_scm_call(__scm->dev, &desc, NULL);
1299 }
1300 EXPORT_SYMBOL_GPL(qcom_scm_iommu_set_pt_format);
1301 
1302 int qcom_scm_qsmmu500_wait_safe_toggle(bool en)
1303 {
1304 	struct qcom_scm_desc desc = {
1305 		.svc = QCOM_SCM_SVC_SMMU_PROGRAM,
1306 		.cmd = QCOM_SCM_SMMU_CONFIG_ERRATA1,
1307 		.arginfo = QCOM_SCM_ARGS(2),
1308 		.args[0] = QCOM_SCM_SMMU_CONFIG_ERRATA1_CLIENT_ALL,
1309 		.args[1] = en,
1310 		.owner = ARM_SMCCC_OWNER_SIP,
1311 	};
1312 
1313 
1314 	return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
1315 }
1316 EXPORT_SYMBOL_GPL(qcom_scm_qsmmu500_wait_safe_toggle);
1317 
1318 bool qcom_scm_lmh_dcvsh_available(void)
1319 {
1320 	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_LMH, QCOM_SCM_LMH_LIMIT_DCVSH);
1321 }
1322 EXPORT_SYMBOL_GPL(qcom_scm_lmh_dcvsh_available);
1323 
1324 int qcom_scm_lmh_profile_change(u32 profile_id)
1325 {
1326 	struct qcom_scm_desc desc = {
1327 		.svc = QCOM_SCM_SVC_LMH,
1328 		.cmd = QCOM_SCM_LMH_LIMIT_PROFILE_CHANGE,
1329 		.arginfo = QCOM_SCM_ARGS(1, QCOM_SCM_VAL),
1330 		.args[0] = profile_id,
1331 		.owner = ARM_SMCCC_OWNER_SIP,
1332 	};
1333 
1334 	return qcom_scm_call(__scm->dev, &desc, NULL);
1335 }
1336 EXPORT_SYMBOL_GPL(qcom_scm_lmh_profile_change);
1337 
1338 int qcom_scm_lmh_dcvsh(u32 payload_fn, u32 payload_reg, u32 payload_val,
1339 		       u64 limit_node, u32 node_id, u64 version)
1340 {
1341 	dma_addr_t payload_phys;
1342 	u32 *payload_buf;
1343 	int ret, payload_size = 5 * sizeof(u32);
1344 
1345 	struct qcom_scm_desc desc = {
1346 		.svc = QCOM_SCM_SVC_LMH,
1347 		.cmd = QCOM_SCM_LMH_LIMIT_DCVSH,
1348 		.arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_VAL,
1349 					QCOM_SCM_VAL, QCOM_SCM_VAL),
1350 		.args[1] = payload_size,
1351 		.args[2] = limit_node,
1352 		.args[3] = node_id,
1353 		.args[4] = version,
1354 		.owner = ARM_SMCCC_OWNER_SIP,
1355 	};
1356 
1357 	payload_buf = dma_alloc_coherent(__scm->dev, payload_size, &payload_phys, GFP_KERNEL);
1358 	if (!payload_buf)
1359 		return -ENOMEM;
1360 
1361 	payload_buf[0] = payload_fn;
1362 	payload_buf[1] = 0;
1363 	payload_buf[2] = payload_reg;
1364 	payload_buf[3] = 1;
1365 	payload_buf[4] = payload_val;
1366 
1367 	desc.args[0] = payload_phys;
1368 
1369 	ret = qcom_scm_call(__scm->dev, &desc, NULL);
1370 
1371 	dma_free_coherent(__scm->dev, payload_size, payload_buf, payload_phys);
1372 	return ret;
1373 }
1374 EXPORT_SYMBOL_GPL(qcom_scm_lmh_dcvsh);
1375 
1376 static int qcom_scm_find_dload_address(struct device *dev, u64 *addr)
1377 {
1378 	struct device_node *tcsr;
1379 	struct device_node *np = dev->of_node;
1380 	struct resource res;
1381 	u32 offset;
1382 	int ret;
1383 
1384 	tcsr = of_parse_phandle(np, "qcom,dload-mode", 0);
1385 	if (!tcsr)
1386 		return 0;
1387 
1388 	ret = of_address_to_resource(tcsr, 0, &res);
1389 	of_node_put(tcsr);
