xref: /linux/drivers/firmware/qcom/qcom_scm.c (revision bb9ae1a66c85eeb626864efd812c62026e126ec0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2010,2015,2019 The Linux Foundation. All rights reserved.
3  * Copyright (C) 2015 Linaro Ltd.
4  */
5 
6 #include <linux/arm-smccc.h>
7 #include <linux/bitfield.h>
8 #include <linux/bits.h>
9 #include <linux/cleanup.h>
10 #include <linux/clk.h>
11 #include <linux/completion.h>
12 #include <linux/cpumask.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/err.h>
15 #include <linux/export.h>
16 #include <linux/firmware/qcom/qcom_scm.h>
17 #include <linux/firmware/qcom/qcom_tzmem.h>
18 #include <linux/init.h>
19 #include <linux/interconnect.h>
20 #include <linux/interrupt.h>
21 #include <linux/kstrtox.h>
22 #include <linux/module.h>
23 #include <linux/of.h>
24 #include <linux/of_address.h>
25 #include <linux/of_irq.h>
26 #include <linux/of_platform.h>
27 #include <linux/of_reserved_mem.h>
28 #include <linux/platform_device.h>
29 #include <linux/reset-controller.h>
30 #include <linux/sizes.h>
31 #include <linux/types.h>
32 
33 #include "qcom_scm.h"
34 #include "qcom_tzmem.h"
35 
36 static u32 download_mode;
37 
38 struct qcom_scm {
39 	struct device *dev;
40 	struct clk *core_clk;
41 	struct clk *iface_clk;
42 	struct clk *bus_clk;
43 	struct icc_path *path;
44 	struct completion waitq_comp;
45 	struct reset_controller_dev reset;
46 
47 	/* control access to the interconnect path */
48 	struct mutex scm_bw_lock;
49 	int scm_vote_count;
50 
51 	u64 dload_mode_addr;
52 
53 	struct qcom_tzmem_pool *mempool;
54 };
55 
56 struct qcom_scm_current_perm_info {
57 	__le32 vmid;
58 	__le32 perm;
59 	__le64 ctx;
60 	__le32 ctx_size;
61 	__le32 unused;
62 };
63 
64 struct qcom_scm_mem_map_info {
65 	__le64 mem_addr;
66 	__le64 mem_size;
67 };
68 
69 /**
70  * struct qcom_scm_qseecom_resp - QSEECOM SCM call response.
71  * @result:    Result or status of the SCM call. See &enum qcom_scm_qseecom_result.
72  * @resp_type: Type of the response. See &enum qcom_scm_qseecom_resp_type.
73  * @data:      Response data. The type of this data is given in @resp_type.
74  */
75 struct qcom_scm_qseecom_resp {
76 	u64 result;
77 	u64 resp_type;
78 	u64 data;
79 };
80 
81 enum qcom_scm_qseecom_result {
82 	QSEECOM_RESULT_SUCCESS			= 0,
83 	QSEECOM_RESULT_INCOMPLETE		= 1,
84 	QSEECOM_RESULT_BLOCKED_ON_LISTENER	= 2,
85 	QSEECOM_RESULT_FAILURE			= 0xFFFFFFFF,
86 };
87 
88 enum qcom_scm_qseecom_resp_type {
89 	QSEECOM_SCM_RES_APP_ID			= 0xEE01,
90 	QSEECOM_SCM_RES_QSEOS_LISTENER_ID	= 0xEE02,
91 };
92 
93 enum qcom_scm_qseecom_tz_owner {
94 	QSEECOM_TZ_OWNER_SIP			= 2,
95 	QSEECOM_TZ_OWNER_TZ_APPS		= 48,
96 	QSEECOM_TZ_OWNER_QSEE_OS		= 50
97 };
98 
99 enum qcom_scm_qseecom_tz_svc {
100 	QSEECOM_TZ_SVC_APP_ID_PLACEHOLDER	= 0,
101 	QSEECOM_TZ_SVC_APP_MGR			= 1,
102 	QSEECOM_TZ_SVC_INFO			= 6,
103 };
104 
105 enum qcom_scm_qseecom_tz_cmd_app {
106 	QSEECOM_TZ_CMD_APP_SEND			= 1,
107 	QSEECOM_TZ_CMD_APP_LOOKUP		= 3,
108 };
109 
110 enum qcom_scm_qseecom_tz_cmd_info {
111 	QSEECOM_TZ_CMD_INFO_VERSION		= 3,
112 };
113 
114 #define QSEECOM_MAX_APP_NAME_SIZE		64
115 
116 /* Each bit configures cold/warm boot address for one of the 4 CPUs */
117 static const u8 qcom_scm_cpu_cold_bits[QCOM_SCM_BOOT_MAX_CPUS] = {
118 	0, BIT(0), BIT(3), BIT(5)
119 };
120 static const u8 qcom_scm_cpu_warm_bits[QCOM_SCM_BOOT_MAX_CPUS] = {
121 	BIT(2), BIT(1), BIT(4), BIT(6)
122 };
123 
124 #define QCOM_SMC_WAITQ_FLAG_WAKE_ONE	BIT(0)
125 
126 #define QCOM_DLOAD_MASK		GENMASK(5, 4)
127 #define QCOM_DLOAD_NODUMP	0
128 #define QCOM_DLOAD_FULLDUMP	1
129 #define QCOM_DLOAD_MINIDUMP	2
130 #define QCOM_DLOAD_BOTHDUMP	3
131 
132 static const char * const qcom_scm_convention_names[] = {
133 	[SMC_CONVENTION_UNKNOWN] = "unknown",
134 	[SMC_CONVENTION_ARM_32] = "smc arm 32",
135 	[SMC_CONVENTION_ARM_64] = "smc arm 64",
136 	[SMC_CONVENTION_LEGACY] = "smc legacy",
137 };
138 
139 static const char * const download_mode_name[] = {
140 	[QCOM_DLOAD_NODUMP]	= "off",
141 	[QCOM_DLOAD_FULLDUMP]	= "full",
142 	[QCOM_DLOAD_MINIDUMP]	= "mini",
143 	[QCOM_DLOAD_BOTHDUMP]	= "full,mini",
144 };
145 
146 static struct qcom_scm *__scm;
147 
148 static int qcom_scm_clk_enable(void)
149 {
150 	int ret;
151 
152 	ret = clk_prepare_enable(__scm->core_clk);
153 	if (ret)
154 		goto bail;
155 
156 	ret = clk_prepare_enable(__scm->iface_clk);
157 	if (ret)
158 		goto disable_core;
159 
160 	ret = clk_prepare_enable(__scm->bus_clk);
161 	if (ret)
162 		goto disable_iface;
163 
164 	return 0;
165 
166 disable_iface:
167 	clk_disable_unprepare(__scm->iface_clk);
168 disable_core:
169 	clk_disable_unprepare(__scm->core_clk);
170 bail:
171 	return ret;
172 }
173 
174 static void qcom_scm_clk_disable(void)
175 {
176 	clk_disable_unprepare(__scm->core_clk);
177 	clk_disable_unprepare(__scm->iface_clk);
178 	clk_disable_unprepare(__scm->bus_clk);
179 }
180 
181 static int qcom_scm_bw_enable(void)
182 {
183 	int ret = 0;
184 
185 	if (!__scm->path)
186 		return 0;
187 
188 	mutex_lock(&__scm->scm_bw_lock);
189 	if (!__scm->scm_vote_count) {
190 		ret = icc_set_bw(__scm->path, 0, UINT_MAX);
191 		if (ret < 0) {
192 			dev_err(__scm->dev, "failed to set bandwidth request\n");
193 			goto err_bw;
194 		}
195 	}
196 	__scm->scm_vote_count++;
197 err_bw:
198 	mutex_unlock(&__scm->scm_bw_lock);
199 
200 	return ret;
201 }
202 
203 static void qcom_scm_bw_disable(void)
204 {
205 	if (!__scm->path)
206 		return;
207 
208 	mutex_lock(&__scm->scm_bw_lock);
209 	if (__scm->scm_vote_count-- == 1)
210 		icc_set_bw(__scm->path, 0, 0);
211 	mutex_unlock(&__scm->scm_bw_lock);
212 }
213 
214 enum qcom_scm_convention qcom_scm_convention = SMC_CONVENTION_UNKNOWN;
215 static DEFINE_SPINLOCK(scm_query_lock);
216 
217 struct qcom_tzmem_pool *qcom_scm_get_tzmem_pool(void)
218 {
219 	return __scm->mempool;
220 }
221 
222 static enum qcom_scm_convention __get_convention(void)
223 {
224 	unsigned long flags;
225 	struct qcom_scm_desc desc = {
226 		.svc = QCOM_SCM_SVC_INFO,
227 		.cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
228 		.args[0] = SCM_SMC_FNID(QCOM_SCM_SVC_INFO,
229 					   QCOM_SCM_INFO_IS_CALL_AVAIL) |
230 			   (ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT),
231 		.arginfo = QCOM_SCM_ARGS(1),
232 		.owner = ARM_SMCCC_OWNER_SIP,
233 	};
234 	struct qcom_scm_res res;
235 	enum qcom_scm_convention probed_convention;
236 	int ret;
237 	bool forced = false;
238 
239 	if (likely(qcom_scm_convention != SMC_CONVENTION_UNKNOWN))
240 		return qcom_scm_convention;
241 
242 	/*
243 	 * Per the "SMC calling convention specification", the 64-bit calling
244 	 * convention can only be used when the client is 64-bit, otherwise
245 	 * system will encounter the undefined behaviour.
246 	 */
247 #if IS_ENABLED(CONFIG_ARM64)
248 	/*
249 	 * Device isn't required as there is only one argument - no device
250 	 * needed to dma_map_single to secure world
251 	 */
252 	probed_convention = SMC_CONVENTION_ARM_64;
253 	ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true);
254 	if (!ret && res.result[0] == 1)
255 		goto found;
256 
257 	/*
258 	 * Some SC7180 firmwares didn't implement the
259 	 * QCOM_SCM_INFO_IS_CALL_AVAIL call, so we fallback to forcing ARM_64
260 	 * calling conventions on these firmwares. Luckily we don't make any
261 	 * early calls into the firmware on these SoCs so the device pointer
262 	 * will be valid here to check if the compatible matches.
