xref: /linux/drivers/firmware/qcom/qcom_scm.c (revision 5bb6ba448fe3598a7668838942db1f008beb581b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2010,2015,2019 The Linux Foundation. All rights reserved.
3  * Copyright (C) 2015 Linaro Ltd.
4  */
5 
6 #include <linux/arm-smccc.h>
7 #include <linux/bitfield.h>
8 #include <linux/bits.h>
9 #include <linux/cleanup.h>
10 #include <linux/clk.h>
11 #include <linux/completion.h>
12 #include <linux/cpumask.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/err.h>
15 #include <linux/export.h>
16 #include <linux/firmware/qcom/qcom_scm.h>
17 #include <linux/firmware/qcom/qcom_tzmem.h>
18 #include <linux/init.h>
19 #include <linux/interconnect.h>
20 #include <linux/interrupt.h>
21 #include <linux/kstrtox.h>
22 #include <linux/module.h>
23 #include <linux/of.h>
24 #include <linux/of_address.h>
25 #include <linux/of_irq.h>
26 #include <linux/of_platform.h>
27 #include <linux/of_reserved_mem.h>
28 #include <linux/platform_device.h>
29 #include <linux/reset-controller.h>
30 #include <linux/sizes.h>
31 #include <linux/types.h>
32 
33 #include "qcom_scm.h"
34 #include "qcom_tzmem.h"
35 
36 static u32 download_mode;
37 
38 struct qcom_scm {
39 	struct device *dev;
40 	struct clk *core_clk;
41 	struct clk *iface_clk;
42 	struct clk *bus_clk;
43 	struct icc_path *path;
44 	struct completion waitq_comp;
45 	struct reset_controller_dev reset;
46 
47 	/* control access to the interconnect path */
48 	struct mutex scm_bw_lock;
49 	int scm_vote_count;
50 
51 	u64 dload_mode_addr;
52 
53 	struct qcom_tzmem_pool *mempool;
54 };
55 
56 struct qcom_scm_current_perm_info {
57 	__le32 vmid;
58 	__le32 perm;
59 	__le64 ctx;
60 	__le32 ctx_size;
61 	__le32 unused;
62 };
63 
64 struct qcom_scm_mem_map_info {
65 	__le64 mem_addr;
66 	__le64 mem_size;
67 };
68 
69 /**
70  * struct qcom_scm_qseecom_resp - QSEECOM SCM call response.
71  * @result:    Result or status of the SCM call. See &enum qcom_scm_qseecom_result.
72  * @resp_type: Type of the response. See &enum qcom_scm_qseecom_resp_type.
73  * @data:      Response data. The type of this data is given in @resp_type.
74  */
75 struct qcom_scm_qseecom_resp {
76 	u64 result;
77 	u64 resp_type;
78 	u64 data;
79 };
80 
81 enum qcom_scm_qseecom_result {
82 	QSEECOM_RESULT_SUCCESS			= 0,
83 	QSEECOM_RESULT_INCOMPLETE		= 1,
84 	QSEECOM_RESULT_BLOCKED_ON_LISTENER	= 2,
85 	QSEECOM_RESULT_FAILURE			= 0xFFFFFFFF,
86 };
87 
88 enum qcom_scm_qseecom_resp_type {
89 	QSEECOM_SCM_RES_APP_ID			= 0xEE01,
90 	QSEECOM_SCM_RES_QSEOS_LISTENER_ID	= 0xEE02,
91 };
92 
93 enum qcom_scm_qseecom_tz_owner {
94 	QSEECOM_TZ_OWNER_SIP			= 2,
95 	QSEECOM_TZ_OWNER_TZ_APPS		= 48,
96 	QSEECOM_TZ_OWNER_QSEE_OS		= 50
97 };
98 
99 enum qcom_scm_qseecom_tz_svc {
100 	QSEECOM_TZ_SVC_APP_ID_PLACEHOLDER	= 0,
101 	QSEECOM_TZ_SVC_APP_MGR			= 1,
102 	QSEECOM_TZ_SVC_INFO			= 6,
103 };
104 
105 enum qcom_scm_qseecom_tz_cmd_app {
106 	QSEECOM_TZ_CMD_APP_SEND			= 1,
107 	QSEECOM_TZ_CMD_APP_LOOKUP		= 3,
108 };
109 
110 enum qcom_scm_qseecom_tz_cmd_info {
111 	QSEECOM_TZ_CMD_INFO_VERSION		= 3,
112 };
113 
114 #define QSEECOM_MAX_APP_NAME_SIZE		64
115 #define SHMBRIDGE_RESULT_NOTSUPP		4
116 
117 /* Each bit configures cold/warm boot address for one of the 4 CPUs */
118 static const u8 qcom_scm_cpu_cold_bits[QCOM_SCM_BOOT_MAX_CPUS] = {
119 	0, BIT(0), BIT(3), BIT(5)
120 };
121 static const u8 qcom_scm_cpu_warm_bits[QCOM_SCM_BOOT_MAX_CPUS] = {
122 	BIT(2), BIT(1), BIT(4), BIT(6)
123 };
124 
125 #define QCOM_SMC_WAITQ_FLAG_WAKE_ONE	BIT(0)
126 
127 #define QCOM_DLOAD_MASK		GENMASK(5, 4)
128 #define QCOM_DLOAD_NODUMP	0
129 #define QCOM_DLOAD_FULLDUMP	1
130 #define QCOM_DLOAD_MINIDUMP	2
131 #define QCOM_DLOAD_BOTHDUMP	3
132 
133 static const char * const qcom_scm_convention_names[] = {
134 	[SMC_CONVENTION_UNKNOWN] = "unknown",
135 	[SMC_CONVENTION_ARM_32] = "smc arm 32",
136 	[SMC_CONVENTION_ARM_64] = "smc arm 64",
137 	[SMC_CONVENTION_LEGACY] = "smc legacy",
138 };
139 
140 static const char * const download_mode_name[] = {
141 	[QCOM_DLOAD_NODUMP]	= "off",
142 	[QCOM_DLOAD_FULLDUMP]	= "full",
143 	[QCOM_DLOAD_MINIDUMP]	= "mini",
144 	[QCOM_DLOAD_BOTHDUMP]	= "full,mini",
145 };
146 
147 static struct qcom_scm *__scm;
148 
149 static int qcom_scm_clk_enable(void)
150 {
151 	int ret;
152 
153 	ret = clk_prepare_enable(__scm->core_clk);
154 	if (ret)
155 		goto bail;
156 
157 	ret = clk_prepare_enable(__scm->iface_clk);
158 	if (ret)
159 		goto disable_core;
160 
161 	ret = clk_prepare_enable(__scm->bus_clk);
162 	if (ret)
163 		goto disable_iface;
164 
165 	return 0;
166 
167 disable_iface:
168 	clk_disable_unprepare(__scm->iface_clk);
169 disable_core:
170 	clk_disable_unprepare(__scm->core_clk);
171 bail:
172 	return ret;
173 }
174 
175 static void qcom_scm_clk_disable(void)
176 {
177 	clk_disable_unprepare(__scm->core_clk);
178 	clk_disable_unprepare(__scm->iface_clk);
179 	clk_disable_unprepare(__scm->bus_clk);
180 }
181 
182 static int qcom_scm_bw_enable(void)
183 {
184 	int ret = 0;
185 
186 	if (!__scm->path)
187 		return 0;
188 
189 	mutex_lock(&__scm->scm_bw_lock);
190 	if (!__scm->scm_vote_count) {
191 		ret = icc_set_bw(__scm->path, 0, UINT_MAX);
192 		if (ret < 0) {
193 			dev_err(__scm->dev, "failed to set bandwidth request\n");
194 			goto err_bw;
195 		}
196 	}
197 	__scm->scm_vote_count++;
198 err_bw:
199 	mutex_unlock(&__scm->scm_bw_lock);
200 
201 	return ret;
202 }
203 
204 static void qcom_scm_bw_disable(void)
205 {
206 	if (!__scm->path)
207 		return;
208 
209 	mutex_lock(&__scm->scm_bw_lock);
210 	if (__scm->scm_vote_count-- == 1)
211 		icc_set_bw(__scm->path, 0, 0);
212 	mutex_unlock(&__scm->scm_bw_lock);
213 }
214 
215 enum qcom_scm_convention qcom_scm_convention = SMC_CONVENTION_UNKNOWN;
216 static DEFINE_SPINLOCK(scm_query_lock);
217 
218 struct qcom_tzmem_pool *qcom_scm_get_tzmem_pool(void)
219 {
220 	return __scm ? __scm->mempool : NULL;
221 }
222 
223 static enum qcom_scm_convention __get_convention(void)
224 {
225 	unsigned long flags;
226 	struct qcom_scm_desc desc = {
227 		.svc = QCOM_SCM_SVC_INFO,
228 		.cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
229 		.args[0] = SCM_SMC_FNID(QCOM_SCM_SVC_INFO,
230 					   QCOM_SCM_INFO_IS_CALL_AVAIL) |
231 			   (ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT),
232 		.arginfo = QCOM_SCM_ARGS(1),
233 		.owner = ARM_SMCCC_OWNER_SIP,
234 	};
235 	struct qcom_scm_res res;
236 	enum qcom_scm_convention probed_convention;
237 	int ret;
238 	bool forced = false;
239 
240 	if (likely(qcom_scm_convention != SMC_CONVENTION_UNKNOWN))
241 		return qcom_scm_convention;
242 
243 	/*
244 	 * Per the "SMC calling convention specification", the 64-bit calling
245 	 * convention can only be used when the client is 64-bit, otherwise
246 	 * system will encounter the undefined behaviour.
247 	 */
248 #if IS_ENABLED(CONFIG_ARM64)
249 	/*
250 	 * Device isn't required as there is only one argument - no device
251 	 * needed to dma_map_single to secure world
252 	 */
253 	probed_convention = SMC_CONVENTION_ARM_64;
254 	ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true);
255 	if (!ret && res.result[0] == 1)
256 		goto found;
257 
258 	/*
259 	 * Some SC7180 firmwares didn't implement the
260 	 * QCOM_SCM_INFO_IS_CALL_AVAIL call, so we fallback to forcing ARM_64
261 	 * calling conventions on these firmwares. Luckily we don't make any
262 	 * early calls into the firmware on these SoCs so the device pointer
263 	 * will be valid here to check if the compatible matches.
