xref: /linux/drivers/firmware/efi/vars.c (revision fce96cf0443083e37455eff8f78fd240c621dae3)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Originally from efivars.c
4  *
5  * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com>
6  * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com>
7  */
8 
9 #include <linux/capability.h>
10 #include <linux/types.h>
11 #include <linux/errno.h>
12 #include <linux/init.h>
13 #include <linux/mm.h>
14 #include <linux/module.h>
15 #include <linux/string.h>
16 #include <linux/smp.h>
17 #include <linux/efi.h>
18 #include <linux/sysfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/ctype.h>
22 #include <linux/ucs2_string.h>
23 
24 /* Private pointer to registered efivars */
25 static struct efivars *__efivars;
26 
27 /*
28  * efivars_lock protects three things:
29  * 1) efivarfs_list and efivars_sysfs_list
30  * 2) ->ops calls
31  * 3) (un)registration of __efivars
32  */
33 static DEFINE_SEMAPHORE(efivars_lock);
34 
35 static bool
36 validate_device_path(efi_char16_t *var_name, int match, u8 *buffer,
37 		     unsigned long len)
38 {
39 	struct efi_generic_dev_path *node;
40 	int offset = 0;
41 
42 	node = (struct efi_generic_dev_path *)buffer;
43 
44 	if (len < sizeof(*node))
45 		return false;
46 
47 	while (offset <= len - sizeof(*node) &&
48 	       node->length >= sizeof(*node) &&
49 		node->length <= len - offset) {
50 		offset += node->length;
51 
52 		if ((node->type == EFI_DEV_END_PATH ||
53 		     node->type == EFI_DEV_END_PATH2) &&
54 		    node->sub_type == EFI_DEV_END_ENTIRE)
55 			return true;
56 
57 		node = (struct efi_generic_dev_path *)(buffer + offset);
58 	}
59 
60 	/*
61 	 * If we're here then either node->length pointed past the end
62 	 * of the buffer or we reached the end of the buffer without
63 	 * finding a device path end node.
64 	 */
65 	return false;
66 }
67 
68 static bool
69 validate_boot_order(efi_char16_t *var_name, int match, u8 *buffer,
70 		    unsigned long len)
71 {
72 	/* An array of 16-bit integers */
73 	if ((len % 2) != 0)
74 		return false;
75 
76 	return true;
77 }
78 
79 static bool
80 validate_load_option(efi_char16_t *var_name, int match, u8 *buffer,
81 		     unsigned long len)
82 {
83 	u16 filepathlength;
84 	int i, desclength = 0, namelen;
85 
86 	namelen = ucs2_strnlen(var_name, EFI_VAR_NAME_LEN);
87 
88 	/* Either "Boot" or "Driver" followed by four digits of hex */
89 	for (i = match; i < match+4; i++) {
90 		if (var_name[i] > 127 ||
91 		    hex_to_bin(var_name[i] & 0xff) < 0)
92 			return true;
93 	}
94 
95 	/* Reject it if there's 4 digits of hex and then further content */
96 	if (namelen > match + 4)
97 		return false;
98 
99 	/* A valid entry must be at least 8 bytes */
100 	if (len < 8)
101 		return false;
102 
103 	filepathlength = buffer[4] | buffer[5] << 8;
104 
105 	/*
106 	 * There's no stored length for the description, so it has to be
107 	 * found by hand
108 	 */
109 	desclength = ucs2_strsize((efi_char16_t *)(buffer + 6), len - 6) + 2;
110 
111 	/* Each boot entry must have a descriptor */
112 	if (!desclength)
113 		return false;
114 
115 	/*
116 	 * If the sum of the length of the description, the claimed filepath
117 	 * length and the original header are greater than the length of the
118 	 * variable, it's malformed
119 	 */
120 	if ((desclength + filepathlength + 6) > len)
121 		return false;
122 
123 	/*
124 	 * And, finally, check the filepath
125 	 */
126 	return validate_device_path(var_name, match, buffer + desclength + 6,
127 				    filepathlength);
128 }
129 
130 static bool
131 validate_uint16(efi_char16_t *var_name, int match, u8 *buffer,
132 		unsigned long len)
133 {
134 	/* A single 16-bit integer */
135 	if (len != 2)
136 		return false;
137 
138 	return true;
139 }
140 
141 static bool
142 validate_ascii_string(efi_char16_t *var_name, int match, u8 *buffer,
143 		      unsigned long len)
144 {
145 	int i;
146 
147 	for (i = 0; i < len; i++) {
148 		if (buffer[i] > 127)
149 			return false;
150 
151 		if (buffer[i] == 0)
152 			return true;
153 	}
154 
155 	return false;
156 }
157 
158 struct variable_validate {
159 	efi_guid_t vendor;
160 	char *name;
161 	bool (*validate)(efi_char16_t *var_name, int match, u8 *data,
162 			 unsigned long len);
163 };
164 
165 /*
166  * This is the list of variables we need to validate, as well as the
167  * whitelist for what we think is safe not to default to immutable.
