xref: /linux/drivers/firmware/memmap.c (revision 31d166642c7c601c65eccf0ff2e0afe9a0538be2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/drivers/firmware/memmap.c
4  *  Copyright (C) 2008 SUSE LINUX Products GmbH
5  *  by Bernhard Walle <bernhard.walle@gmx.de>
6  */
7 
8 #include <linux/string.h>
9 #include <linux/firmware-map.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/types.h>
13 #include <linux/memblock.h>
14 #include <linux/slab.h>
15 #include <linux/mm.h>
16 
17 /*
18  * Data types ------------------------------------------------------------------
19  */
20 
21 /*
22  * Firmware map entry. Because firmware memory maps are flat and not
23  * hierarchical, it's ok to organise them in a linked list. No parent
24  * information is necessary as for the resource tree.
25  */
26 struct firmware_map_entry {
27 	/*
28 	 * start and end must be u64 rather than resource_size_t, because e820
29 	 * resources can lie at addresses above 4G.
30 	 */
31 	u64			start;	/* start of the memory range */
32 	u64			end;	/* end of the memory range (incl.) */
33 	const char		*type;	/* type of the memory range */
34 	struct list_head	list;	/* entry for the linked list */
35 	struct kobject		kobj;   /* kobject for each entry */
36 };
37 
38 /*
39  * Forward declarations --------------------------------------------------------
40  */
41 static ssize_t memmap_attr_show(struct kobject *kobj,
42 				struct attribute *attr, char *buf);
43 static ssize_t start_show(struct firmware_map_entry *entry, char *buf);
44 static ssize_t end_show(struct firmware_map_entry *entry, char *buf);
45 static ssize_t type_show(struct firmware_map_entry *entry, char *buf);
46 
47 static struct firmware_map_entry * __meminit
48 firmware_map_find_entry(u64 start, u64 end, const char *type);
49 
50 /*
51  * Static data -----------------------------------------------------------------
52  */
53 
54 struct memmap_attribute {
55 	struct attribute attr;
56 	ssize_t (*show)(struct firmware_map_entry *entry, char *buf);
57 };
58 
59 static struct memmap_attribute memmap_start_attr = __ATTR_RO(start);
60 static struct memmap_attribute memmap_end_attr   = __ATTR_RO(end);
61 static struct memmap_attribute memmap_type_attr  = __ATTR_RO(type);
62 
63 /*
64  * These are default attributes that are added for every memmap entry.
65  */
66 static struct attribute *def_attrs[] = {
67 	&memmap_start_attr.attr,
68 	&memmap_end_attr.attr,
69 	&memmap_type_attr.attr,
70 	NULL
71 };
72 
73 static const struct sysfs_ops memmap_attr_ops = {
74 	.show = memmap_attr_show,
75 };
76 
77 /* Firmware memory map entries. */
78 static LIST_HEAD(map_entries);
79 static DEFINE_SPINLOCK(map_entries_lock);
80 
81 /*
82  * For memory hotplug, there is no way to free memory map entries allocated
83  * by boot mem after the system is up. So when we hot-remove memory whose
84  * map entry is allocated by bootmem, we need to remember the storage and
85  * reuse it when the memory is hot-added again.
86  */
87 static LIST_HEAD(map_entries_bootmem);
88 static DEFINE_SPINLOCK(map_entries_bootmem_lock);
89 
90 
91 static inline struct firmware_map_entry *
92 to_memmap_entry(struct kobject *kobj)
93 {
94 	return container_of(kobj, struct firmware_map_entry, kobj);
95 }
96 
97 static void __meminit release_firmware_map_entry(struct kobject *kobj)
98 {
99 	struct firmware_map_entry *entry = to_memmap_entry(kobj);
100 
101 	if (PageReserved(virt_to_page(entry))) {
102 		/*
103 		 * Remember the storage allocated by bootmem, and reuse it when
104 		 * the memory is hot-added again. The entry will be added to
105 		 * map_entries_bootmem here, and deleted from &map_entries in
106 		 * firmware_map_remove_entry().
107 		 */
108 		spin_lock(&map_entries_bootmem_lock);
109 		list_add(&entry->list, &map_entries_bootmem);
110 		spin_unlock(&map_entries_bootmem_lock);
111 
112 		return;
113 	}
114 
115 	kfree(entry);
116 }
117 
118 static struct kobj_type __refdata memmap_ktype = {
119 	.release	= release_firmware_map_entry,
120 	.sysfs_ops	= &memmap_attr_ops,
121 	.default_attrs	= def_attrs,
122 };
123 
124 /*
125  * Registration functions ------------------------------------------------------
126  */
127 
128 /**
129  * firmware_map_add_entry() - Does the real work to add a firmware memmap entry.
130  * @start: Start of the memory range.
131  * @end:   End of the memory range (exclusive).
132  * @type:  Type of the memory range.
133  * @entry: Pre-allocated (either kmalloc() or bootmem allocator), uninitialised
134  *         entry.