264 	 */
265 	if (of_device_is_compatible(__scm ? __scm->dev->of_node : NULL, "qcom,scm-sc7180")) {
266 		forced = true;
267 		goto found;
268 	}
269 #endif
270 
271 	probed_convention = SMC_CONVENTION_ARM_32;
272 	ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true);
273 	if (!ret && res.result[0] == 1)
274 		goto found;
275 
276 	probed_convention = SMC_CONVENTION_LEGACY;
277 found:
278 	spin_lock_irqsave(&scm_query_lock, flags);
279 	if (probed_convention != qcom_scm_convention) {
280 		qcom_scm_convention = probed_convention;
281 		pr_info("qcom_scm: convention: %s%s\n",
282 			qcom_scm_convention_names[qcom_scm_convention],
283 			forced ? " (forced)" : "");
284 	}
285 	spin_unlock_irqrestore(&scm_query_lock, flags);
286 
287 	return qcom_scm_convention;
288 }
289 
290 /**
291  * qcom_scm_call() - Invoke a syscall in the secure world
292  * @dev:	device
293  * @desc:	Descriptor structure containing arguments and return values
294  * @res:        Structure containing results from SMC/HVC call
295  *
296  * Sends a command to the SCM and waits for the command to finish processing.
297  * This should *only* be called in pre-emptible context.
298  */
299 static int qcom_scm_call(struct device *dev, const struct qcom_scm_desc *desc,
300 			 struct qcom_scm_res *res)
301 {
302 	might_sleep();
303 	switch (__get_convention()) {
304 	case SMC_CONVENTION_ARM_32:
305 	case SMC_CONVENTION_ARM_64:
306 		return scm_smc_call(dev, desc, res, false);
307 	case SMC_CONVENTION_LEGACY:
308 		return scm_legacy_call(dev, desc, res);
309 	default:
310 		pr_err("Unknown current SCM calling convention.\n");
311 		return -EINVAL;
312 	}
313 }
314 
315 /**
316  * qcom_scm_call_atomic() - atomic variation of qcom_scm_call()
317  * @dev:	device
318  * @desc:	Descriptor structure containing arguments and return values
319  * @res:	Structure containing results from SMC/HVC call
320  *
321  * Sends a command to the SCM and waits for the command to finish processing.
322  * This can be called in atomic context.
323  */
324 static int qcom_scm_call_atomic(struct device *dev,
325 				const struct qcom_scm_desc *desc,
326 				struct qcom_scm_res *res)
327 {
328 	switch (__get_convention()) {
329 	case SMC_CONVENTION_ARM_32:
330 	case SMC_CONVENTION_ARM_64:
331 		return scm_smc_call(dev, desc, res, true);
332 	case SMC_CONVENTION_LEGACY:
333 		return scm_legacy_call_atomic(dev, desc, res);
334 	default:
335 		pr_err("Unknown current SCM calling convention.\n");
336 		return -EINVAL;
337 	}
338 }
339 
340 static bool __qcom_scm_is_call_available(struct device *dev, u32 svc_id,
341 					 u32 cmd_id)
342 {
343 	int ret;
344 	struct qcom_scm_desc desc = {
345 		.svc = QCOM_SCM_SVC_INFO,
346 		.cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
347 		.owner = ARM_SMCCC_OWNER_SIP,
348 	};
349 	struct qcom_scm_res res;
350 
351 	desc.arginfo = QCOM_SCM_ARGS(1);
352 	switch (__get_convention()) {
353 	case SMC_CONVENTION_ARM_32:
354 	case SMC_CONVENTION_ARM_64:
355 		desc.args[0] = SCM_SMC_FNID(svc_id, cmd_id) |
356 				(ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT);
357 		break;
358 	case SMC_CONVENTION_LEGACY:
359 		desc.args[0] = SCM_LEGACY_FNID(svc_id, cmd_id);
360 		break;
361 	default:
362 		pr_err("Unknown SMC convention being used\n");
363 		return false;
364 	}
365 
366 	ret = qcom_scm_call(dev, &desc, &res);
367 
368 	return ret ? false : !!res.result[0];
369 }
370 
371 static int qcom_scm_set_boot_addr(void *entry, const u8 *cpu_bits)
372 {
373 	int cpu;
374 	unsigned int flags = 0;
375 	struct qcom_scm_desc desc = {
376 		.svc = QCOM_SCM_SVC_BOOT,
377 		.cmd = QCOM_SCM_BOOT_SET_ADDR,
378 		.arginfo = QCOM_SCM_ARGS(2),
379 		.owner = ARM_SMCCC_OWNER_SIP,
380 	};
381 
382 	for_each_present_cpu(cpu) {
383 		if (cpu >= QCOM_SCM_BOOT_MAX_CPUS)
384 			return -EINVAL;
385 		flags |= cpu_bits[cpu];
386 	}
387 
388 	desc.args[0] = flags;
389 	desc.args[1] = virt_to_phys(entry);
390 
391 	return qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
392 }
393 
394 static int qcom_scm_set_boot_addr_mc(void *entry, unsigned int flags)
395 {
396 	struct qcom_scm_desc desc = {
397 		.svc = QCOM_SCM_SVC_BOOT,
398 		.cmd = QCOM_SCM_BOOT_SET_ADDR_MC,
399 		.owner = ARM_SMCCC_OWNER_SIP,
400 		.arginfo = QCOM_SCM_ARGS(6),
401 		.args = {
402 			virt_to_phys(entry),
403 			/* Apply to all CPUs in all affinity levels */
404 			~0ULL, ~0ULL, ~0ULL, ~0ULL,
405 			flags,
406 		},
407 	};
408 
409 	/* Need a device for DMA of the additional arguments */
410 	if (!__scm || __get_convention() == SMC_CONVENTION_LEGACY)
411 		return -EOPNOTSUPP;
412 
413 	return qcom_scm_call(__scm->dev, &desc, NULL);
414 }
415 
416 /**
417  * qcom_scm_set_warm_boot_addr() - Set the warm boot address for all cpus
418  * @entry: Entry point function for the cpus
419  *
420  * Set the Linux entry point for the SCM to transfer control to when coming
421  * out of a power down. CPU power down may be executed on cpuidle or hotplug.
422  */
423 int qcom_scm_set_warm_boot_addr(void *entry)
424 {
425 	if (qcom_scm_set_boot_addr_mc(entry, QCOM_SCM_BOOT_MC_FLAG_WARMBOOT))
426 		/* Fallback to old SCM call */
427 		return qcom_scm_set_boot_addr(entry, qcom_scm_cpu_warm_bits);
428 	return 0;
429 }
430 EXPORT_SYMBOL_GPL(qcom_scm_set_warm_boot_addr);
431 
432 /**
433  * qcom_scm_set_cold_boot_addr() - Set the cold boot address for all cpus
434  * @entry: Entry point function for the cpus
435  */
436 int qcom_scm_set_cold_boot_addr(void *entry)
437 {
438 	if (qcom_scm_set_boot_addr_mc(entry, QCOM_SCM_BOOT_MC_FLAG_COLDBOOT))
439 		/* Fallback to old SCM call */
440 		return qcom_scm_set_boot_addr(entry, qcom_scm_cpu_cold_bits);
441 	return 0;
442 }
443 EXPORT_SYMBOL_GPL(qcom_scm_set_cold_boot_addr);
444 
445 /**
446  * qcom_scm_cpu_power_down() - Power down the cpu
447  * @flags:	Flags to flush cache
448  *
449  * This is an end point to power down cpu. If there was a pending interrupt,
450  * the control would return from this function, otherwise, the cpu jumps to the
451  * warm boot entry point set for this cpu upon reset.
452  */
453 void qcom_scm_cpu_power_down(u32 flags)
454 {
455 	struct qcom_scm_desc desc = {
456 		.svc = QCOM_SCM_SVC_BOOT,
457 		.cmd = QCOM_SCM_BOOT_TERMINATE_PC,
458 		.args[0] = flags & QCOM_SCM_FLUSH_FLAG_MASK,
459 		.arginfo = QCOM_SCM_ARGS(1),
460 		.owner = ARM_SMCCC_OWNER_SIP,
461 	};
462 
463 	qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
464 }
465 EXPORT_SYMBOL_GPL(qcom_scm_cpu_power_down);
466 
467 int qcom_scm_set_remote_state(u32 state, u32 id)
468 {
469 	struct qcom_scm_desc desc = {
470 		.svc = QCOM_SCM_SVC_BOOT,
471 		.cmd = QCOM_SCM_BOOT_SET_REMOTE_STATE,
472 		.arginfo = QCOM_SCM_ARGS(2),
473 		.args[0] = state,
474 		.args[1] = id,
475 		.owner = ARM_SMCCC_OWNER_SIP,
476 	};
477 	struct qcom_scm_res res;
478 	int ret;
479 
480 	ret = qcom_scm_call(__scm->dev, &desc, &res);
481 
482 	return ret ? : res.result[0];
483 }
484 EXPORT_SYMBOL_GPL(qcom_scm_set_remote_state);
485 
486 static int qcom_scm_disable_sdi(void)
487 {
488 	int ret;
489 	struct qcom_scm_desc desc = {
490 		.svc = QCOM_SCM_SVC_BOOT,
491 		.cmd = QCOM_SCM_BOOT_SDI_CONFIG,
492 		.args[0] = 1, /* Disable watchdog debug */
493 		.args[1] = 0, /* Disable SDI */
494 		.arginfo = QCOM_SCM_ARGS(2),
495 		.owner = ARM_SMCCC_OWNER_SIP,
496 	};
497 	struct qcom_scm_res res;
498 
499 	ret = qcom_scm_clk_enable();
500 	if (ret)
501 		return ret;
502 	ret = qcom_scm_call(__scm->dev, &desc, &res);
503 
504 	qcom_scm_clk_disable();
505 
506 	return ret ? : res.result[0];
507 }
508 
509 static int __qcom_scm_set_dload_mode(struct device *dev, bool enable)
510 {
511 	struct qcom_scm_desc desc = {
512 		.svc = QCOM_SCM_SVC_BOOT,
513 		.cmd = QCOM_SCM_BOOT_SET_DLOAD_MODE,
514 		.arginfo = QCOM_SCM_ARGS(2),
515 		.args[0] = QCOM_SCM_BOOT_SET_DLOAD_MODE,
516 		.owner = ARM_SMCCC_OWNER_SIP,
517 	};
518 
519 	desc.args[1] = enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0;
520 
521 	return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
522 }
523 
524 static int qcom_scm_io_rmw(phys_addr_t addr, unsigned int mask, unsigned int val)
525 {
526 	unsigned int old;
527 	unsigned int new;
528 	int ret;
529 
530 	ret = qcom_scm_io_readl(addr, &old);
531 	if (ret)
532 		return ret;
533 
534 	new = (old & ~mask) | (val & mask);
535 
536 	return qcom_scm_io_writel(addr, new);
537 }
538 
539 static void qcom_scm_set_download_mode(u32 dload_mode)
540 {
541 	int ret = 0;
542 
543 	if (__scm->dload_mode_addr) {
544 		ret = qcom_scm_io_rmw(__scm->dload_mode_addr, QCOM_DLOAD_MASK,
545 				      FIELD_PREP(QCOM_DLOAD_MASK, dload_mode));
546 	} else if (__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_BOOT,
547 						QCOM_SCM_BOOT_SET_DLOAD_MODE)) {
548 		ret = __qcom_scm_set_dload_mode(__scm->dev, !!dload_mode);
549 	} else if (dload_mode) {
550 		dev_err(__scm->dev,
551 			"No available mechanism for setting download mode\n");
552 	}
553 
554 	if (ret)
555 		dev_err(__scm->dev, "failed to set download mode: %d\n", ret);
556 }
557 
558 /**
559  * qcom_scm_pas_init_image() - Initialize peripheral authentication service
560  *			       state machine for a given peripheral, using the
561  *			       metadata
562  * @peripheral: peripheral id
563  * @metadata:	pointer to memory containing ELF header, program header table
564  *		and optional blob of data used for authenticating the metadata
565  *		and the rest of the firmware
566  * @size:	size of the metadata
567  * @ctx:	optional metadata context
568  *
569  * Return: 0 on success.
