xref: /linux/drivers/firmware/qcom/qcom_scm.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2010,2015,2019 The Linux Foundation. All rights reserved.
3  * Copyright (C) 2015 Linaro Ltd.
4  */
5 
6 #include <linux/arm-smccc.h>
7 #include <linux/bitfield.h>
8 #include <linux/bits.h>
9 #include <linux/cleanup.h>
10 #include <linux/clk.h>
11 #include <linux/completion.h>
12 #include <linux/cpumask.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/err.h>
15 #include <linux/export.h>
16 #include <linux/firmware/qcom/qcom_scm.h>
17 #include <linux/firmware/qcom/qcom_tzmem.h>
18 #include <linux/init.h>
19 #include <linux/interconnect.h>
20 #include <linux/interrupt.h>
21 #include <linux/kstrtox.h>
22 #include <linux/module.h>
23 #include <linux/of.h>
24 #include <linux/of_address.h>
25 #include <linux/of_irq.h>
26 #include <linux/of_platform.h>
27 #include <linux/of_reserved_mem.h>
28 #include <linux/platform_device.h>
29 #include <linux/reset-controller.h>
30 #include <linux/sizes.h>
31 #include <linux/types.h>
32 
33 #include "qcom_scm.h"
34 #include "qcom_tzmem.h"
35 
36 static u32 download_mode;
37 
38 struct qcom_scm {
39 	struct device *dev;
40 	struct clk *core_clk;
41 	struct clk *iface_clk;
42 	struct clk *bus_clk;
43 	struct icc_path *path;
44 	struct completion waitq_comp;
45 	struct reset_controller_dev reset;
46 
47 	/* control access to the interconnect path */
48 	struct mutex scm_bw_lock;
49 	int scm_vote_count;
50 
51 	u64 dload_mode_addr;
52 
53 	struct qcom_tzmem_pool *mempool;
54 };
55 
56 struct qcom_scm_current_perm_info {
57 	__le32 vmid;
58 	__le32 perm;
59 	__le64 ctx;
60 	__le32 ctx_size;
61 	__le32 unused;
62 };
63 
64 struct qcom_scm_mem_map_info {
65 	__le64 mem_addr;
66 	__le64 mem_size;
67 };
68 
69 /**
70  * struct qcom_scm_qseecom_resp - QSEECOM SCM call response.
71  * @result:    Result or status of the SCM call. See &enum qcom_scm_qseecom_result.
72  * @resp_type: Type of the response. See &enum qcom_scm_qseecom_resp_type.
73  * @data:      Response data. The type of this data is given in @resp_type.
74  */
75 struct qcom_scm_qseecom_resp {
76 	u64 result;
77 	u64 resp_type;
78 	u64 data;
79 };
80 
81 enum qcom_scm_qseecom_result {
82 	QSEECOM_RESULT_SUCCESS			= 0,
83 	QSEECOM_RESULT_INCOMPLETE		= 1,
84 	QSEECOM_RESULT_BLOCKED_ON_LISTENER	= 2,
85 	QSEECOM_RESULT_FAILURE			= 0xFFFFFFFF,
86 };
87 
88 enum qcom_scm_qseecom_resp_type {
89 	QSEECOM_SCM_RES_APP_ID			= 0xEE01,
90 	QSEECOM_SCM_RES_QSEOS_LISTENER_ID	= 0xEE02,
91 };
92 
93 enum qcom_scm_qseecom_tz_owner {
94 	QSEECOM_TZ_OWNER_SIP			= 2,
95 	QSEECOM_TZ_OWNER_TZ_APPS		= 48,
96 	QSEECOM_TZ_OWNER_QSEE_OS		= 50
97 };
98 
99 enum qcom_scm_qseecom_tz_svc {
100 	QSEECOM_TZ_SVC_APP_ID_PLACEHOLDER	= 0,
101 	QSEECOM_TZ_SVC_APP_MGR			= 1,
102 	QSEECOM_TZ_SVC_INFO			= 6,
103 };
104 
105 enum qcom_scm_qseecom_tz_cmd_app {
106 	QSEECOM_TZ_CMD_APP_SEND			= 1,
107 	QSEECOM_TZ_CMD_APP_LOOKUP		= 3,
108 };
109 
110 enum qcom_scm_qseecom_tz_cmd_info {
111 	QSEECOM_TZ_CMD_INFO_VERSION		= 3,
112 };
113 
114 #define QSEECOM_MAX_APP_NAME_SIZE		64
115 #define SHMBRIDGE_RESULT_NOTSUPP		4
116 
117 /* Each bit configures cold/warm boot address for one of the 4 CPUs */
118 static const u8 qcom_scm_cpu_cold_bits[QCOM_SCM_BOOT_MAX_CPUS] = {
119 	0, BIT(0), BIT(3), BIT(5)
120 };
121 static const u8 qcom_scm_cpu_warm_bits[QCOM_SCM_BOOT_MAX_CPUS] = {
122 	BIT(2), BIT(1), BIT(4), BIT(6)
123 };
124 
125 #define QCOM_SMC_WAITQ_FLAG_WAKE_ONE	BIT(0)
126 
127 #define QCOM_DLOAD_MASK		GENMASK(5, 4)
128 #define QCOM_DLOAD_NODUMP	0
129 #define QCOM_DLOAD_FULLDUMP	1
130 #define QCOM_DLOAD_MINIDUMP	2
131 #define QCOM_DLOAD_BOTHDUMP	3
132 
133 static const char * const qcom_scm_convention_names[] = {
134 	[SMC_CONVENTION_UNKNOWN] = "unknown",
135 	[SMC_CONVENTION_ARM_32] = "smc arm 32",
136 	[SMC_CONVENTION_ARM_64] = "smc arm 64",
137 	[SMC_CONVENTION_LEGACY] = "smc legacy",
138 };
139 
140 static const char * const download_mode_name[] = {
141 	[QCOM_DLOAD_NODUMP]	= "off",
142 	[QCOM_DLOAD_FULLDUMP]	= "full",
143 	[QCOM_DLOAD_MINIDUMP]	= "mini",
144 	[QCOM_DLOAD_BOTHDUMP]	= "full,mini",
145 };
146 
147 static struct qcom_scm *__scm;
148 
149 static int qcom_scm_clk_enable(void)
150 {
151 	int ret;
152 
153 	ret = clk_prepare_enable(__scm->core_clk);
154 	if (ret)
155 		goto bail;
156 
157 	ret = clk_prepare_enable(__scm->iface_clk);
158 	if (ret)
159 		goto disable_core;
160 
161 	ret = clk_prepare_enable(__scm->bus_clk);
162 	if (ret)
163 		goto disable_iface;
164 
165 	return 0;
166 
167 disable_iface:
168 	clk_disable_unprepare(__scm->iface_clk);
169 disable_core:
170 	clk_disable_unprepare(__scm->core_clk);
171 bail:
172 	return ret;
173 }
174 
175 static void qcom_scm_clk_disable(void)
176 {
177 	clk_disable_unprepare(__scm->core_clk);
178 	clk_disable_unprepare(__scm->iface_clk);
179 	clk_disable_unprepare(__scm->bus_clk);
180 }
181 
182 static int qcom_scm_bw_enable(void)
183 {
184 	int ret = 0;
185 
186 	if (!__scm->path)
187 		return 0;
188 
189 	mutex_lock(&__scm->scm_bw_lock);
190 	if (!__scm->scm_vote_count) {
191 		ret = icc_set_bw(__scm->path, 0, UINT_MAX);
192 		if (ret < 0) {
193 			dev_err(__scm->dev, "failed to set bandwidth request\n");
194 			goto err_bw;
195 		}
196 	}
197 	__scm->scm_vote_count++;
198 err_bw:
199 	mutex_unlock(&__scm->scm_bw_lock);
200 
201 	return ret;
202 }
203 
204 static void qcom_scm_bw_disable(void)
205 {
206 	if (!__scm->path)
207 		return;
208 
209 	mutex_lock(&__scm->scm_bw_lock);
210 	if (__scm->scm_vote_count-- == 1)
211 		icc_set_bw(__scm->path, 0, 0);
212 	mutex_unlock(&__scm->scm_bw_lock);
213 }
214 
215 enum qcom_scm_convention qcom_scm_convention = SMC_CONVENTION_UNKNOWN;
216 static DEFINE_SPINLOCK(scm_query_lock);
217 
218 struct qcom_tzmem_pool *qcom_scm_get_tzmem_pool(void)
219 {
220 	return __scm ? __scm->mempool : NULL;
221 }
222 
223 static enum qcom_scm_convention __get_convention(void)
224 {
225 	unsigned long flags;
226 	struct qcom_scm_desc desc = {
227 		.svc = QCOM_SCM_SVC_INFO,
228 		.cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
229 		.args[0] = SCM_SMC_FNID(QCOM_SCM_SVC_INFO,
230 					   QCOM_SCM_INFO_IS_CALL_AVAIL) |
231 			   (ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT),
232 		.arginfo = QCOM_SCM_ARGS(1),
233 		.owner = ARM_SMCCC_OWNER_SIP,
234 	};
235 	struct qcom_scm_res res;
236 	enum qcom_scm_convention probed_convention;
237 	int ret;
238 	bool forced = false;
239 
240 	if (likely(qcom_scm_convention != SMC_CONVENTION_UNKNOWN))
241 		return qcom_scm_convention;
242 
243 	/*
244 	 * Per the "SMC calling convention specification", the 64-bit calling
245 	 * convention can only be used when the client is 64-bit, otherwise
246 	 * system will encounter the undefined behaviour.
247 	 */
248 #if IS_ENABLED(CONFIG_ARM64)
249 	/*
250 	 * Device isn't required as there is only one argument - no device
251 	 * needed to dma_map_single to secure world
252 	 */
253 	probed_convention = SMC_CONVENTION_ARM_64;
254 	ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true);
255 	if (!ret && res.result[0] == 1)
256 		goto found;
257 
258 	/*
259 	 * Some SC7180 firmwares didn't implement the
260 	 * QCOM_SCM_INFO_IS_CALL_AVAIL call, so we fallback to forcing ARM_64
261 	 * calling conventions on these firmwares. Luckily we don't make any
262 	 * early calls into the firmware on these SoCs so the device pointer
263 	 * will be valid here to check if the compatible matches.
264 	 */
265 	if (of_device_is_compatible(__scm ? __scm->dev->of_node : NULL, "qcom,scm-sc7180")) {
266 		forced = true;
267 		goto found;
268 	}
269 #endif
270 
271 	probed_convention = SMC_CONVENTION_ARM_32;
272 	ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true);
273 	if (!ret && res.result[0] == 1)
274 		goto found;
275 
276 	probed_convention = SMC_CONVENTION_LEGACY;
277 found:
278 	spin_lock_irqsave(&scm_query_lock, flags);
279 	if (probed_convention != qcom_scm_convention) {
280 		qcom_scm_convention = probed_convention;
281 		pr_info("qcom_scm: convention: %s%s\n",
282 			qcom_scm_convention_names[qcom_scm_convention],
283 			forced ? " (forced)" : "");
284 	}
285 	spin_unlock_irqrestore(&scm_query_lock, flags);
286 
287 	return qcom_scm_convention;
288 }
289 
290 /**
291  * qcom_scm_call() - Invoke a syscall in the secure world
292  * @dev:	device
293  * @desc:	Descriptor structure containing arguments and return values
294  * @res:        Structure containing results from SMC/HVC call
295  *
296  * Sends a command to the SCM and waits for the command to finish processing.