1390 	if (ret)
1391 		return ret;
1392 
1393 	ret = of_property_read_u32_index(np, "qcom,dload-mode", 1, &offset);
1394 	if (ret < 0)
1395 		return ret;
1396 
1397 	*addr = res.start + offset;
1398 
1399 	return 0;
1400 }
1401 
1402 #ifdef CONFIG_QCOM_QSEECOM
1403 
1404 /* Lock for QSEECOM SCM call executions */
1405 static DEFINE_MUTEX(qcom_scm_qseecom_call_lock);
1406 
1407 static int __qcom_scm_qseecom_call(const struct qcom_scm_desc *desc,
1408 				   struct qcom_scm_qseecom_resp *res)
1409 {
1410 	struct qcom_scm_res scm_res = {};
1411 	int status;
1412 
1413 	/*
1414 	 * QSEECOM SCM calls should not be executed concurrently. Therefore, we
1415 	 * require the respective call lock to be held.
1416 	 */
1417 	lockdep_assert_held(&qcom_scm_qseecom_call_lock);
1418 
1419 	status = qcom_scm_call(__scm->dev, desc, &scm_res);
1420 
1421 	res->result = scm_res.result[0];
1422 	res->resp_type = scm_res.result[1];
1423 	res->data = scm_res.result[2];
1424 
1425 	if (status)
1426 		return status;
1427 
1428 	return 0;
1429 }
1430 
1431 /**
1432  * qcom_scm_qseecom_call() - Perform a QSEECOM SCM call.
1433  * @desc: SCM call descriptor.
1434  * @res:  SCM call response (output).
1435  *
1436  * Performs the QSEECOM SCM call described by @desc, returning the response in
1437  * @rsp.
1438  *
1439  * Return: Zero on success, nonzero on failure.
1440  */
1441 static int qcom_scm_qseecom_call(const struct qcom_scm_desc *desc,
1442 				 struct qcom_scm_qseecom_resp *res)
1443 {
1444 	int status;
1445 
1446 	/*
1447 	 * Note: Multiple QSEECOM SCM calls should not be executed same time,
1448 	 * so lock things here. This needs to be extended to callback/listener
1449 	 * handling when support for that is implemented.
1450 	 */
1451 
1452 	mutex_lock(&qcom_scm_qseecom_call_lock);
1453 	status = __qcom_scm_qseecom_call(desc, res);
1454 	mutex_unlock(&qcom_scm_qseecom_call_lock);
1455 
1456 	dev_dbg(__scm->dev, "%s: owner=%x, svc=%x, cmd=%x, result=%lld, type=%llx, data=%llx\n",
1457 		__func__, desc->owner, desc->svc, desc->cmd, res->result,
1458 		res->resp_type, res->data);
1459 
1460 	if (status) {
1461 		dev_err(__scm->dev, "qseecom: scm call failed with error %d\n", status);
1462 		return status;
1463 	}
1464 
1465 	/*
1466 	 * TODO: Handle incomplete and blocked calls:
1467 	 *
1468 	 * Incomplete and blocked calls are not supported yet. Some devices
1469 	 * and/or commands require those, some don't. Let's warn about them
1470 	 * prominently in case someone attempts to try these commands with a
1471 	 * device/command combination that isn't supported yet.
1472 	 */
1473 	WARN_ON(res->result == QSEECOM_RESULT_INCOMPLETE);
1474 	WARN_ON(res->result == QSEECOM_RESULT_BLOCKED_ON_LISTENER);
1475 
1476 	return 0;
1477 }
1478 
1479 /**
1480  * qcom_scm_qseecom_get_version() - Query the QSEECOM version.