570  *
571  * Upon successful return, the PAS metadata context (@ctx) will be used to
572  * track the metadata allocation, this needs to be released by invoking
573  * qcom_scm_pas_metadata_release() by the caller.
574  */
575 int qcom_scm_pas_init_image(u32 peripheral, const void *metadata, size_t size,
576 			    struct qcom_scm_pas_metadata *ctx)
577 {
578 	dma_addr_t mdata_phys;
579 	void *mdata_buf;
580 	int ret;
581 	struct qcom_scm_desc desc = {
582 		.svc = QCOM_SCM_SVC_PIL,
583 		.cmd = QCOM_SCM_PIL_PAS_INIT_IMAGE,
584 		.arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_VAL, QCOM_SCM_RW),
585 		.args[0] = peripheral,
586 		.owner = ARM_SMCCC_OWNER_SIP,
587 	};
588 	struct qcom_scm_res res;
589 
590 	/*
591 	 * During the scm call memory protection will be enabled for the meta
592 	 * data blob, so make sure it's physically contiguous, 4K aligned and
593 	 * non-cachable to avoid XPU violations.
594 	 *
595 	 * For PIL calls the hypervisor creates SHM Bridges for the blob
596 	 * buffers on behalf of Linux so we must not do it ourselves hence
597 	 * not using the TZMem allocator here.
598 	 *
599 	 * If we pass a buffer that is already part of an SHM Bridge to this
600 	 * call, it will fail.
601 	 */
602 	mdata_buf = dma_alloc_coherent(__scm->dev, size, &mdata_phys,
603 				       GFP_KERNEL);
604 	if (!mdata_buf)
605 		return -ENOMEM;
606 
607 	memcpy(mdata_buf, metadata, size);
608 
609 	ret = qcom_scm_clk_enable();
610 	if (ret)
611 		goto out;
612 
613 	ret = qcom_scm_bw_enable();
614 	if (ret)
615 		goto disable_clk;
616 
617 	desc.args[1] = mdata_phys;
618 
619 	ret = qcom_scm_call(__scm->dev, &desc, &res);
620 	qcom_scm_bw_disable();
621 
622 disable_clk:
623 	qcom_scm_clk_disable();
624 
625 out:
626 	if (ret < 0 || !ctx) {
627 		dma_free_coherent(__scm->dev, size, mdata_buf, mdata_phys);
628 	} else if (ctx) {
629 		ctx->ptr = mdata_buf;
630 		ctx->phys = mdata_phys;
631 		ctx->size = size;
632 	}
633 
634 	return ret ? : res.result[0];
635 }
636 EXPORT_SYMBOL_GPL(qcom_scm_pas_init_image);
637 
638 /**
639  * qcom_scm_pas_metadata_release() - release metadata context
640  * @ctx:	metadata context
641  */
642 void qcom_scm_pas_metadata_release(struct qcom_scm_pas_metadata *ctx)
643 {
644 	if (!ctx->ptr)
645 		return;
646 
647 	dma_free_coherent(__scm->dev, ctx->size, ctx->ptr, ctx->phys);
648 
649 	ctx->ptr = NULL;
650 	ctx->phys = 0;
651 	ctx->size = 0;
652 }
653 EXPORT_SYMBOL_GPL(qcom_scm_pas_metadata_release);
654 
655 /**
656  * qcom_scm_pas_mem_setup() - Prepare the memory related to a given peripheral
657  *			      for firmware loading
658  * @peripheral:	peripheral id
659  * @addr:	start address of memory area to prepare
660  * @size:	size of the memory area to prepare
661  *
662  * Returns 0 on success.
663  */
664 int qcom_scm_pas_mem_setup(u32 peripheral, phys_addr_t addr, phys_addr_t size)
665 {
666 	int ret;
667 	struct qcom_scm_desc desc = {
668 		.svc = QCOM_SCM_SVC_PIL,
669 		.cmd = QCOM_SCM_PIL_PAS_MEM_SETUP,
670 		.arginfo = QCOM_SCM_ARGS(3),
671 		.args[0] = peripheral,
672 		.args[1] = addr,
673 		.args[2] = size,
674 		.owner = ARM_SMCCC_OWNER_SIP,
675 	};
676 	struct qcom_scm_res res;
677 
678 	ret = qcom_scm_clk_enable();
679 	if (ret)
680 		return ret;
681 
682 	ret = qcom_scm_bw_enable();
683 	if (ret)
684 		goto disable_clk;
685 
686 	ret = qcom_scm_call(__scm->dev, &desc, &res);
687 	qcom_scm_bw_disable();
688 
689 disable_clk:
690 	qcom_scm_clk_disable();
691 
692 	return ret ? : res.result[0];
693 }
694 EXPORT_SYMBOL_GPL(qcom_scm_pas_mem_setup);
695 
696 /**
697  * qcom_scm_pas_auth_and_reset() - Authenticate the given peripheral firmware
698  *				   and reset the remote processor
699  * @peripheral:	peripheral id
700  *
701  * Return 0 on success.
702  */
703 int qcom_scm_pas_auth_and_reset(u32 peripheral)
704 {
705 	int ret;
706 	struct qcom_scm_desc desc = {
707 		.svc = QCOM_SCM_SVC_PIL,
708 		.cmd = QCOM_SCM_PIL_PAS_AUTH_AND_RESET,
709 		.arginfo = QCOM_SCM_ARGS(1),
710 		.args[0] = peripheral,
711 		.owner = ARM_SMCCC_OWNER_SIP,
712 	};
713 	struct qcom_scm_res res;
714 
715 	ret = qcom_scm_clk_enable();
716 	if (ret)
717 		return ret;
718 
719 	ret = qcom_scm_bw_enable();
720 	if (ret)
721 		goto disable_clk;
722 
723 	ret = qcom_scm_call(__scm->dev, &desc, &res);
724 	qcom_scm_bw_disable();
725 
726 disable_clk:
727 	qcom_scm_clk_disable();
728 
729 	return ret ? : res.result[0];
730 }
731 EXPORT_SYMBOL_GPL(qcom_scm_pas_auth_and_reset);
732 
733 /**
734  * qcom_scm_pas_shutdown() - Shut down the remote processor
735  * @peripheral: peripheral id
736  *
737  * Returns 0 on success.
738  */
739 int qcom_scm_pas_shutdown(u32 peripheral)
740 {
741 	int ret;
742 	struct qcom_scm_desc desc = {
743 		.svc = QCOM_SCM_SVC_PIL,
744 		.cmd = QCOM_SCM_PIL_PAS_SHUTDOWN,
745 		.arginfo = QCOM_SCM_ARGS(1),
746 		.args[0] = peripheral,
747 		.owner = ARM_SMCCC_OWNER_SIP,
748 	};
749 	struct qcom_scm_res res;
750 
751 	ret = qcom_scm_clk_enable();
752 	if (ret)
753 		return ret;
754 
755 	ret = qcom_scm_bw_enable();
756 	if (ret)
757 		goto disable_clk;
758 
759 	ret = qcom_scm_call(__scm->dev, &desc, &res);
760 	qcom_scm_bw_disable();
761 
762 disable_clk:
763 	qcom_scm_clk_disable();
764 
765 	return ret ? : res.result[0];
766 }
767 EXPORT_SYMBOL_GPL(qcom_scm_pas_shutdown);
768 
769 /**
770  * qcom_scm_pas_supported() - Check if the peripheral authentication service is
771  *			      available for the given peripherial
772  * @peripheral:	peripheral id
773  *
774  * Returns true if PAS is supported for this peripheral, otherwise false.
775  */
776 bool qcom_scm_pas_supported(u32 peripheral)
777 {
778 	int ret;
779 	struct qcom_scm_desc desc = {
780 		.svc = QCOM_SCM_SVC_PIL,
781 		.cmd = QCOM_SCM_PIL_PAS_IS_SUPPORTED,
782 		.arginfo = QCOM_SCM_ARGS(1),
783 		.args[0] = peripheral,
784 		.owner = ARM_SMCCC_OWNER_SIP,
785 	};
786 	struct qcom_scm_res res;
787 
788 	if (!__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_PIL,
789 					  QCOM_SCM_PIL_PAS_IS_SUPPORTED))
790 		return false;
791 
792 	ret = qcom_scm_call(__scm->dev, &desc, &res);
793 
794 	return ret ? false : !!res.result[0];
795 }
796 EXPORT_SYMBOL_GPL(qcom_scm_pas_supported);
797 
798 static int __qcom_scm_pas_mss_reset(struct device *dev, bool reset)
799 {
800 	struct qcom_scm_desc desc = {
801 		.svc = QCOM_SCM_SVC_PIL,
802 		.cmd = QCOM_SCM_PIL_PAS_MSS_RESET,
803 		.arginfo = QCOM_SCM_ARGS(2),
804 		.args[0] = reset,
805 		.args[1] = 0,
806 		.owner = ARM_SMCCC_OWNER_SIP,
807 	};
808 	struct qcom_scm_res res;
809 	int ret;
810 
811 	ret = qcom_scm_call(__scm->dev, &desc, &res);
812 
813 	return ret ? : res.result[0];
814 }
815 
816 static int qcom_scm_pas_reset_assert(struct reset_controller_dev *rcdev,
817 				     unsigned long idx)
818 {
819 	if (idx != 0)
820 		return -EINVAL;
821 
822 	return __qcom_scm_pas_mss_reset(__scm->dev, 1);
823 }
824 
825 static int qcom_scm_pas_reset_deassert(struct reset_controller_dev *rcdev,
826 				       unsigned long idx)
827 {
828 	if (idx != 0)
829 		return -EINVAL;
830 
831 	return __qcom_scm_pas_mss_reset(__scm->dev, 0);
832 }
833 
834 static const struct reset_control_ops qcom_scm_pas_reset_ops = {
835 	.assert = qcom_scm_pas_reset_assert,
836 	.deassert = qcom_scm_pas_reset_deassert,
837 };
838 
839 int qcom_scm_io_readl(phys_addr_t addr, unsigned int *val)
840 {
841 	struct qcom_scm_desc desc = {
842 		.svc = QCOM_SCM_SVC_IO,
843 		.cmd = QCOM_SCM_IO_READ,
844 		.arginfo = QCOM_SCM_ARGS(1),
845 		.args[0] = addr,
846 		.owner = ARM_SMCCC_OWNER_SIP,
847 	};
848 	struct qcom_scm_res res;
849 	int ret;
850 
851 
852 	ret = qcom_scm_call_atomic(__scm->dev, &desc, &res);
853 	if (ret >= 0)
854 		*val = res.result[0];
855 
856 	return ret < 0 ? ret : 0;
857 }
858 EXPORT_SYMBOL_GPL(qcom_scm_io_readl);
859 
860 int qcom_scm_io_writel(phys_addr_t addr, unsigned int val)
861 {
862 	struct qcom_scm_desc desc = {
863 		.svc = QCOM_SCM_SVC_IO,
864 		.cmd = QCOM_SCM_IO_WRITE,
865 		.arginfo = QCOM_SCM_ARGS(2),
866 		.args[0] = addr,
867 		.args[1] = val,
868 		.owner = ARM_SMCCC_OWNER_SIP,
869 	};
870 
871 	return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
872 }
873 EXPORT_SYMBOL_GPL(qcom_scm_io_writel);
874 
875 /**
876  * qcom_scm_restore_sec_cfg_available() - Check if secure environment
877  * supports restore security config interface.