297  * This should *only* be called in pre-emptible context.
298  */
299 static int qcom_scm_call(struct device *dev, const struct qcom_scm_desc *desc,
300 			 struct qcom_scm_res *res)
301 {
302 	might_sleep();
303 	switch (__get_convention()) {
304 	case SMC_CONVENTION_ARM_32:
305 	case SMC_CONVENTION_ARM_64:
306 		return scm_smc_call(dev, desc, res, false);
307 	case SMC_CONVENTION_LEGACY:
308 		return scm_legacy_call(dev, desc, res);
309 	default:
310 		pr_err("Unknown current SCM calling convention.\n");
311 		return -EINVAL;
312 	}
313 }
314 
315 /**
316  * qcom_scm_call_atomic() - atomic variation of qcom_scm_call()
317  * @dev:	device
318  * @desc:	Descriptor structure containing arguments and return values
319  * @res:	Structure containing results from SMC/HVC call
320  *
321  * Sends a command to the SCM and waits for the command to finish processing.
322  * This can be called in atomic context.
323  */
324 static int qcom_scm_call_atomic(struct device *dev,
325 				const struct qcom_scm_desc *desc,
326 				struct qcom_scm_res *res)
327 {
328 	switch (__get_convention()) {
329 	case SMC_CONVENTION_ARM_32:
330 	case SMC_CONVENTION_ARM_64:
331 		return scm_smc_call(dev, desc, res, true);
332 	case SMC_CONVENTION_LEGACY:
333 		return scm_legacy_call_atomic(dev, desc, res);
334 	default:
335 		pr_err("Unknown current SCM calling convention.\n");
336 		return -EINVAL;
337 	}
338 }
339 
340 static bool __qcom_scm_is_call_available(struct device *dev, u32 svc_id,
341 					 u32 cmd_id)
342 {
343 	int ret;
344 	struct qcom_scm_desc desc = {
345 		.svc = QCOM_SCM_SVC_INFO,
346 		.cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
347 		.owner = ARM_SMCCC_OWNER_SIP,
348 	};
349 	struct qcom_scm_res res;
350 
351 	desc.arginfo = QCOM_SCM_ARGS(1);
352 	switch (__get_convention()) {
353 	case SMC_CONVENTION_ARM_32:
354 	case SMC_CONVENTION_ARM_64:
355 		desc.args[0] = SCM_SMC_FNID(svc_id, cmd_id) |
356 				(ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT);
357 		break;
358 	case SMC_CONVENTION_LEGACY:
359 		desc.args[0] = SCM_LEGACY_FNID(svc_id, cmd_id);
360 		break;
361 	default:
362 		pr_err("Unknown SMC convention being used\n");
363 		return false;
364 	}
365 
366 	ret = qcom_scm_call(dev, &desc, &res);
367 
368 	return ret ? false : !!res.result[0];
369 }
370 
371 static int qcom_scm_set_boot_addr(void *entry, const u8 *cpu_bits)
372 {
373 	int cpu;
374 	unsigned int flags = 0;
375 	struct qcom_scm_desc desc = {
376 		.svc = QCOM_SCM_SVC_BOOT,
377 		.cmd = QCOM_SCM_BOOT_SET_ADDR,
378 		.arginfo = QCOM_SCM_ARGS(2),
379 		.owner = ARM_SMCCC_OWNER_SIP,
380 	};
381 
382 	for_each_present_cpu(cpu) {
383 		if (cpu >= QCOM_SCM_BOOT_MAX_CPUS)
384 			return -EINVAL;
385 		flags |= cpu_bits[cpu];
386 	}
387 
388 	desc.args[0] = flags;
389 	desc.args[1] = virt_to_phys(entry);
390 
391 	return qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
392 }
393 
394 static int qcom_scm_set_boot_addr_mc(void *entry, unsigned int flags)
395 {
396 	struct qcom_scm_desc desc = {
397 		.svc = QCOM_SCM_SVC_BOOT,
398 		.cmd = QCOM_SCM_BOOT_SET_ADDR_MC,
399 		.owner = ARM_SMCCC_OWNER_SIP,
400 		.arginfo = QCOM_SCM_ARGS(6),
401 		.args = {
402 			virt_to_phys(entry),
403 			/* Apply to all CPUs in all affinity levels */
404 			~0ULL, ~0ULL, ~0ULL, ~0ULL,
405 			flags,
406 		},
407 	};
408 
409 	/* Need a device for DMA of the additional arguments */
410 	if (!__scm || __get_convention() == SMC_CONVENTION_LEGACY)
411 		return -EOPNOTSUPP;
412 
413 	return qcom_scm_call(__scm->dev, &desc, NULL);
414 }
415 
416 /**
417  * qcom_scm_set_warm_boot_addr() - Set the warm boot address for all cpus
418  * @entry: Entry point function for the cpus
419  *
420  * Set the Linux entry point for the SCM to transfer control to when coming
421  * out of a power down. CPU power down may be executed on cpuidle or hotplug.
422  */
423 int qcom_scm_set_warm_boot_addr(void *entry)
424 {
425 	if (qcom_scm_set_boot_addr_mc(entry, QCOM_SCM_BOOT_MC_FLAG_WARMBOOT))
426 		/* Fallback to old SCM call */
427 		return qcom_scm_set_boot_addr(entry, qcom_scm_cpu_warm_bits);
428 	return 0;
429 }
430 EXPORT_SYMBOL_GPL(qcom_scm_set_warm_boot_addr);
431 
432 /**
433  * qcom_scm_set_cold_boot_addr() - Set the cold boot address for all cpus
434  * @entry: Entry point function for the cpus
435  */
436 int qcom_scm_set_cold_boot_addr(void *entry)
437 {
438 	if (qcom_scm_set_boot_addr_mc(entry, QCOM_SCM_BOOT_MC_FLAG_COLDBOOT))
439 		/* Fallback to old SCM call */
440 		return qcom_scm_set_boot_addr(entry, qcom_scm_cpu_cold_bits);
441 	return 0;
442 }
443 EXPORT_SYMBOL_GPL(qcom_scm_set_cold_boot_addr);
444 
445 /**
446  * qcom_scm_cpu_power_down() - Power down the cpu
447  * @flags:	Flags to flush cache
448  *
449  * This is an end point to power down cpu. If there was a pending interrupt,
450  * the control would return from this function, otherwise, the cpu jumps to the
451  * warm boot entry point set for this cpu upon reset.
452  */
453 void qcom_scm_cpu_power_down(u32 flags)
454 {
455 	struct qcom_scm_desc desc = {
456 		.svc = QCOM_SCM_SVC_BOOT,
457 		.cmd = QCOM_SCM_BOOT_TERMINATE_PC,
458 		.args[0] = flags & QCOM_SCM_FLUSH_FLAG_MASK,
459 		.arginfo = QCOM_SCM_ARGS(1),
460 		.owner = ARM_SMCCC_OWNER_SIP,
461 	};
462 
463 	qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
464 }
465 EXPORT_SYMBOL_GPL(qcom_scm_cpu_power_down);
466 
467 int qcom_scm_set_remote_state(u32 state, u32 id)
468 {
469 	struct qcom_scm_desc desc = {
470 		.svc = QCOM_SCM_SVC_BOOT,
471 		.cmd = QCOM_SCM_BOOT_SET_REMOTE_STATE,
472 		.arginfo = QCOM_SCM_ARGS(2),
473 		.args[0] = state,
474 		.args[1] = id,
475 		.owner = ARM_SMCCC_OWNER_SIP,
476 	};
477 	struct qcom_scm_res res;
478 	int ret;
479 
480 	ret = qcom_scm_call(__scm->dev, &desc, &res);
481 
482 	return ret ? : res.result[0];
483 }
484 EXPORT_SYMBOL_GPL(qcom_scm_set_remote_state);
485 
486 static int qcom_scm_disable_sdi(void)
487 {
488 	int ret;
489 	struct qcom_scm_desc desc = {
490 		.svc = QCOM_SCM_SVC_BOOT,
491 		.cmd = QCOM_SCM_BOOT_SDI_CONFIG,
492 		.args[0] = 1, /* Disable watchdog debug */
493 		.args[1] = 0, /* Disable SDI */
494 		.arginfo = QCOM_SCM_ARGS(2),
495 		.owner = ARM_SMCCC_OWNER_SIP,
496 	};
497 	struct qcom_scm_res res;
498 
499 	ret = qcom_scm_clk_enable();
500 	if (ret)
501 		return ret;
502 	ret = qcom_scm_call(__scm->dev, &desc, &res);
503 
504 	qcom_scm_clk_disable();
505 
506 	return ret ? : res.result[0];
507 }
508 
509 static int __qcom_scm_set_dload_mode(struct device *dev, bool enable)
510 {
511 	struct qcom_scm_desc desc = {
512 		.svc = QCOM_SCM_SVC_BOOT,
513 		.cmd = QCOM_SCM_BOOT_SET_DLOAD_MODE,
514 		.arginfo = QCOM_SCM_ARGS(2),
515 		.args[0] = QCOM_SCM_BOOT_SET_DLOAD_MODE,
516 		.owner = ARM_SMCCC_OWNER_SIP,
517 	};
518 
519 	desc.args[1] = enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0;
520 
521 	return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
522 }
523 
524 static int qcom_scm_io_rmw(phys_addr_t addr, unsigned int mask, unsigned int val)
525 {
526 	unsigned int old;
527 	unsigned int new;
528 	int ret;
529 
530 	ret = qcom_scm_io_readl(addr, &old);
531 	if (ret)
532 		return ret;
533 
534 	new = (old & ~mask) | (val & mask);
535 
536 	return qcom_scm_io_writel(addr, new);
537 }
538 
539 static void qcom_scm_set_download_mode(u32 dload_mode)
540 {
541 	int ret = 0;
542 
543 	if (__scm->dload_mode_addr) {
544 		ret = qcom_scm_io_rmw(__scm->dload_mode_addr, QCOM_DLOAD_MASK,
545 				      FIELD_PREP(QCOM_DLOAD_MASK, dload_mode));
546 	} else if (__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_BOOT,
547 						QCOM_SCM_BOOT_SET_DLOAD_MODE)) {
548 		ret = __qcom_scm_set_dload_mode(__scm->dev, !!dload_mode);
549 	} else if (dload_mode) {
550 		dev_err(__scm->dev,
551 			"No available mechanism for setting download mode\n");
552 	}
553 
554 	if (ret)
555 		dev_err(__scm->dev, "failed to set download mode: %d\n", ret);
556 }
557 
558 /**
559  * qcom_scm_pas_init_image() - Initialize peripheral authentication service
560  *			       state machine for a given peripheral, using the
561  *			       metadata
562  * @peripheral: peripheral id
563  * @metadata:	pointer to memory containing ELF header, program header table
564  *		and optional blob of data used for authenticating the metadata
565  *		and the rest of the firmware
566  * @size:	size of the metadata
567  * @ctx:	optional metadata context
568  *
569  * Return: 0 on success.