1481  * @version: Pointer where the QSEECOM version will be stored.
1482  *
1483  * Performs the QSEECOM SCM querying the QSEECOM version currently running in
1484  * the TrustZone.
1485  *
1486  * Return: Zero on success, nonzero on failure.
1487  */
1488 static int qcom_scm_qseecom_get_version(u32 *version)
1489 {
1490 	struct qcom_scm_desc desc = {};
1491 	struct qcom_scm_qseecom_resp res = {};
1492 	u32 feature = 10;
1493 	int ret;
1494 
1495 	desc.owner = QSEECOM_TZ_OWNER_SIP;
1496 	desc.svc = QSEECOM_TZ_SVC_INFO;
1497 	desc.cmd = QSEECOM_TZ_CMD_INFO_VERSION;
1498 	desc.arginfo = QCOM_SCM_ARGS(1, QCOM_SCM_VAL);
1499 	desc.args[0] = feature;
1500 
1501 	ret = qcom_scm_qseecom_call(&desc, &res);
1502 	if (ret)
1503 		return ret;
1504 
1505 	*version = res.result;
1506 	return 0;
1507 }
1508 
1509 /**
1510  * qcom_scm_qseecom_app_get_id() - Query the app ID for a given QSEE app name.
1511  * @app_name: The name of the app.
1512  * @app_id:   The returned app ID.
1513  *
1514  * Query and return the application ID of the SEE app identified by the given
1515  * name. This returned ID is the unique identifier of the app required for
1516  * subsequent communication.
1517  *
1518  * Return: Zero on success, nonzero on failure, -ENOENT if the app has not been
1519  * loaded or could not be found.
1520  */
1521 int qcom_scm_qseecom_app_get_id(const char *app_name, u32 *app_id)
1522 {
1523 	unsigned long name_buf_size = QSEECOM_MAX_APP_NAME_SIZE;
1524 	unsigned long app_name_len = strlen(app_name);
1525 	struct qcom_scm_desc desc = {};
1526 	struct qcom_scm_qseecom_resp res = {};
1527 	dma_addr_t name_buf_phys;
1528 	char *name_buf;
1529 	int status;
1530 
1531 	if (app_name_len >= name_buf_size)
1532 		return -EINVAL;
1533 
1534 	name_buf = kzalloc(name_buf_size, GFP_KERNEL);
1535 	if (!name_buf)
1536 		return -ENOMEM;
1537 
1538 	memcpy(name_buf, app_name, app_name_len);
1539 
1540 	name_buf_phys = dma_map_single(__scm->dev, name_buf, name_buf_size, DMA_TO_DEVICE);
1541 	status = dma_mapping_error(__scm->dev, name_buf_phys);
1542 	if (status) {
1543 		kfree(name_buf);
1544 		dev_err(__scm->dev, "qseecom: failed to map dma address\n");
1545 		return status;
1546 	}
1547 
1548 	desc.owner = QSEECOM_TZ_OWNER_QSEE_OS;
1549 	desc.svc = QSEECOM_TZ_SVC_APP_MGR;
1550 	desc.cmd = QSEECOM_TZ_CMD_APP_LOOKUP;
1551 	desc.arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_RW, QCOM_SCM_VAL);
1552 	desc.args[0] = name_buf_phys;
1553 	desc.args[1] = app_name_len;
1554 
1555 	status = qcom_scm_qseecom_call(&desc, &res);
1556 	dma_unmap_single(__scm->dev, name_buf_phys, name_buf_size, DMA_TO_DEVICE);
1557 	kfree(name_buf);
1558 
1559 	if (status)
1560 		return status;
1561 
1562 	if (res.result == QSEECOM_RESULT_FAILURE)
1563 		return -ENOENT;
1564 
1565 	if (res.result != QSEECOM_RESULT_SUCCESS)
1566 		return -EINVAL;
1567 
1568 	if (res.resp_type != QSEECOM_SCM_RES_APP_ID)
1569 		return -EINVAL;
1570 
1571 	*app_id = res.data;
1572 	return 0;
1573 }
1574 EXPORT_SYMBOL_GPL(qcom_scm_qseecom_app_get_id);
1575 
1576 /**
1577  * qcom_scm_qseecom_app_send() - Send to and receive data from a given QSEE app.