878  *
879  * Return true if restore-cfg interface is supported, false if not.
880  */
881 bool qcom_scm_restore_sec_cfg_available(void)
882 {
883 	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_MP,
884 					    QCOM_SCM_MP_RESTORE_SEC_CFG);
885 }
886 EXPORT_SYMBOL_GPL(qcom_scm_restore_sec_cfg_available);
887 
888 int qcom_scm_restore_sec_cfg(u32 device_id, u32 spare)
889 {
890 	struct qcom_scm_desc desc = {
891 		.svc = QCOM_SCM_SVC_MP,
892 		.cmd = QCOM_SCM_MP_RESTORE_SEC_CFG,
893 		.arginfo = QCOM_SCM_ARGS(2),
894 		.args[0] = device_id,
895 		.args[1] = spare,
896 		.owner = ARM_SMCCC_OWNER_SIP,
897 	};
898 	struct qcom_scm_res res;
899 	int ret;
900 
901 	ret = qcom_scm_call(__scm->dev, &desc, &res);
902 
903 	return ret ? : res.result[0];
904 }
905 EXPORT_SYMBOL_GPL(qcom_scm_restore_sec_cfg);
906 
907 int qcom_scm_iommu_secure_ptbl_size(u32 spare, size_t *size)
908 {
909 	struct qcom_scm_desc desc = {
910 		.svc = QCOM_SCM_SVC_MP,
911 		.cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_SIZE,
912 		.arginfo = QCOM_SCM_ARGS(1),
913 		.args[0] = spare,
914 		.owner = ARM_SMCCC_OWNER_SIP,
915 	};
916 	struct qcom_scm_res res;
917 	int ret;
918 
919 	ret = qcom_scm_call(__scm->dev, &desc, &res);
920 
921 	if (size)
922 		*size = res.result[0];
923 
924 	return ret ? : res.result[1];
925 }
926 EXPORT_SYMBOL_GPL(qcom_scm_iommu_secure_ptbl_size);
927 
928 int qcom_scm_iommu_secure_ptbl_init(u64 addr, u32 size, u32 spare)
929 {
930 	struct qcom_scm_desc desc = {
931 		.svc = QCOM_SCM_SVC_MP,
932 		.cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_INIT,
933 		.arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_RW, QCOM_SCM_VAL,
934 					 QCOM_SCM_VAL),
935 		.args[0] = addr,
936 		.args[1] = size,
937 		.args[2] = spare,
938 		.owner = ARM_SMCCC_OWNER_SIP,
939 	};
940 	int ret;
941 
942 	ret = qcom_scm_call(__scm->dev, &desc, NULL);
943 
944 	/* the pg table has been initialized already, ignore the error */
945 	if (ret == -EPERM)
946 		ret = 0;
947 
948 	return ret;
949 }
950 EXPORT_SYMBOL_GPL(qcom_scm_iommu_secure_ptbl_init);
951 
952 int qcom_scm_iommu_set_cp_pool_size(u32 spare, u32 size)
953 {
954 	struct qcom_scm_desc desc = {
955 		.svc = QCOM_SCM_SVC_MP,
956 		.cmd = QCOM_SCM_MP_IOMMU_SET_CP_POOL_SIZE,
957 		.arginfo = QCOM_SCM_ARGS(2),
958 		.args[0] = size,
959 		.args[1] = spare,
960 		.owner = ARM_SMCCC_OWNER_SIP,
961 	};
962 
963 	return qcom_scm_call(__scm->dev, &desc, NULL);
964 }
965 EXPORT_SYMBOL_GPL(qcom_scm_iommu_set_cp_pool_size);
966 
967 int qcom_scm_mem_protect_video_var(u32 cp_start, u32 cp_size,
968 				   u32 cp_nonpixel_start,
969 				   u32 cp_nonpixel_size)
970 {
971 	int ret;
972 	struct qcom_scm_desc desc = {
973 		.svc = QCOM_SCM_SVC_MP,
974 		.cmd = QCOM_SCM_MP_VIDEO_VAR,
975 		.arginfo = QCOM_SCM_ARGS(4, QCOM_SCM_VAL, QCOM_SCM_VAL,
976 					 QCOM_SCM_VAL, QCOM_SCM_VAL),
977 		.args[0] = cp_start,
978 		.args[1] = cp_size,
979 		.args[2] = cp_nonpixel_start,
980 		.args[3] = cp_nonpixel_size,
981 		.owner = ARM_SMCCC_OWNER_SIP,
982 	};
983 	struct qcom_scm_res res;
984 
985 	ret = qcom_scm_call(__scm->dev, &desc, &res);
986 
987 	return ret ? : res.result[0];
988 }
989 EXPORT_SYMBOL_GPL(qcom_scm_mem_protect_video_var);
990 
991 static int __qcom_scm_assign_mem(struct device *dev, phys_addr_t mem_region,
992 				 size_t mem_sz, phys_addr_t src, size_t src_sz,
993 				 phys_addr_t dest, size_t dest_sz)
994 {
995 	int ret;
996 	struct qcom_scm_desc desc = {
997 		.svc = QCOM_SCM_SVC_MP,
998 		.cmd = QCOM_SCM_MP_ASSIGN,
999 		.arginfo = QCOM_SCM_ARGS(7, QCOM_SCM_RO, QCOM_SCM_VAL,
1000 					 QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_RO,
1001 					 QCOM_SCM_VAL, QCOM_SCM_VAL),
1002 		.args[0] = mem_region,
1003 		.args[1] = mem_sz,
1004 		.args[2] = src,
1005 		.args[3] = src_sz,
1006 		.args[4] = dest,
1007 		.args[5] = dest_sz,
1008 		.args[6] = 0,
1009 		.owner = ARM_SMCCC_OWNER_SIP,
1010 	};
1011 	struct qcom_scm_res res;
1012 
1013 	ret = qcom_scm_call(dev, &desc, &res);
1014 
1015 	return ret ? : res.result[0];
1016 }
1017 
1018 /**
1019  * qcom_scm_assign_mem() - Make a secure call to reassign memory ownership
1020  * @mem_addr: mem region whose ownership need to be reassigned
1021  * @mem_sz:   size of the region.
1022  * @srcvm:    vmid for current set of owners, each set bit in
1023  *            flag indicate a unique owner
1024  * @newvm:    array having new owners and corresponding permission
1025  *            flags
1026  * @dest_cnt: number of owners in next set.
1027  *
1028  * Return negative errno on failure or 0 on success with @srcvm updated.