263 	 */
264 	if (of_device_is_compatible(__scm ? __scm->dev->of_node : NULL, "qcom,scm-sc7180")) {
265 		forced = true;
266 		goto found;
267 	}
268 #endif
269 
270 	probed_convention = SMC_CONVENTION_ARM_32;
271 	ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true);
272 	if (!ret && res.result[0] == 1)
273 		goto found;
274 
275 	probed_convention = SMC_CONVENTION_LEGACY;
276 found:
277 	spin_lock_irqsave(&scm_query_lock, flags);
278 	if (probed_convention != qcom_scm_convention) {
279 		qcom_scm_convention = probed_convention;
280 		pr_info("qcom_scm: convention: %s%s\n",
281 			qcom_scm_convention_names[qcom_scm_convention],
282 			forced ? " (forced)" : "");
283 	}
284 	spin_unlock_irqrestore(&scm_query_lock, flags);
285 
286 	return qcom_scm_convention;
287 }
288 
289 /**
290  * qcom_scm_call() - Invoke a syscall in the secure world
291  * @dev:	device
292  * @desc:	Descriptor structure containing arguments and return values
293  * @res:        Structure containing results from SMC/HVC call
294  *
295  * Sends a command to the SCM and waits for the command to finish processing.
296  * This should *only* be called in pre-emptible context.
297  */
298 static int qcom_scm_call(struct device *dev, const struct qcom_scm_desc *desc,
299 			 struct qcom_scm_res *res)
300 {
301 	might_sleep();
302 	switch (__get_convention()) {
303 	case SMC_CONVENTION_ARM_32:
304 	case SMC_CONVENTION_ARM_64:
305 		return scm_smc_call(dev, desc, res, false);
306 	case SMC_CONVENTION_LEGACY:
307 		return scm_legacy_call(dev, desc, res);
308 	default:
309 		pr_err("Unknown current SCM calling convention.\n");
310 		return -EINVAL;
311 	}
312 }
313 
314 /**
315  * qcom_scm_call_atomic() - atomic variation of qcom_scm_call()
316  * @dev:	device
317  * @desc:	Descriptor structure containing arguments and return values
318  * @res:	Structure containing results from SMC/HVC call
319  *
320  * Sends a command to the SCM and waits for the command to finish processing.
321  * This can be called in atomic context.
322  */
323 static int qcom_scm_call_atomic(struct device *dev,
324 				const struct qcom_scm_desc *desc,
325 				struct qcom_scm_res *res)
326 {
327 	switch (__get_convention()) {
328 	case SMC_CONVENTION_ARM_32:
329 	case SMC_CONVENTION_ARM_64:
330 		return scm_smc_call(dev, desc, res, true);
331 	case SMC_CONVENTION_LEGACY:
332 		return scm_legacy_call_atomic(dev, desc, res);
333 	default:
334 		pr_err("Unknown current SCM calling convention.\n");
335 		return -EINVAL;
336 	}
337 }
338 
339 static bool __qcom_scm_is_call_available(struct device *dev, u32 svc_id,
340 					 u32 cmd_id)
341 {
342 	int ret;
343 	struct qcom_scm_desc desc = {
344 		.svc = QCOM_SCM_SVC_INFO,
345 		.cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
346 		.owner = ARM_SMCCC_OWNER_SIP,
347 	};
348 	struct qcom_scm_res res;
349 
350 	desc.arginfo = QCOM_SCM_ARGS(1);
351 	switch (__get_convention()) {
352 	case SMC_CONVENTION_ARM_32:
353 	case SMC_CONVENTION_ARM_64:
354 		desc.args[0] = SCM_SMC_FNID(svc_id, cmd_id) |
355 				(ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT);
356 		break;
357 	case SMC_CONVENTION_LEGACY:
358 		desc.args[0] = SCM_LEGACY_FNID(svc_id, cmd_id);
359 		break;
360 	default:
361 		pr_err("Unknown SMC convention being used\n");
362 		return false;
363 	}
364 
365 	ret = qcom_scm_call(dev, &desc, &res);
366 
367 	return ret ? false : !!res.result[0];
368 }
369 
370 static int qcom_scm_set_boot_addr(void *entry, const u8 *cpu_bits)
371 {
372 	int cpu;
373 	unsigned int flags = 0;
374 	struct qcom_scm_desc desc = {
375 		.svc = QCOM_SCM_SVC_BOOT,
376 		.cmd = QCOM_SCM_BOOT_SET_ADDR,
377 		.arginfo = QCOM_SCM_ARGS(2),
378 		.owner = ARM_SMCCC_OWNER_SIP,
379 	};
380 
381 	for_each_present_cpu(cpu) {
382 		if (cpu >= QCOM_SCM_BOOT_MAX_CPUS)
383 			return -EINVAL;
384 		flags |= cpu_bits[cpu];
385 	}
386 
387 	desc.args[0] = flags;
388 	desc.args[1] = virt_to_phys(entry);
389 
390 	return qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
391 }
392 
393 static int qcom_scm_set_boot_addr_mc(void *entry, unsigned int flags)
394 {
395 	struct qcom_scm_desc desc = {
396 		.svc = QCOM_SCM_SVC_BOOT,
397 		.cmd = QCOM_SCM_BOOT_SET_ADDR_MC,
398 		.owner = ARM_SMCCC_OWNER_SIP,
399 		.arginfo = QCOM_SCM_ARGS(6),
400 		.args = {
401 			virt_to_phys(entry),
402 			/* Apply to all CPUs in all affinity levels */
403 			~0ULL, ~0ULL, ~0ULL, ~0ULL,
404 			flags,
405 		},
406 	};
407 
408 	/* Need a device for DMA of the additional arguments */
409 	if (!__scm || __get_convention() == SMC_CONVENTION_LEGACY)
410 		return -EOPNOTSUPP;
411 
412 	return qcom_scm_call(__scm->dev, &desc, NULL);
413 }
414 
415 /**
416  * qcom_scm_set_warm_boot_addr() - Set the warm boot address for all cpus
417  * @entry: Entry point function for the cpus
418  *
419  * Set the Linux entry point for the SCM to transfer control to when coming
420  * out of a power down. CPU power down may be executed on cpuidle or hotplug.
421  */
422 int qcom_scm_set_warm_boot_addr(void *entry)
423 {
424 	if (qcom_scm_set_boot_addr_mc(entry, QCOM_SCM_BOOT_MC_FLAG_WARMBOOT))
425 		/* Fallback to old SCM call */
426 		return qcom_scm_set_boot_addr(entry, qcom_scm_cpu_warm_bits);
427 	return 0;
428 }
429 EXPORT_SYMBOL_GPL(qcom_scm_set_warm_boot_addr);
430 
431 /**
432  * qcom_scm_set_cold_boot_addr() - Set the cold boot address for all cpus
433  * @entry: Entry point function for the cpus
434  */
435 int qcom_scm_set_cold_boot_addr(void *entry)
436 {
437 	if (qcom_scm_set_boot_addr_mc(entry, QCOM_SCM_BOOT_MC_FLAG_COLDBOOT))
438 		/* Fallback to old SCM call */
439 		return qcom_scm_set_boot_addr(entry, qcom_scm_cpu_cold_bits);
440 	return 0;
441 }
442 EXPORT_SYMBOL_GPL(qcom_scm_set_cold_boot_addr);
443 
444 /**
445  * qcom_scm_cpu_power_down() - Power down the cpu
446  * @flags:	Flags to flush cache
447  *
448  * This is an end point to power down cpu. If there was a pending interrupt,
449  * the control would return from this function, otherwise, the cpu jumps to the
450  * warm boot entry point set for this cpu upon reset.
451  */
452 void qcom_scm_cpu_power_down(u32 flags)
453 {
454 	struct qcom_scm_desc desc = {
455 		.svc = QCOM_SCM_SVC_BOOT,
456 		.cmd = QCOM_SCM_BOOT_TERMINATE_PC,
457 		.args[0] = flags & QCOM_SCM_FLUSH_FLAG_MASK,
458 		.arginfo = QCOM_SCM_ARGS(1),
459 		.owner = ARM_SMCCC_OWNER_SIP,
460 	};
461 
462 	qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
463 }
464 EXPORT_SYMBOL_GPL(qcom_scm_cpu_power_down);
465 
466 int qcom_scm_set_remote_state(u32 state, u32 id)
467 {
468 	struct qcom_scm_desc desc = {
469 		.svc = QCOM_SCM_SVC_BOOT,
470 		.cmd = QCOM_SCM_BOOT_SET_REMOTE_STATE,
471 		.arginfo = QCOM_SCM_ARGS(2),
472 		.args[0] = state,
473 		.args[1] = id,
474 		.owner = ARM_SMCCC_OWNER_SIP,
475 	};
476 	struct qcom_scm_res res;
477 	int ret;
478 
479 	ret = qcom_scm_call(__scm->dev, &desc, &res);
480 
481 	return ret ? : res.result[0];
482 }
483 EXPORT_SYMBOL_GPL(qcom_scm_set_remote_state);
484 
485 static int qcom_scm_disable_sdi(void)
486 {
487 	int ret;
488 	struct qcom_scm_desc desc = {
489 		.svc = QCOM_SCM_SVC_BOOT,
490 		.cmd = QCOM_SCM_BOOT_SDI_CONFIG,
491 		.args[0] = 1, /* Disable watchdog debug */
492 		.args[1] = 0, /* Disable SDI */
493 		.arginfo = QCOM_SCM_ARGS(2),
494 		.owner = ARM_SMCCC_OWNER_SIP,
495 	};
496 	struct qcom_scm_res res;
497 
498 	ret = qcom_scm_clk_enable();
499 	if (ret)
500 		return ret;
501 	ret = qcom_scm_call(__scm->dev, &desc, &res);
502 
503 	qcom_scm_clk_disable();
504 
505 	return ret ? : res.result[0];
506 }
507 
508 static int __qcom_scm_set_dload_mode(struct device *dev, bool enable)
509 {
510 	struct qcom_scm_desc desc = {
511 		.svc = QCOM_SCM_SVC_BOOT,
512 		.cmd = QCOM_SCM_BOOT_SET_DLOAD_MODE,
513 		.arginfo = QCOM_SCM_ARGS(2),
514 		.args[0] = QCOM_SCM_BOOT_SET_DLOAD_MODE,
515 		.owner = ARM_SMCCC_OWNER_SIP,
516 	};
517 
518 	desc.args[1] = enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0;
519 
520 	return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
521 }
522 
523 static int qcom_scm_io_rmw(phys_addr_t addr, unsigned int mask, unsigned int val)
524 {
525 	unsigned int old;
526 	unsigned int new;
527 	int ret;
528 
529 	ret = qcom_scm_io_readl(addr, &old);
530 	if (ret)
531 		return ret;
532 
533 	new = (old & ~mask) | (val & mask);
534 
535 	return qcom_scm_io_writel(addr, new);
536 }
537 
538 static void qcom_scm_set_download_mode(u32 dload_mode)
539 {
540 	int ret = 0;
541 
542 	if (__scm->dload_mode_addr) {
543 		ret = qcom_scm_io_rmw(__scm->dload_mode_addr, QCOM_DLOAD_MASK,
544 				      FIELD_PREP(QCOM_DLOAD_MASK, dload_mode));
545 	} else if (__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_BOOT,
546 						QCOM_SCM_BOOT_SET_DLOAD_MODE)) {
547 		ret = __qcom_scm_set_dload_mode(__scm->dev, !!dload_mode);
548 	} else {
549 		dev_err(__scm->dev,
550 			"No available mechanism for setting download mode\n");
551 	}
552 
553 	if (ret)
554 		dev_err(__scm->dev, "failed to set download mode: %d\n", ret);
555 }
556 
557 /**
558  * qcom_scm_pas_init_image() - Initialize peripheral authentication service
559  *			       state machine for a given peripheral, using the
560  *			       metadata
561  * @peripheral: peripheral id
562  * @metadata:	pointer to memory containing ELF header, program header table
563  *		and optional blob of data used for authenticating the metadata
564  *		and the rest of the firmware
565  * @size:	size of the metadata
566  * @ctx:	optional metadata context
567  *
568  * Return: 0 on success.