168  *
169  * If it has a validate() method that's not NULL, it'll go into the
170  * validation routine.  If not, it is assumed valid, but still used for
171  * whitelisting.
172  *
173  * Note that it's sorted by {vendor,name}, but globbed names must come after
174  * any other name with the same prefix.
175  */
176 static const struct variable_validate variable_validate[] = {
177 	{ EFI_GLOBAL_VARIABLE_GUID, "BootNext", validate_uint16 },
178 	{ EFI_GLOBAL_VARIABLE_GUID, "BootOrder", validate_boot_order },
179 	{ EFI_GLOBAL_VARIABLE_GUID, "Boot*", validate_load_option },
180 	{ EFI_GLOBAL_VARIABLE_GUID, "DriverOrder", validate_boot_order },
181 	{ EFI_GLOBAL_VARIABLE_GUID, "Driver*", validate_load_option },
182 	{ EFI_GLOBAL_VARIABLE_GUID, "ConIn", validate_device_path },
183 	{ EFI_GLOBAL_VARIABLE_GUID, "ConInDev", validate_device_path },
184 	{ EFI_GLOBAL_VARIABLE_GUID, "ConOut", validate_device_path },
185 	{ EFI_GLOBAL_VARIABLE_GUID, "ConOutDev", validate_device_path },
186 	{ EFI_GLOBAL_VARIABLE_GUID, "ErrOut", validate_device_path },
187 	{ EFI_GLOBAL_VARIABLE_GUID, "ErrOutDev", validate_device_path },
188 	{ EFI_GLOBAL_VARIABLE_GUID, "Lang", validate_ascii_string },
189 	{ EFI_GLOBAL_VARIABLE_GUID, "OsIndications", NULL },
190 	{ EFI_GLOBAL_VARIABLE_GUID, "PlatformLang", validate_ascii_string },
191 	{ EFI_GLOBAL_VARIABLE_GUID, "Timeout", validate_uint16 },
192 	{ LINUX_EFI_CRASH_GUID, "*", NULL },
193 	{ NULL_GUID, "", NULL },
194 };
195 
196 /*
197  * Check if @var_name matches the pattern given in @match_name.
198  *
199  * @var_name: an array of @len non-NUL characters.
200  * @match_name: a NUL-terminated pattern string, optionally ending in "*". A
201  *              final "*" character matches any trailing characters @var_name,
202  *              including the case when there are none left in @var_name.
203  * @match: on output, the number of non-wildcard characters in @match_name
204  *         that @var_name matches, regardless of the return value.
205  * @return: whether @var_name fully matches @match_name.
206  */
207 static bool
208 variable_matches(const char *var_name, size_t len, const char *match_name,
209 		 int *match)
210 {
211 	for (*match = 0; ; (*match)++) {
212 		char c = match_name[*match];
213 
214 		switch (c) {
215 		case '*':
216 			/* Wildcard in @match_name means we've matched. */
217 			return true;
218 
219 		case '\0':
220 			/* @match_name has ended. Has @var_name too? */
221 			return (*match == len);
222 
223 		default:
224 			/*
225 			 * We've reached a non-wildcard char in @match_name.