1029  */
1030 int qcom_scm_assign_mem(phys_addr_t mem_addr, size_t mem_sz,
1031 			u64 *srcvm,
1032 			const struct qcom_scm_vmperm *newvm,
1033 			unsigned int dest_cnt)
1034 {
1035 	struct qcom_scm_current_perm_info *destvm;
1036 	struct qcom_scm_mem_map_info *mem_to_map;
1037 	phys_addr_t mem_to_map_phys;
1038 	phys_addr_t dest_phys;
1039 	phys_addr_t ptr_phys;
1040 	size_t mem_to_map_sz;
1041 	size_t dest_sz;
1042 	size_t src_sz;
1043 	size_t ptr_sz;
1044 	int next_vm;
1045 	__le32 *src;
1046 	int ret, i, b;
1047 	u64 srcvm_bits = *srcvm;
1048 
1049 	src_sz = hweight64(srcvm_bits) * sizeof(*src);
1050 	mem_to_map_sz = sizeof(*mem_to_map);
1051 	dest_sz = dest_cnt * sizeof(*destvm);
1052 	ptr_sz = ALIGN(src_sz, SZ_64) + ALIGN(mem_to_map_sz, SZ_64) +
1053 			ALIGN(dest_sz, SZ_64);
1054 
1055 	void *ptr __free(qcom_tzmem) = qcom_tzmem_alloc(__scm->mempool,
1056 							ptr_sz, GFP_KERNEL);
1057 	if (!ptr)
1058 		return -ENOMEM;
1059 
1060 	ptr_phys = qcom_tzmem_to_phys(ptr);
1061 
1062 	/* Fill source vmid detail */
1063 	src = ptr;
1064 	i = 0;
1065 	for (b = 0; b < BITS_PER_TYPE(u64); b++) {
1066 		if (srcvm_bits & BIT(b))
1067 			src[i++] = cpu_to_le32(b);
1068 	}
1069 
1070 	/* Fill details of mem buff to map */
1071 	mem_to_map = ptr + ALIGN(src_sz, SZ_64);
1072 	mem_to_map_phys = ptr_phys + ALIGN(src_sz, SZ_64);
1073 	mem_to_map->mem_addr = cpu_to_le64(mem_addr);
1074 	mem_to_map->mem_size = cpu_to_le64(mem_sz);
1075 
1076 	next_vm = 0;
1077 	/* Fill details of next vmid detail */
1078 	destvm = ptr + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
1079 	dest_phys = ptr_phys + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
1080 	for (i = 0; i < dest_cnt; i++, destvm++, newvm++) {
1081 		destvm->vmid = cpu_to_le32(newvm->vmid);
1082 		destvm->perm = cpu_to_le32(newvm->perm);
1083 		destvm->ctx = 0;
1084 		destvm->ctx_size = 0;
1085 		next_vm |= BIT(newvm->vmid);
1086 	}
1087 
1088 	ret = __qcom_scm_assign_mem(__scm->dev, mem_to_map_phys, mem_to_map_sz,
1089 				    ptr_phys, src_sz, dest_phys, dest_sz);
1090 	if (ret) {
1091 		dev_err(__scm->dev,
1092 			"Assign memory protection call failed %d\n", ret);
1093 		return -EINVAL;
1094 	}
1095 
1096 	*srcvm = next_vm;
1097 	return 0;
1098 }
1099 EXPORT_SYMBOL_GPL(qcom_scm_assign_mem);
1100 
1101 /**
1102  * qcom_scm_ocmem_lock_available() - is OCMEM lock/unlock interface available
1103  */
1104 bool qcom_scm_ocmem_lock_available(void)
1105 {
1106 	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_OCMEM,
1107 					    QCOM_SCM_OCMEM_LOCK_CMD);
1108 }
1109 EXPORT_SYMBOL_GPL(qcom_scm_ocmem_lock_available);
1110 
1111 /**
1112  * qcom_scm_ocmem_lock() - call OCMEM lock interface to assign an OCMEM
1113  * region to the specified initiator
1114  *
1115  * @id:     tz initiator id
1116  * @offset: OCMEM offset
1117  * @size:   OCMEM size
1118  * @mode:   access mode (WIDE/NARROW)
1119  */
1120 int qcom_scm_ocmem_lock(enum qcom_scm_ocmem_client id, u32 offset, u32 size,
1121 			u32 mode)
1122 {
1123 	struct qcom_scm_desc desc = {
1124 		.svc = QCOM_SCM_SVC_OCMEM,
1125 		.cmd = QCOM_SCM_OCMEM_LOCK_CMD,
1126 		.args[0] = id,
1127 		.args[1] = offset,
1128 		.args[2] = size,
1129 		.args[3] = mode,
1130 		.arginfo = QCOM_SCM_ARGS(4),
1131 	};
1132 
1133 	return qcom_scm_call(__scm->dev, &desc, NULL);
1134 }
1135 EXPORT_SYMBOL_GPL(qcom_scm_ocmem_lock);
1136 
1137 /**
1138  * qcom_scm_ocmem_unlock() - call OCMEM unlock interface to release an OCMEM
1139  * region from the specified initiator
1140  *
1141  * @id:     tz initiator id
1142  * @offset: OCMEM offset
1143  * @size:   OCMEM size
1144  */
1145 int qcom_scm_ocmem_unlock(enum qcom_scm_ocmem_client id, u32 offset, u32 size)
1146 {
1147 	struct qcom_scm_desc desc = {
1148 		.svc = QCOM_SCM_SVC_OCMEM,
1149 		.cmd = QCOM_SCM_OCMEM_UNLOCK_CMD,
1150 		.args[0] = id,
1151 		.args[1] = offset,
1152 		.args[2] = size,
1153 		.arginfo = QCOM_SCM_ARGS(3),
1154 	};
1155 
1156 	return qcom_scm_call(__scm->dev, &desc, NULL);
1157 }
1158 EXPORT_SYMBOL_GPL(qcom_scm_ocmem_unlock);
1159 
1160 /**
1161  * qcom_scm_ice_available() - Is the ICE key programming interface available?
1162  *
1163  * Return: true iff the SCM calls wrapped by qcom_scm_ice_invalidate_key() and
1164  *	   qcom_scm_ice_set_key() are available.
1165  */
1166 bool qcom_scm_ice_available(void)
1167 {
1168 	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
1169 					    QCOM_SCM_ES_INVALIDATE_ICE_KEY) &&
1170 		__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
1171 					     QCOM_SCM_ES_CONFIG_SET_ICE_KEY);
1172 }
1173 EXPORT_SYMBOL_GPL(qcom_scm_ice_available);
1174 
1175 /**
1176  * qcom_scm_ice_invalidate_key() - Invalidate an inline encryption key
1177  * @index: the keyslot to invalidate
1178  *
1179  * The UFSHCI and eMMC standards define a standard way to do this, but it
1180  * doesn't work on these SoCs; only this SCM call does.
1181  *
1182  * It is assumed that the SoC has only one ICE instance being used, as this SCM
1183  * call doesn't specify which ICE instance the keyslot belongs to.
1184  *
1185  * Return: 0 on success; -errno on failure.
1186  */
1187 int qcom_scm_ice_invalidate_key(u32 index)
1188 {
1189 	struct qcom_scm_desc desc = {
1190 		.svc = QCOM_SCM_SVC_ES,
1191 		.cmd = QCOM_SCM_ES_INVALIDATE_ICE_KEY,
1192 		.arginfo = QCOM_SCM_ARGS(1),
1193 		.args[0] = index,
1194 		.owner = ARM_SMCCC_OWNER_SIP,
1195 	};
1196 
1197 	return qcom_scm_call(__scm->dev, &desc, NULL);
1198 }
1199 EXPORT_SYMBOL_GPL(qcom_scm_ice_invalidate_key);
1200 
1201 /**
1202  * qcom_scm_ice_set_key() - Set an inline encryption key
1203  * @index: the keyslot into which to set the key
1204  * @key: the key to program
1205  * @key_size: the size of the key in bytes
1206  * @cipher: the encryption algorithm the key is for
1207  * @data_unit_size: the encryption data unit size, i.e. the size of each
1208  *		    individual plaintext and ciphertext.  Given in 512-byte
1209  *		    units, e.g. 1 = 512 bytes, 8 = 4096 bytes, etc.
1210  *
1211  * Program a key into a keyslot of Qualcomm ICE (Inline Crypto Engine), where it
1212  * can then be used to encrypt/decrypt UFS or eMMC I/O requests inline.
1213  *
1214  * The UFSHCI and eMMC standards define a standard way to do this, but it
1215  * doesn't work on these SoCs; only this SCM call does.
1216  *
1217  * It is assumed that the SoC has only one ICE instance being used, as this SCM
1218  * call doesn't specify which ICE instance the keyslot belongs to.
1219  *
1220  * Return: 0 on success; -errno on failure.
1221  */
1222 int qcom_scm_ice_set_key(u32 index, const u8 *key, u32 key_size,
1223 			 enum qcom_scm_ice_cipher cipher, u32 data_unit_size)
1224 {
1225 	struct qcom_scm_desc desc = {
1226 		.svc = QCOM_SCM_SVC_ES,
1227 		.cmd = QCOM_SCM_ES_CONFIG_SET_ICE_KEY,
1228 		.arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_VAL, QCOM_SCM_RW,
1229 					 QCOM_SCM_VAL, QCOM_SCM_VAL,
1230 					 QCOM_SCM_VAL),
1231 		.args[0] = index,
1232 		.args[2] = key_size,
1233 		.args[3] = cipher,
1234 		.args[4] = data_unit_size,
1235 		.owner = ARM_SMCCC_OWNER_SIP,
1236 	};
1237 
1238 	int ret;
1239 
1240 	void *keybuf __free(qcom_tzmem) = qcom_tzmem_alloc(__scm->mempool,
1241 							   key_size,
1242 							   GFP_KERNEL);
1243 	if (!keybuf)
1244 		return -ENOMEM;
1245 	memcpy(keybuf, key, key_size);
1246 	desc.args[1] = qcom_tzmem_to_phys(keybuf);
1247 
1248 	ret = qcom_scm_call(__scm->dev, &desc, NULL);
1249 
1250 	memzero_explicit(keybuf, key_size);
1251 
1252 	return ret;
1253 }
1254 EXPORT_SYMBOL_GPL(qcom_scm_ice_set_key);
1255 
1256 /**
1257  * qcom_scm_hdcp_available() - Check if secure environment supports HDCP.
1258  *
1259  * Return true if HDCP is supported, false if not.
1260  */
1261 bool qcom_scm_hdcp_available(void)
1262 {
1263 	bool avail;
1264 	int ret = qcom_scm_clk_enable();
1265 
1266 	if (ret)
1267 		return ret;
1268 
1269 	avail = __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_HDCP,
1270 						QCOM_SCM_HDCP_INVOKE);
1271 
1272 	qcom_scm_clk_disable();
1273 
1274 	return avail;
1275 }
1276 EXPORT_SYMBOL_GPL(qcom_scm_hdcp_available);
1277 
1278 /**
1279  * qcom_scm_hdcp_req() - Send HDCP request.
1280  * @req: HDCP request array
1281  * @req_cnt: HDCP request array count
1282  * @resp: response buffer passed to SCM
1283  *
1284  * Write HDCP register(s) through SCM.