1578  * @app_id:   The ID of the target app.
1579  * @req:      Request buffer sent to the app (must be DMA-mappable).
1580  * @req_size: Size of the request buffer.
1581  * @rsp:      Response buffer, written to by the app (must be DMA-mappable).
1582  * @rsp_size: Size of the response buffer.
1583  *
1584  * Sends a request to the QSEE app associated with the given ID and read back
1585  * its response. The caller must provide two DMA memory regions, one for the
1586  * request and one for the response, and fill out the @req region with the
1587  * respective (app-specific) request data. The QSEE app reads this and returns
1588  * its response in the @rsp region.
1589  *
1590  * Return: Zero on success, nonzero on failure.
1591  */
1592 int qcom_scm_qseecom_app_send(u32 app_id, void *req, size_t req_size, void *rsp,
1593 			      size_t rsp_size)
1594 {
1595 	struct qcom_scm_qseecom_resp res = {};
1596 	struct qcom_scm_desc desc = {};
1597 	dma_addr_t req_phys;
1598 	dma_addr_t rsp_phys;
1599 	int status;
1600 
1601 	/* Map request buffer */
1602 	req_phys = dma_map_single(__scm->dev, req, req_size, DMA_TO_DEVICE);
1603 	status = dma_mapping_error(__scm->dev, req_phys);
1604 	if (status) {
1605 		dev_err(__scm->dev, "qseecom: failed to map request buffer\n");
1606 		return status;
1607 	}
1608 
1609 	/* Map response buffer */
1610 	rsp_phys = dma_map_single(__scm->dev, rsp, rsp_size, DMA_FROM_DEVICE);
1611 	status = dma_mapping_error(__scm->dev, rsp_phys);
1612 	if (status) {
1613 		dma_unmap_single(__scm->dev, req_phys, req_size, DMA_TO_DEVICE);
1614 		dev_err(__scm->dev, "qseecom: failed to map response buffer\n");
1615 		return status;
1616 	}
1617 
1618 	/* Set up SCM call data */
1619 	desc.owner = QSEECOM_TZ_OWNER_TZ_APPS;
1620 	desc.svc = QSEECOM_TZ_SVC_APP_ID_PLACEHOLDER;
1621 	desc.cmd = QSEECOM_TZ_CMD_APP_SEND;
1622 	desc.arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_VAL,
1623 				     QCOM_SCM_RW, QCOM_SCM_VAL,
1624 				     QCOM_SCM_RW, QCOM_SCM_VAL);
1625 	desc.args[0] = app_id;
1626 	desc.args[1] = req_phys;
1627 	desc.args[2] = req_size;
1628 	desc.args[3] = rsp_phys;
1629 	desc.args[4] = rsp_size;
1630 
1631 	/* Perform call */
1632 	status = qcom_scm_qseecom_call(&desc, &res);
1633 
1634 	/* Unmap buffers */
1635 	dma_unmap_single(__scm->dev, rsp_phys, rsp_size, DMA_FROM_DEVICE);
1636 	dma_unmap_single(__scm->dev, req_phys, req_size, DMA_TO_DEVICE);
1637 
1638 	if (status)
1639 		return status;
1640 
1641 	if (res.result != QSEECOM_RESULT_SUCCESS)
1642 		return -EIO;
1643 
1644 	return 0;
1645 }
1646 EXPORT_SYMBOL_GPL(qcom_scm_qseecom_app_send);
1647 
1648 /*
1649  * We do not yet support re-entrant calls via the qseecom interface. To prevent
1650  + any potential issues with this, only allow validated machines for now.
