xref: /linux/drivers/firmware/memmap.c (revision e0bf6c5ca2d3281f231c5f0c9bf145e9513644de)
1 /*
2  * linux/drivers/firmware/memmap.c
3  *  Copyright (C) 2008 SUSE LINUX Products GmbH
4  *  by Bernhard Walle <bernhard.walle@gmx.de>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License v2.0 as published by
8  * the Free Software Foundation
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  */
16 
17 #include <linux/string.h>
18 #include <linux/firmware-map.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/types.h>
22 #include <linux/bootmem.h>
23 #include <linux/slab.h>
24 #include <linux/mm.h>
25 
26 /*
27  * Data types ------------------------------------------------------------------
28  */
29 
30 /*
31  * Firmware map entry. Because firmware memory maps are flat and not
32  * hierarchical, it's ok to organise them in a linked list. No parent
33  * information is necessary as for the resource tree.
34  */
35 struct firmware_map_entry {
36 	/*
37 	 * start and end must be u64 rather than resource_size_t, because e820
38 	 * resources can lie at addresses above 4G.
39 	 */
40 	u64			start;	/* start of the memory range */
41 	u64			end;	/* end of the memory range (incl.) */
42 	const char		*type;	/* type of the memory range */
43 	struct list_head	list;	/* entry for the linked list */
44 	struct kobject		kobj;   /* kobject for each entry */
45 };
46 
47 /*
48  * Forward declarations --------------------------------------------------------
49  */
50 static ssize_t memmap_attr_show(struct kobject *kobj,
51 				struct attribute *attr, char *buf);
52 static ssize_t start_show(struct firmware_map_entry *entry, char *buf);
53 static ssize_t end_show(struct firmware_map_entry *entry, char *buf);
54 static ssize_t type_show(struct firmware_map_entry *entry, char *buf);
55 
56 static struct firmware_map_entry * __meminit
57 firmware_map_find_entry(u64 start, u64 end, const char *type);
58 
59 /*
60  * Static data -----------------------------------------------------------------
61  */
62 
63 struct memmap_attribute {
64 	struct attribute attr;
65 	ssize_t (*show)(struct firmware_map_entry *entry, char *buf);
66 };
67 
68 static struct memmap_attribute memmap_start_attr = __ATTR_RO(start);
69 static struct memmap_attribute memmap_end_attr   = __ATTR_RO(end);
70 static struct memmap_attribute memmap_type_attr  = __ATTR_RO(type);
71 
72 /*
73  * These are default attributes that are added for every memmap entry.
74  */
75 static struct attribute *def_attrs[] = {
76 	&memmap_start_attr.attr,
77 	&memmap_end_attr.attr,
78 	&memmap_type_attr.attr,
79 	NULL
80 };
81 
82 static const struct sysfs_ops memmap_attr_ops = {
83 	.show = memmap_attr_show,
84 };
85 
86 /* Firmware memory map entries. */
87 static LIST_HEAD(map_entries);
88 static DEFINE_SPINLOCK(map_entries_lock);
89 
90 /*
91  * For memory hotplug, there is no way to free memory map entries allocated
92  * by boot mem after the system is up. So when we hot-remove memory whose
93  * map entry is allocated by bootmem, we need to remember the storage and
94  * reuse it when the memory is hot-added again.
95  */
96 static LIST_HEAD(map_entries_bootmem);
97 static DEFINE_SPINLOCK(map_entries_bootmem_lock);
98 
99 
100 static inline struct firmware_map_entry *
101 to_memmap_entry(struct kobject *kobj)
102 {
103 	return container_of(kobj, struct firmware_map_entry, kobj);
104 }
105 
106 static void __meminit release_firmware_map_entry(struct kobject *kobj)
107 {
108 	struct firmware_map_entry *entry = to_memmap_entry(kobj);
109 
110 	if (PageReserved(virt_to_page(entry))) {
111 		/*
112 		 * Remember the storage allocated by bootmem, and reuse it when
113 		 * the memory is hot-added again. The entry will be added to
114 		 * map_entries_bootmem here, and deleted from &map_entries in
115 		 * firmware_map_remove_entry().
116 		 */
117 		spin_lock(&map_entries_bootmem_lock);
118 		list_add(&entry->list, &map_entries_bootmem);
119 		spin_unlock(&map_entries_bootmem_lock);
120 
121 		return;
122 	}
123 
124 	kfree(entry);
125 }
126 
127 static struct kobj_type __refdata memmap_ktype = {
128 	.release	= release_firmware_map_entry,
129 	.sysfs_ops	= &memmap_attr_ops,
130 	.default_attrs	= def_attrs,
131 };
132 
133 /*
134  * Registration functions ------------------------------------------------------
135  */
136 
137 /**
138  * firmware_map_add_entry() - Does the real work to add a firmware memmap entry.
139  * @start: Start of the memory range.
140  * @end:   End of the memory range (exclusive).
141  * @type:  Type of the memory range.
142  * @entry: Pre-allocated (either kmalloc() or bootmem allocator), uninitialised
143  *         entry.