570  *
571  * Upon successful return, the PAS metadata context (@ctx) will be used to
572  * track the metadata allocation, this needs to be released by invoking
573  * qcom_scm_pas_metadata_release() by the caller.
574  */
575 int qcom_scm_pas_init_image(u32 peripheral, const void *metadata, size_t size,
576 			    struct qcom_scm_pas_metadata *ctx)
577 {
578 	dma_addr_t mdata_phys;
579 	void *mdata_buf;
580 	int ret;
581 	struct qcom_scm_desc desc = {
582 		.svc = QCOM_SCM_SVC_PIL,
583 		.cmd = QCOM_SCM_PIL_PAS_INIT_IMAGE,
584 		.arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_VAL, QCOM_SCM_RW),
585 		.args[0] = peripheral,
586 		.owner = ARM_SMCCC_OWNER_SIP,
587 	};
588 	struct qcom_scm_res res;
589 
590 	/*
591 	 * During the scm call memory protection will be enabled for the meta
592 	 * data blob, so make sure it's physically contiguous, 4K aligned and
593 	 * non-cachable to avoid XPU violations.
594 	 *
595 	 * For PIL calls the hypervisor creates SHM Bridges for the blob
596 	 * buffers on behalf of Linux so we must not do it ourselves hence
597 	 * not using the TZMem allocator here.
598 	 *
599 	 * If we pass a buffer that is already part of an SHM Bridge to this
600 	 * call, it will fail.
601 	 */
602 	mdata_buf = dma_alloc_coherent(__scm->dev, size, &mdata_phys,
603 				       GFP_KERNEL);
604 	if (!mdata_buf)
605 		return -ENOMEM;
606 
607 	memcpy(mdata_buf, metadata, size);
608 
609 	ret = qcom_scm_clk_enable();
610 	if (ret)
611 		goto out;
612 
613 	ret = qcom_scm_bw_enable();
614 	if (ret)
615 		goto disable_clk;
616 
617 	desc.args[1] = mdata_phys;
618 
619 	ret = qcom_scm_call(__scm->dev, &desc, &res);
620 	qcom_scm_bw_disable();
621 
622 disable_clk:
623 	qcom_scm_clk_disable();
624 
625 out:
626 	if (ret < 0 || !ctx) {
627 		dma_free_coherent(__scm->dev, size, mdata_buf, mdata_phys);
628 	} else if (ctx) {
629 		ctx->ptr = mdata_buf;
630 		ctx->phys = mdata_phys;
631 		ctx->size = size;
632 	}
633 
634 	return ret ? : res.result[0];
635 }
636 EXPORT_SYMBOL_GPL(qcom_scm_pas_init_image);
637 
638 /**
639  * qcom_scm_pas_metadata_release() - release metadata context
640  * @ctx:	metadata context
641  */
642 void qcom_scm_pas_metadata_release(struct qcom_scm_pas_metadata *ctx)
643 {
644 	if (!ctx->ptr)
645 		return;
646 
647 	dma_free_coherent(__scm->dev, ctx->size, ctx->ptr, ctx->phys);
648 
649 	ctx->ptr = NULL;
650 	ctx->phys = 0;
651 	ctx->size = 0;
652 }
653 EXPORT_SYMBOL_GPL(qcom_scm_pas_metadata_release);
654 
655 /**
656  * qcom_scm_pas_mem_setup() - Prepare the memory related to a given peripheral
657  *			      for firmware loading
658  * @peripheral:	peripheral id
659  * @addr:	start address of memory area to prepare
660  * @size:	size of the memory area to prepare
661  *
662  * Returns 0 on success.
663  */
664 int qcom_scm_pas_mem_setup(u32 peripheral, phys_addr_t addr, phys_addr_t size)
665 {
666 	int ret;
667 	struct qcom_scm_desc desc = {
668 		.svc = QCOM_SCM_SVC_PIL,
669 		.cmd = QCOM_SCM_PIL_PAS_MEM_SETUP,
670 		.arginfo = QCOM_SCM_ARGS(3),
671 		.args[0] = peripheral,
672 		.args[1] = addr,
673 		.args[2] = size,
674 		.owner = ARM_SMCCC_OWNER_SIP,
675 	};
676 	struct qcom_scm_res res;
677 
678 	ret = qcom_scm_clk_enable();
679 	if (ret)
680 		return ret;
681 
682 	ret = qcom_scm_bw_enable();
683 	if (ret)
684 		goto disable_clk;
685 
686 	ret = qcom_scm_call(__scm->dev, &desc, &res);
687 	qcom_scm_bw_disable();
688 
689 disable_clk:
690 	qcom_scm_clk_disable();
691 
692 	return ret ? : res.result[0];
693 }
694 EXPORT_SYMBOL_GPL(qcom_scm_pas_mem_setup);
695 
696 /**
697  * qcom_scm_pas_auth_and_reset() - Authenticate the given peripheral firmware
698  *				   and reset the remote processor
699  * @peripheral:	peripheral id
700  *
701  * Return 0 on success.
702  */
703 int qcom_scm_pas_auth_and_reset(u32 peripheral)
704 {
705 	int ret;
706 	struct qcom_scm_desc desc = {
707 		.svc = QCOM_SCM_SVC_PIL,
708 		.cmd = QCOM_SCM_PIL_PAS_AUTH_AND_RESET,
709 		.arginfo = QCOM_SCM_ARGS(1),
710 		.args[0] = peripheral,
711 		.owner = ARM_SMCCC_OWNER_SIP,
712 	};
713 	struct qcom_scm_res res;
714 
715 	ret = qcom_scm_clk_enable();
716 	if (ret)
717 		return ret;
718 
719 	ret = qcom_scm_bw_enable();
720 	if (ret)
721 		goto disable_clk;
722 
723 	ret = qcom_scm_call(__scm->dev, &desc, &res);
724 	qcom_scm_bw_disable();
725 
726 disable_clk:
727 	qcom_scm_clk_disable();
728 
729 	return ret ? : res.result[0];
730 }
731 EXPORT_SYMBOL_GPL(qcom_scm_pas_auth_and_reset);
732 
733 /**
734  * qcom_scm_pas_shutdown() - Shut down the remote processor
735  * @peripheral: peripheral id
736  *
737  * Returns 0 on success.
738  */
739 int qcom_scm_pas_shutdown(u32 peripheral)
740 {
741 	int ret;
742 	struct qcom_scm_desc desc = {
743 		.svc = QCOM_SCM_SVC_PIL,
744 		.cmd = QCOM_SCM_PIL_PAS_SHUTDOWN,
745 		.arginfo = QCOM_SCM_ARGS(1),
746 		.args[0] = peripheral,
747 		.owner = ARM_SMCCC_OWNER_SIP,
748 	};
749 	struct qcom_scm_res res;
750 
751 	ret = qcom_scm_clk_enable();
752 	if (ret)
753 		return ret;
754 
755 	ret = qcom_scm_bw_enable();
756 	if (ret)
757 		goto disable_clk;
758 
759 	ret = qcom_scm_call(__scm->dev, &desc, &res);
760 	qcom_scm_bw_disable();
761 
762 disable_clk:
763 	qcom_scm_clk_disable();
764 
765 	return ret ? : res.result[0];
766 }
767 EXPORT_SYMBOL_GPL(qcom_scm_pas_shutdown);
768 
769 /**
770  * qcom_scm_pas_supported() - Check if the peripheral authentication service is
771  *			      available for the given peripherial
772  * @peripheral:	peripheral id
773  *
774  * Returns true if PAS is supported for this peripheral, otherwise false.
775  */
776 bool qcom_scm_pas_supported(u32 peripheral)
777 {
778 	int ret;
779 	struct qcom_scm_desc desc = {
780 		.svc = QCOM_SCM_SVC_PIL,
781 		.cmd = QCOM_SCM_PIL_PAS_IS_SUPPORTED,
782 		.arginfo = QCOM_SCM_ARGS(1),
783 		.args[0] = peripheral,
784 		.owner = ARM_SMCCC_OWNER_SIP,
785 	};
786 	struct qcom_scm_res res;
787 
788 	if (!__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_PIL,
789 					  QCOM_SCM_PIL_PAS_IS_SUPPORTED))
790 		return false;
791 
792 	ret = qcom_scm_call(__scm->dev, &desc, &res);
793 
794 	return ret ? false : !!res.result[0];
795 }
796 EXPORT_SYMBOL_GPL(qcom_scm_pas_supported);
797 
798 static int __qcom_scm_pas_mss_reset(struct device *dev, bool reset)
799 {
800 	struct qcom_scm_desc desc = {
801 		.svc = QCOM_SCM_SVC_PIL,
802 		.cmd = QCOM_SCM_PIL_PAS_MSS_RESET,
803 		.arginfo = QCOM_SCM_ARGS(2),
804 		.args[0] = reset,
805 		.args[1] = 0,
806 		.owner = ARM_SMCCC_OWNER_SIP,
807 	};
808 	struct qcom_scm_res res;
809 	int ret;
810 
811 	ret = qcom_scm_call(__scm->dev, &desc, &res);
812 
813 	return ret ? : res.result[0];
814 }
815 
816 static int qcom_scm_pas_reset_assert(struct reset_controller_dev *rcdev,
817 				     unsigned long idx)
818 {
819 	if (idx != 0)
820 		return -EINVAL;
821 
822 	return __qcom_scm_pas_mss_reset(__scm->dev, 1);
823 }
824 
825 static int qcom_scm_pas_reset_deassert(struct reset_controller_dev *rcdev,
826 				       unsigned long idx)
827 {
828 	if (idx != 0)
829 		return -EINVAL;
830 
831 	return __qcom_scm_pas_mss_reset(__scm->dev, 0);
832 }
833 
834 static const struct reset_control_ops qcom_scm_pas_reset_ops = {
835 	.assert = qcom_scm_pas_reset_assert,
836 	.deassert = qcom_scm_pas_reset_deassert,
837 };
838 
839 int qcom_scm_io_readl(phys_addr_t addr, unsigned int *val)
840 {
841 	struct qcom_scm_desc desc = {
842 		.svc = QCOM_SCM_SVC_IO,
843 		.cmd = QCOM_SCM_IO_READ,
844 		.arginfo = QCOM_SCM_ARGS(1),
845 		.args[0] = addr,
846 		.owner = ARM_SMCCC_OWNER_SIP,
847 	};
848 	struct qcom_scm_res res;
849 	int ret;
850 
851 
852 	ret = qcom_scm_call_atomic(__scm->dev, &desc, &res);
853 	if (ret >= 0)
854 		*val = res.result[0];
855 
856 	return ret < 0 ? ret : 0;
857 }
858 EXPORT_SYMBOL_GPL(qcom_scm_io_readl);
859 
860 int qcom_scm_io_writel(phys_addr_t addr, unsigned int val)
861 {
862 	struct qcom_scm_desc desc = {
863 		.svc = QCOM_SCM_SVC_IO,
864 		.cmd = QCOM_SCM_IO_WRITE,
865 		.arginfo = QCOM_SCM_ARGS(2),
866 		.args[0] = addr,
867 		.args[1] = val,
868 		.owner = ARM_SMCCC_OWNER_SIP,
869 	};
870 
871 	return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
872 }
873 EXPORT_SYMBOL_GPL(qcom_scm_io_writel);
874 
875 /**
876  * qcom_scm_restore_sec_cfg_available() - Check if secure environment
877  * supports restore security config interface.