1651  */
1652 static const struct of_device_id qcom_scm_qseecom_allowlist[] = {
1653 	{ .compatible = "lenovo,thinkpad-x13s", },
1654 	{ }
1655 };
1656 
1657 static bool qcom_scm_qseecom_machine_is_allowed(void)
1658 {
1659 	struct device_node *np;
1660 	bool match;
1661 
1662 	np = of_find_node_by_path("/");
1663 	if (!np)
1664 		return false;
1665 
1666 	match = of_match_node(qcom_scm_qseecom_allowlist, np);
1667 	of_node_put(np);
1668 
1669 	return match;
1670 }
1671 
1672 static void qcom_scm_qseecom_free(void *data)
1673 {
1674 	struct platform_device *qseecom_dev = data;
1675 
1676 	platform_device_del(qseecom_dev);
1677 	platform_device_put(qseecom_dev);
1678 }
1679 
1680 static int qcom_scm_qseecom_init(struct qcom_scm *scm)
1681 {
1682 	struct platform_device *qseecom_dev;
1683 	u32 version;
1684 	int ret;
1685 
1686 	/*
1687 	 * Note: We do two steps of validation here: First, we try to query the
1688 	 * QSEECOM version as a check to see if the interface exists on this
1689 	 * device. Second, we check against known good devices due to current
1690 	 * driver limitations (see comment in qcom_scm_qseecom_allowlist).
1691 	 *
1692 	 * Note that we deliberately do the machine check after the version
1693 	 * check so that we can log potentially supported devices. This should
1694 	 * be safe as downstream sources indicate that the version query is
1695 	 * neither blocking nor reentrant.
1696 	 */
1697 	ret = qcom_scm_qseecom_get_version(&version);
1698 	if (ret)
1699 		return 0;
1700 
1701 	dev_info(scm->dev, "qseecom: found qseecom with version 0x%x\n", version);
1702 
1703 	if (!qcom_scm_qseecom_machine_is_allowed()) {
1704 		dev_info(scm->dev, "qseecom: untested machine, skipping\n");
1705 		return 0;
1706 	}
1707 
1708 	/*
1709 	 * Set up QSEECOM interface device. All application clients will be
1710 	 * set up and managed by the corresponding driver for it.
1711 	 */
1712 	qseecom_dev = platform_device_alloc("qcom_qseecom", -1);
1713 	if (!qseecom_dev)
1714 		return -ENOMEM;
1715 
1716 	qseecom_dev->dev.parent = scm->dev;
1717 
1718 	ret = platform_device_add(qseecom_dev);
1719 	if (ret) {
1720 		platform_device_put(qseecom_dev);
1721 		return ret;
1722 	}
1723 
1724 	return devm_add_action_or_reset(scm->dev, qcom_scm_qseecom_free, qseecom_dev);
1725 }
1726 
1727 #else /* CONFIG_QCOM_QSEECOM */
1728 
1729 static int qcom_scm_qseecom_init(struct qcom_scm *scm)
1730 {
1731 	return 0;
1732 }
1733 
1734 #endif /* CONFIG_QCOM_QSEECOM */
1735 
1736 /**
1737  * qcom_scm_is_available() - Checks if SCM is available
1738  */
1739 bool qcom_scm_is_available(void)
1740 {
1741 	return !!__scm;
1742 }
1743 EXPORT_SYMBOL_GPL(qcom_scm_is_available);
1744 
1745 static int qcom_scm_assert_valid_wq_ctx(u32 wq_ctx)
1746 {
1747 	/* FW currently only supports a single wq_ctx (zero).
1748 	 * TODO: Update this logic to include dynamic allocation and lookup of
1749 	 * completion structs when FW supports more wq_ctx values.