1285  */
1286 int qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt, u32 *resp)
1287 {
1288 	int ret;
1289 	struct qcom_scm_desc desc = {
1290 		.svc = QCOM_SCM_SVC_HDCP,
1291 		.cmd = QCOM_SCM_HDCP_INVOKE,
1292 		.arginfo = QCOM_SCM_ARGS(10),
1293 		.args = {
1294 			req[0].addr,
1295 			req[0].val,
1296 			req[1].addr,
1297 			req[1].val,
1298 			req[2].addr,
1299 			req[2].val,
1300 			req[3].addr,
1301 			req[3].val,
1302 			req[4].addr,
1303 			req[4].val
1304 		},
1305 		.owner = ARM_SMCCC_OWNER_SIP,
1306 	};
1307 	struct qcom_scm_res res;
1308 
1309 	if (req_cnt > QCOM_SCM_HDCP_MAX_REQ_CNT)
1310 		return -ERANGE;
1311 
1312 	ret = qcom_scm_clk_enable();
1313 	if (ret)
1314 		return ret;
1315 
1316 	ret = qcom_scm_call(__scm->dev, &desc, &res);
1317 	*resp = res.result[0];
1318 
1319 	qcom_scm_clk_disable();
1320 
1321 	return ret;
1322 }
1323 EXPORT_SYMBOL_GPL(qcom_scm_hdcp_req);
1324 
1325 int qcom_scm_iommu_set_pt_format(u32 sec_id, u32 ctx_num, u32 pt_fmt)
1326 {
1327 	struct qcom_scm_desc desc = {
1328 		.svc = QCOM_SCM_SVC_SMMU_PROGRAM,
1329 		.cmd = QCOM_SCM_SMMU_PT_FORMAT,
1330 		.arginfo = QCOM_SCM_ARGS(3),
1331 		.args[0] = sec_id,
1332 		.args[1] = ctx_num,
1333 		.args[2] = pt_fmt, /* 0: LPAE AArch32 - 1: AArch64 */
1334 		.owner = ARM_SMCCC_OWNER_SIP,
1335 	};
1336 
1337 	return qcom_scm_call(__scm->dev, &desc, NULL);
1338 }
1339 EXPORT_SYMBOL_GPL(qcom_scm_iommu_set_pt_format);
1340 
1341 int qcom_scm_qsmmu500_wait_safe_toggle(bool en)
1342 {
1343 	struct qcom_scm_desc desc = {
1344 		.svc = QCOM_SCM_SVC_SMMU_PROGRAM,
1345 		.cmd = QCOM_SCM_SMMU_CONFIG_ERRATA1,
1346 		.arginfo = QCOM_SCM_ARGS(2),
1347 		.args[0] = QCOM_SCM_SMMU_CONFIG_ERRATA1_CLIENT_ALL,
1348 		.args[1] = en,
1349 		.owner = ARM_SMCCC_OWNER_SIP,
1350 	};
1351 
1352 
1353 	return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
1354 }
1355 EXPORT_SYMBOL_GPL(qcom_scm_qsmmu500_wait_safe_toggle);
1356 
1357 bool qcom_scm_lmh_dcvsh_available(void)
1358 {
1359 	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_LMH, QCOM_SCM_LMH_LIMIT_DCVSH);
1360 }
1361 EXPORT_SYMBOL_GPL(qcom_scm_lmh_dcvsh_available);
1362 
1363 int qcom_scm_shm_bridge_enable(void)
1364 {
1365 	int ret;
1366 
1367 	struct qcom_scm_desc desc = {
1368 		.svc = QCOM_SCM_SVC_MP,
1369 		.cmd = QCOM_SCM_MP_SHM_BRIDGE_ENABLE,
1370 		.owner = ARM_SMCCC_OWNER_SIP
1371 	};
1372 
1373 	struct qcom_scm_res res;
1374 
1375 	if (!__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_MP,
1376 					  QCOM_SCM_MP_SHM_BRIDGE_ENABLE))
1377 		return -EOPNOTSUPP;
1378 
1379 	ret = qcom_scm_call(__scm->dev, &desc, &res);
1380 
1381 	if (ret)
1382 		return ret;
1383 
1384 	if (res.result[0] == SHMBRIDGE_RESULT_NOTSUPP)
1385 		return -EOPNOTSUPP;
1386 
1387 	return res.result[0];
1388 }
1389 EXPORT_SYMBOL_GPL(qcom_scm_shm_bridge_enable);
1390 
1391 int qcom_scm_shm_bridge_create(struct device *dev, u64 pfn_and_ns_perm_flags,
1392 			       u64 ipfn_and_s_perm_flags, u64 size_and_flags,
1393 			       u64 ns_vmids, u64 *handle)
1394 {
1395 	struct qcom_scm_desc desc = {
1396 		.svc = QCOM_SCM_SVC_MP,
1397 		.cmd = QCOM_SCM_MP_SHM_BRIDGE_CREATE,
1398 		.owner = ARM_SMCCC_OWNER_SIP,
1399 		.args[0] = pfn_and_ns_perm_flags,
1400 		.args[1] = ipfn_and_s_perm_flags,
1401 		.args[2] = size_and_flags,
1402 		.args[3] = ns_vmids,
1403 		.arginfo = QCOM_SCM_ARGS(4, QCOM_SCM_VAL, QCOM_SCM_VAL,
1404 					 QCOM_SCM_VAL, QCOM_SCM_VAL),
1405 	};
1406 
1407 	struct qcom_scm_res res;
1408 	int ret;
1409 
1410 	ret = qcom_scm_call(__scm->dev, &desc, &res);
1411 
1412 	if (handle && !ret)
1413 		*handle = res.result[1];
1414 
1415 	return ret ?: res.result[0];
1416 }
1417 EXPORT_SYMBOL_GPL(qcom_scm_shm_bridge_create);
1418 
1419 int qcom_scm_shm_bridge_delete(struct device *dev, u64 handle)
1420 {
1421 	struct qcom_scm_desc desc = {
1422 		.svc = QCOM_SCM_SVC_MP,
1423 		.cmd = QCOM_SCM_MP_SHM_BRIDGE_DELETE,
1424 		.owner = ARM_SMCCC_OWNER_SIP,
1425 		.args[0] = handle,
1426 		.arginfo = QCOM_SCM_ARGS(1, QCOM_SCM_VAL),
1427 	};
1428 
1429 	return qcom_scm_call(__scm->dev, &desc, NULL);
1430 }
1431 EXPORT_SYMBOL_GPL(qcom_scm_shm_bridge_delete);
1432 
1433 int qcom_scm_lmh_profile_change(u32 profile_id)
1434 {
1435 	struct qcom_scm_desc desc = {
1436 		.svc = QCOM_SCM_SVC_LMH,
1437 		.cmd = QCOM_SCM_LMH_LIMIT_PROFILE_CHANGE,
1438 		.arginfo = QCOM_SCM_ARGS(1, QCOM_SCM_VAL),
1439 		.args[0] = profile_id,
1440 		.owner = ARM_SMCCC_OWNER_SIP,
1441 	};
1442 
1443 	return qcom_scm_call(__scm->dev, &desc, NULL);
1444 }
1445 EXPORT_SYMBOL_GPL(qcom_scm_lmh_profile_change);
1446 
1447 int qcom_scm_lmh_dcvsh(u32 payload_fn, u32 payload_reg, u32 payload_val,
1448 		       u64 limit_node, u32 node_id, u64 version)
1449 {
1450 	int ret, payload_size = 5 * sizeof(u32);
1451 
1452 	struct qcom_scm_desc desc = {
1453 		.svc = QCOM_SCM_SVC_LMH,
1454 		.cmd = QCOM_SCM_LMH_LIMIT_DCVSH,
1455 		.arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_VAL,
1456 					QCOM_SCM_VAL, QCOM_SCM_VAL),
1457 		.args[1] = payload_size,
1458 		.args[2] = limit_node,
1459 		.args[3] = node_id,
1460 		.args[4] = version,
1461 		.owner = ARM_SMCCC_OWNER_SIP,
1462 	};
1463 
1464 	u32 *payload_buf __free(qcom_tzmem) = qcom_tzmem_alloc(__scm->mempool,
1465 							       payload_size,
1466 							       GFP_KERNEL);
1467 	if (!payload_buf)
1468 		return -ENOMEM;
1469 
1470 	payload_buf[0] = payload_fn;
1471 	payload_buf[1] = 0;
1472 	payload_buf[2] = payload_reg;
1473 	payload_buf[3] = 1;
1474 	payload_buf[4] = payload_val;
1475 
1476 	desc.args[0] = qcom_tzmem_to_phys(payload_buf);
1477 
1478 	ret = qcom_scm_call(__scm->dev, &desc, NULL);
1479 
1480 	return ret;
1481 }
1482 EXPORT_SYMBOL_GPL(qcom_scm_lmh_dcvsh);
1483 
1484 int qcom_scm_gpu_init_regs(u32 gpu_req)
1485 {
1486 	struct qcom_scm_desc desc = {
1487 		.svc = QCOM_SCM_SVC_GPU,
1488 		.cmd = QCOM_SCM_SVC_GPU_INIT_REGS,
1489 		.arginfo = QCOM_SCM_ARGS(1),
1490 		.args[0] = gpu_req,
1491 		.owner = ARM_SMCCC_OWNER_SIP,
1492 	};
1493 
1494 	return qcom_scm_call(__scm->dev, &desc, NULL);
1495 }
1496 EXPORT_SYMBOL_GPL(qcom_scm_gpu_init_regs);
1497 
1498 static int qcom_scm_find_dload_address(struct device *dev, u64 *addr)
1499 {
1500 	struct device_node *tcsr;
1501 	struct device_node *np = dev->of_node;
1502 	struct resource res;
1503 	u32 offset;
1504 	int ret;
1505 
1506 	tcsr = of_parse_phandle(np, "qcom,dload-mode", 0);
1507 	if (!tcsr)
1508 		return 0;
1509 
1510 	ret = of_address_to_resource(tcsr, 0, &res);
1511 	of_node_put(tcsr);
1512 	if (ret)
1513 		return ret;
1514 
1515 	ret = of_property_read_u32_index(np, "qcom,dload-mode", 1, &offset);
1516 	if (ret < 0)
1517 		return ret;
1518 
1519 	*addr = res.start + offset;
1520 
1521 	return 0;
1522 }
1523 
1524 #ifdef CONFIG_QCOM_QSEECOM
1525 
1526 /* Lock for QSEECOM SCM call executions */
1527 static DEFINE_MUTEX(qcom_scm_qseecom_call_lock);
1528 
1529 static int __qcom_scm_qseecom_call(const struct qcom_scm_desc *desc,
1530 				   struct qcom_scm_qseecom_resp *res)
1531 {
1532 	struct qcom_scm_res scm_res = {};
1533 	int status;
1534 
1535 	/*
1536 	 * QSEECOM SCM calls should not be executed concurrently. Therefore, we
1537 	 * require the respective call lock to be held.
1538 	 */
1539 	lockdep_assert_held(&qcom_scm_qseecom_call_lock);
1540 
1541 	status = qcom_scm_call(__scm->dev, desc, &scm_res);
1542 
1543 	res->result = scm_res.result[0];
1544 	res->resp_type = scm_res.result[1];
1545 	res->data = scm_res.result[2];
1546 
1547 	if (status)
1548 		return status;
1549 
1550 	return 0;
1551 }
1552 
1553 /**
1554  * qcom_scm_qseecom_call() - Perform a QSEECOM SCM call.
1555  * @desc: SCM call descriptor.
1556  * @res:  SCM call response (output).
1557  *
1558  * Performs the QSEECOM SCM call described by @desc, returning the response in
1559  * @rsp.
1560  *
1561  * Return: Zero on success, nonzero on failure.
1562  */
1563 static int qcom_scm_qseecom_call(const struct qcom_scm_desc *desc,
1564 				 struct qcom_scm_qseecom_resp *res)
1565 {
1566 	int status;
1567 
1568 	/*
1569 	 * Note: Multiple QSEECOM SCM calls should not be executed same time,
1570 	 * so lock things here. This needs to be extended to callback/listener
1571 	 * handling when support for that is implemented.
1572 	 */
1573 
1574 	mutex_lock(&qcom_scm_qseecom_call_lock);
1575 	status = __qcom_scm_qseecom_call(desc, res);
1576 	mutex_unlock(&qcom_scm_qseecom_call_lock);
1577 
1578 	dev_dbg(__scm->dev, "%s: owner=%x, svc=%x, cmd=%x, result=%lld, type=%llx, data=%llx\n",
1579 		__func__, desc->owner, desc->svc, desc->cmd, res->result,
1580 		res->resp_type, res->data);
1581 
1582 	if (status) {
1583 		dev_err(__scm->dev, "qseecom: scm call failed with error %d\n", status);
1584 		return status;
1585 	}
1586 
1587 	/*
1588 	 * TODO: Handle incomplete and blocked calls:
1589 	 *
1590 	 * Incomplete and blocked calls are not supported yet. Some devices
1591 	 * and/or commands require those, some don't. Let's warn about them
1592 	 * prominently in case someone attempts to try these commands with a
1593 	 * device/command combination that isn't supported yet.