135  *
136  * Common implementation of firmware_map_add() and firmware_map_add_early()
137  * which expects a pre-allocated struct firmware_map_entry.
138  *
139  * Return: 0 always
140  */
141 static int firmware_map_add_entry(u64 start, u64 end,
142 				  const char *type,
143 				  struct firmware_map_entry *entry)
144 {
145 	BUG_ON(start > end);
146 
147 	entry->start = start;
148 	entry->end = end - 1;
149 	entry->type = type;
150 	INIT_LIST_HEAD(&entry->list);
151 	kobject_init(&entry->kobj, &memmap_ktype);
152 
153 	spin_lock(&map_entries_lock);
154 	list_add_tail(&entry->list, &map_entries);
155 	spin_unlock(&map_entries_lock);
156 
157 	return 0;
158 }
159 
160 /**
161  * firmware_map_remove_entry() - Does the real work to remove a firmware
162  * memmap entry.
163  * @entry: removed entry.
164  *
165  * The caller must hold map_entries_lock, and release it properly.
166  */
167 static inline void firmware_map_remove_entry(struct firmware_map_entry *entry)
168 {
169 	list_del(&entry->list);
170 }
171 
172 /*
173  * Add memmap entry on sysfs
174  */
175 static int add_sysfs_fw_map_entry(struct firmware_map_entry *entry)
176 {
177 	static int map_entries_nr;
178 	static struct kset *mmap_kset;
179 
180 	if (entry->kobj.state_in_sysfs)
181 		return -EEXIST;
182 
183 	if (!mmap_kset) {
184 		mmap_kset = kset_create_and_add("memmap", NULL, firmware_kobj);
185 		if (!mmap_kset)
186 			return -ENOMEM;
187 	}
188 
189 	entry->kobj.kset = mmap_kset;
190 	if (kobject_add(&entry->kobj, NULL, "%d", map_entries_nr++))
191 		kobject_put(&entry->kobj);
192 
193 	return 0;
194 }
195 
196 /*
197  * Remove memmap entry on sysfs
198  */
199 static inline void remove_sysfs_fw_map_entry(struct firmware_map_entry *entry)
200 {
201 	kobject_put(&entry->kobj);
202 }
203 
204 /**
205  * firmware_map_find_entry_in_list() - Search memmap entry in a given list.
206  * @start: Start of the memory range.
207  * @end:   End of the memory range (exclusive).
208  * @type:  Type of the memory range.
209  * @list:  In which to find the entry.
210  *
211  * This function is to find the memmap entey of a given memory range in a
212  * given list. The caller must hold map_entries_lock, and must not release
213  * the lock until the processing of the returned entry has completed.
214  *
215  * Return: Pointer to the entry to be found on success, or NULL on failure.
216  */
217 static struct firmware_map_entry * __meminit
218 firmware_map_find_entry_in_list(u64 start, u64 end, const char *type,
219 				struct list_head *list)
220 {
221 	struct firmware_map_entry *entry;
222 
223 	list_for_each_entry(entry, list, list)
224 		if ((entry->start == start) && (entry->end == end) &&
225 		    (!strcmp(entry->type, type))) {
226 			return entry;
227 		}
228 
229 	return NULL;
230 }
231 
232 /**
233  * firmware_map_find_entry() - Search memmap entry in map_entries.
234  * @start: Start of the memory range.
235  * @end:   End of the memory range (exclusive).
236  * @type:  Type of the memory range.
237  *
238  * This function is to find the memmap entey of a given memory range.
239  * The caller must hold map_entries_lock, and must not release the lock
240  * until the processing of the returned entry has completed.
241  *
242  * Return: Pointer to the entry to be found on success, or NULL on failure.
243  */
244 static struct firmware_map_entry * __meminit
245 firmware_map_find_entry(u64 start, u64 end, const char *type)
246 {
247 	return firmware_map_find_entry_in_list(start, end, type, &map_entries);
248 }
249 
250 /**
251  * firmware_map_find_entry_bootmem() - Search memmap entry in map_entries_bootmem.
252  * @start: Start of the memory range.
253  * @end:   End of the memory range (exclusive).
254  * @type:  Type of the memory range.
255  *
256  * This function is similar to firmware_map_find_entry except that it find the
257  * given entry in map_entries_bootmem.
258  *
259  * Return: Pointer to the entry to be found on success, or NULL on failure.
260  */
261 static struct firmware_map_entry * __meminit
262 firmware_map_find_entry_bootmem(u64 start, u64 end, const char *type)
263 {
264 	return firmware_map_find_entry_in_list(start, end, type,
265 					       &map_entries_bootmem);
266 }
267 
268 /**
269  * firmware_map_add_hotplug() - Adds a firmware mapping entry when we do
270  * memory hotplug.
271  * @start: Start of the memory range.
272  * @end:   End of the memory range (exclusive)
273  * @type:  Type of the memory range.
274  *
275  * Adds a firmware mapping entry. This function is for memory hotplug, it is
276  * similar to function firmware_map_add_early(). The only difference is that
277  * it will create the syfs entry dynamically.