1750 	 */
1751 	if (wq_ctx != 0) {
1752 		dev_err(__scm->dev, "Firmware unexpectedly passed non-zero wq_ctx\n");
1753 		return -EINVAL;
1754 	}
1755 
1756 	return 0;
1757 }
1758 
1759 int qcom_scm_wait_for_wq_completion(u32 wq_ctx)
1760 {
1761 	int ret;
1762 
1763 	ret = qcom_scm_assert_valid_wq_ctx(wq_ctx);
1764 	if (ret)
1765 		return ret;
1766 
1767 	wait_for_completion(&__scm->waitq_comp);
1768 
1769 	return 0;
1770 }
1771 
1772 static int qcom_scm_waitq_wakeup(struct qcom_scm *scm, unsigned int wq_ctx)
1773 {
1774 	int ret;
1775 
1776 	ret = qcom_scm_assert_valid_wq_ctx(wq_ctx);
1777 	if (ret)
1778 		return ret;
1779 
1780 	complete(&__scm->waitq_comp);
1781 
1782 	return 0;
1783 }
1784 
1785 static irqreturn_t qcom_scm_irq_handler(int irq, void *data)
1786 {
1787 	int ret;
1788 	struct qcom_scm *scm = data;
1789 	u32 wq_ctx, flags, more_pending = 0;
1790 
1791 	do {
1792 		ret = scm_get_wq_ctx(&wq_ctx, &flags, &more_pending);
1793 		if (ret) {
1794 			dev_err(scm->dev, "GET_WQ_CTX SMC call failed: %d\n", ret);
1795 			goto out;
1796 		}
1797 
1798 		if (flags != QCOM_SMC_WAITQ_FLAG_WAKE_ONE &&
1799 		    flags != QCOM_SMC_WAITQ_FLAG_WAKE_ALL) {
1800 			dev_err(scm->dev, "Invalid flags found for wq_ctx: %u\n", flags);
1801 			goto out;
1802 		}
1803 
1804 		ret = qcom_scm_waitq_wakeup(scm, wq_ctx);
1805 		if (ret)
1806 			goto out;
1807 	} while (more_pending);
1808 
1809 out:
1810 	return IRQ_HANDLED;
1811 }
1812 
1813 static int qcom_scm_probe(struct platform_device *pdev)
1814 {
1815 	struct qcom_scm *scm;
1816 	int irq, ret;
1817 
1818 	scm = devm_kzalloc(&pdev->dev, sizeof(*scm), GFP_KERNEL);
1819 	if (!scm)
1820 		return -ENOMEM;
1821 
1822 	ret = qcom_scm_find_dload_address(&pdev->dev, &scm->dload_mode_addr);
1823 	if (ret < 0)
1824 		return ret;
1825 
1826 	mutex_init(&scm->scm_bw_lock);
1827 
1828 	scm->path = devm_of_icc_get(&pdev->dev, NULL);
1829 	if (IS_ERR(scm->path))
1830 		return dev_err_probe(&pdev->dev, PTR_ERR(scm->path),
1831 				     "failed to acquire interconnect path\n");
1832 
1833 	scm->core_clk = devm_clk_get_optional(&pdev->dev, "core");
1834 	if (IS_ERR(scm->core_clk))
1835 		return PTR_ERR(scm->core_clk);
1836 
1837 	scm->iface_clk = devm_clk_get_optional(&pdev->dev, "iface");
1838 	if (IS_ERR(scm->iface_clk))
1839 		return PTR_ERR(scm->iface_clk);
1840 
1841 	scm->bus_clk = devm_clk_get_optional(&pdev->dev, "bus");
1842 	if (IS_ERR(scm->bus_clk))
1843 		return PTR_ERR(scm->bus_clk);
1844 
1845 	scm->reset.ops = &qcom_scm_pas_reset_ops;
1846 	scm->reset.nr_resets = 1;
1847 	scm->reset.of_node = pdev->dev.of_node;
1848 	ret = devm_reset_controller_register(&pdev->dev, &scm->reset);
1849 	if (ret)
1850 		return ret;
1851 
1852 	/* vote for max clk rate for highest performance */
1853 	ret = clk_set_rate(scm->core_clk, INT_MAX);
1854 	if (ret)
1855 		return ret;
1856 
1857 	__scm = scm;
1858 	__scm->dev = &pdev->dev;
1859 
1860 	init_completion(&__scm->waitq_comp);
1861 
1862 	irq = platform_get_irq_optional(pdev, 0);
1863 	if (irq < 0) {
1864 		if (irq != -ENXIO)
1865 			return irq;
1866 	} else {
1867 		ret = devm_request_threaded_irq(__scm->dev, irq, NULL, qcom_scm_irq_handler,
1868 						IRQF_ONESHOT, "qcom-scm", __scm);
1869 		if (ret < 0)
1870 			return dev_err_probe(scm->dev, ret, "Failed to request qcom-scm irq\n");
1871 	}
1872 
1873 	__get_convention();
1874 
1875 	/*
1876 	 * If requested enable "download mode", from this point on warmboot
1877 	 * will cause the boot stages to enter download mode, unless
1878 	 * disabled below by a clean shutdown/reboot.