569  *
570  * Upon successful return, the PAS metadata context (@ctx) will be used to
571  * track the metadata allocation, this needs to be released by invoking
572  * qcom_scm_pas_metadata_release() by the caller.
573  */
574 int qcom_scm_pas_init_image(u32 peripheral, const void *metadata, size_t size,
575 			    struct qcom_scm_pas_metadata *ctx)
576 {
577 	dma_addr_t mdata_phys;
578 	void *mdata_buf;
579 	int ret;
580 	struct qcom_scm_desc desc = {
581 		.svc = QCOM_SCM_SVC_PIL,
582 		.cmd = QCOM_SCM_PIL_PAS_INIT_IMAGE,
583 		.arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_VAL, QCOM_SCM_RW),
584 		.args[0] = peripheral,
585 		.owner = ARM_SMCCC_OWNER_SIP,
586 	};
587 	struct qcom_scm_res res;
588 
589 	/*
590 	 * During the scm call memory protection will be enabled for the meta
591 	 * data blob, so make sure it's physically contiguous, 4K aligned and
592 	 * non-cachable to avoid XPU violations.
593 	 *
594 	 * For PIL calls the hypervisor creates SHM Bridges for the blob
595 	 * buffers on behalf of Linux so we must not do it ourselves hence
596 	 * not using the TZMem allocator here.
597 	 *
598 	 * If we pass a buffer that is already part of an SHM Bridge to this
599 	 * call, it will fail.
600 	 */
601 	mdata_buf = dma_alloc_coherent(__scm->dev, size, &mdata_phys,
602 				       GFP_KERNEL);
603 	if (!mdata_buf)
604 		return -ENOMEM;
605 
606 	memcpy(mdata_buf, metadata, size);
607 
608 	ret = qcom_scm_clk_enable();
609 	if (ret)
610 		goto out;
611 
612 	ret = qcom_scm_bw_enable();
613 	if (ret)
614 		goto disable_clk;
615 
616 	desc.args[1] = mdata_phys;
617 
618 	ret = qcom_scm_call(__scm->dev, &desc, &res);
619 	qcom_scm_bw_disable();
620 
621 disable_clk:
622 	qcom_scm_clk_disable();
623 
624 out:
625 	if (ret < 0 || !ctx) {
626 		dma_free_coherent(__scm->dev, size, mdata_buf, mdata_phys);
627 	} else if (ctx) {
628 		ctx->ptr = mdata_buf;
629 		ctx->phys = mdata_phys;
630 		ctx->size = size;
631 	}
632 
633 	return ret ? : res.result[0];
634 }
635 EXPORT_SYMBOL_GPL(qcom_scm_pas_init_image);
636 
637 /**
638  * qcom_scm_pas_metadata_release() - release metadata context
639  * @ctx:	metadata context
640  */
641 void qcom_scm_pas_metadata_release(struct qcom_scm_pas_metadata *ctx)
642 {
643 	if (!ctx->ptr)
644 		return;
645 
646 	dma_free_coherent(__scm->dev, ctx->size, ctx->ptr, ctx->phys);
647 
648 	ctx->ptr = NULL;
649 	ctx->phys = 0;
650 	ctx->size = 0;
651 }
652 EXPORT_SYMBOL_GPL(qcom_scm_pas_metadata_release);
653 
654 /**
655  * qcom_scm_pas_mem_setup() - Prepare the memory related to a given peripheral
656  *			      for firmware loading
657  * @peripheral:	peripheral id
658  * @addr:	start address of memory area to prepare
659  * @size:	size of the memory area to prepare
660  *
661  * Returns 0 on success.
662  */
663 int qcom_scm_pas_mem_setup(u32 peripheral, phys_addr_t addr, phys_addr_t size)
664 {
665 	int ret;
666 	struct qcom_scm_desc desc = {
667 		.svc = QCOM_SCM_SVC_PIL,
668 		.cmd = QCOM_SCM_PIL_PAS_MEM_SETUP,
669 		.arginfo = QCOM_SCM_ARGS(3),
670 		.args[0] = peripheral,
671 		.args[1] = addr,
672 		.args[2] = size,
673 		.owner = ARM_SMCCC_OWNER_SIP,
674 	};
675 	struct qcom_scm_res res;
676 
677 	ret = qcom_scm_clk_enable();
678 	if (ret)
679 		return ret;
680 
681 	ret = qcom_scm_bw_enable();
682 	if (ret)
683 		goto disable_clk;
684 
685 	ret = qcom_scm_call(__scm->dev, &desc, &res);
686 	qcom_scm_bw_disable();
687 
688 disable_clk:
689 	qcom_scm_clk_disable();
690 
691 	return ret ? : res.result[0];
692 }
693 EXPORT_SYMBOL_GPL(qcom_scm_pas_mem_setup);
694 
695 /**
696  * qcom_scm_pas_auth_and_reset() - Authenticate the given peripheral firmware
697  *				   and reset the remote processor
698  * @peripheral:	peripheral id
699  *
700  * Return 0 on success.
701  */
702 int qcom_scm_pas_auth_and_reset(u32 peripheral)
703 {
704 	int ret;
705 	struct qcom_scm_desc desc = {
706 		.svc = QCOM_SCM_SVC_PIL,
707 		.cmd = QCOM_SCM_PIL_PAS_AUTH_AND_RESET,
708 		.arginfo = QCOM_SCM_ARGS(1),
709 		.args[0] = peripheral,
710 		.owner = ARM_SMCCC_OWNER_SIP,
711 	};
712 	struct qcom_scm_res res;
713 
714 	ret = qcom_scm_clk_enable();
715 	if (ret)
716 		return ret;
717 
718 	ret = qcom_scm_bw_enable();
719 	if (ret)
720 		goto disable_clk;
721 
722 	ret = qcom_scm_call(__scm->dev, &desc, &res);
723 	qcom_scm_bw_disable();
724 
725 disable_clk:
726 	qcom_scm_clk_disable();
727 
728 	return ret ? : res.result[0];
729 }
730 EXPORT_SYMBOL_GPL(qcom_scm_pas_auth_and_reset);
731 
732 /**
733  * qcom_scm_pas_shutdown() - Shut down the remote processor
734  * @peripheral: peripheral id
735  *
736  * Returns 0 on success.
737  */
738 int qcom_scm_pas_shutdown(u32 peripheral)
739 {
740 	int ret;
741 	struct qcom_scm_desc desc = {
742 		.svc = QCOM_SCM_SVC_PIL,
743 		.cmd = QCOM_SCM_PIL_PAS_SHUTDOWN,
744 		.arginfo = QCOM_SCM_ARGS(1),
745 		.args[0] = peripheral,
746 		.owner = ARM_SMCCC_OWNER_SIP,
747 	};
748 	struct qcom_scm_res res;
749 
750 	ret = qcom_scm_clk_enable();
751 	if (ret)
752 		return ret;
753 
754 	ret = qcom_scm_bw_enable();
755 	if (ret)
756 		goto disable_clk;
757 
758 	ret = qcom_scm_call(__scm->dev, &desc, &res);
759 	qcom_scm_bw_disable();
760 
761 disable_clk:
762 	qcom_scm_clk_disable();
763 
764 	return ret ? : res.result[0];
765 }
766 EXPORT_SYMBOL_GPL(qcom_scm_pas_shutdown);
767 
768 /**
769  * qcom_scm_pas_supported() - Check if the peripheral authentication service is
770  *			      available for the given peripherial
771  * @peripheral:	peripheral id
772  *
773  * Returns true if PAS is supported for this peripheral, otherwise false.
774  */
775 bool qcom_scm_pas_supported(u32 peripheral)
776 {
777 	int ret;
778 	struct qcom_scm_desc desc = {
779 		.svc = QCOM_SCM_SVC_PIL,
780 		.cmd = QCOM_SCM_PIL_PAS_IS_SUPPORTED,
781 		.arginfo = QCOM_SCM_ARGS(1),
782 		.args[0] = peripheral,
783 		.owner = ARM_SMCCC_OWNER_SIP,
784 	};
785 	struct qcom_scm_res res;
786 
787 	if (!__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_PIL,
788 					  QCOM_SCM_PIL_PAS_IS_SUPPORTED))
789 		return false;
790 
791 	ret = qcom_scm_call(__scm->dev, &desc, &res);
792 
793 	return ret ? false : !!res.result[0];
794 }
795 EXPORT_SYMBOL_GPL(qcom_scm_pas_supported);
796 
797 static int __qcom_scm_pas_mss_reset(struct device *dev, bool reset)
798 {
799 	struct qcom_scm_desc desc = {
800 		.svc = QCOM_SCM_SVC_PIL,
801 		.cmd = QCOM_SCM_PIL_PAS_MSS_RESET,
802 		.arginfo = QCOM_SCM_ARGS(2),
803 		.args[0] = reset,
804 		.args[1] = 0,
805 		.owner = ARM_SMCCC_OWNER_SIP,
806 	};
807 	struct qcom_scm_res res;
808 	int ret;
809 
810 	ret = qcom_scm_call(__scm->dev, &desc, &res);
811 
812 	return ret ? : res.result[0];
813 }
814 
815 static int qcom_scm_pas_reset_assert(struct reset_controller_dev *rcdev,
816 				     unsigned long idx)
817 {
818 	if (idx != 0)
819 		return -EINVAL;
820 
821 	return __qcom_scm_pas_mss_reset(__scm->dev, 1);
822 }
823 
824 static int qcom_scm_pas_reset_deassert(struct reset_controller_dev *rcdev,
825 				       unsigned long idx)
826 {
827 	if (idx != 0)
828 		return -EINVAL;
829 
830 	return __qcom_scm_pas_mss_reset(__scm->dev, 0);
831 }
832 
833 static const struct reset_control_ops qcom_scm_pas_reset_ops = {
834 	.assert = qcom_scm_pas_reset_assert,
835 	.deassert = qcom_scm_pas_reset_deassert,
836 };
837 
838 int qcom_scm_io_readl(phys_addr_t addr, unsigned int *val)
839 {
840 	struct qcom_scm_desc desc = {
841 		.svc = QCOM_SCM_SVC_IO,
842 		.cmd = QCOM_SCM_IO_READ,
843 		.arginfo = QCOM_SCM_ARGS(1),
844 		.args[0] = addr,
845 		.owner = ARM_SMCCC_OWNER_SIP,
846 	};
847 	struct qcom_scm_res res;
848 	int ret;
849 
850 
851 	ret = qcom_scm_call_atomic(__scm->dev, &desc, &res);
852 	if (ret >= 0)
853 		*val = res.result[0];
854 
855 	return ret < 0 ? ret : 0;
856 }
857 EXPORT_SYMBOL_GPL(qcom_scm_io_readl);
858 
859 int qcom_scm_io_writel(phys_addr_t addr, unsigned int val)
860 {
861 	struct qcom_scm_desc desc = {
862 		.svc = QCOM_SCM_SVC_IO,
863 		.cmd = QCOM_SCM_IO_WRITE,
864 		.arginfo = QCOM_SCM_ARGS(2),
865 		.args[0] = addr,
866 		.args[1] = val,
867 		.owner = ARM_SMCCC_OWNER_SIP,
868 	};
869 
870 	return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
871 }
872 EXPORT_SYMBOL_GPL(qcom_scm_io_writel);
873 
874 /**
875  * qcom_scm_restore_sec_cfg_available() - Check if secure environment
876  * supports restore security config interface.