226 			 * Continue only if there's an identical character in
227 			 * @var_name.
228 			 */
229 			if (*match < len && c == var_name[*match])
230 				continue;
231 			return false;
232 		}
233 	}
234 }
235 
236 bool
237 efivar_validate(efi_guid_t vendor, efi_char16_t *var_name, u8 *data,
238 		unsigned long data_size)
239 {
240 	int i;
241 	unsigned long utf8_size;
242 	u8 *utf8_name;
243 
244 	utf8_size = ucs2_utf8size(var_name);
245 	utf8_name = kmalloc(utf8_size + 1, GFP_KERNEL);
246 	if (!utf8_name)
247 		return false;
248 
249 	ucs2_as_utf8(utf8_name, var_name, utf8_size);
250 	utf8_name[utf8_size] = '\0';
251 
252 	for (i = 0; variable_validate[i].name[0] != '\0'; i++) {
253 		const char *name = variable_validate[i].name;
254 		int match = 0;
255 
256 		if (efi_guidcmp(vendor, variable_validate[i].vendor))
257 			continue;
258 
259 		if (variable_matches(utf8_name, utf8_size+1, name, &match)) {
260 			if (variable_validate[i].validate == NULL)
261 				break;
262 			kfree(utf8_name);
263 			return variable_validate[i].validate(var_name, match,
264 							     data, data_size);
265 		}
266 	}
267 	kfree(utf8_name);
268 	return true;
269 }
270 EXPORT_SYMBOL_GPL(efivar_validate);
271 
272 bool
273 efivar_variable_is_removable(efi_guid_t vendor, const char *var_name,
274 			     size_t len)
275 {
276 	int i;
277 	bool found = false;
278 	int match = 0;
279 
280 	/*
281 	 * Check if our variable is in the validated variables list
282 	 */
283 	for (i = 0; variable_validate[i].name[0] != '\0'; i++) {
284 		if (efi_guidcmp(variable_validate[i].vendor, vendor))
285 			continue;
286 
287 		if (variable_matches(var_name, len,
288 				     variable_validate[i].name, &match)) {
289 			found = true;
290 			break;
291 		}
292 	}
293 
294 	/*
295 	 * If it's in our list, it is removable.
296 	 */
297 	return found;
298 }
299 EXPORT_SYMBOL_GPL(efivar_variable_is_removable);
300 
301 static efi_status_t
302 check_var_size(u32 attributes, unsigned long size)
303 {
304 	const struct efivar_operations *fops;
305 
306 	if (!__efivars)
307 		return EFI_UNSUPPORTED;
308 
309 	fops = __efivars->ops;
310 
311 	if (!fops->query_variable_store)
312 		return EFI_UNSUPPORTED;
313 
314 	return fops->query_variable_store(attributes, size, false);
315 }
316 
317 static efi_status_t
318 check_var_size_nonblocking(u32 attributes, unsigned long size)
319 {
320 	const struct efivar_operations *fops;
321 
322 	if (!__efivars)
323 		return EFI_UNSUPPORTED;
324 
325 	fops = __efivars->ops;
326 
327 	if (!fops->query_variable_store)
328 		return EFI_UNSUPPORTED;
329 
330 	return fops->query_variable_store(attributes, size, true);
331 }
332 
333 static bool variable_is_present(efi_char16_t *variable_name, efi_guid_t *vendor,
334 				struct list_head *head)
335 {
336 	struct efivar_entry *entry, *n;
337 	unsigned long strsize1, strsize2;
338 	bool found = false;
339 
340 	strsize1 = ucs2_strsize(variable_name, 1024);
341 	list_for_each_entry_safe(entry, n, head, list) {
342 		strsize2 = ucs2_strsize(entry->var.VariableName, 1024);
343 		if (strsize1 == strsize2 &&
344 			!memcmp(variable_name, &(entry->var.VariableName),
345 				strsize2) &&
346 			!efi_guidcmp(entry->var.VendorGuid,
347 				*vendor)) {
348 			found = true;
349 			break;
350 		}
351 	}
352 	return found;
353 }
354 
355 /*
356  * Returns the size of variable_name, in bytes, including the
357  * terminating NULL character, or variable_name_size if no NULL
358  * character is found among the first variable_name_size bytes.