878  *
879  * Return true if restore-cfg interface is supported, false if not.
880  */
881 bool qcom_scm_restore_sec_cfg_available(void)
882 {
883 	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_MP,
884 					    QCOM_SCM_MP_RESTORE_SEC_CFG);
885 }
886 EXPORT_SYMBOL_GPL(qcom_scm_restore_sec_cfg_available);
887 
888 int qcom_scm_restore_sec_cfg(u32 device_id, u32 spare)
889 {
890 	struct qcom_scm_desc desc = {
891 		.svc = QCOM_SCM_SVC_MP,
892 		.cmd = QCOM_SCM_MP_RESTORE_SEC_CFG,
893 		.arginfo = QCOM_SCM_ARGS(2),
894 		.args[0] = device_id,
895 		.args[1] = spare,
896 		.owner = ARM_SMCCC_OWNER_SIP,
897 	};
898 	struct qcom_scm_res res;
899 	int ret;
900 
901 	ret = qcom_scm_call(__scm->dev, &desc, &res);
902 
903 	return ret ? : res.result[0];
904 }
905 EXPORT_SYMBOL_GPL(qcom_scm_restore_sec_cfg);
906 
907 #define QCOM_SCM_CP_APERTURE_CONTEXT_MASK	GENMASK(7, 0)
908 
909 bool qcom_scm_set_gpu_smmu_aperture_is_available(void)
910 {
911 	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_MP,
912 					    QCOM_SCM_MP_CP_SMMU_APERTURE_ID);
913 }
914 EXPORT_SYMBOL_GPL(qcom_scm_set_gpu_smmu_aperture_is_available);
915 
916 int qcom_scm_set_gpu_smmu_aperture(unsigned int context_bank)
917 {
918 	struct qcom_scm_desc desc = {
919 		.svc = QCOM_SCM_SVC_MP,
920 		.cmd = QCOM_SCM_MP_CP_SMMU_APERTURE_ID,
921 		.arginfo = QCOM_SCM_ARGS(4),
922 		.args[0] = 0xffff0000 | FIELD_PREP(QCOM_SCM_CP_APERTURE_CONTEXT_MASK, context_bank),
923 		.args[1] = 0xffffffff,
924 		.args[2] = 0xffffffff,
925 		.args[3] = 0xffffffff,
926 		.owner = ARM_SMCCC_OWNER_SIP
927 	};
928 
929 	return qcom_scm_call(__scm->dev, &desc, NULL);
930 }
931 EXPORT_SYMBOL_GPL(qcom_scm_set_gpu_smmu_aperture);
932 
933 int qcom_scm_iommu_secure_ptbl_size(u32 spare, size_t *size)
934 {
935 	struct qcom_scm_desc desc = {
936 		.svc = QCOM_SCM_SVC_MP,
937 		.cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_SIZE,
938 		.arginfo = QCOM_SCM_ARGS(1),
939 		.args[0] = spare,
940 		.owner = ARM_SMCCC_OWNER_SIP,
941 	};
942 	struct qcom_scm_res res;
943 	int ret;
944 
945 	ret = qcom_scm_call(__scm->dev, &desc, &res);
946 
947 	if (size)
948 		*size = res.result[0];
949 
950 	return ret ? : res.result[1];
951 }
952 EXPORT_SYMBOL_GPL(qcom_scm_iommu_secure_ptbl_size);
953 
954 int qcom_scm_iommu_secure_ptbl_init(u64 addr, u32 size, u32 spare)
955 {
956 	struct qcom_scm_desc desc = {
957 		.svc = QCOM_SCM_SVC_MP,
958 		.cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_INIT,
959 		.arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_RW, QCOM_SCM_VAL,
960 					 QCOM_SCM_VAL),
961 		.args[0] = addr,
962 		.args[1] = size,
963 		.args[2] = spare,
964 		.owner = ARM_SMCCC_OWNER_SIP,
965 	};
966 	int ret;
967 
968 	ret = qcom_scm_call(__scm->dev, &desc, NULL);
969 
970 	/* the pg table has been initialized already, ignore the error */
971 	if (ret == -EPERM)
972 		ret = 0;
973 
974 	return ret;
975 }
976 EXPORT_SYMBOL_GPL(qcom_scm_iommu_secure_ptbl_init);
977 
978 int qcom_scm_iommu_set_cp_pool_size(u32 spare, u32 size)
979 {
980 	struct qcom_scm_desc desc = {
981 		.svc = QCOM_SCM_SVC_MP,
982 		.cmd = QCOM_SCM_MP_IOMMU_SET_CP_POOL_SIZE,
983 		.arginfo = QCOM_SCM_ARGS(2),
984 		.args[0] = size,
985 		.args[1] = spare,
986 		.owner = ARM_SMCCC_OWNER_SIP,
987 	};
988 
989 	return qcom_scm_call(__scm->dev, &desc, NULL);
990 }
991 EXPORT_SYMBOL_GPL(qcom_scm_iommu_set_cp_pool_size);
992 
993 int qcom_scm_mem_protect_video_var(u32 cp_start, u32 cp_size,
994 				   u32 cp_nonpixel_start,
995 				   u32 cp_nonpixel_size)
996 {
997 	int ret;
998 	struct qcom_scm_desc desc = {
999 		.svc = QCOM_SCM_SVC_MP,
1000 		.cmd = QCOM_SCM_MP_VIDEO_VAR,
1001 		.arginfo = QCOM_SCM_ARGS(4, QCOM_SCM_VAL, QCOM_SCM_VAL,
1002 					 QCOM_SCM_VAL, QCOM_SCM_VAL),
1003 		.args[0] = cp_start,
1004 		.args[1] = cp_size,
1005 		.args[2] = cp_nonpixel_start,
1006 		.args[3] = cp_nonpixel_size,
1007 		.owner = ARM_SMCCC_OWNER_SIP,
1008 	};
1009 	struct qcom_scm_res res;
1010 
1011 	ret = qcom_scm_call(__scm->dev, &desc, &res);
1012 
1013 	return ret ? : res.result[0];
1014 }
1015 EXPORT_SYMBOL_GPL(qcom_scm_mem_protect_video_var);
1016 
1017 static int __qcom_scm_assign_mem(struct device *dev, phys_addr_t mem_region,
1018 				 size_t mem_sz, phys_addr_t src, size_t src_sz,
1019 				 phys_addr_t dest, size_t dest_sz)
1020 {
1021 	int ret;
1022 	struct qcom_scm_desc desc = {
1023 		.svc = QCOM_SCM_SVC_MP,
1024 		.cmd = QCOM_SCM_MP_ASSIGN,
1025 		.arginfo = QCOM_SCM_ARGS(7, QCOM_SCM_RO, QCOM_SCM_VAL,
1026 					 QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_RO,
1027 					 QCOM_SCM_VAL, QCOM_SCM_VAL),
1028 		.args[0] = mem_region,
1029 		.args[1] = mem_sz,
1030 		.args[2] = src,
1031 		.args[3] = src_sz,
1032 		.args[4] = dest,
1033 		.args[5] = dest_sz,
1034 		.args[6] = 0,
1035 		.owner = ARM_SMCCC_OWNER_SIP,
1036 	};
1037 	struct qcom_scm_res res;
1038 
1039 	ret = qcom_scm_call(dev, &desc, &res);
1040 
1041 	return ret ? : res.result[0];
1042 }
1043 
1044 /**
1045  * qcom_scm_assign_mem() - Make a secure call to reassign memory ownership
1046  * @mem_addr: mem region whose ownership need to be reassigned
1047  * @mem_sz:   size of the region.
1048  * @srcvm:    vmid for current set of owners, each set bit in
1049  *            flag indicate a unique owner
1050  * @newvm:    array having new owners and corresponding permission
1051  *            flags
1052  * @dest_cnt: number of owners in next set.
1053  *
1054  * Return negative errno on failure or 0 on success with @srcvm updated.