1594 	 */
1595 	WARN_ON(res->result == QSEECOM_RESULT_INCOMPLETE);
1596 	WARN_ON(res->result == QSEECOM_RESULT_BLOCKED_ON_LISTENER);
1597 
1598 	return 0;
1599 }
1600 
1601 /**
1602  * qcom_scm_qseecom_get_version() - Query the QSEECOM version.
1603  * @version: Pointer where the QSEECOM version will be stored.
1604  *
1605  * Performs the QSEECOM SCM querying the QSEECOM version currently running in
1606  * the TrustZone.
1607  *
1608  * Return: Zero on success, nonzero on failure.
1609  */
1610 static int qcom_scm_qseecom_get_version(u32 *version)
1611 {
1612 	struct qcom_scm_desc desc = {};
1613 	struct qcom_scm_qseecom_resp res = {};
1614 	u32 feature = 10;
1615 	int ret;
1616 
1617 	desc.owner = QSEECOM_TZ_OWNER_SIP;
1618 	desc.svc = QSEECOM_TZ_SVC_INFO;
1619 	desc.cmd = QSEECOM_TZ_CMD_INFO_VERSION;
1620 	desc.arginfo = QCOM_SCM_ARGS(1, QCOM_SCM_VAL);
1621 	desc.args[0] = feature;
1622 
1623 	ret = qcom_scm_qseecom_call(&desc, &res);
1624 	if (ret)
1625 		return ret;
1626 
1627 	*version = res.result;
1628 	return 0;
1629 }
1630 
1631 /**
1632  * qcom_scm_qseecom_app_get_id() - Query the app ID for a given QSEE app name.
1633  * @app_name: The name of the app.
1634  * @app_id:   The returned app ID.
1635  *
1636  * Query and return the application ID of the SEE app identified by the given
1637  * name. This returned ID is the unique identifier of the app required for
1638  * subsequent communication.
1639  *
1640  * Return: Zero on success, nonzero on failure, -ENOENT if the app has not been
1641  * loaded or could not be found.
1642  */
1643 int qcom_scm_qseecom_app_get_id(const char *app_name, u32 *app_id)
1644 {
1645 	unsigned long name_buf_size = QSEECOM_MAX_APP_NAME_SIZE;
1646 	unsigned long app_name_len = strlen(app_name);
1647 	struct qcom_scm_desc desc = {};
1648 	struct qcom_scm_qseecom_resp res = {};
1649 	int status;
1650 
1651 	if (app_name_len >= name_buf_size)
1652 		return -EINVAL;
1653 
1654 	char *name_buf __free(qcom_tzmem) = qcom_tzmem_alloc(__scm->mempool,
1655 							     name_buf_size,
1656 							     GFP_KERNEL);
1657 	if (!name_buf)
1658 		return -ENOMEM;
1659 
1660 	memcpy(name_buf, app_name, app_name_len);
1661 
1662 	desc.owner = QSEECOM_TZ_OWNER_QSEE_OS;
1663 	desc.svc = QSEECOM_TZ_SVC_APP_MGR;
1664 	desc.cmd = QSEECOM_TZ_CMD_APP_LOOKUP;
1665 	desc.arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_RW, QCOM_SCM_VAL);
1666 	desc.args[0] = qcom_tzmem_to_phys(name_buf);
1667 	desc.args[1] = app_name_len;
1668 
1669 	status = qcom_scm_qseecom_call(&desc, &res);
1670 
1671 	if (status)
1672 		return status;
1673 
1674 	if (res.result == QSEECOM_RESULT_FAILURE)
1675 		return -ENOENT;
1676 
1677 	if (res.result != QSEECOM_RESULT_SUCCESS)
1678 		return -EINVAL;
1679 
1680 	if (res.resp_type != QSEECOM_SCM_RES_APP_ID)
1681 		return -EINVAL;
1682 
1683 	*app_id = res.data;
1684 	return 0;
1685 }
1686 EXPORT_SYMBOL_GPL(qcom_scm_qseecom_app_get_id);
1687 
1688 /**
1689  * qcom_scm_qseecom_app_send() - Send to and receive data from a given QSEE app.
1690  * @app_id:   The ID of the target app.
1691  * @req:      Request buffer sent to the app (must be TZ memory)
1692  * @req_size: Size of the request buffer.
1693  * @rsp:      Response buffer, written to by the app (must be TZ memory)
1694  * @rsp_size: Size of the response buffer.
1695  *
1696  * Sends a request to the QSEE app associated with the given ID and read back
1697  * its response. The caller must provide two DMA memory regions, one for the
1698  * request and one for the response, and fill out the @req region with the
1699  * respective (app-specific) request data. The QSEE app reads this and returns
1700  * its response in the @rsp region.
1701  *
1702  * Return: Zero on success, nonzero on failure.
1703  */
1704 int qcom_scm_qseecom_app_send(u32 app_id, void *req, size_t req_size,
1705 			      void *rsp, size_t rsp_size)
1706 {
1707 	struct qcom_scm_qseecom_resp res = {};
1708 	struct qcom_scm_desc desc = {};
1709 	phys_addr_t req_phys;
1710 	phys_addr_t rsp_phys;
1711 	int status;
1712 
1713 	req_phys = qcom_tzmem_to_phys(req);
1714 	rsp_phys = qcom_tzmem_to_phys(rsp);
1715 
1716 	desc.owner = QSEECOM_TZ_OWNER_TZ_APPS;
1717 	desc.svc = QSEECOM_TZ_SVC_APP_ID_PLACEHOLDER;
1718 	desc.cmd = QSEECOM_TZ_CMD_APP_SEND;
1719 	desc.arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_VAL,
1720 				     QCOM_SCM_RW, QCOM_SCM_VAL,
1721 				     QCOM_SCM_RW, QCOM_SCM_VAL);
1722 	desc.args[0] = app_id;
1723 	desc.args[1] = req_phys;
1724 	desc.args[2] = req_size;
1725 	desc.args[3] = rsp_phys;
1726 	desc.args[4] = rsp_size;
1727 
1728 	status = qcom_scm_qseecom_call(&desc, &res);
1729 
1730 	if (status)
1731 		return status;
1732 
1733 	if (res.result != QSEECOM_RESULT_SUCCESS)
1734 		return -EIO;
1735 
1736 	return 0;
1737 }
1738 EXPORT_SYMBOL_GPL(qcom_scm_qseecom_app_send);
1739 
1740 /*
1741  * We do not yet support re-entrant calls via the qseecom interface. To prevent
1742  + any potential issues with this, only allow validated machines for now.
1743  */
1744 static const struct of_device_id qcom_scm_qseecom_allowlist[] __maybe_unused = {
1745 	{ .compatible = "lenovo,flex-5g" },
1746 	{ .compatible = "lenovo,thinkpad-t14s" },
1747 	{ .compatible = "lenovo,thinkpad-x13s", },
1748 	{ .compatible = "microsoft,romulus13", },
1749 	{ .compatible = "microsoft,romulus15", },
1750 	{ .compatible = "qcom,sc8180x-primus" },
1751 	{ .compatible = "qcom,x1e80100-crd" },
1752 	{ .compatible = "qcom,x1e80100-qcp" },
1753 	{ }
1754 };
1755 
1756 static bool qcom_scm_qseecom_machine_is_allowed(void)
1757 {
1758 	struct device_node *np;
1759 	bool match;
1760 
1761 	np = of_find_node_by_path("/");
1762 	if (!np)
1763 		return false;
1764 
1765 	match = of_match_node(qcom_scm_qseecom_allowlist, np);
1766 	of_node_put(np);
1767 
1768 	return match;
1769 }
1770 
1771 static void qcom_scm_qseecom_free(void *data)
1772 {
1773 	struct platform_device *qseecom_dev = data;
1774 
1775 	platform_device_del(qseecom_dev);
1776 	platform_device_put(qseecom_dev);
1777 }
1778 
1779 static int qcom_scm_qseecom_init(struct qcom_scm *scm)
1780 {
1781 	struct platform_device *qseecom_dev;
1782 	u32 version;
1783 	int ret;
1784 
1785 	/*
1786 	 * Note: We do two steps of validation here: First, we try to query the
1787 	 * QSEECOM version as a check to see if the interface exists on this
1788 	 * device. Second, we check against known good devices due to current
1789 	 * driver limitations (see comment in qcom_scm_qseecom_allowlist).
1790 	 *
1791 	 * Note that we deliberately do the machine check after the version
1792 	 * check so that we can log potentially supported devices. This should
1793 	 * be safe as downstream sources indicate that the version query is
1794 	 * neither blocking nor reentrant.
1795 	 */
1796 	ret = qcom_scm_qseecom_get_version(&version);
1797 	if (ret)
1798 		return 0;
1799 
1800 	dev_info(scm->dev, "qseecom: found qseecom with version 0x%x\n", version);
1801 
1802 	if (!qcom_scm_qseecom_machine_is_allowed()) {
1803 		dev_info(scm->dev, "qseecom: untested machine, skipping\n");
1804 		return 0;
1805 	}
1806 
1807 	/*
1808 	 * Set up QSEECOM interface device. All application clients will be
1809 	 * set up and managed by the corresponding driver for it.
1810 	 */
1811 	qseecom_dev = platform_device_alloc("qcom_qseecom", -1);
1812 	if (!qseecom_dev)
1813 		return -ENOMEM;
1814 
1815 	qseecom_dev->dev.parent = scm->dev;
1816 
1817 	ret = platform_device_add(qseecom_dev);
1818 	if (ret) {
1819 		platform_device_put(qseecom_dev);
1820 		return ret;
1821 	}
1822 
1823 	return devm_add_action_or_reset(scm->dev, qcom_scm_qseecom_free, qseecom_dev);
1824 }
1825 
1826 #else /* CONFIG_QCOM_QSEECOM */
1827 
1828 static int qcom_scm_qseecom_init(struct qcom_scm *scm)
1829 {
1830 	return 0;
1831 }
1832 
1833 #endif /* CONFIG_QCOM_QSEECOM */
1834 
1835 /**
1836  * qcom_scm_is_available() - Checks if SCM is available
1837  */
1838 bool qcom_scm_is_available(void)
1839 {
1840 	return !!READ_ONCE(__scm);
1841 }
1842 EXPORT_SYMBOL_GPL(qcom_scm_is_available);
1843 
1844 static int qcom_scm_assert_valid_wq_ctx(u32 wq_ctx)
1845 {
1846 	/* FW currently only supports a single wq_ctx (zero).