359  */
360 static unsigned long var_name_strnsize(efi_char16_t *variable_name,
361 				       unsigned long variable_name_size)
362 {
363 	unsigned long len;
364 	efi_char16_t c;
365 
366 	/*
367 	 * The variable name is, by definition, a NULL-terminated
368 	 * string, so make absolutely sure that variable_name_size is
369 	 * the value we expect it to be. If not, return the real size.
370 	 */
371 	for (len = 2; len <= variable_name_size; len += sizeof(c)) {
372 		c = variable_name[(len / sizeof(c)) - 1];
373 		if (!c)
374 			break;
375 	}
376 
377 	return min(len, variable_name_size);
378 }
379 
380 /*
381  * Print a warning when duplicate EFI variables are encountered and
382  * disable the sysfs workqueue since the firmware is buggy.
383  */
384 static void dup_variable_bug(efi_char16_t *str16, efi_guid_t *vendor_guid,
385 			     unsigned long len16)
386 {
387 	size_t i, len8 = len16 / sizeof(efi_char16_t);
388 	char *str8;
389 
390 	str8 = kzalloc(len8, GFP_KERNEL);
391 	if (!str8)
392 		return;
393 
394 	for (i = 0; i < len8; i++)
395 		str8[i] = str16[i];
396 
397 	printk(KERN_WARNING "efivars: duplicate variable: %s-%pUl\n",
398 	       str8, vendor_guid);
399 	kfree(str8);
400 }
401 
402 /**
403  * efivar_init - build the initial list of EFI variables
404  * @func: callback function to invoke for every variable
405  * @data: function-specific data to pass to @func
406  * @duplicates: error if we encounter duplicates on @head?
407  * @head: initialised head of variable list
408  *
409  * Get every EFI variable from the firmware and invoke @func. @func
410  * should call efivar_entry_add() to build the list of variables.
411  *
412  * Returns 0 on success, or a kernel error code on failure.
413  */
414 int efivar_init(int (*func)(efi_char16_t *, efi_guid_t, unsigned long, void *),
415 		void *data, bool duplicates, struct list_head *head)
416 {
417 	const struct efivar_operations *ops;
418 	unsigned long variable_name_size = 1024;
419 	efi_char16_t *variable_name;
420 	efi_status_t status;
421 	efi_guid_t vendor_guid;
422 	int err = 0;
423 
424 	if (!__efivars)
425 		return -EFAULT;
426 
427 	ops = __efivars->ops;
428 
429 	variable_name = kzalloc(variable_name_size, GFP_KERNEL);
430 	if (!variable_name) {
431 		printk(KERN_ERR "efivars: Memory allocation failed.\n");
432 		return -ENOMEM;
433 	}
434 
435 	if (down_interruptible(&efivars_lock)) {
436 		err = -EINTR;
437 		goto free;
438 	}
439 
440 	/*
441 	 * Per EFI spec, the maximum storage allocated for both
442 	 * the variable name and variable data is 1024 bytes.
443 	 */
444 
445 	do {
446 		variable_name_size = 1024;
447 
448 		status = ops->get_next_variable(&variable_name_size,
449 						variable_name,
450 						&vendor_guid);
451 		switch (status) {
452 		case EFI_SUCCESS:
453 			if (duplicates)
454 				up(&efivars_lock);
455 
456 			variable_name_size = var_name_strnsize(variable_name,
457 							       variable_name_size);
458 
459 			/*
460 			 * Some firmware implementations return the
461 			 * same variable name on multiple calls to
462 			 * get_next_variable(). Terminate the loop
463 			 * immediately as there is no guarantee that
464 			 * we'll ever see a different variable name,
465 			 * and may end up looping here forever.