144  *
145  * Common implementation of firmware_map_add() and firmware_map_add_early()
146  * which expects a pre-allocated struct firmware_map_entry.
147  **/
148 static int firmware_map_add_entry(u64 start, u64 end,
149 				  const char *type,
150 				  struct firmware_map_entry *entry)
151 {
152 	BUG_ON(start > end);
153 
154 	entry->start = start;
155 	entry->end = end - 1;
156 	entry->type = type;
157 	INIT_LIST_HEAD(&entry->list);
158 	kobject_init(&entry->kobj, &memmap_ktype);
159 
160 	spin_lock(&map_entries_lock);
161 	list_add_tail(&entry->list, &map_entries);
162 	spin_unlock(&map_entries_lock);
163 
164 	return 0;
165 }
166 
167 /**
168  * firmware_map_remove_entry() - Does the real work to remove a firmware
169  * memmap entry.
170  * @entry: removed entry.
171  *
172  * The caller must hold map_entries_lock, and release it properly.
173  **/
174 static inline void firmware_map_remove_entry(struct firmware_map_entry *entry)
175 {
176 	list_del(&entry->list);
177 }
178 
179 /*
180  * Add memmap entry on sysfs
181  */
182 static int add_sysfs_fw_map_entry(struct firmware_map_entry *entry)
183 {
184 	static int map_entries_nr;
185 	static struct kset *mmap_kset;
186 
187 	if (entry->kobj.state_in_sysfs)
188 		return -EEXIST;
189 
190 	if (!mmap_kset) {
191 		mmap_kset = kset_create_and_add("memmap", NULL, firmware_kobj);
192 		if (!mmap_kset)
193 			return -ENOMEM;
194 	}
195 
196 	entry->kobj.kset = mmap_kset;
197 	if (kobject_add(&entry->kobj, NULL, "%d", map_entries_nr++))
198 		kobject_put(&entry->kobj);
199 
200 	return 0;
201 }
202 
203 /*
204  * Remove memmap entry on sysfs
205  */
206 static inline void remove_sysfs_fw_map_entry(struct firmware_map_entry *entry)
207 {
208 	kobject_put(&entry->kobj);
209 }
210 
211 /*
212  * firmware_map_find_entry_in_list() - Search memmap entry in a given list.
213  * @start: Start of the memory range.
214  * @end:   End of the memory range (exclusive).
215  * @type:  Type of the memory range.
216  * @list:  In which to find the entry.
217  *
218  * This function is to find the memmap entey of a given memory range in a
219  * given list. The caller must hold map_entries_lock, and must not release
220  * the lock until the processing of the returned entry has completed.
221  *
222  * Return: Pointer to the entry to be found on success, or NULL on failure.
223  */
224 static struct firmware_map_entry * __meminit
225 firmware_map_find_entry_in_list(u64 start, u64 end, const char *type,
226 				struct list_head *list)
227 {
228 	struct firmware_map_entry *entry;
229 
230 	list_for_each_entry(entry, list, list)
231 		if ((entry->start == start) && (entry->end == end) &&
232 		    (!strcmp(entry->type, type))) {
233 			return entry;
234 		}
235 
236 	return NULL;
237 }
238 
239 /*
240  * firmware_map_find_entry() - Search memmap entry in map_entries.
241  * @start: Start of the memory range.
242  * @end:   End of the memory range (exclusive).
243  * @type:  Type of the memory range.
244  *
245  * This function is to find the memmap entey of a given memory range.
246  * The caller must hold map_entries_lock, and must not release the lock
247  * until the processing of the returned entry has completed.
248  *
249  * Return: Pointer to the entry to be found on success, or NULL on failure.
250  */
251 static struct firmware_map_entry * __meminit
252 firmware_map_find_entry(u64 start, u64 end, const char *type)
253 {
254 	return firmware_map_find_entry_in_list(start, end, type, &map_entries);
255 }
256 
257 /*
258  * firmware_map_find_entry_bootmem() - Search memmap entry in map_entries_bootmem.
259  * @start: Start of the memory range.
260  * @end:   End of the memory range (exclusive).
261  * @type:  Type of the memory range.
262  *
263  * This function is similar to firmware_map_find_entry except that it find the
264  * given entry in map_entries_bootmem.
265  *
266  * Return: Pointer to the entry to be found on success, or NULL on failure.
267  */
268 static struct firmware_map_entry * __meminit
269 firmware_map_find_entry_bootmem(u64 start, u64 end, const char *type)
270 {
271 	return firmware_map_find_entry_in_list(start, end, type,
272 					       &map_entries_bootmem);
273 }
274 
275 /**
276  * firmware_map_add_hotplug() - Adds a firmware mapping entry when we do
277  * memory hotplug.
278  * @start: Start of the memory range.
279  * @end:   End of the memory range (exclusive)
280  * @type:  Type of the memory range.
281  *
282  * Adds a firmware mapping entry. This function is for memory hotplug, it is
283  * similar to function firmware_map_add_early(). The only difference is that
284  * it will create the syfs entry dynamically.