1055  */
1056 int qcom_scm_assign_mem(phys_addr_t mem_addr, size_t mem_sz,
1057 			u64 *srcvm,
1058 			const struct qcom_scm_vmperm *newvm,
1059 			unsigned int dest_cnt)
1060 {
1061 	struct qcom_scm_current_perm_info *destvm;
1062 	struct qcom_scm_mem_map_info *mem_to_map;
1063 	phys_addr_t mem_to_map_phys;
1064 	phys_addr_t dest_phys;
1065 	phys_addr_t ptr_phys;
1066 	size_t mem_to_map_sz;
1067 	size_t dest_sz;
1068 	size_t src_sz;
1069 	size_t ptr_sz;
1070 	int next_vm;
1071 	__le32 *src;
1072 	int ret, i, b;
1073 	u64 srcvm_bits = *srcvm;
1074 
1075 	src_sz = hweight64(srcvm_bits) * sizeof(*src);
1076 	mem_to_map_sz = sizeof(*mem_to_map);
1077 	dest_sz = dest_cnt * sizeof(*destvm);
1078 	ptr_sz = ALIGN(src_sz, SZ_64) + ALIGN(mem_to_map_sz, SZ_64) +
1079 			ALIGN(dest_sz, SZ_64);
1080 
1081 	void *ptr __free(qcom_tzmem) = qcom_tzmem_alloc(__scm->mempool,
1082 							ptr_sz, GFP_KERNEL);
1083 	if (!ptr)
1084 		return -ENOMEM;
1085 
1086 	ptr_phys = qcom_tzmem_to_phys(ptr);
1087 
1088 	/* Fill source vmid detail */
1089 	src = ptr;
1090 	i = 0;
1091 	for (b = 0; b < BITS_PER_TYPE(u64); b++) {
1092 		if (srcvm_bits & BIT(b))
1093 			src[i++] = cpu_to_le32(b);
1094 	}
1095 
1096 	/* Fill details of mem buff to map */
1097 	mem_to_map = ptr + ALIGN(src_sz, SZ_64);
1098 	mem_to_map_phys = ptr_phys + ALIGN(src_sz, SZ_64);
1099 	mem_to_map->mem_addr = cpu_to_le64(mem_addr);
1100 	mem_to_map->mem_size = cpu_to_le64(mem_sz);
1101 
1102 	next_vm = 0;
1103 	/* Fill details of next vmid detail */
1104 	destvm = ptr + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
1105 	dest_phys = ptr_phys + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
1106 	for (i = 0; i < dest_cnt; i++, destvm++, newvm++) {
1107 		destvm->vmid = cpu_to_le32(newvm->vmid);
1108 		destvm->perm = cpu_to_le32(newvm->perm);
1109 		destvm->ctx = 0;
1110 		destvm->ctx_size = 0;
1111 		next_vm |= BIT(newvm->vmid);
1112 	}
1113 
1114 	ret = __qcom_scm_assign_mem(__scm->dev, mem_to_map_phys, mem_to_map_sz,
1115 				    ptr_phys, src_sz, dest_phys, dest_sz);
1116 	if (ret) {
1117 		dev_err(__scm->dev,
1118 			"Assign memory protection call failed %d\n", ret);
1119 		return -EINVAL;
1120 	}
1121 
1122 	*srcvm = next_vm;
1123 	return 0;
1124 }
1125 EXPORT_SYMBOL_GPL(qcom_scm_assign_mem);
1126 
1127 /**
1128  * qcom_scm_ocmem_lock_available() - is OCMEM lock/unlock interface available
1129  */
1130 bool qcom_scm_ocmem_lock_available(void)
1131 {
1132 	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_OCMEM,
1133 					    QCOM_SCM_OCMEM_LOCK_CMD);
1134 }
1135 EXPORT_SYMBOL_GPL(qcom_scm_ocmem_lock_available);
1136 
1137 /**
1138  * qcom_scm_ocmem_lock() - call OCMEM lock interface to assign an OCMEM
1139  * region to the specified initiator
1140  *
1141  * @id:     tz initiator id
1142  * @offset: OCMEM offset
1143  * @size:   OCMEM size
1144  * @mode:   access mode (WIDE/NARROW)
1145  */
1146 int qcom_scm_ocmem_lock(enum qcom_scm_ocmem_client id, u32 offset, u32 size,
1147 			u32 mode)
1148 {
1149 	struct qcom_scm_desc desc = {
1150 		.svc = QCOM_SCM_SVC_OCMEM,
1151 		.cmd = QCOM_SCM_OCMEM_LOCK_CMD,
1152 		.args[0] = id,
1153 		.args[1] = offset,
1154 		.args[2] = size,
1155 		.args[3] = mode,
1156 		.arginfo = QCOM_SCM_ARGS(4),
1157 	};
1158 
1159 	return qcom_scm_call(__scm->dev, &desc, NULL);
1160 }
1161 EXPORT_SYMBOL_GPL(qcom_scm_ocmem_lock);
1162 
1163 /**
1164  * qcom_scm_ocmem_unlock() - call OCMEM unlock interface to release an OCMEM
1165  * region from the specified initiator
1166  *
1167  * @id:     tz initiator id
1168  * @offset: OCMEM offset
1169  * @size:   OCMEM size
1170  */
1171 int qcom_scm_ocmem_unlock(enum qcom_scm_ocmem_client id, u32 offset, u32 size)
1172 {
1173 	struct qcom_scm_desc desc = {
1174 		.svc = QCOM_SCM_SVC_OCMEM,
1175 		.cmd = QCOM_SCM_OCMEM_UNLOCK_CMD,
1176 		.args[0] = id,
1177 		.args[1] = offset,
1178 		.args[2] = size,
1179 		.arginfo = QCOM_SCM_ARGS(3),
1180 	};
1181 
1182 	return qcom_scm_call(__scm->dev, &desc, NULL);
1183 }
1184 EXPORT_SYMBOL_GPL(qcom_scm_ocmem_unlock);
1185 
1186 /**
1187  * qcom_scm_ice_available() - Is the ICE key programming interface available?
1188  *
1189  * Return: true iff the SCM calls wrapped by qcom_scm_ice_invalidate_key() and
1190  *	   qcom_scm_ice_set_key() are available.
1191  */
1192 bool qcom_scm_ice_available(void)
1193 {
1194 	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
1195 					    QCOM_SCM_ES_INVALIDATE_ICE_KEY) &&
1196 		__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
1197 					     QCOM_SCM_ES_CONFIG_SET_ICE_KEY);
1198 }
1199 EXPORT_SYMBOL_GPL(qcom_scm_ice_available);
1200 
1201 /**
1202  * qcom_scm_ice_invalidate_key() - Invalidate an inline encryption key
1203  * @index: the keyslot to invalidate
1204  *
1205  * The UFSHCI and eMMC standards define a standard way to do this, but it
1206  * doesn't work on these SoCs; only this SCM call does.
1207  *
1208  * It is assumed that the SoC has only one ICE instance being used, as this SCM
1209  * call doesn't specify which ICE instance the keyslot belongs to.
1210  *
1211  * Return: 0 on success; -errno on failure.
1212  */
1213 int qcom_scm_ice_invalidate_key(u32 index)
1214 {
1215 	struct qcom_scm_desc desc = {
1216 		.svc = QCOM_SCM_SVC_ES,
1217 		.cmd = QCOM_SCM_ES_INVALIDATE_ICE_KEY,
1218 		.arginfo = QCOM_SCM_ARGS(1),
1219 		.args[0] = index,
1220 		.owner = ARM_SMCCC_OWNER_SIP,
1221 	};
1222 
1223 	return qcom_scm_call(__scm->dev, &desc, NULL);
1224 }
1225 EXPORT_SYMBOL_GPL(qcom_scm_ice_invalidate_key);
1226 
1227 /**
1228  * qcom_scm_ice_set_key() - Set an inline encryption key
1229  * @index: the keyslot into which to set the key
1230  * @key: the key to program
1231  * @key_size: the size of the key in bytes
1232  * @cipher: the encryption algorithm the key is for
1233  * @data_unit_size: the encryption data unit size, i.e. the size of each
1234  *		    individual plaintext and ciphertext.  Given in 512-byte
1235  *		    units, e.g. 1 = 512 bytes, 8 = 4096 bytes, etc.
1236  *
1237  * Program a key into a keyslot of Qualcomm ICE (Inline Crypto Engine), where it
1238  * can then be used to encrypt/decrypt UFS or eMMC I/O requests inline.
1239  *
1240  * The UFSHCI and eMMC standards define a standard way to do this, but it
1241  * doesn't work on these SoCs; only this SCM call does.
1242  *
1243  * It is assumed that the SoC has only one ICE instance being used, as this SCM
1244  * call doesn't specify which ICE instance the keyslot belongs to.
1245  *
1246  * Return: 0 on success; -errno on failure.
1247  */
1248 int qcom_scm_ice_set_key(u32 index, const u8 *key, u32 key_size,
1249 			 enum qcom_scm_ice_cipher cipher, u32 data_unit_size)
1250 {
1251 	struct qcom_scm_desc desc = {
1252 		.svc = QCOM_SCM_SVC_ES,
1253 		.cmd = QCOM_SCM_ES_CONFIG_SET_ICE_KEY,
1254 		.arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_VAL, QCOM_SCM_RW,
1255 					 QCOM_SCM_VAL, QCOM_SCM_VAL,
1256 					 QCOM_SCM_VAL),
1257 		.args[0] = index,
1258 		.args[2] = key_size,
1259 		.args[3] = cipher,
1260 		.args[4] = data_unit_size,
1261 		.owner = ARM_SMCCC_OWNER_SIP,
1262 	};
1263 
1264 	int ret;
1265 
1266 	void *keybuf __free(qcom_tzmem) = qcom_tzmem_alloc(__scm->mempool,
1267 							   key_size,
1268 							   GFP_KERNEL);
1269 	if (!keybuf)
1270 		return -ENOMEM;
1271 	memcpy(keybuf, key, key_size);
1272 	desc.args[1] = qcom_tzmem_to_phys(keybuf);
1273 
1274 	ret = qcom_scm_call(__scm->dev, &desc, NULL);
1275 
1276 	memzero_explicit(keybuf, key_size);
1277 
1278 	return ret;
1279 }
1280 EXPORT_SYMBOL_GPL(qcom_scm_ice_set_key);
1281 
1282 /**
1283  * qcom_scm_hdcp_available() - Check if secure environment supports HDCP.
1284  *
1285  * Return true if HDCP is supported, false if not.
1286  */
1287 bool qcom_scm_hdcp_available(void)
1288 {
1289 	bool avail;
1290 	int ret = qcom_scm_clk_enable();
1291 
1292 	if (ret)
1293 		return ret;
1294 
1295 	avail = __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_HDCP,
1296 						QCOM_SCM_HDCP_INVOKE);
1297 
1298 	qcom_scm_clk_disable();
1299 
1300 	return avail;
1301 }
1302 EXPORT_SYMBOL_GPL(qcom_scm_hdcp_available);
1303 
1304 /**
1305  * qcom_scm_hdcp_req() - Send HDCP request.
1306  * @req: HDCP request array
1307  * @req_cnt: HDCP request array count
1308  * @resp: response buffer passed to SCM
1309  *
1310  * Write HDCP register(s) through SCM.