466 			 */
467 			if (duplicates &&
468 			    variable_is_present(variable_name, &vendor_guid,
469 						head)) {
470 				dup_variable_bug(variable_name, &vendor_guid,
471 						 variable_name_size);
472 				status = EFI_NOT_FOUND;
473 			} else {
474 				err = func(variable_name, vendor_guid,
475 					   variable_name_size, data);
476 				if (err)
477 					status = EFI_NOT_FOUND;
478 			}
479 
480 			if (duplicates) {
481 				if (down_interruptible(&efivars_lock)) {
482 					err = -EINTR;
483 					goto free;
484 				}
485 			}
486 
487 			break;
488 		case EFI_UNSUPPORTED:
489 			err = -EOPNOTSUPP;
490 			status = EFI_NOT_FOUND;
491 			break;
492 		case EFI_NOT_FOUND:
493 			break;
494 		default:
495 			printk(KERN_WARNING "efivars: get_next_variable: status=%lx\n",
496 				status);
497 			status = EFI_NOT_FOUND;
498 			break;
499 		}
500 
501 	} while (status != EFI_NOT_FOUND);
502 
503 	up(&efivars_lock);
504 free:
505 	kfree(variable_name);
506 
507 	return err;
508 }
509 EXPORT_SYMBOL_GPL(efivar_init);
510 
511 /**
512  * efivar_entry_add - add entry to variable list
513  * @entry: entry to add to list
514  * @head: list head
515  *
516  * Returns 0 on success, or a kernel error code on failure.
517  */
518 int efivar_entry_add(struct efivar_entry *entry, struct list_head *head)
519 {
520 	if (down_interruptible(&efivars_lock))
521 		return -EINTR;
522 	list_add(&entry->list, head);
523 	up(&efivars_lock);
524 
525 	return 0;
526 }
527 EXPORT_SYMBOL_GPL(efivar_entry_add);
528 
529 /**
530  * efivar_entry_remove - remove entry from variable list
531  * @entry: entry to remove from list
532  *
533  * Returns 0 on success, or a kernel error code on failure.
534  */
535 int efivar_entry_remove(struct efivar_entry *entry)
536 {
537 	if (down_interruptible(&efivars_lock))
538 		return -EINTR;
539 	list_del(&entry->list);
540 	up(&efivars_lock);
541 
542 	return 0;
543 }
544 EXPORT_SYMBOL_GPL(efivar_entry_remove);
545 
546 /*
547  * efivar_entry_list_del_unlock - remove entry from variable list
548  * @entry: entry to remove
549  *
550  * Remove @entry from the variable list and release the list lock.
551  *
552  * NOTE: slightly weird locking semantics here - we expect to be
553  * called with the efivars lock already held, and we release it before
554  * returning. This is because this function is usually called after
555  * set_variable() while the lock is still held.
556  */
557 static void efivar_entry_list_del_unlock(struct efivar_entry *entry)
558 {
559 	list_del(&entry->list);
560 	up(&efivars_lock);
561 }
562 
563 /**
564  * __efivar_entry_delete - delete an EFI variable
565  * @entry: entry containing EFI variable to delete
566  *
567  * Delete the variable from the firmware but leave @entry on the
568  * variable list.
569  *
570  * This function differs from efivar_entry_delete() because it does
571  * not remove @entry from the variable list. Also, it is safe to be
572  * called from within a efivar_entry_iter_begin() and
573  * efivar_entry_iter_end() region, unlike efivar_entry_delete().
574  *
575  * Returns 0 on success, or a converted EFI status code if
576  * set_variable() fails.
577  */
578 int __efivar_entry_delete(struct efivar_entry *entry)
579 {
580 	efi_status_t status;
581 
582 	if (!__efivars)
583 		return -EINVAL;
584 
585 	status = __efivars->ops->set_variable(entry->var.VariableName,
586 					      &entry->var.VendorGuid,
587 					      0, 0, NULL);
588 
589 	return efi_status_to_err(status);
590 }
591 EXPORT_SYMBOL_GPL(__efivar_entry_delete);
592 
593 /**
594  * efivar_entry_delete - delete variable and remove entry from list
595  * @entry: entry containing variable to delete
596  *
597  * Delete the variable from the firmware and remove @entry from the
598  * variable list. It is the caller's responsibility to free @entry
599  * once we return.