1847 	 * TODO: Update this logic to include dynamic allocation and lookup of
1848 	 * completion structs when FW supports more wq_ctx values.
1849 	 */
1850 	if (wq_ctx != 0) {
1851 		dev_err(__scm->dev, "Firmware unexpectedly passed non-zero wq_ctx\n");
1852 		return -EINVAL;
1853 	}
1854 
1855 	return 0;
1856 }
1857 
1858 int qcom_scm_wait_for_wq_completion(u32 wq_ctx)
1859 {
1860 	int ret;
1861 
1862 	ret = qcom_scm_assert_valid_wq_ctx(wq_ctx);
1863 	if (ret)
1864 		return ret;
1865 
1866 	wait_for_completion(&__scm->waitq_comp);
1867 
1868 	return 0;
1869 }
1870 
1871 static int qcom_scm_waitq_wakeup(unsigned int wq_ctx)
1872 {
1873 	int ret;
1874 
1875 	ret = qcom_scm_assert_valid_wq_ctx(wq_ctx);
1876 	if (ret)
1877 		return ret;
1878 
1879 	complete(&__scm->waitq_comp);
1880 
1881 	return 0;
1882 }
1883 
1884 static irqreturn_t qcom_scm_irq_handler(int irq, void *data)
1885 {
1886 	int ret;
1887 	struct qcom_scm *scm = data;
1888 	u32 wq_ctx, flags, more_pending = 0;
1889 
1890 	do {
1891 		ret = scm_get_wq_ctx(&wq_ctx, &flags, &more_pending);
1892 		if (ret) {
1893 			dev_err(scm->dev, "GET_WQ_CTX SMC call failed: %d\n", ret);
1894 			goto out;
1895 		}
1896 
1897 		if (flags != QCOM_SMC_WAITQ_FLAG_WAKE_ONE) {
1898 			dev_err(scm->dev, "Invalid flags received for wq_ctx: %u\n", flags);
1899 			goto out;
1900 		}
1901 
1902 		ret = qcom_scm_waitq_wakeup(wq_ctx);
1903 		if (ret)
1904 			goto out;
1905 	} while (more_pending);
1906 
1907 out:
1908 	return IRQ_HANDLED;
1909 }
1910 
1911 static int get_download_mode(char *buffer, const struct kernel_param *kp)
1912 {
1913 	if (download_mode >= ARRAY_SIZE(download_mode_name))
1914 		return sysfs_emit(buffer, "unknown mode\n");
1915 
1916 	return sysfs_emit(buffer, "%s\n", download_mode_name[download_mode]);
1917 }
1918 
1919 static int set_download_mode(const char *val, const struct kernel_param *kp)
1920 {
1921 	bool tmp;
1922 	int ret;
1923 
1924 	ret = sysfs_match_string(download_mode_name, val);
1925 	if (ret < 0) {
1926 		ret = kstrtobool(val, &tmp);
1927 		if (ret < 0) {
1928 			pr_err("qcom_scm: err: %d\n", ret);
1929 			return ret;
1930 		}
1931 
1932 		ret = tmp ? 1 : 0;
1933 	}
1934 
1935 	download_mode = ret;
1936 	if (__scm)
1937 		qcom_scm_set_download_mode(download_mode);
1938 
1939 	return 0;
1940 }
1941 
1942 static const struct kernel_param_ops download_mode_param_ops = {
1943 	.get = get_download_mode,
1944 	.set = set_download_mode,
1945 };
1946 
1947 module_param_cb(download_mode, &download_mode_param_ops, NULL, 0644);
1948 MODULE_PARM_DESC(download_mode, "download mode: off/0/N for no dump mode, full/on/1/Y for full dump mode, mini for minidump mode and full,mini for both full and minidump mode together are acceptable values");
1949 
1950 static int qcom_scm_probe(struct platform_device *pdev)
1951 {
1952 	struct qcom_tzmem_pool_config pool_config;
1953 	struct qcom_scm *scm;
1954 	int irq, ret;
1955 
1956 	scm = devm_kzalloc(&pdev->dev, sizeof(*scm), GFP_KERNEL);
1957 	if (!scm)
1958 		return -ENOMEM;
1959 
1960 	scm->dev = &pdev->dev;
1961 	ret = qcom_scm_find_dload_address(&pdev->dev, &scm->dload_mode_addr);
1962 	if (ret < 0)
1963 		return ret;
1964 
1965 	init_completion(&scm->waitq_comp);
1966 	mutex_init(&scm->scm_bw_lock);
1967 
1968 	scm->path = devm_of_icc_get(&pdev->dev, NULL);
1969 	if (IS_ERR(scm->path))
1970 		return dev_err_probe(&pdev->dev, PTR_ERR(scm->path),
1971 				     "failed to acquire interconnect path\n");
1972 
1973 	scm->core_clk = devm_clk_get_optional(&pdev->dev, "core");
1974 	if (IS_ERR(scm->core_clk))
1975 		return PTR_ERR(scm->core_clk);
1976 
1977 	scm->iface_clk = devm_clk_get_optional(&pdev->dev, "iface");
1978 	if (IS_ERR(scm->iface_clk))
1979 		return PTR_ERR(scm->iface_clk);
1980 
1981 	scm->bus_clk = devm_clk_get_optional(&pdev->dev, "bus");
1982 	if (IS_ERR(scm->bus_clk))
1983 		return PTR_ERR(scm->bus_clk);
1984 
1985 	scm->reset.ops = &qcom_scm_pas_reset_ops;
1986 	scm->reset.nr_resets = 1;
1987 	scm->reset.of_node = pdev->dev.of_node;
1988 	ret = devm_reset_controller_register(&pdev->dev, &scm->reset);
1989 	if (ret)
1990 		return ret;
1991 
1992 	/* vote for max clk rate for highest performance */
1993 	ret = clk_set_rate(scm->core_clk, INT_MAX);
1994 	if (ret)
1995 		return ret;
1996 
1997 	/* Let all above stores be available after this */
1998 	smp_store_release(&__scm, scm);
1999 
2000 	irq = platform_get_irq_optional(pdev, 0);
2001 	if (irq < 0) {
2002 		if (irq != -ENXIO)
2003 			return irq;
2004 	} else {
2005 		ret = devm_request_threaded_irq(__scm->dev, irq, NULL, qcom_scm_irq_handler,
2006 						IRQF_ONESHOT, "qcom-scm", __scm);
2007 		if (ret < 0)
2008 			return dev_err_probe(scm->dev, ret, "Failed to request qcom-scm irq\n");
2009 	}
2010 
2011 	__get_convention();
2012 
2013 	/*
2014 	 * If "download mode" is requested, from this point on warmboot
2015 	 * will cause the boot stages to enter download mode, unless
2016 	 * disabled below by a clean shutdown/reboot.
2017 	 */
2018 	qcom_scm_set_download_mode(download_mode);
2019 
2020 	/*
2021 	 * Disable SDI if indicated by DT that it is enabled by default.
2022 	 */
2023 	if (of_property_read_bool(pdev->dev.of_node, "qcom,sdi-enabled") || !download_mode)
2024 		qcom_scm_disable_sdi();
2025 
2026 	ret = of_reserved_mem_device_init(__scm->dev);
2027 	if (ret && ret != -ENODEV)
2028 		return dev_err_probe(__scm->dev, ret,
2029 				     "Failed to setup the reserved memory region for TZ mem\n");
2030 
2031 	ret = qcom_tzmem_enable(__scm->dev);
2032 	if (ret)
2033 		return dev_err_probe(__scm->dev, ret,
2034 				     "Failed to enable the TrustZone memory allocator\n");
2035 
2036 	memset(&pool_config, 0, sizeof(pool_config));
2037 	pool_config.initial_size = 0;
2038 	pool_config.policy = QCOM_TZMEM_POLICY_ON_DEMAND;
2039 	pool_config.max_size = SZ_256K;
2040 
2041 	__scm->mempool = devm_qcom_tzmem_pool_new(__scm->dev, &pool_config);
2042 	if (IS_ERR(__scm->mempool))
2043 		return dev_err_probe(__scm->dev, PTR_ERR(__scm->mempool),
2044 				     "Failed to create the SCM memory pool\n");
2045 
2046 	/*
2047 	 * Initialize the QSEECOM interface.
2048 	 *
2049 	 * Note: QSEECOM is fairly self-contained and this only adds the
2050 	 * interface device (the driver of which does most of the heavy
2051 	 * lifting). So any errors returned here should be either -ENOMEM or
2052 	 * -EINVAL (with the latter only in case there's a bug in our code).
2053 	 * This means that there is no need to bring down the whole SCM driver.
2054 	 * Just log the error instead and let SCM live.
2055 	 */
2056 	ret = qcom_scm_qseecom_init(scm);
2057 	WARN(ret < 0, "failed to initialize qseecom: %d\n", ret);
2058 
2059 	return 0;
2060 }
2061 
2062 static void qcom_scm_shutdown(struct platform_device *pdev)
2063 {
2064 	/* Clean shutdown, disable download mode to allow normal restart */
2065 	qcom_scm_set_download_mode(QCOM_DLOAD_NODUMP);
2066 }
2067 
2068 static const struct of_device_id qcom_scm_dt_match[] = {
2069 	{ .compatible = "qcom,scm" },
2070 
2071 	/* Legacy entries kept for backwards compatibility */
2072 	{ .compatible = "qcom,scm-apq8064" },
2073 	{ .compatible = "qcom,scm-apq8084" },
2074 	{ .compatible = "qcom,scm-ipq4019" },
2075 	{ .compatible = "qcom,scm-msm8953" },
2076 	{ .compatible = "qcom,scm-msm8974" },
2077 	{ .compatible = "qcom,scm-msm8996" },
2078 	{}
2079 };
2080 MODULE_DEVICE_TABLE(of, qcom_scm_dt_match);
2081 
2082 static struct platform_driver qcom_scm_driver = {
2083 	.driver = {
2084 		.name	= "qcom_scm",
2085 		.of_match_table = qcom_scm_dt_match,
2086 		.suppress_bind_attrs = true,
2087 	},
2088 	.probe = qcom_scm_probe,
2089 	.shutdown = qcom_scm_shutdown,
2090 };
2091 
2092 static int __init qcom_scm_init(void)
2093 {
2094 	return platform_driver_register(&qcom_scm_driver);
2095 }
2096 subsys_initcall(qcom_scm_init);
2097 
2098 MODULE_DESCRIPTION("Qualcomm Technologies, Inc. SCM driver");
2099 MODULE_LICENSE("GPL v2");
2100