1879 	 */
1880 	if (download_mode)
1881 		qcom_scm_set_download_mode(true);
1882 
1883 
1884 	/*
1885 	 * Disable SDI if indicated by DT that it is enabled by default.
1886 	 */
1887 	if (of_property_read_bool(pdev->dev.of_node, "qcom,sdi-enabled"))
1888 		qcom_scm_disable_sdi();
1889 
1890 	/*
1891 	 * Initialize the QSEECOM interface.
1892 	 *
1893 	 * Note: QSEECOM is fairly self-contained and this only adds the
1894 	 * interface device (the driver of which does most of the heavy
1895 	 * lifting). So any errors returned here should be either -ENOMEM or
1896 	 * -EINVAL (with the latter only in case there's a bug in our code).
1897 	 * This means that there is no need to bring down the whole SCM driver.
1898 	 * Just log the error instead and let SCM live.
1899 	 */
1900 	ret = qcom_scm_qseecom_init(scm);
1901 	WARN(ret < 0, "failed to initialize qseecom: %d\n", ret);
1902 
1903 	return 0;
1904 }
1905 
1906 static void qcom_scm_shutdown(struct platform_device *pdev)
1907 {
1908 	/* Clean shutdown, disable download mode to allow normal restart */
1909 	qcom_scm_set_download_mode(false);
1910 }
1911 
1912 static const struct of_device_id qcom_scm_dt_match[] = {
1913 	{ .compatible = "qcom,scm" },
1914 
1915 	/* Legacy entries kept for backwards compatibility */
1916 	{ .compatible = "qcom,scm-apq8064" },
1917 	{ .compatible = "qcom,scm-apq8084" },
1918 	{ .compatible = "qcom,scm-ipq4019" },
1919 	{ .compatible = "qcom,scm-msm8953" },
1920 	{ .compatible = "qcom,scm-msm8974" },
1921 	{ .compatible = "qcom,scm-msm8996" },
1922 	{}
1923 };
1924 MODULE_DEVICE_TABLE(of, qcom_scm_dt_match);
1925 
1926 static struct platform_driver qcom_scm_driver = {
1927 	.driver = {
1928 		.name	= "qcom_scm",
1929 		.of_match_table = qcom_scm_dt_match,
1930 		.suppress_bind_attrs = true,
1931 	},
1932 	.probe = qcom_scm_probe,
1933 	.shutdown = qcom_scm_shutdown,
1934 };
1935 
1936 static int __init qcom_scm_init(void)
1937 {
1938 	return platform_driver_register(&qcom_scm_driver);
1939 }
1940 subsys_initcall(qcom_scm_init);
1941 
1942 MODULE_DESCRIPTION("Qualcomm Technologies, Inc. SCM driver");
1943 MODULE_LICENSE("GPL v2");
1944