600  *
601  * Returns 0 on success, -EINTR if we can't grab the semaphore,
602  * converted EFI status code if set_variable() fails.
603  */
604 int efivar_entry_delete(struct efivar_entry *entry)
605 {
606 	const struct efivar_operations *ops;
607 	efi_status_t status;
608 
609 	if (down_interruptible(&efivars_lock))
610 		return -EINTR;
611 
612 	if (!__efivars) {
613 		up(&efivars_lock);
614 		return -EINVAL;
615 	}
616 	ops = __efivars->ops;
617 	status = ops->set_variable(entry->var.VariableName,
618 				   &entry->var.VendorGuid,
619 				   0, 0, NULL);
620 	if (!(status == EFI_SUCCESS || status == EFI_NOT_FOUND)) {
621 		up(&efivars_lock);
622 		return efi_status_to_err(status);
623 	}
624 
625 	efivar_entry_list_del_unlock(entry);
626 	return 0;
627 }
628 EXPORT_SYMBOL_GPL(efivar_entry_delete);
629 
630 /**
631  * efivar_entry_set - call set_variable()
632  * @entry: entry containing the EFI variable to write
633  * @attributes: variable attributes
634  * @size: size of @data buffer
635  * @data: buffer containing variable data
636  * @head: head of variable list
637  *
638  * Calls set_variable() for an EFI variable. If creating a new EFI
639  * variable, this function is usually followed by efivar_entry_add().
640  *
641  * Before writing the variable, the remaining EFI variable storage
642  * space is checked to ensure there is enough room available.
643  *
644  * If @head is not NULL a lookup is performed to determine whether
645  * the entry is already on the list.
646  *
647  * Returns 0 on success, -EINTR if we can't grab the semaphore,
648  * -EEXIST if a lookup is performed and the entry already exists on
649  * the list, or a converted EFI status code if set_variable() fails.
650  */
651 int efivar_entry_set(struct efivar_entry *entry, u32 attributes,
652 		     unsigned long size, void *data, struct list_head *head)
653 {
654 	const struct efivar_operations *ops;
655 	efi_status_t status;
656 	efi_char16_t *name = entry->var.VariableName;
657 	efi_guid_t vendor = entry->var.VendorGuid;
658 
659 	if (down_interruptible(&efivars_lock))
660 		return -EINTR;
661 
662 	if (!__efivars) {
663 		up(&efivars_lock);
664 		return -EINVAL;
665 	}
666 	ops = __efivars->ops;
667 	if (head && efivar_entry_find(name, vendor, head, false)) {
668 		up(&efivars_lock);
669 		return -EEXIST;
670 	}
671 
672 	status = check_var_size(attributes, size + ucs2_strsize(name, 1024));
673 	if (status == EFI_SUCCESS || status == EFI_UNSUPPORTED)
674 		status = ops->set_variable(name, &vendor,
675 					   attributes, size, data);
676 
677 	up(&efivars_lock);
678 
679 	return efi_status_to_err(status);
680 
681 }
682 EXPORT_SYMBOL_GPL(efivar_entry_set);
683 
684 /*
685  * efivar_entry_set_nonblocking - call set_variable_nonblocking()
686  *
687  * This function is guaranteed to not block and is suitable for calling
688  * from crash/panic handlers.
689  *
690  * Crucially, this function will not block if it cannot acquire
691  * efivars_lock. Instead, it returns -EBUSY.