1311  */
1312 int qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt, u32 *resp)
1313 {
1314 	int ret;
1315 	struct qcom_scm_desc desc = {
1316 		.svc = QCOM_SCM_SVC_HDCP,
1317 		.cmd = QCOM_SCM_HDCP_INVOKE,
1318 		.arginfo = QCOM_SCM_ARGS(10),
1319 		.args = {
1320 			req[0].addr,
1321 			req[0].val,
1322 			req[1].addr,
1323 			req[1].val,
1324 			req[2].addr,
1325 			req[2].val,
1326 			req[3].addr,
1327 			req[3].val,
1328 			req[4].addr,
1329 			req[4].val
1330 		},
1331 		.owner = ARM_SMCCC_OWNER_SIP,
1332 	};
1333 	struct qcom_scm_res res;
1334 
1335 	if (req_cnt > QCOM_SCM_HDCP_MAX_REQ_CNT)
1336 		return -ERANGE;
1337 
1338 	ret = qcom_scm_clk_enable();
1339 	if (ret)
1340 		return ret;
1341 
1342 	ret = qcom_scm_call(__scm->dev, &desc, &res);
1343 	*resp = res.result[0];
1344 
1345 	qcom_scm_clk_disable();
1346 
1347 	return ret;
1348 }
1349 EXPORT_SYMBOL_GPL(qcom_scm_hdcp_req);
1350 
1351 int qcom_scm_iommu_set_pt_format(u32 sec_id, u32 ctx_num, u32 pt_fmt)
1352 {
1353 	struct qcom_scm_desc desc = {
1354 		.svc = QCOM_SCM_SVC_SMMU_PROGRAM,
1355 		.cmd = QCOM_SCM_SMMU_PT_FORMAT,
1356 		.arginfo = QCOM_SCM_ARGS(3),
1357 		.args[0] = sec_id,
1358 		.args[1] = ctx_num,
1359 		.args[2] = pt_fmt, /* 0: LPAE AArch32 - 1: AArch64 */
1360 		.owner = ARM_SMCCC_OWNER_SIP,
1361 	};
1362 
1363 	return qcom_scm_call(__scm->dev, &desc, NULL);
1364 }
1365 EXPORT_SYMBOL_GPL(qcom_scm_iommu_set_pt_format);
1366 
1367 int qcom_scm_qsmmu500_wait_safe_toggle(bool en)
1368 {
1369 	struct qcom_scm_desc desc = {
1370 		.svc = QCOM_SCM_SVC_SMMU_PROGRAM,
1371 		.cmd = QCOM_SCM_SMMU_CONFIG_ERRATA1,
1372 		.arginfo = QCOM_SCM_ARGS(2),
1373 		.args[0] = QCOM_SCM_SMMU_CONFIG_ERRATA1_CLIENT_ALL,
1374 		.args[1] = en,
1375 		.owner = ARM_SMCCC_OWNER_SIP,
1376 	};
1377 
1378 
1379 	return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
1380 }
1381 EXPORT_SYMBOL_GPL(qcom_scm_qsmmu500_wait_safe_toggle);
1382 
1383 bool qcom_scm_lmh_dcvsh_available(void)
1384 {
1385 	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_LMH, QCOM_SCM_LMH_LIMIT_DCVSH);
1386 }
1387 EXPORT_SYMBOL_GPL(qcom_scm_lmh_dcvsh_available);
1388 
1389 int qcom_scm_shm_bridge_enable(void)
1390 {
1391 	int ret;
1392 
1393 	struct qcom_scm_desc desc = {
1394 		.svc = QCOM_SCM_SVC_MP,
1395 		.cmd = QCOM_SCM_MP_SHM_BRIDGE_ENABLE,
1396 		.owner = ARM_SMCCC_OWNER_SIP
1397 	};
1398 
1399 	struct qcom_scm_res res;
1400 
1401 	if (!__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_MP,
1402 					  QCOM_SCM_MP_SHM_BRIDGE_ENABLE))
1403 		return -EOPNOTSUPP;
1404 
1405 	ret = qcom_scm_call(__scm->dev, &desc, &res);
1406 
1407 	if (ret)
1408 		return ret;
1409 
1410 	if (res.result[0] == SHMBRIDGE_RESULT_NOTSUPP)
1411 		return -EOPNOTSUPP;
1412 
1413 	return res.result[0];
1414 }
1415 EXPORT_SYMBOL_GPL(qcom_scm_shm_bridge_enable);
1416 
1417 int qcom_scm_shm_bridge_create(struct device *dev, u64 pfn_and_ns_perm_flags,
1418 			       u64 ipfn_and_s_perm_flags, u64 size_and_flags,
1419 			       u64 ns_vmids, u64 *handle)
1420 {
1421 	struct qcom_scm_desc desc = {
1422 		.svc = QCOM_SCM_SVC_MP,
1423 		.cmd = QCOM_SCM_MP_SHM_BRIDGE_CREATE,
1424 		.owner = ARM_SMCCC_OWNER_SIP,
1425 		.args[0] = pfn_and_ns_perm_flags,
1426 		.args[1] = ipfn_and_s_perm_flags,
1427 		.args[2] = size_and_flags,
1428 		.args[3] = ns_vmids,
1429 		.arginfo = QCOM_SCM_ARGS(4, QCOM_SCM_VAL, QCOM_SCM_VAL,
1430 					 QCOM_SCM_VAL, QCOM_SCM_VAL),
1431 	};
1432 
1433 	struct qcom_scm_res res;
1434 	int ret;
1435 
1436 	ret = qcom_scm_call(__scm->dev, &desc, &res);
1437 
1438 	if (handle && !ret)
1439 		*handle = res.result[1];
1440 
1441 	return ret ?: res.result[0];
1442 }
1443 EXPORT_SYMBOL_GPL(qcom_scm_shm_bridge_create);
1444 
1445 int qcom_scm_shm_bridge_delete(struct device *dev, u64 handle)
1446 {
1447 	struct qcom_scm_desc desc = {
1448 		.svc = QCOM_SCM_SVC_MP,
1449 		.cmd = QCOM_SCM_MP_SHM_BRIDGE_DELETE,
1450 		.owner = ARM_SMCCC_OWNER_SIP,
1451 		.args[0] = handle,
1452 		.arginfo = QCOM_SCM_ARGS(1, QCOM_SCM_VAL),
1453 	};
1454 
1455 	return qcom_scm_call(__scm->dev, &desc, NULL);
1456 }
1457 EXPORT_SYMBOL_GPL(qcom_scm_shm_bridge_delete);
1458 
1459 int qcom_scm_lmh_profile_change(u32 profile_id)
1460 {
1461 	struct qcom_scm_desc desc = {
1462 		.svc = QCOM_SCM_SVC_LMH,
1463 		.cmd = QCOM_SCM_LMH_LIMIT_PROFILE_CHANGE,
1464 		.arginfo = QCOM_SCM_ARGS(1, QCOM_SCM_VAL),
1465 		.args[0] = profile_id,
1466 		.owner = ARM_SMCCC_OWNER_SIP,
1467 	};
1468 
1469 	return qcom_scm_call(__scm->dev, &desc, NULL);
1470 }
1471 EXPORT_SYMBOL_GPL(qcom_scm_lmh_profile_change);
1472 
1473 int qcom_scm_lmh_dcvsh(u32 payload_fn, u32 payload_reg, u32 payload_val,
1474 		       u64 limit_node, u32 node_id, u64 version)
1475 {
1476 	int ret, payload_size = 5 * sizeof(u32);
1477 
1478 	struct qcom_scm_desc desc = {
1479 		.svc = QCOM_SCM_SVC_LMH,
1480 		.cmd = QCOM_SCM_LMH_LIMIT_DCVSH,
1481 		.arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_VAL,
1482 					QCOM_SCM_VAL, QCOM_SCM_VAL),
1483 		.args[1] = payload_size,
1484 		.args[2] = limit_node,
1485 		.args[3] = node_id,
1486 		.args[4] = version,
1487 		.owner = ARM_SMCCC_OWNER_SIP,
1488 	};
1489 
1490 	u32 *payload_buf __free(qcom_tzmem) = qcom_tzmem_alloc(__scm->mempool,
1491 							       payload_size,
1492 							       GFP_KERNEL);
1493 	if (!payload_buf)
1494 		return -ENOMEM;
1495 
1496 	payload_buf[0] = payload_fn;
1497 	payload_buf[1] = 0;
1498 	payload_buf[2] = payload_reg;
1499 	payload_buf[3] = 1;
1500 	payload_buf[4] = payload_val;
1501 
1502 	desc.args[0] = qcom_tzmem_to_phys(payload_buf);
1503 
1504 	ret = qcom_scm_call(__scm->dev, &desc, NULL);
1505 
1506 	return ret;
1507 }
1508 EXPORT_SYMBOL_GPL(qcom_scm_lmh_dcvsh);
1509 
1510 int qcom_scm_gpu_init_regs(u32 gpu_req)
1511 {
1512 	struct qcom_scm_desc desc = {
1513 		.svc = QCOM_SCM_SVC_GPU,
1514 		.cmd = QCOM_SCM_SVC_GPU_INIT_REGS,
1515 		.arginfo = QCOM_SCM_ARGS(1),
1516 		.args[0] = gpu_req,
1517 		.owner = ARM_SMCCC_OWNER_SIP,
1518 	};
1519 
1520 	return qcom_scm_call(__scm->dev, &desc, NULL);
1521 }
1522 EXPORT_SYMBOL_GPL(qcom_scm_gpu_init_regs);
1523 
1524 static int qcom_scm_find_dload_address(struct device *dev, u64 *addr)
1525 {
1526 	struct device_node *tcsr;
1527 	struct device_node *np = dev->of_node;
1528 	struct resource res;
1529 	u32 offset;
1530 	int ret;
1531 
1532 	tcsr = of_parse_phandle(np, "qcom,dload-mode", 0);
1533 	if (!tcsr)
1534 		return 0;
1535 
1536 	ret = of_address_to_resource(tcsr, 0, &res);
1537 	of_node_put(tcsr);
1538 	if (ret)
1539 		return ret;
1540 
1541 	ret = of_property_read_u32_index(np, "qcom,dload-mode", 1, &offset);
1542 	if (ret < 0)
1543 		return ret;
1544 
1545 	*addr = res.start + offset;
1546 
1547 	return 0;
1548 }
1549 
1550 #ifdef CONFIG_QCOM_QSEECOM
1551 
1552 /* Lock for QSEECOM SCM call executions */
1553 static DEFINE_MUTEX(qcom_scm_qseecom_call_lock);
1554 
1555 static int __qcom_scm_qseecom_call(const struct qcom_scm_desc *desc,
1556 				   struct qcom_scm_qseecom_resp *res)
1557 {
1558 	struct qcom_scm_res scm_res = {};
1559 	int status;
1560 
1561 	/*
1562 	 * QSEECOM SCM calls should not be executed concurrently. Therefore, we
1563 	 * require the respective call lock to be held.
1564 	 */
1565 	lockdep_assert_held(&qcom_scm_qseecom_call_lock);
1566 
1567 	status = qcom_scm_call(__scm->dev, desc, &scm_res);
1568 
1569 	res->result = scm_res.result[0];
1570 	res->resp_type = scm_res.result[1];
1571 	res->data = scm_res.result[2];
1572 
1573 	if (status)
1574 		return status;
1575 
1576 	return 0;
1577 }
1578 
1579 /**
1580  * qcom_scm_qseecom_call() - Perform a QSEECOM SCM call.
1581  * @desc: SCM call descriptor.
1582  * @res:  SCM call response (output).
1583  *
1584  * Performs the QSEECOM SCM call described by @desc, returning the response in
1585  * @rsp.
1586  *
1587  * Return: Zero on success, nonzero on failure.
1588  */
1589 static int qcom_scm_qseecom_call(const struct qcom_scm_desc *desc,
1590 				 struct qcom_scm_qseecom_resp *res)
1591 {
1592 	int status;
1593 
1594 	/*
1595 	 * Note: Multiple QSEECOM SCM calls should not be executed same time,
1596 	 * so lock things here. This needs to be extended to callback/listener
1597 	 * handling when support for that is implemented.