877  *
878  * Return true if restore-cfg interface is supported, false if not.
879  */
880 bool qcom_scm_restore_sec_cfg_available(void)
881 {
882 	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_MP,
883 					    QCOM_SCM_MP_RESTORE_SEC_CFG);
884 }
885 EXPORT_SYMBOL_GPL(qcom_scm_restore_sec_cfg_available);
886 
887 int qcom_scm_restore_sec_cfg(u32 device_id, u32 spare)
888 {
889 	struct qcom_scm_desc desc = {
890 		.svc = QCOM_SCM_SVC_MP,
891 		.cmd = QCOM_SCM_MP_RESTORE_SEC_CFG,
892 		.arginfo = QCOM_SCM_ARGS(2),
893 		.args[0] = device_id,
894 		.args[1] = spare,
895 		.owner = ARM_SMCCC_OWNER_SIP,
896 	};
897 	struct qcom_scm_res res;
898 	int ret;
899 
900 	ret = qcom_scm_call(__scm->dev, &desc, &res);
901 
902 	return ret ? : res.result[0];
903 }
904 EXPORT_SYMBOL_GPL(qcom_scm_restore_sec_cfg);
905 
906 int qcom_scm_iommu_secure_ptbl_size(u32 spare, size_t *size)
907 {
908 	struct qcom_scm_desc desc = {
909 		.svc = QCOM_SCM_SVC_MP,
910 		.cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_SIZE,
911 		.arginfo = QCOM_SCM_ARGS(1),
912 		.args[0] = spare,
913 		.owner = ARM_SMCCC_OWNER_SIP,
914 	};
915 	struct qcom_scm_res res;
916 	int ret;
917 
918 	ret = qcom_scm_call(__scm->dev, &desc, &res);
919 
920 	if (size)
921 		*size = res.result[0];
922 
923 	return ret ? : res.result[1];
924 }
925 EXPORT_SYMBOL_GPL(qcom_scm_iommu_secure_ptbl_size);
926 
927 int qcom_scm_iommu_secure_ptbl_init(u64 addr, u32 size, u32 spare)
928 {
929 	struct qcom_scm_desc desc = {
930 		.svc = QCOM_SCM_SVC_MP,
931 		.cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_INIT,
932 		.arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_RW, QCOM_SCM_VAL,
933 					 QCOM_SCM_VAL),
934 		.args[0] = addr,
935 		.args[1] = size,
936 		.args[2] = spare,
937 		.owner = ARM_SMCCC_OWNER_SIP,
938 	};
939 	int ret;
940 
941 	ret = qcom_scm_call(__scm->dev, &desc, NULL);
942 
943 	/* the pg table has been initialized already, ignore the error */
944 	if (ret == -EPERM)
945 		ret = 0;
946 
947 	return ret;
948 }
949 EXPORT_SYMBOL_GPL(qcom_scm_iommu_secure_ptbl_init);
950 
951 int qcom_scm_iommu_set_cp_pool_size(u32 spare, u32 size)
952 {
953 	struct qcom_scm_desc desc = {
954 		.svc = QCOM_SCM_SVC_MP,
955 		.cmd = QCOM_SCM_MP_IOMMU_SET_CP_POOL_SIZE,
956 		.arginfo = QCOM_SCM_ARGS(2),
957 		.args[0] = size,
958 		.args[1] = spare,
959 		.owner = ARM_SMCCC_OWNER_SIP,
960 	};
961 
962 	return qcom_scm_call(__scm->dev, &desc, NULL);
963 }
964 EXPORT_SYMBOL_GPL(qcom_scm_iommu_set_cp_pool_size);
965 
966 int qcom_scm_mem_protect_video_var(u32 cp_start, u32 cp_size,
967 				   u32 cp_nonpixel_start,
968 				   u32 cp_nonpixel_size)
969 {
970 	int ret;
971 	struct qcom_scm_desc desc = {
972 		.svc = QCOM_SCM_SVC_MP,
973 		.cmd = QCOM_SCM_MP_VIDEO_VAR,
974 		.arginfo = QCOM_SCM_ARGS(4, QCOM_SCM_VAL, QCOM_SCM_VAL,
975 					 QCOM_SCM_VAL, QCOM_SCM_VAL),
976 		.args[0] = cp_start,
977 		.args[1] = cp_size,
978 		.args[2] = cp_nonpixel_start,
979 		.args[3] = cp_nonpixel_size,
980 		.owner = ARM_SMCCC_OWNER_SIP,
981 	};
982 	struct qcom_scm_res res;
983 
984 	ret = qcom_scm_call(__scm->dev, &desc, &res);
985 
986 	return ret ? : res.result[0];
987 }
988 EXPORT_SYMBOL_GPL(qcom_scm_mem_protect_video_var);
989 
990 static int __qcom_scm_assign_mem(struct device *dev, phys_addr_t mem_region,
991 				 size_t mem_sz, phys_addr_t src, size_t src_sz,
992 				 phys_addr_t dest, size_t dest_sz)
993 {
994 	int ret;
995 	struct qcom_scm_desc desc = {
996 		.svc = QCOM_SCM_SVC_MP,
997 		.cmd = QCOM_SCM_MP_ASSIGN,
998 		.arginfo = QCOM_SCM_ARGS(7, QCOM_SCM_RO, QCOM_SCM_VAL,
999 					 QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_RO,
1000 					 QCOM_SCM_VAL, QCOM_SCM_VAL),
1001 		.args[0] = mem_region,
1002 		.args[1] = mem_sz,
1003 		.args[2] = src,
1004 		.args[3] = src_sz,
1005 		.args[4] = dest,
1006 		.args[5] = dest_sz,
1007 		.args[6] = 0,
1008 		.owner = ARM_SMCCC_OWNER_SIP,
1009 	};
1010 	struct qcom_scm_res res;
1011 
1012 	ret = qcom_scm_call(dev, &desc, &res);
1013 
1014 	return ret ? : res.result[0];
1015 }
1016 
1017 /**
1018  * qcom_scm_assign_mem() - Make a secure call to reassign memory ownership
1019  * @mem_addr: mem region whose ownership need to be reassigned
1020  * @mem_sz:   size of the region.
1021  * @srcvm:    vmid for current set of owners, each set bit in
1022  *            flag indicate a unique owner
1023  * @newvm:    array having new owners and corresponding permission
1024  *            flags
1025  * @dest_cnt: number of owners in next set.
1026  *
1027  * Return negative errno on failure or 0 on success with @srcvm updated.