285  *
286  * Returns 0 on success, or -ENOMEM if no memory could be allocated.
287  **/
288 int __meminit firmware_map_add_hotplug(u64 start, u64 end, const char *type)
289 {
290 	struct firmware_map_entry *entry;
291 
292 	entry = firmware_map_find_entry(start, end - 1, type);
293 	if (entry)
294 		return 0;
295 
296 	entry = firmware_map_find_entry_bootmem(start, end - 1, type);
297 	if (!entry) {
298 		entry = kzalloc(sizeof(struct firmware_map_entry), GFP_ATOMIC);
299 		if (!entry)
300 			return -ENOMEM;
301 	} else {
302 		/* Reuse storage allocated by bootmem. */
303 		spin_lock(&map_entries_bootmem_lock);
304 		list_del(&entry->list);
305 		spin_unlock(&map_entries_bootmem_lock);
306 
307 		memset(entry, 0, sizeof(*entry));
308 	}
309 
310 	firmware_map_add_entry(start, end, type, entry);
311 	/* create the memmap entry */
312 	add_sysfs_fw_map_entry(entry);
313 
314 	return 0;
315 }
316 
317 /**
318  * firmware_map_add_early() - Adds a firmware mapping entry.
319  * @start: Start of the memory range.
320  * @end:   End of the memory range.
321  * @type:  Type of the memory range.
322  *
323  * Adds a firmware mapping entry. This function uses the bootmem allocator
324  * for memory allocation.
325  *
326  * That function must be called before late_initcall.
327  *
328  * Returns 0 on success, or -ENOMEM if no memory could be allocated.
329  **/
330 int __init firmware_map_add_early(u64 start, u64 end, const char *type)
331 {
332 	struct firmware_map_entry *entry;
333 
334 	entry = memblock_virt_alloc(sizeof(struct firmware_map_entry), 0);
335 	if (WARN_ON(!entry))
336 		return -ENOMEM;
337 
338 	return firmware_map_add_entry(start, end, type, entry);
339 }
340 
341 /**
342  * firmware_map_remove() - remove a firmware mapping entry
343  * @start: Start of the memory range.
344  * @end:   End of the memory range.
345  * @type:  Type of the memory range.
346  *
347  * removes a firmware mapping entry.
348  *
349  * Returns 0 on success, or -EINVAL if no entry.
350  **/
351 int __meminit firmware_map_remove(u64 start, u64 end, const char *type)
352 {
353 	struct firmware_map_entry *entry;
354 
355 	spin_lock(&map_entries_lock);
356 	entry = firmware_map_find_entry(start, end - 1, type);
357 	if (!entry) {
358 		spin_unlock(&map_entries_lock);
359 		return -EINVAL;
360 	}
361 
362 	firmware_map_remove_entry(entry);
363 	spin_unlock(&map_entries_lock);
364 
365 	/* remove the memmap entry */
366 	remove_sysfs_fw_map_entry(entry);
367 
368 	return 0;
369 }
370 
371 /*
372  * Sysfs functions -------------------------------------------------------------
373  */
374 
375 static ssize_t start_show(struct firmware_map_entry *entry, char *buf)
376 {
377 	return snprintf(buf, PAGE_SIZE, "0x%llx\n",
378 		(unsigned long long)entry->start);
379 }
380 
381 static ssize_t end_show(struct firmware_map_entry *entry, char *buf)
382 {
383 	return snprintf(buf, PAGE_SIZE, "0x%llx\n",
384 		(unsigned long long)entry->end);
385 }
386 
387 static ssize_t type_show(struct firmware_map_entry *entry, char *buf)
388 {
389 	return snprintf(buf, PAGE_SIZE, "%s\n", entry->type);
390 }
391 
392 static inline struct memmap_attribute *to_memmap_attr(struct attribute *attr)
393 {
394 	return container_of(attr, struct memmap_attribute, attr);
395 }
396 
397 static ssize_t memmap_attr_show(struct kobject *kobj,
398 				struct attribute *attr, char *buf)
399 {
400 	struct firmware_map_entry *entry = to_memmap_entry(kobj);
401 	struct memmap_attribute *memmap_attr = to_memmap_attr(attr);
402 
403 	return memmap_attr->show(entry, buf);
404 }
405 
406 /*
407  * Initialises stuff and adds the entries in the map_entries list to
408  * sysfs. Important is that firmware_map_add() and firmware_map_add_early()
409  * must be called before late_initcall. That's just because that function
410  * is called as late_initcall() function, which means that if you call
411  * firmware_map_add() or firmware_map_add_early() afterwards, the entries
412  * are not added to sysfs.
413  */
414 static int __init firmware_memmap_init(void)
415 {
416 	struct firmware_map_entry *entry;
417 
418 	list_for_each_entry(entry, &map_entries, list)
419 		add_sysfs_fw_map_entry(entry);
420 
421 	return 0;
422 }
423 late_initcall(firmware_memmap_init);
424 
425