1598 	 */
1599 
1600 	mutex_lock(&qcom_scm_qseecom_call_lock);
1601 	status = __qcom_scm_qseecom_call(desc, res);
1602 	mutex_unlock(&qcom_scm_qseecom_call_lock);
1603 
1604 	dev_dbg(__scm->dev, "%s: owner=%x, svc=%x, cmd=%x, result=%lld, type=%llx, data=%llx\n",
1605 		__func__, desc->owner, desc->svc, desc->cmd, res->result,
1606 		res->resp_type, res->data);
1607 
1608 	if (status) {
1609 		dev_err(__scm->dev, "qseecom: scm call failed with error %d\n", status);
1610 		return status;
1611 	}
1612 
1613 	/*
1614 	 * TODO: Handle incomplete and blocked calls:
1615 	 *
1616 	 * Incomplete and blocked calls are not supported yet. Some devices
1617 	 * and/or commands require those, some don't. Let's warn about them
1618 	 * prominently in case someone attempts to try these commands with a
1619 	 * device/command combination that isn't supported yet.
1620 	 */
1621 	WARN_ON(res->result == QSEECOM_RESULT_INCOMPLETE);
1622 	WARN_ON(res->result == QSEECOM_RESULT_BLOCKED_ON_LISTENER);
1623 
1624 	return 0;
1625 }
1626 
1627 /**
1628  * qcom_scm_qseecom_get_version() - Query the QSEECOM version.
1629  * @version: Pointer where the QSEECOM version will be stored.
1630  *
1631  * Performs the QSEECOM SCM querying the QSEECOM version currently running in
1632  * the TrustZone.
1633  *
1634  * Return: Zero on success, nonzero on failure.
1635  */
1636 static int qcom_scm_qseecom_get_version(u32 *version)
1637 {
1638 	struct qcom_scm_desc desc = {};
1639 	struct qcom_scm_qseecom_resp res = {};
1640 	u32 feature = 10;
1641 	int ret;
1642 
1643 	desc.owner = QSEECOM_TZ_OWNER_SIP;
1644 	desc.svc = QSEECOM_TZ_SVC_INFO;
1645 	desc.cmd = QSEECOM_TZ_CMD_INFO_VERSION;
1646 	desc.arginfo = QCOM_SCM_ARGS(1, QCOM_SCM_VAL);
1647 	desc.args[0] = feature;
1648 
1649 	ret = qcom_scm_qseecom_call(&desc, &res);
1650 	if (ret)
1651 		return ret;
1652 
1653 	*version = res.result;
1654 	return 0;
1655 }
1656 
1657 /**
1658  * qcom_scm_qseecom_app_get_id() - Query the app ID for a given QSEE app name.
1659  * @app_name: The name of the app.
1660  * @app_id:   The returned app ID.
1661  *
1662  * Query and return the application ID of the SEE app identified by the given
1663  * name. This returned ID is the unique identifier of the app required for
1664  * subsequent communication.
1665  *
1666  * Return: Zero on success, nonzero on failure, -ENOENT if the app has not been
1667  * loaded or could not be found.
1668  */
1669 int qcom_scm_qseecom_app_get_id(const char *app_name, u32 *app_id)
1670 {
1671 	unsigned long name_buf_size = QSEECOM_MAX_APP_NAME_SIZE;
1672 	unsigned long app_name_len = strlen(app_name);
1673 	struct qcom_scm_desc desc = {};
1674 	struct qcom_scm_qseecom_resp res = {};
1675 	int status;
1676 
1677 	if (app_name_len >= name_buf_size)
1678 		return -EINVAL;
1679 
1680 	char *name_buf __free(qcom_tzmem) = qcom_tzmem_alloc(__scm->mempool,
1681 							     name_buf_size,
1682 							     GFP_KERNEL);
1683 	if (!name_buf)
1684 		return -ENOMEM;
1685 
1686 	memcpy(name_buf, app_name, app_name_len);
1687 
1688 	desc.owner = QSEECOM_TZ_OWNER_QSEE_OS;
1689 	desc.svc = QSEECOM_TZ_SVC_APP_MGR;
1690 	desc.cmd = QSEECOM_TZ_CMD_APP_LOOKUP;
1691 	desc.arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_RW, QCOM_SCM_VAL);
1692 	desc.args[0] = qcom_tzmem_to_phys(name_buf);
1693 	desc.args[1] = app_name_len;
1694 
1695 	status = qcom_scm_qseecom_call(&desc, &res);
1696 
1697 	if (status)
1698 		return status;
1699 
1700 	if (res.result == QSEECOM_RESULT_FAILURE)
1701 		return -ENOENT;
1702 
1703 	if (res.result != QSEECOM_RESULT_SUCCESS)
1704 		return -EINVAL;
1705 
1706 	if (res.resp_type != QSEECOM_SCM_RES_APP_ID)
1707 		return -EINVAL;
1708 
1709 	*app_id = res.data;
1710 	return 0;
1711 }
1712 EXPORT_SYMBOL_GPL(qcom_scm_qseecom_app_get_id);
1713 
1714 /**
1715  * qcom_scm_qseecom_app_send() - Send to and receive data from a given QSEE app.
1716  * @app_id:   The ID of the target app.
1717  * @req:      Request buffer sent to the app (must be TZ memory)
1718  * @req_size: Size of the request buffer.
1719  * @rsp:      Response buffer, written to by the app (must be TZ memory)
1720  * @rsp_size: Size of the response buffer.
1721  *
1722  * Sends a request to the QSEE app associated with the given ID and read back
1723  * its response. The caller must provide two DMA memory regions, one for the
1724  * request and one for the response, and fill out the @req region with the
1725  * respective (app-specific) request data. The QSEE app reads this and returns
1726  * its response in the @rsp region.
1727  *
1728  * Return: Zero on success, nonzero on failure.
1729  */
1730 int qcom_scm_qseecom_app_send(u32 app_id, void *req, size_t req_size,
1731 			      void *rsp, size_t rsp_size)
1732 {
1733 	struct qcom_scm_qseecom_resp res = {};
1734 	struct qcom_scm_desc desc = {};
1735 	phys_addr_t req_phys;
1736 	phys_addr_t rsp_phys;
1737 	int status;
1738 
1739 	req_phys = qcom_tzmem_to_phys(req);
1740 	rsp_phys = qcom_tzmem_to_phys(rsp);
1741 
1742 	desc.owner = QSEECOM_TZ_OWNER_TZ_APPS;
1743 	desc.svc = QSEECOM_TZ_SVC_APP_ID_PLACEHOLDER;
1744 	desc.cmd = QSEECOM_TZ_CMD_APP_SEND;
1745 	desc.arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_VAL,
1746 				     QCOM_SCM_RW, QCOM_SCM_VAL,
1747 				     QCOM_SCM_RW, QCOM_SCM_VAL);
1748 	desc.args[0] = app_id;
1749 	desc.args[1] = req_phys;
1750 	desc.args[2] = req_size;
1751 	desc.args[3] = rsp_phys;
1752 	desc.args[4] = rsp_size;
1753 
1754 	status = qcom_scm_qseecom_call(&desc, &res);
1755 
1756 	if (status)
1757 		return status;
1758 
1759 	if (res.result != QSEECOM_RESULT_SUCCESS)
1760 		return -EIO;
1761 
1762 	return 0;
1763 }
1764 EXPORT_SYMBOL_GPL(qcom_scm_qseecom_app_send);
1765 
1766 /*
1767  * We do not yet support re-entrant calls via the qseecom interface. To prevent
1768  + any potential issues with this, only allow validated machines for now.
1769  */
1770 static const struct of_device_id qcom_scm_qseecom_allowlist[] __maybe_unused = {
1771 	{ .compatible = "dell,xps13-9345" },
1772 	{ .compatible = "lenovo,flex-5g" },
1773 	{ .compatible = "lenovo,thinkpad-t14s" },
1774 	{ .compatible = "lenovo,thinkpad-x13s", },
1775 	{ .compatible = "lenovo,yoga-slim7x" },
1776 	{ .compatible = "microsoft,arcata", },
1777 	{ .compatible = "microsoft,romulus13", },
1778 	{ .compatible = "microsoft,romulus15", },
1779 	{ .compatible = "qcom,sc8180x-primus" },
1780 	{ .compatible = "qcom,x1e001de-devkit" },
1781 	{ .compatible = "qcom,x1e80100-crd" },
1782 	{ .compatible = "qcom,x1e80100-qcp" },
1783 	{ }
1784 };
1785 
1786 static bool qcom_scm_qseecom_machine_is_allowed(void)
1787 {
1788 	struct device_node *np;
1789 	bool match;
1790 
1791 	np = of_find_node_by_path("/");
1792 	if (!np)
1793 		return false;
1794 
1795 	match = of_match_node(qcom_scm_qseecom_allowlist, np);
1796 	of_node_put(np);
1797 
1798 	return match;
1799 }
1800 
1801 static void qcom_scm_qseecom_free(void *data)
1802 {
1803 	struct platform_device *qseecom_dev = data;
1804 
1805 	platform_device_del(qseecom_dev);
1806 	platform_device_put(qseecom_dev);
1807 }
1808 
1809 static int qcom_scm_qseecom_init(struct qcom_scm *scm)
1810 {
1811 	struct platform_device *qseecom_dev;
1812 	u32 version;
1813 	int ret;
1814 
1815 	/*
1816 	 * Note: We do two steps of validation here: First, we try to query the
1817 	 * QSEECOM version as a check to see if the interface exists on this
1818 	 * device. Second, we check against known good devices due to current
1819 	 * driver limitations (see comment in qcom_scm_qseecom_allowlist).
1820 	 *
1821 	 * Note that we deliberately do the machine check after the version
1822 	 * check so that we can log potentially supported devices. This should
1823 	 * be safe as downstream sources indicate that the version query is
1824 	 * neither blocking nor reentrant.
1825 	 */
1826 	ret = qcom_scm_qseecom_get_version(&version);
1827 	if (ret)
1828 		return 0;
1829 
1830 	dev_info(scm->dev, "qseecom: found qseecom with version 0x%x\n", version);
1831 
1832 	if (!qcom_scm_qseecom_machine_is_allowed()) {
1833 		dev_info(scm->dev, "qseecom: untested machine, skipping\n");
1834 		return 0;
1835 	}
1836 
1837 	/*
1838 	 * Set up QSEECOM interface device. All application clients will be
1839 	 * set up and managed by the corresponding driver for it.
1840 	 */
1841 	qseecom_dev = platform_device_alloc("qcom_qseecom", -1);
1842 	if (!qseecom_dev)
1843 		return -ENOMEM;
1844 
1845 	qseecom_dev->dev.parent = scm->dev;
1846 
1847 	ret = platform_device_add(qseecom_dev);
1848 	if (ret) {
1849 		platform_device_put(qseecom_dev);
1850 		return ret;
1851 	}
1852 
1853 	return devm_add_action_or_reset(scm->dev, qcom_scm_qseecom_free, qseecom_dev);
1854 }
1855 
1856 #else /* CONFIG_QCOM_QSEECOM */
1857 
1858 static int qcom_scm_qseecom_init(struct qcom_scm *scm)
1859 {
1860 	return 0;
1861 }
1862 
1863 #endif /* CONFIG_QCOM_QSEECOM */
1864 
1865 /**
1866  * qcom_scm_is_available() - Checks if SCM is available
1867  */
1868 bool qcom_scm_is_available(void)
1869 {
1870 	return !!READ_ONCE(__scm);
1871 }
1872 EXPORT_SYMBOL_GPL(qcom_scm_is_available);
1873 
1874 static int qcom_scm_assert_valid_wq_ctx(u32 wq_ctx)
1875 {
1876 	/* FW currently only supports a single wq_ctx (zero).