1028  */
1029 int qcom_scm_assign_mem(phys_addr_t mem_addr, size_t mem_sz,
1030 			u64 *srcvm,
1031 			const struct qcom_scm_vmperm *newvm,
1032 			unsigned int dest_cnt)
1033 {
1034 	struct qcom_scm_current_perm_info *destvm;
1035 	struct qcom_scm_mem_map_info *mem_to_map;
1036 	phys_addr_t mem_to_map_phys;
1037 	phys_addr_t dest_phys;
1038 	phys_addr_t ptr_phys;
1039 	size_t mem_to_map_sz;
1040 	size_t dest_sz;
1041 	size_t src_sz;
1042 	size_t ptr_sz;
1043 	int next_vm;
1044 	__le32 *src;
1045 	int ret, i, b;
1046 	u64 srcvm_bits = *srcvm;
1047 
1048 	src_sz = hweight64(srcvm_bits) * sizeof(*src);
1049 	mem_to_map_sz = sizeof(*mem_to_map);
1050 	dest_sz = dest_cnt * sizeof(*destvm);
1051 	ptr_sz = ALIGN(src_sz, SZ_64) + ALIGN(mem_to_map_sz, SZ_64) +
1052 			ALIGN(dest_sz, SZ_64);
1053 
1054 	void *ptr __free(qcom_tzmem) = qcom_tzmem_alloc(__scm->mempool,
1055 							ptr_sz, GFP_KERNEL);
1056 	if (!ptr)
1057 		return -ENOMEM;
1058 
1059 	ptr_phys = qcom_tzmem_to_phys(ptr);
1060 
1061 	/* Fill source vmid detail */
1062 	src = ptr;
1063 	i = 0;
1064 	for (b = 0; b < BITS_PER_TYPE(u64); b++) {
1065 		if (srcvm_bits & BIT(b))
1066 			src[i++] = cpu_to_le32(b);
1067 	}
1068 
1069 	/* Fill details of mem buff to map */
1070 	mem_to_map = ptr + ALIGN(src_sz, SZ_64);
1071 	mem_to_map_phys = ptr_phys + ALIGN(src_sz, SZ_64);
1072 	mem_to_map->mem_addr = cpu_to_le64(mem_addr);
1073 	mem_to_map->mem_size = cpu_to_le64(mem_sz);
1074 
1075 	next_vm = 0;
1076 	/* Fill details of next vmid detail */
1077 	destvm = ptr + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
1078 	dest_phys = ptr_phys + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
1079 	for (i = 0; i < dest_cnt; i++, destvm++, newvm++) {
1080 		destvm->vmid = cpu_to_le32(newvm->vmid);
1081 		destvm->perm = cpu_to_le32(newvm->perm);
1082 		destvm->ctx = 0;
1083 		destvm->ctx_size = 0;
1084 		next_vm |= BIT(newvm->vmid);
1085 	}
1086 
1087 	ret = __qcom_scm_assign_mem(__scm->dev, mem_to_map_phys, mem_to_map_sz,
1088 				    ptr_phys, src_sz, dest_phys, dest_sz);
1089 	if (ret) {
1090 		dev_err(__scm->dev,
1091 			"Assign memory protection call failed %d\n", ret);
1092 		return -EINVAL;
1093 	}
1094 
1095 	*srcvm = next_vm;
1096 	return 0;
1097 }
1098 EXPORT_SYMBOL_GPL(qcom_scm_assign_mem);
1099 
1100 /**
1101  * qcom_scm_ocmem_lock_available() - is OCMEM lock/unlock interface available
1102  */
1103 bool qcom_scm_ocmem_lock_available(void)
1104 {
1105 	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_OCMEM,
1106 					    QCOM_SCM_OCMEM_LOCK_CMD);
1107 }
1108 EXPORT_SYMBOL_GPL(qcom_scm_ocmem_lock_available);
1109 
1110 /**
1111  * qcom_scm_ocmem_lock() - call OCMEM lock interface to assign an OCMEM
1112  * region to the specified initiator
1113  *
1114  * @id:     tz initiator id
1115  * @offset: OCMEM offset
1116  * @size:   OCMEM size
1117  * @mode:   access mode (WIDE/NARROW)
1118  */
1119 int qcom_scm_ocmem_lock(enum qcom_scm_ocmem_client id, u32 offset, u32 size,
1120 			u32 mode)
1121 {
1122 	struct qcom_scm_desc desc = {
1123 		.svc = QCOM_SCM_SVC_OCMEM,
1124 		.cmd = QCOM_SCM_OCMEM_LOCK_CMD,
1125 		.args[0] = id,
1126 		.args[1] = offset,
1127 		.args[2] = size,
1128 		.args[3] = mode,
1129 		.arginfo = QCOM_SCM_ARGS(4),
1130 	};
1131 
1132 	return qcom_scm_call(__scm->dev, &desc, NULL);
1133 }
1134 EXPORT_SYMBOL_GPL(qcom_scm_ocmem_lock);
1135 
1136 /**
1137  * qcom_scm_ocmem_unlock() - call OCMEM unlock interface to release an OCMEM
1138  * region from the specified initiator
1139  *
1140  * @id:     tz initiator id
1141  * @offset: OCMEM offset
1142  * @size:   OCMEM size
1143  */
1144 int qcom_scm_ocmem_unlock(enum qcom_scm_ocmem_client id, u32 offset, u32 size)
1145 {
1146 	struct qcom_scm_desc desc = {
1147 		.svc = QCOM_SCM_SVC_OCMEM,
1148 		.cmd = QCOM_SCM_OCMEM_UNLOCK_CMD,
1149 		.args[0] = id,
1150 		.args[1] = offset,
1151 		.args[2] = size,
1152 		.arginfo = QCOM_SCM_ARGS(3),
1153 	};
1154 
1155 	return qcom_scm_call(__scm->dev, &desc, NULL);
1156 }
1157 EXPORT_SYMBOL_GPL(qcom_scm_ocmem_unlock);
1158 
1159 /**
1160  * qcom_scm_ice_available() - Is the ICE key programming interface available?
1161  *
1162  * Return: true iff the SCM calls wrapped by qcom_scm_ice_invalidate_key() and
1163  *	   qcom_scm_ice_set_key() are available.
1164  */
1165 bool qcom_scm_ice_available(void)
1166 {
1167 	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
1168 					    QCOM_SCM_ES_INVALIDATE_ICE_KEY) &&
1169 		__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
1170 					     QCOM_SCM_ES_CONFIG_SET_ICE_KEY);
1171 }
1172 EXPORT_SYMBOL_GPL(qcom_scm_ice_available);
1173 
1174 /**
1175  * qcom_scm_ice_invalidate_key() - Invalidate an inline encryption key
1176  * @index: the keyslot to invalidate
1177  *
1178  * The UFSHCI and eMMC standards define a standard way to do this, but it
1179  * doesn't work on these SoCs; only this SCM call does.
1180  *
1181  * It is assumed that the SoC has only one ICE instance being used, as this SCM
1182  * call doesn't specify which ICE instance the keyslot belongs to.
1183  *
1184  * Return: 0 on success; -errno on failure.
1185  */
1186 int qcom_scm_ice_invalidate_key(u32 index)
1187 {
1188 	struct qcom_scm_desc desc = {
1189 		.svc = QCOM_SCM_SVC_ES,
1190 		.cmd = QCOM_SCM_ES_INVALIDATE_ICE_KEY,
1191 		.arginfo = QCOM_SCM_ARGS(1),
1192 		.args[0] = index,
1193 		.owner = ARM_SMCCC_OWNER_SIP,
1194 	};
1195 
1196 	return qcom_scm_call(__scm->dev, &desc, NULL);
1197 }
1198 EXPORT_SYMBOL_GPL(qcom_scm_ice_invalidate_key);
1199 
1200 /**
1201  * qcom_scm_ice_set_key() - Set an inline encryption key
1202  * @index: the keyslot into which to set the key
1203  * @key: the key to program
1204  * @key_size: the size of the key in bytes
1205  * @cipher: the encryption algorithm the key is for
1206  * @data_unit_size: the encryption data unit size, i.e. the size of each
1207  *		    individual plaintext and ciphertext.  Given in 512-byte
1208  *		    units, e.g. 1 = 512 bytes, 8 = 4096 bytes, etc.
1209  *
1210  * Program a key into a keyslot of Qualcomm ICE (Inline Crypto Engine), where it
1211  * can then be used to encrypt/decrypt UFS or eMMC I/O requests inline.
1212  *
1213  * The UFSHCI and eMMC standards define a standard way to do this, but it
1214  * doesn't work on these SoCs; only this SCM call does.
1215  *
1216  * It is assumed that the SoC has only one ICE instance being used, as this SCM
1217  * call doesn't specify which ICE instance the keyslot belongs to.
1218  *
1219  * Return: 0 on success; -errno on failure.
1220  */
1221 int qcom_scm_ice_set_key(u32 index, const u8 *key, u32 key_size,
1222 			 enum qcom_scm_ice_cipher cipher, u32 data_unit_size)
1223 {
1224 	struct qcom_scm_desc desc = {
1225 		.svc = QCOM_SCM_SVC_ES,
1226 		.cmd = QCOM_SCM_ES_CONFIG_SET_ICE_KEY,
1227 		.arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_VAL, QCOM_SCM_RW,
1228 					 QCOM_SCM_VAL, QCOM_SCM_VAL,
1229 					 QCOM_SCM_VAL),
1230 		.args[0] = index,
1231 		.args[2] = key_size,
1232 		.args[3] = cipher,
1233 		.args[4] = data_unit_size,
1234 		.owner = ARM_SMCCC_OWNER_SIP,
1235 	};
1236 
1237 	int ret;
1238 
1239 	void *keybuf __free(qcom_tzmem) = qcom_tzmem_alloc(__scm->mempool,
1240 							   key_size,
1241 							   GFP_KERNEL);
1242 	if (!keybuf)
1243 		return -ENOMEM;
1244 	memcpy(keybuf, key, key_size);
1245 	desc.args[1] = qcom_tzmem_to_phys(keybuf);
1246 
1247 	ret = qcom_scm_call(__scm->dev, &desc, NULL);
1248 
1249 	memzero_explicit(keybuf, key_size);
1250 
1251 	return ret;
1252 }
1253 EXPORT_SYMBOL_GPL(qcom_scm_ice_set_key);
1254 
1255 /**
1256  * qcom_scm_hdcp_available() - Check if secure environment supports HDCP.
1257  *
1258  * Return true if HDCP is supported, false if not.
1259  */
1260 bool qcom_scm_hdcp_available(void)
1261 {
1262 	bool avail;
1263 	int ret = qcom_scm_clk_enable();
1264 
1265 	if (ret)
1266 		return ret;
1267 
1268 	avail = __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_HDCP,
1269 						QCOM_SCM_HDCP_INVOKE);
1270 
1271 	qcom_scm_clk_disable();
1272 
1273 	return avail;
1274 }
1275 EXPORT_SYMBOL_GPL(qcom_scm_hdcp_available);
1276 
1277 /**
1278  * qcom_scm_hdcp_req() - Send HDCP request.
1279  * @req: HDCP request array
1280  * @req_cnt: HDCP request array count
1281  * @resp: response buffer passed to SCM
1282  *
1283  * Write HDCP register(s) through SCM.