278  *
279  * Return: 0 on success, or -ENOMEM if no memory could be allocated.
280  */
281 int __meminit firmware_map_add_hotplug(u64 start, u64 end, const char *type)
282 {
283 	struct firmware_map_entry *entry;
284 
285 	entry = firmware_map_find_entry(start, end - 1, type);
286 	if (entry)
287 		return 0;
288 
289 	entry = firmware_map_find_entry_bootmem(start, end - 1, type);
290 	if (!entry) {
291 		entry = kzalloc(sizeof(struct firmware_map_entry), GFP_ATOMIC);
292 		if (!entry)
293 			return -ENOMEM;
294 	} else {
295 		/* Reuse storage allocated by bootmem. */
296 		spin_lock(&map_entries_bootmem_lock);
297 		list_del(&entry->list);
298 		spin_unlock(&map_entries_bootmem_lock);
299 
300 		memset(entry, 0, sizeof(*entry));
301 	}
302 
303 	firmware_map_add_entry(start, end, type, entry);
304 	/* create the memmap entry */
305 	add_sysfs_fw_map_entry(entry);
306 
307 	return 0;
308 }
309 
310 /**
311  * firmware_map_add_early() - Adds a firmware mapping entry.
312  * @start: Start of the memory range.
313  * @end:   End of the memory range.
314  * @type:  Type of the memory range.
315  *
316  * Adds a firmware mapping entry. This function uses the bootmem allocator
317  * for memory allocation.
318  *
319  * That function must be called before late_initcall.
320  *
321  * Return: 0 on success, or -ENOMEM if no memory could be allocated.
322  */
323 int __init firmware_map_add_early(u64 start, u64 end, const char *type)
324 {
325 	struct firmware_map_entry *entry;
326 
327 	entry = memblock_alloc(sizeof(struct firmware_map_entry),
328 			       SMP_CACHE_BYTES);
329 	if (WARN_ON(!entry))
330 		return -ENOMEM;
331 
332 	return firmware_map_add_entry(start, end, type, entry);
333 }
334 
335 /**
336  * firmware_map_remove() - remove a firmware mapping entry
337  * @start: Start of the memory range.
338  * @end:   End of the memory range.
339  * @type:  Type of the memory range.
340  *
341  * removes a firmware mapping entry.
342  *
343  * Return: 0 on success, or -EINVAL if no entry.
344  */
345 int __meminit firmware_map_remove(u64 start, u64 end, const char *type)
346 {
347 	struct firmware_map_entry *entry;
348 
349 	spin_lock(&map_entries_lock);
350 	entry = firmware_map_find_entry(start, end - 1, type);
351 	if (!entry) {
352 		spin_unlock(&map_entries_lock);
353 		return -EINVAL;
354 	}
355 
356 	firmware_map_remove_entry(entry);
357 	spin_unlock(&map_entries_lock);
358 
359 	/* remove the memmap entry */
360 	remove_sysfs_fw_map_entry(entry);
361 
362 	return 0;
363 }
364 
365 /*
366  * Sysfs functions -------------------------------------------------------------
367  */
368 
369 static ssize_t start_show(struct firmware_map_entry *entry, char *buf)
370 {
371 	return snprintf(buf, PAGE_SIZE, "0x%llx\n",
372 		(unsigned long long)entry->start);
373 }
374 
375 static ssize_t end_show(struct firmware_map_entry *entry, char *buf)
376 {
377 	return snprintf(buf, PAGE_SIZE, "0x%llx\n",
378 		(unsigned long long)entry->end);
379 }
380 
381 static ssize_t type_show(struct firmware_map_entry *entry, char *buf)
382 {
383 	return snprintf(buf, PAGE_SIZE, "%s\n", entry->type);
384 }
385 
386 static inline struct memmap_attribute *to_memmap_attr(struct attribute *attr)
387 {
388 	return container_of(attr, struct memmap_attribute, attr);
389 }
390 
391 static ssize_t memmap_attr_show(struct kobject *kobj,
392 				struct attribute *attr, char *buf)
393 {
394 	struct firmware_map_entry *entry = to_memmap_entry(kobj);
395 	struct memmap_attribute *memmap_attr = to_memmap_attr(attr);
396 
397 	return memmap_attr->show(entry, buf);
398 }
399 
400 /*
401  * Initialises stuff and adds the entries in the map_entries list to
402  * sysfs. Important is that firmware_map_add() and firmware_map_add_early()
403  * must be called before late_initcall. That's just because that function
404  * is called as late_initcall() function, which means that if you call
405  * firmware_map_add() or firmware_map_add_early() afterwards, the entries
406  * are not added to sysfs.
407  */
408 static int __init firmware_memmap_init(void)
409 {
410 	struct firmware_map_entry *entry;
411 
412 	list_for_each_entry(entry, &map_entries, list)
413 		add_sysfs_fw_map_entry(entry);
414 
415 	return 0;
416 }
417 late_initcall(firmware_memmap_init);
418 
419