1877 	 * TODO: Update this logic to include dynamic allocation and lookup of
1878 	 * completion structs when FW supports more wq_ctx values.
1879 	 */
1880 	if (wq_ctx != 0) {
1881 		dev_err(__scm->dev, "Firmware unexpectedly passed non-zero wq_ctx\n");
1882 		return -EINVAL;
1883 	}
1884 
1885 	return 0;
1886 }
1887 
1888 int qcom_scm_wait_for_wq_completion(u32 wq_ctx)
1889 {
1890 	int ret;
1891 
1892 	ret = qcom_scm_assert_valid_wq_ctx(wq_ctx);
1893 	if (ret)
1894 		return ret;
1895 
1896 	wait_for_completion(&__scm->waitq_comp);
1897 
1898 	return 0;
1899 }
1900 
1901 static int qcom_scm_waitq_wakeup(unsigned int wq_ctx)
1902 {
1903 	int ret;
1904 
1905 	ret = qcom_scm_assert_valid_wq_ctx(wq_ctx);
1906 	if (ret)
1907 		return ret;
1908 
1909 	complete(&__scm->waitq_comp);
1910 
1911 	return 0;
1912 }
1913 
1914 static irqreturn_t qcom_scm_irq_handler(int irq, void *data)
1915 {
1916 	int ret;
1917 	struct qcom_scm *scm = data;
1918 	u32 wq_ctx, flags, more_pending = 0;
1919 
1920 	do {
1921 		ret = scm_get_wq_ctx(&wq_ctx, &flags, &more_pending);
1922 		if (ret) {
1923 			dev_err(scm->dev, "GET_WQ_CTX SMC call failed: %d\n", ret);
1924 			goto out;
1925 		}
1926 
1927 		if (flags != QCOM_SMC_WAITQ_FLAG_WAKE_ONE) {
1928 			dev_err(scm->dev, "Invalid flags received for wq_ctx: %u\n", flags);
1929 			goto out;
1930 		}
1931 
1932 		ret = qcom_scm_waitq_wakeup(wq_ctx);
1933 		if (ret)
1934 			goto out;
1935 	} while (more_pending);
1936 
1937 out:
1938 	return IRQ_HANDLED;
1939 }
1940 
1941 static int get_download_mode(char *buffer, const struct kernel_param *kp)
1942 {
1943 	if (download_mode >= ARRAY_SIZE(download_mode_name))
1944 		return sysfs_emit(buffer, "unknown mode\n");
1945 
1946 	return sysfs_emit(buffer, "%s\n", download_mode_name[download_mode]);
1947 }
1948 
1949 static int set_download_mode(const char *val, const struct kernel_param *kp)
1950 {
1951 	bool tmp;
1952 	int ret;
1953 
1954 	ret = sysfs_match_string(download_mode_name, val);
1955 	if (ret < 0) {
1956 		ret = kstrtobool(val, &tmp);
1957 		if (ret < 0) {
1958 			pr_err("qcom_scm: err: %d\n", ret);
1959 			return ret;
1960 		}
1961 
1962 		ret = tmp ? 1 : 0;
1963 	}
1964 
1965 	download_mode = ret;
1966 	if (__scm)
1967 		qcom_scm_set_download_mode(download_mode);
1968 
1969 	return 0;
1970 }
1971 
1972 static const struct kernel_param_ops download_mode_param_ops = {
1973 	.get = get_download_mode,
1974 	.set = set_download_mode,
1975 };
1976 
1977 module_param_cb(download_mode, &download_mode_param_ops, NULL, 0644);
1978 MODULE_PARM_DESC(download_mode, "download mode: off/0/N for no dump mode, full/on/1/Y for full dump mode, mini for minidump mode and full,mini for both full and minidump mode together are acceptable values");
1979 
1980 static int qcom_scm_probe(struct platform_device *pdev)
1981 {
1982 	struct qcom_tzmem_pool_config pool_config;
1983 	struct qcom_scm *scm;
1984 	int irq, ret;
1985 
1986 	scm = devm_kzalloc(&pdev->dev, sizeof(*scm), GFP_KERNEL);
1987 	if (!scm)
1988 		return -ENOMEM;
1989 
1990 	scm->dev = &pdev->dev;
1991 	ret = qcom_scm_find_dload_address(&pdev->dev, &scm->dload_mode_addr);
1992 	if (ret < 0)
1993 		return ret;
1994 
1995 	init_completion(&scm->waitq_comp);
1996 	mutex_init(&scm->scm_bw_lock);
1997 
1998 	scm->path = devm_of_icc_get(&pdev->dev, NULL);
1999 	if (IS_ERR(scm->path))
2000 		return dev_err_probe(&pdev->dev, PTR_ERR(scm->path),
2001 				     "failed to acquire interconnect path\n");
2002 
2003 	scm->core_clk = devm_clk_get_optional(&pdev->dev, "core");
2004 	if (IS_ERR(scm->core_clk))
2005 		return PTR_ERR(scm->core_clk);
2006 
2007 	scm->iface_clk = devm_clk_get_optional(&pdev->dev, "iface");
2008 	if (IS_ERR(scm->iface_clk))
2009 		return PTR_ERR(scm->iface_clk);
2010 
2011 	scm->bus_clk = devm_clk_get_optional(&pdev->dev, "bus");
2012 	if (IS_ERR(scm->bus_clk))
2013 		return PTR_ERR(scm->bus_clk);
2014 
2015 	scm->reset.ops = &qcom_scm_pas_reset_ops;
2016 	scm->reset.nr_resets = 1;
2017 	scm->reset.of_node = pdev->dev.of_node;
2018 	ret = devm_reset_controller_register(&pdev->dev, &scm->reset);
2019 	if (ret)
2020 		return ret;
2021 
2022 	/* vote for max clk rate for highest performance */
2023 	ret = clk_set_rate(scm->core_clk, INT_MAX);
2024 	if (ret)
2025 		return ret;
2026 
2027 	/* Let all above stores be available after this */
2028 	smp_store_release(&__scm, scm);
2029 
2030 	irq = platform_get_irq_optional(pdev, 0);
2031 	if (irq < 0) {
2032 		if (irq != -ENXIO)
2033 			return irq;
2034 	} else {
2035 		ret = devm_request_threaded_irq(__scm->dev, irq, NULL, qcom_scm_irq_handler,
2036 						IRQF_ONESHOT, "qcom-scm", __scm);
2037 		if (ret < 0)
2038 			return dev_err_probe(scm->dev, ret, "Failed to request qcom-scm irq\n");
2039 	}
2040 
2041 	__get_convention();
2042 
2043 	/*
2044 	 * If "download mode" is requested, from this point on warmboot
2045 	 * will cause the boot stages to enter download mode, unless
2046 	 * disabled below by a clean shutdown/reboot.
2047 	 */
2048 	qcom_scm_set_download_mode(download_mode);
2049 
2050 	/*
2051 	 * Disable SDI if indicated by DT that it is enabled by default.
2052 	 */
2053 	if (of_property_read_bool(pdev->dev.of_node, "qcom,sdi-enabled") || !download_mode)
2054 		qcom_scm_disable_sdi();
2055 
2056 	ret = of_reserved_mem_device_init(__scm->dev);
2057 	if (ret && ret != -ENODEV)
2058 		return dev_err_probe(__scm->dev, ret,
2059 				     "Failed to setup the reserved memory region for TZ mem\n");
2060 
2061 	ret = qcom_tzmem_enable(__scm->dev);
2062 	if (ret)
2063 		return dev_err_probe(__scm->dev, ret,
2064 				     "Failed to enable the TrustZone memory allocator\n");
2065 
2066 	memset(&pool_config, 0, sizeof(pool_config));
2067 	pool_config.initial_size = 0;
2068 	pool_config.policy = QCOM_TZMEM_POLICY_ON_DEMAND;
2069 	pool_config.max_size = SZ_256K;
2070 
2071 	__scm->mempool = devm_qcom_tzmem_pool_new(__scm->dev, &pool_config);
2072 	if (IS_ERR(__scm->mempool))
2073 		return dev_err_probe(__scm->dev, PTR_ERR(__scm->mempool),
2074 				     "Failed to create the SCM memory pool\n");
2075 
2076 	/*
2077 	 * Initialize the QSEECOM interface.
2078 	 *
2079 	 * Note: QSEECOM is fairly self-contained and this only adds the
2080 	 * interface device (the driver of which does most of the heavy
2081 	 * lifting). So any errors returned here should be either -ENOMEM or
2082 	 * -EINVAL (with the latter only in case there's a bug in our code).
2083 	 * This means that there is no need to bring down the whole SCM driver.
2084 	 * Just log the error instead and let SCM live.
2085 	 */
2086 	ret = qcom_scm_qseecom_init(scm);
2087 	WARN(ret < 0, "failed to initialize qseecom: %d\n", ret);
2088 
2089 	return 0;
2090 }
2091 
2092 static void qcom_scm_shutdown(struct platform_device *pdev)
2093 {
2094 	/* Clean shutdown, disable download mode to allow normal restart */
2095 	qcom_scm_set_download_mode(QCOM_DLOAD_NODUMP);
2096 }
2097 
2098 static const struct of_device_id qcom_scm_dt_match[] = {
2099 	{ .compatible = "qcom,scm" },
2100 
2101 	/* Legacy entries kept for backwards compatibility */
2102 	{ .compatible = "qcom,scm-apq8064" },
2103 	{ .compatible = "qcom,scm-apq8084" },
2104 	{ .compatible = "qcom,scm-ipq4019" },
2105 	{ .compatible = "qcom,scm-msm8953" },
2106 	{ .compatible = "qcom,scm-msm8974" },
2107 	{ .compatible = "qcom,scm-msm8996" },
2108 	{}
2109 };
2110 MODULE_DEVICE_TABLE(of, qcom_scm_dt_match);
2111 
2112 static struct platform_driver qcom_scm_driver = {
2113 	.driver = {
2114 		.name	= "qcom_scm",
2115 		.of_match_table = qcom_scm_dt_match,
2116 		.suppress_bind_attrs = true,
2117 	},
2118 	.probe = qcom_scm_probe,
2119 	.shutdown = qcom_scm_shutdown,
2120 };
2121 
2122 static int __init qcom_scm_init(void)
2123 {
2124 	return platform_driver_register(&qcom_scm_driver);
2125 }
2126 subsys_initcall(qcom_scm_init);
2127 
2128 MODULE_DESCRIPTION("Qualcomm Technologies, Inc. SCM driver");
2129 MODULE_LICENSE("GPL v2");
2130