1284  */
1285 int qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt, u32 *resp)
1286 {
1287 	int ret;
1288 	struct qcom_scm_desc desc = {
1289 		.svc = QCOM_SCM_SVC_HDCP,
1290 		.cmd = QCOM_SCM_HDCP_INVOKE,
1291 		.arginfo = QCOM_SCM_ARGS(10),
1292 		.args = {
1293 			req[0].addr,
1294 			req[0].val,
1295 			req[1].addr,
1296 			req[1].val,
1297 			req[2].addr,
1298 			req[2].val,
1299 			req[3].addr,
1300 			req[3].val,
1301 			req[4].addr,
1302 			req[4].val
1303 		},
1304 		.owner = ARM_SMCCC_OWNER_SIP,
1305 	};
1306 	struct qcom_scm_res res;
1307 
1308 	if (req_cnt > QCOM_SCM_HDCP_MAX_REQ_CNT)
1309 		return -ERANGE;
1310 
1311 	ret = qcom_scm_clk_enable();
1312 	if (ret)
1313 		return ret;
1314 
1315 	ret = qcom_scm_call(__scm->dev, &desc, &res);
1316 	*resp = res.result[0];
1317 
1318 	qcom_scm_clk_disable();
1319 
1320 	return ret;
1321 }
1322 EXPORT_SYMBOL_GPL(qcom_scm_hdcp_req);
1323 
1324 int qcom_scm_iommu_set_pt_format(u32 sec_id, u32 ctx_num, u32 pt_fmt)
1325 {
1326 	struct qcom_scm_desc desc = {
1327 		.svc = QCOM_SCM_SVC_SMMU_PROGRAM,
1328 		.cmd = QCOM_SCM_SMMU_PT_FORMAT,
1329 		.arginfo = QCOM_SCM_ARGS(3),
1330 		.args[0] = sec_id,
1331 		.args[1] = ctx_num,
1332 		.args[2] = pt_fmt, /* 0: LPAE AArch32 - 1: AArch64 */
1333 		.owner = ARM_SMCCC_OWNER_SIP,
1334 	};
1335 
1336 	return qcom_scm_call(__scm->dev, &desc, NULL);
1337 }
1338 EXPORT_SYMBOL_GPL(qcom_scm_iommu_set_pt_format);
1339 
1340 int qcom_scm_qsmmu500_wait_safe_toggle(bool en)
1341 {
1342 	struct qcom_scm_desc desc = {
1343 		.svc = QCOM_SCM_SVC_SMMU_PROGRAM,
1344 		.cmd = QCOM_SCM_SMMU_CONFIG_ERRATA1,
1345 		.arginfo = QCOM_SCM_ARGS(2),
1346 		.args[0] = QCOM_SCM_SMMU_CONFIG_ERRATA1_CLIENT_ALL,
1347 		.args[1] = en,
1348 		.owner = ARM_SMCCC_OWNER_SIP,
1349 	};
1350 
1351 
1352 	return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
1353 }
1354 EXPORT_SYMBOL_GPL(qcom_scm_qsmmu500_wait_safe_toggle);
1355 
1356 bool qcom_scm_lmh_dcvsh_available(void)
1357 {
1358 	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_LMH, QCOM_SCM_LMH_LIMIT_DCVSH);
1359 }
1360 EXPORT_SYMBOL_GPL(qcom_scm_lmh_dcvsh_available);
1361 
1362 int qcom_scm_shm_bridge_enable(void)
1363 {
1364 	struct qcom_scm_desc desc = {
1365 		.svc = QCOM_SCM_SVC_MP,
1366 		.cmd = QCOM_SCM_MP_SHM_BRIDGE_ENABLE,
1367 		.owner = ARM_SMCCC_OWNER_SIP
1368 	};
1369 
1370 	struct qcom_scm_res res;
1371 
1372 	if (!__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_MP,
1373 					  QCOM_SCM_MP_SHM_BRIDGE_ENABLE))
1374 		return -EOPNOTSUPP;
1375 
1376 	return qcom_scm_call(__scm->dev, &desc, &res) ?: res.result[0];
1377 }
1378 EXPORT_SYMBOL_GPL(qcom_scm_shm_bridge_enable);
1379 
1380 int qcom_scm_shm_bridge_create(struct device *dev, u64 pfn_and_ns_perm_flags,
1381 			       u64 ipfn_and_s_perm_flags, u64 size_and_flags,
1382 			       u64 ns_vmids, u64 *handle)
1383 {
1384 	struct qcom_scm_desc desc = {
1385 		.svc = QCOM_SCM_SVC_MP,
1386 		.cmd = QCOM_SCM_MP_SHM_BRIDGE_CREATE,
1387 		.owner = ARM_SMCCC_OWNER_SIP,
1388 		.args[0] = pfn_and_ns_perm_flags,
1389 		.args[1] = ipfn_and_s_perm_flags,
1390 		.args[2] = size_and_flags,
1391 		.args[3] = ns_vmids,
1392 		.arginfo = QCOM_SCM_ARGS(4, QCOM_SCM_VAL, QCOM_SCM_VAL,
1393 					 QCOM_SCM_VAL, QCOM_SCM_VAL),
1394 	};
1395 
1396 	struct qcom_scm_res res;
1397 	int ret;
1398 
1399 	ret = qcom_scm_call(__scm->dev, &desc, &res);
1400 
1401 	if (handle && !ret)
1402 		*handle = res.result[1];
1403 
1404 	return ret ?: res.result[0];
1405 }
1406 EXPORT_SYMBOL_GPL(qcom_scm_shm_bridge_create);
1407 
1408 int qcom_scm_shm_bridge_delete(struct device *dev, u64 handle)
1409 {
1410 	struct qcom_scm_desc desc = {
1411 		.svc = QCOM_SCM_SVC_MP,
1412 		.cmd = QCOM_SCM_MP_SHM_BRIDGE_DELETE,
1413 		.owner = ARM_SMCCC_OWNER_SIP,
1414 		.args[0] = handle,
1415 		.arginfo = QCOM_SCM_ARGS(1, QCOM_SCM_VAL),
1416 	};
1417 
1418 	return qcom_scm_call(__scm->dev, &desc, NULL);
1419 }
1420 EXPORT_SYMBOL_GPL(qcom_scm_shm_bridge_delete);
1421 
1422 int qcom_scm_lmh_profile_change(u32 profile_id)
1423 {
1424 	struct qcom_scm_desc desc = {
1425 		.svc = QCOM_SCM_SVC_LMH,
1426 		.cmd = QCOM_SCM_LMH_LIMIT_PROFILE_CHANGE,
1427 		.arginfo = QCOM_SCM_ARGS(1, QCOM_SCM_VAL),
1428 		.args[0] = profile_id,
1429 		.owner = ARM_SMCCC_OWNER_SIP,
1430 	};
1431 
1432 	return qcom_scm_call(__scm->dev, &desc, NULL);
1433 }
1434 EXPORT_SYMBOL_GPL(qcom_scm_lmh_profile_change);
1435 
1436 int qcom_scm_lmh_dcvsh(u32 payload_fn, u32 payload_reg, u32 payload_val,
1437 		       u64 limit_node, u32 node_id, u64 version)
1438 {
1439 	int ret, payload_size = 5 * sizeof(u32);
1440 
1441 	struct qcom_scm_desc desc = {
1442 		.svc = QCOM_SCM_SVC_LMH,
1443 		.cmd = QCOM_SCM_LMH_LIMIT_DCVSH,
1444 		.arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_VAL,
1445 					QCOM_SCM_VAL, QCOM_SCM_VAL),
1446 		.args[1] = payload_size,
1447 		.args[2] = limit_node,
1448 		.args[3] = node_id,
1449 		.args[4] = version,
1450 		.owner = ARM_SMCCC_OWNER_SIP,
1451 	};
1452 
1453 	u32 *payload_buf __free(qcom_tzmem) = qcom_tzmem_alloc(__scm->mempool,
1454 							       payload_size,
1455 							       GFP_KERNEL);
1456 	if (!payload_buf)
1457 		return -ENOMEM;
1458 
1459 	payload_buf[0] = payload_fn;
1460 	payload_buf[1] = 0;
1461 	payload_buf[2] = payload_reg;
1462 	payload_buf[3] = 1;
1463 	payload_buf[4] = payload_val;
1464 
1465 	desc.args[0] = qcom_tzmem_to_phys(payload_buf);
1466 
1467 	ret = qcom_scm_call(__scm->dev, &desc, NULL);
1468 
1469 	return ret;
1470 }
1471 EXPORT_SYMBOL_GPL(qcom_scm_lmh_dcvsh);
1472 
1473 int qcom_scm_gpu_init_regs(u32 gpu_req)
1474 {
1475 	struct qcom_scm_desc desc = {
1476 		.svc = QCOM_SCM_SVC_GPU,
1477 		.cmd = QCOM_SCM_SVC_GPU_INIT_REGS,
1478 		.arginfo = QCOM_SCM_ARGS(1),
1479 		.args[0] = gpu_req,
1480 		.owner = ARM_SMCCC_OWNER_SIP,
1481 	};
1482 
1483 	return qcom_scm_call(__scm->dev, &desc, NULL);
1484 }
1485 EXPORT_SYMBOL_GPL(qcom_scm_gpu_init_regs);
1486 
1487 static int qcom_scm_find_dload_address(struct device *dev, u64 *addr)
1488 {
1489 	struct device_node *tcsr;
1490 	struct device_node *np = dev->of_node;
1491 	struct resource res;
1492 	u32 offset;
1493 	int ret;
1494 
1495 	tcsr = of_parse_phandle(np, "qcom,dload-mode", 0);
1496 	if (!tcsr)
1497 		return 0;
1498 
1499 	ret = of_address_to_resource(tcsr, 0, &res);
1500 	of_node_put(tcsr);
1501 	if (ret)
1502 		return ret;
1503 
1504 	ret = of_property_read_u32_index(np, "qcom,dload-mode", 1, &offset);
1505 	if (ret < 0)
1506 		return ret;
1507 
1508 	*addr = res.start + offset;
1509 
1510 	return 0;
1511 }
1512 
1513 #ifdef CONFIG_QCOM_QSEECOM
1514 
1515 /* Lock for QSEECOM SCM call executions */
1516 static DEFINE_MUTEX(qcom_scm_qseecom_call_lock);
1517 
1518 static int __qcom_scm_qseecom_call(const struct qcom_scm_desc *desc,
1519 				   struct qcom_scm_qseecom_resp *res)
1520 {
1521 	struct qcom_scm_res scm_res = {};
1522 	int status;
1523 
1524 	/*
1525 	 * QSEECOM SCM calls should not be executed concurrently. Therefore, we
1526 	 * require the respective call lock to be held.
1527 	 */
1528 	lockdep_assert_held(&qcom_scm_qseecom_call_lock);
1529 
1530 	status = qcom_scm_call(__scm->dev, desc, &scm_res);
1531 
1532 	res->result = scm_res.result[0];
1533 	res->resp_type = scm_res.result[1];
1534 	res->data = scm_res.result[2];
1535 
1536 	if (status)
1537 		return status;
1538 
1539 	return 0;
1540 }
1541 
1542 /**
1543  * qcom_scm_qseecom_call() - Perform a QSEECOM SCM call.
1544  * @desc: SCM call descriptor.
1545  * @res:  SCM call response (output).
1546  *
1547  * Performs the QSEECOM SCM call described by @desc, returning the response in
1548  * @rsp.
1549  *
1550  * Return: Zero on success, nonzero on failure.
1551  */
1552 static int qcom_scm_qseecom_call(const struct qcom_scm_desc *desc,
1553 				 struct qcom_scm_qseecom_resp *res)
1554 {
1555 	int status;
1556 
1557 	/*
1558 	 * Note: Multiple QSEECOM SCM calls should not be executed same time,
1559 	 * so lock things here. This needs to be extended to callback/listener
1560 	 * handling when support for that is implemented.
1561 	 */
1562 
1563 	mutex_lock(&qcom_scm_qseecom_call_lock);
1564 	status = __qcom_scm_qseecom_call(desc, res);
1565 	mutex_unlock(&qcom_scm_qseecom_call_lock);
1566 
1567 	dev_dbg(__scm->dev, "%s: owner=%x, svc=%x, cmd=%x, result=%lld, type=%llx, data=%llx\n",
1568 		__func__, desc->owner, desc->svc, desc->cmd, res->result,
1569 		res->resp_type, res->data);
1570 
1571 	if (status) {
1572 		dev_err(__scm->dev, "qseecom: scm call failed with error %d\n", status);
1573 		return status;
1574 	}
1575 
1576 	/*
1577 	 * TODO: Handle incomplete and blocked calls:
1578 	 *
1579 	 * Incomplete and blocked calls are not supported yet. Some devices
1580 	 * and/or commands require those, some don't. Let's warn about them
1581 	 * prominently in case someone attempts to try these commands with a
1582 	 * device/command combination that isn't supported yet.
1583 	 */
1584 	WARN_ON(res->result == QSEECOM_RESULT_INCOMPLETE);
1585 	WARN_ON(res->result == QSEECOM_RESULT_BLOCKED_ON_LISTENER);
1586 
1587 	return 0;
1588 }
1589 
1590 /**
1591  * qcom_scm_qseecom_get_version() - Query the QSEECOM version.
1592  * @version: Pointer where the QSEECOM version will be stored.
1593  *
1594  * Performs the QSEECOM SCM querying the QSEECOM version currently running in
1595  * the TrustZone.
1596  *
1597  * Return: Zero on success, nonzero on failure.
1598  */
1599 static int qcom_scm_qseecom_get_version(u32 *version)
1600 {
1601 	struct qcom_scm_desc desc = {};
1602 	struct qcom_scm_qseecom_resp res = {};
1603 	u32 feature = 10;
1604 	int ret;
1605 
1606 	desc.owner = QSEECOM_TZ_OWNER_SIP;
1607 	desc.svc = QSEECOM_TZ_SVC_INFO;
1608 	desc.cmd = QSEECOM_TZ_CMD_INFO_VERSION;
1609 	desc.arginfo = QCOM_SCM_ARGS(1, QCOM_SCM_VAL);
1610 	desc.args[0] = feature;
1611 
1612 	ret = qcom_scm_qseecom_call(&desc, &res);
1613 	if (ret)
1614 		return ret;
1615 
1616 	*version = res.result;
1617 	return 0;
1618 }
1619 
1620 /**
1621  * qcom_scm_qseecom_app_get_id() - Query the app ID for a given QSEE app name.
1622  * @app_name: The name of the app.
1623  * @app_id:   The returned app ID.
1624  *
1625  * Query and return the application ID of the SEE app identified by the given
1626  * name. This returned ID is the unique identifier of the app required for
1627  * subsequent communication.
1628  *
1629  * Return: Zero on success, nonzero on failure, -ENOENT if the app has not been
1630  * loaded or could not be found.
1631  */
1632 int qcom_scm_qseecom_app_get_id(const char *app_name, u32 *app_id)
1633 {
1634 	unsigned long name_buf_size = QSEECOM_MAX_APP_NAME_SIZE;
1635 	unsigned long app_name_len = strlen(app_name);
1636 	struct qcom_scm_desc desc = {};
1637 	struct qcom_scm_qseecom_resp res = {};
1638 	int status;
1639 
1640 	if (app_name_len >= name_buf_size)
1641 		return -EINVAL;
1642 
1643 	char *name_buf __free(qcom_tzmem) = qcom_tzmem_alloc(__scm->mempool,
1644 							     name_buf_size,
1645 							     GFP_KERNEL);
1646 	if (!name_buf)
1647 		return -ENOMEM;
1648 
1649 	memcpy(name_buf, app_name, app_name_len);
1650 
1651 	desc.owner = QSEECOM_TZ_OWNER_QSEE_OS;
1652 	desc.svc = QSEECOM_TZ_SVC_APP_MGR;
1653 	desc.cmd = QSEECOM_TZ_CMD_APP_LOOKUP;
1654 	desc.arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_RW, QCOM_SCM_VAL);
1655 	desc.args[0] = qcom_tzmem_to_phys(name_buf);
1656 	desc.args[1] = app_name_len;
1657 
1658 	status = qcom_scm_qseecom_call(&desc, &res);
1659 
1660 	if (status)
1661 		return status;
1662 
1663 	if (res.result == QSEECOM_RESULT_FAILURE)
1664 		return -ENOENT;
1665 
1666 	if (res.result != QSEECOM_RESULT_SUCCESS)
1667 		return -EINVAL;
1668 
1669 	if (res.resp_type != QSEECOM_SCM_RES_APP_ID)
1670 		return -EINVAL;
1671 
1672 	*app_id = res.data;
1673 	return 0;
1674 }
1675 EXPORT_SYMBOL_GPL(qcom_scm_qseecom_app_get_id);
1676 
1677 /**
1678  * qcom_scm_qseecom_app_send() - Send to and receive data from a given QSEE app.
1679  * @app_id:   The ID of the target app.
1680  * @req:      Request buffer sent to the app (must be TZ memory)
1681  * @req_size: Size of the request buffer.
1682  * @rsp:      Response buffer, written to by the app (must be TZ memory)
1683  * @rsp_size: Size of the response buffer.
1684  *
1685  * Sends a request to the QSEE app associated with the given ID and read back
1686  * its response. The caller must provide two DMA memory regions, one for the
1687  * request and one for the response, and fill out the @req region with the
1688  * respective (app-specific) request data. The QSEE app reads this and returns
1689  * its response in the @rsp region.
1690  *
1691  * Return: Zero on success, nonzero on failure.
1692  */
1693 int qcom_scm_qseecom_app_send(u32 app_id, void *req, size_t req_size,
1694 			      void *rsp, size_t rsp_size)
1695 {
1696 	struct qcom_scm_qseecom_resp res = {};
1697 	struct qcom_scm_desc desc = {};
1698 	phys_addr_t req_phys;
1699 	phys_addr_t rsp_phys;
1700 	int status;
1701 
1702 	req_phys = qcom_tzmem_to_phys(req);
1703 	rsp_phys = qcom_tzmem_to_phys(rsp);
1704 
1705 	desc.owner = QSEECOM_TZ_OWNER_TZ_APPS;
1706 	desc.svc = QSEECOM_TZ_SVC_APP_ID_PLACEHOLDER;
1707 	desc.cmd = QSEECOM_TZ_CMD_APP_SEND;
1708 	desc.arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_VAL,
1709 				     QCOM_SCM_RW, QCOM_SCM_VAL,
1710 				     QCOM_SCM_RW, QCOM_SCM_VAL);
1711 	desc.args[0] = app_id;
1712 	desc.args[1] = req_phys;
1713 	desc.args[2] = req_size;
1714 	desc.args[3] = rsp_phys;
1715 	desc.args[4] = rsp_size;
1716 
1717 	status = qcom_scm_qseecom_call(&desc, &res);
1718 
1719 	if (status)
1720 		return status;
1721 
1722 	if (res.result != QSEECOM_RESULT_SUCCESS)
1723 		return -EIO;
1724 
1725 	return 0;
1726 }
1727 EXPORT_SYMBOL_GPL(qcom_scm_qseecom_app_send);
1728 
1729 /*
1730  * We do not yet support re-entrant calls via the qseecom interface. To prevent
1731  + any potential issues with this, only allow validated machines for now.
1732  */
1733 static const struct of_device_id qcom_scm_qseecom_allowlist[] __maybe_unused = {
1734 	{ .compatible = "lenovo,flex-5g" },
1735 	{ .compatible = "lenovo,thinkpad-t14s" },
1736 	{ .compatible = "lenovo,thinkpad-x13s", },
1737 	{ .compatible = "microsoft,romulus13", },
1738 	{ .compatible = "microsoft,romulus15", },
1739 	{ .compatible = "qcom,sc8180x-primus" },
1740 	{ .compatible = "qcom,x1e80100-crd" },
1741 	{ .compatible = "qcom,x1e80100-qcp" },
1742 	{ }
1743 };
1744 
1745 static bool qcom_scm_qseecom_machine_is_allowed(void)
1746 {
1747 	struct device_node *np;
1748 	bool match;
1749 
1750 	np = of_find_node_by_path("/");
1751 	if (!np)
1752 		return false;
1753 
1754 	match = of_match_node(qcom_scm_qseecom_allowlist, np);
1755 	of_node_put(np);
1756 
1757 	return match;
1758 }
1759 
1760 static void qcom_scm_qseecom_free(void *data)
1761 {
1762 	struct platform_device *qseecom_dev = data;
1763 
1764 	platform_device_del(qseecom_dev);
1765 	platform_device_put(qseecom_dev);
1766 }
1767 
1768 static int qcom_scm_qseecom_init(struct qcom_scm *scm)
1769 {
1770 	struct platform_device *qseecom_dev;
1771 	u32 version;
1772 	int ret;
1773 
1774 	/*
1775 	 * Note: We do two steps of validation here: First, we try to query the
1776 	 * QSEECOM version as a check to see if the interface exists on this
1777 	 * device. Second, we check against known good devices due to current
1778 	 * driver limitations (see comment in qcom_scm_qseecom_allowlist).
1779 	 *
1780 	 * Note that we deliberately do the machine check after the version
1781 	 * check so that we can log potentially supported devices. This should
1782 	 * be safe as downstream sources indicate that the version query is
1783 	 * neither blocking nor reentrant.
1784 	 */
1785 	ret = qcom_scm_qseecom_get_version(&version);
1786 	if (ret)
1787 		return 0;
1788 
1789 	dev_info(scm->dev, "qseecom: found qseecom with version 0x%x\n", version);
1790 
1791 	if (!qcom_scm_qseecom_machine_is_allowed()) {
1792 		dev_info(scm->dev, "qseecom: untested machine, skipping\n");
1793 		return 0;
1794 	}
1795 
1796 	/*
1797 	 * Set up QSEECOM interface device. All application clients will be
1798 	 * set up and managed by the corresponding driver for it.
1799 	 */
1800 	qseecom_dev = platform_device_alloc("qcom_qseecom", -1);
1801 	if (!qseecom_dev)
1802 		return -ENOMEM;
1803 
1804 	qseecom_dev->dev.parent = scm->dev;
1805 
1806 	ret = platform_device_add(qseecom_dev);
1807 	if (ret) {
1808 		platform_device_put(qseecom_dev);
1809 		return ret;
1810 	}
1811 
1812 	return devm_add_action_or_reset(scm->dev, qcom_scm_qseecom_free, qseecom_dev);
1813 }
1814 
1815 #else /* CONFIG_QCOM_QSEECOM */
1816 
1817 static int qcom_scm_qseecom_init(struct qcom_scm *scm)
1818 {
1819 	return 0;
1820 }
1821 
1822 #endif /* CONFIG_QCOM_QSEECOM */
1823 
1824 /**
1825  * qcom_scm_is_available() - Checks if SCM is available
1826  */
1827 bool qcom_scm_is_available(void)
1828 {
1829 	return !!READ_ONCE(__scm);
1830 }
1831 EXPORT_SYMBOL_GPL(qcom_scm_is_available);
1832 
1833 static int qcom_scm_assert_valid_wq_ctx(u32 wq_ctx)
1834 {
1835 	/* FW currently only supports a single wq_ctx (zero).
1836 	 * TODO: Update this logic to include dynamic allocation and lookup of
1837 	 * completion structs when FW supports more wq_ctx values.
1838 	 */
1839 	if (wq_ctx != 0) {
1840 		dev_err(__scm->dev, "Firmware unexpectedly passed non-zero wq_ctx\n");
1841 		return -EINVAL;
1842 	}
1843 
1844 	return 0;
1845 }
1846 
1847 int qcom_scm_wait_for_wq_completion(u32 wq_ctx)
1848 {
1849 	int ret;
1850 
1851 	ret = qcom_scm_assert_valid_wq_ctx(wq_ctx);
1852 	if (ret)
1853 		return ret;
1854 
1855 	wait_for_completion(&__scm->waitq_comp);
1856 
1857 	return 0;
1858 }
1859 
1860 static int qcom_scm_waitq_wakeup(unsigned int wq_ctx)
1861 {
1862 	int ret;
1863 
1864 	ret = qcom_scm_assert_valid_wq_ctx(wq_ctx);
1865 	if (ret)
1866 		return ret;
1867 
1868 	complete(&__scm->waitq_comp);
1869 
1870 	return 0;
1871 }
1872 
1873 static irqreturn_t qcom_scm_irq_handler(int irq, void *data)
1874 {
1875 	int ret;
1876 	struct qcom_scm *scm = data;
1877 	u32 wq_ctx, flags, more_pending = 0;
1878 
1879 	do {
1880 		ret = scm_get_wq_ctx(&wq_ctx, &flags, &more_pending);
1881 		if (ret) {
1882 			dev_err(scm->dev, "GET_WQ_CTX SMC call failed: %d\n", ret);
1883 			goto out;
1884 		}
1885 
1886 		if (flags != QCOM_SMC_WAITQ_FLAG_WAKE_ONE) {
1887 			dev_err(scm->dev, "Invalid flags received for wq_ctx: %u\n", flags);
1888 			goto out;
1889 		}
1890 
1891 		ret = qcom_scm_waitq_wakeup(wq_ctx);
1892 		if (ret)
1893 			goto out;
1894 	} while (more_pending);
1895 
1896 out:
1897 	return IRQ_HANDLED;
1898 }
1899 
1900 static int get_download_mode(char *buffer, const struct kernel_param *kp)
1901 {
1902 	if (download_mode >= ARRAY_SIZE(download_mode_name))
1903 		return sysfs_emit(buffer, "unknown mode\n");
1904 
1905 	return sysfs_emit(buffer, "%s\n", download_mode_name[download_mode]);
1906 }
1907 
1908 static int set_download_mode(const char *val, const struct kernel_param *kp)
1909 {
1910 	bool tmp;
1911 	int ret;
1912 
1913 	ret = sysfs_match_string(download_mode_name, val);
1914 	if (ret < 0) {
1915 		ret = kstrtobool(val, &tmp);
1916 		if (ret < 0) {
1917 			pr_err("qcom_scm: err: %d\n", ret);
1918 			return ret;
1919 		}
1920 
1921 		ret = tmp ? 1 : 0;
1922 	}
1923 
1924 	download_mode = ret;
1925 	if (__scm)
1926 		qcom_scm_set_download_mode(download_mode);
1927 
1928 	return 0;
1929 }
1930 
1931 static const struct kernel_param_ops download_mode_param_ops = {
1932 	.get = get_download_mode,
1933 	.set = set_download_mode,
1934 };
1935 
1936 module_param_cb(download_mode, &download_mode_param_ops, NULL, 0644);
1937 MODULE_PARM_DESC(download_mode, "download mode: off/0/N for no dump mode, full/on/1/Y for full dump mode, mini for minidump mode and full,mini for both full and minidump mode together are acceptable values");
1938 
1939 static int qcom_scm_probe(struct platform_device *pdev)
1940 {
1941 	struct qcom_tzmem_pool_config pool_config;
1942 	struct qcom_scm *scm;
1943 	int irq, ret;
1944 
1945 	scm = devm_kzalloc(&pdev->dev, sizeof(*scm), GFP_KERNEL);
1946 	if (!scm)
1947 		return -ENOMEM;
1948 
1949 	scm->dev = &pdev->dev;
1950 	ret = qcom_scm_find_dload_address(&pdev->dev, &scm->dload_mode_addr);
1951 	if (ret < 0)
1952 		return ret;
1953 
1954 	init_completion(&scm->waitq_comp);
1955 	mutex_init(&scm->scm_bw_lock);
1956 
1957 	scm->path = devm_of_icc_get(&pdev->dev, NULL);
1958 	if (IS_ERR(scm->path))
1959 		return dev_err_probe(&pdev->dev, PTR_ERR(scm->path),
1960 				     "failed to acquire interconnect path\n");
1961 
1962 	scm->core_clk = devm_clk_get_optional(&pdev->dev, "core");
1963 	if (IS_ERR(scm->core_clk))
1964 		return PTR_ERR(scm->core_clk);
1965 
1966 	scm->iface_clk = devm_clk_get_optional(&pdev->dev, "iface");
1967 	if (IS_ERR(scm->iface_clk))
1968 		return PTR_ERR(scm->iface_clk);
1969 
1970 	scm->bus_clk = devm_clk_get_optional(&pdev->dev, "bus");
1971 	if (IS_ERR(scm->bus_clk))
1972 		return PTR_ERR(scm->bus_clk);
1973 
1974 	scm->reset.ops = &qcom_scm_pas_reset_ops;
1975 	scm->reset.nr_resets = 1;
1976 	scm->reset.of_node = pdev->dev.of_node;
1977 	ret = devm_reset_controller_register(&pdev->dev, &scm->reset);
1978 	if (ret)
1979 		return ret;
1980 
1981 	/* vote for max clk rate for highest performance */
1982 	ret = clk_set_rate(scm->core_clk, INT_MAX);
1983 	if (ret)
1984 		return ret;
1985 
1986 	/* Let all above stores be available after this */
1987 	smp_store_release(&__scm, scm);
1988 
1989 	irq = platform_get_irq_optional(pdev, 0);
1990 	if (irq < 0) {
1991 		if (irq != -ENXIO)
1992 			return irq;
1993 	} else {
1994 		ret = devm_request_threaded_irq(__scm->dev, irq, NULL, qcom_scm_irq_handler,
1995 						IRQF_ONESHOT, "qcom-scm", __scm);
1996 		if (ret < 0)
1997 			return dev_err_probe(scm->dev, ret, "Failed to request qcom-scm irq\n");
1998 	}
1999 
2000 	__get_convention();
2001 
2002 	/*
2003 	 * If "download mode" is requested, from this point on warmboot
2004 	 * will cause the boot stages to enter download mode, unless
2005 	 * disabled below by a clean shutdown/reboot.
2006 	 */
2007 	qcom_scm_set_download_mode(download_mode);
2008 
2009 	/*
2010 	 * Disable SDI if indicated by DT that it is enabled by default.
2011 	 */
2012 	if (of_property_read_bool(pdev->dev.of_node, "qcom,sdi-enabled") || !download_mode)
2013 		qcom_scm_disable_sdi();
2014 
2015 	ret = of_reserved_mem_device_init(__scm->dev);
2016 	if (ret && ret != -ENODEV)
2017 		return dev_err_probe(__scm->dev, ret,
2018 				     "Failed to setup the reserved memory region for TZ mem\n");
2019 
2020 	ret = qcom_tzmem_enable(__scm->dev);
2021 	if (ret)
2022 		return dev_err_probe(__scm->dev, ret,
2023 				     "Failed to enable the TrustZone memory allocator\n");
2024 
2025 	memset(&pool_config, 0, sizeof(pool_config));
2026 	pool_config.initial_size = 0;
2027 	pool_config.policy = QCOM_TZMEM_POLICY_ON_DEMAND;
2028 	pool_config.max_size = SZ_256K;
2029 
2030 	__scm->mempool = devm_qcom_tzmem_pool_new(__scm->dev, &pool_config);
2031 	if (IS_ERR(__scm->mempool))
2032 		return dev_err_probe(__scm->dev, PTR_ERR(__scm->mempool),
2033 				     "Failed to create the SCM memory pool\n");
2034 
2035 	/*
2036 	 * Initialize the QSEECOM interface.
2037 	 *
2038 	 * Note: QSEECOM is fairly self-contained and this only adds the
2039 	 * interface device (the driver of which does most of the heavy
2040 	 * lifting). So any errors returned here should be either -ENOMEM or
2041 	 * -EINVAL (with the latter only in case there's a bug in our code).
2042 	 * This means that there is no need to bring down the whole SCM driver.
2043 	 * Just log the error instead and let SCM live.
2044 	 */
2045 	ret = qcom_scm_qseecom_init(scm);
2046 	WARN(ret < 0, "failed to initialize qseecom: %d\n", ret);
2047 
2048 	return 0;
2049 }
2050 
2051 static void qcom_scm_shutdown(struct platform_device *pdev)
2052 {
2053 	/* Clean shutdown, disable download mode to allow normal restart */
2054 	qcom_scm_set_download_mode(QCOM_DLOAD_NODUMP);
2055 }
2056 
2057 static const struct of_device_id qcom_scm_dt_match[] = {
2058 	{ .compatible = "qcom,scm" },
2059 
2060 	/* Legacy entries kept for backwards compatibility */
2061 	{ .compatible = "qcom,scm-apq8064" },
2062 	{ .compatible = "qcom,scm-apq8084" },
2063 	{ .compatible = "qcom,scm-ipq4019" },
2064 	{ .compatible = "qcom,scm-msm8953" },
2065 	{ .compatible = "qcom,scm-msm8974" },
2066 	{ .compatible = "qcom,scm-msm8996" },
2067 	{}
2068 };
2069 MODULE_DEVICE_TABLE(of, qcom_scm_dt_match);
2070 
2071 static struct platform_driver qcom_scm_driver = {
2072 	.driver = {
2073 		.name	= "qcom_scm",
2074 		.of_match_table = qcom_scm_dt_match,
2075 		.suppress_bind_attrs = true,
2076 	},
2077 	.probe = qcom_scm_probe,
2078 	.shutdown = qcom_scm_shutdown,
2079 };
2080 
2081 static int __init qcom_scm_init(void)
2082 {
2083 	return platform_driver_register(&qcom_scm_driver);
2084 }
2085 subsys_initcall(qcom_scm_init);
2086 
2087 MODULE_DESCRIPTION("Qualcomm Technologies, Inc. SCM driver");
2088 MODULE_LICENSE("GPL v2");
2089