692  */
693 static int
694 efivar_entry_set_nonblocking(efi_char16_t *name, efi_guid_t vendor,
695 			     u32 attributes, unsigned long size, void *data)
696 {
697 	const struct efivar_operations *ops;
698 	efi_status_t status;
699 
700 	if (down_trylock(&efivars_lock))
701 		return -EBUSY;
702 
703 	if (!__efivars) {
704 		up(&efivars_lock);
705 		return -EINVAL;
706 	}
707 
708 	status = check_var_size_nonblocking(attributes,
709 					    size + ucs2_strsize(name, 1024));
710 	if (status != EFI_SUCCESS) {
711 		up(&efivars_lock);
712 		return -ENOSPC;
713 	}
714 
715 	ops = __efivars->ops;
716 	status = ops->set_variable_nonblocking(name, &vendor, attributes,
717 					       size, data);
718 
719 	up(&efivars_lock);
720 	return efi_status_to_err(status);
721 }
722 
723 /**
724  * efivar_entry_set_safe - call set_variable() if enough space in firmware
725  * @name: buffer containing the variable name
726  * @vendor: variable vendor guid
727  * @attributes: variable attributes
728  * @block: can we block in this context?
729  * @size: size of @data buffer
730  * @data: buffer containing variable data
731  *
732  * Ensures there is enough free storage in the firmware for this variable, and
733  * if so, calls set_variable(). If creating a new EFI variable, this function
734  * is usually followed by efivar_entry_add().
735  *
736  * Returns 0 on success, -ENOSPC if the firmware does not have enough
737  * space for set_variable() to succeed, or a converted EFI status code
738  * if set_variable() fails.
739  */
740 int efivar_entry_set_safe(efi_char16_t *name, efi_guid_t vendor, u32 attributes,
741 			  bool block, unsigned long size, void *data)
742 {
743 	const struct efivar_operations *ops;
744 	efi_status_t status;
745 	unsigned long varsize;
746 
747 	if (!__efivars)
748 		return -EINVAL;
749 
750 	ops = __efivars->ops;
751 	if (!ops->query_variable_store)
752 		return -ENOSYS;
753 
754 	/*
755 	 * If the EFI variable backend provides a non-blocking
756 	 * ->set_variable() operation and we're in a context where we
757 	 * cannot block, then we need to use it to avoid live-locks,
758 	 * since the implication is that the regular ->set_variable()
759 	 * will block.
760 	 *
761 	 * If no ->set_variable_nonblocking() is provided then
762 	 * ->set_variable() is assumed to be non-blocking.
763 	 */
764 	if (!block && ops->set_variable_nonblocking)
765 		return efivar_entry_set_nonblocking(name, vendor, attributes,
766 						    size, data);
767 
768 	varsize = size + ucs2_strsize(name, 1024);
769 	if (!block) {
770 		if (down_trylock(&efivars_lock))
771 			return -EBUSY;
772 		status = check_var_size_nonblocking(attributes, varsize);
773 	} else {
774 		if (down_interruptible(&efivars_lock))
775 			return -EINTR;
776 		status = check_var_size(attributes, varsize);
777 	}
778 
779 	if (status != EFI_SUCCESS) {
780 		up(&efivars_lock);
781 		return -ENOSPC;
782 	}
783 
784 	status = ops->set_variable(name, &vendor, attributes, size, data);
785 
786 	up(&efivars_lock);
787 
788 	return efi_status_to_err(status);
789 }
790 EXPORT_SYMBOL_GPL(efivar_entry_set_safe);
791 
792 /**
793  * efivar_entry_find - search for an entry
794  * @name: the EFI variable name
795  * @guid: the EFI variable vendor's guid
796  * @head: head of the variable list
797  * @remove: should we remove the entry from the list?
798  *
799  * Search for an entry on the variable list that has the EFI variable
800  * name @name and vendor guid @guid. If an entry is found on the list
801  * and @remove is true, the entry is removed from the list.
802  *
803  * The caller MUST call efivar_entry_iter_begin() and
804  * efivar_entry_iter_end() before and after the invocation of this
805  * function, respectively.
806  *
807  * Returns the entry if found on the list, %NULL otherwise.
808  */
809 struct efivar_entry *efivar_entry_find(efi_char16_t *name, efi_guid_t guid,
810 				       struct list_head *head, bool remove)
811 {
812 	struct efivar_entry *entry, *n;
813 	int strsize1, strsize2;
814 	bool found = false;
815 
816 	list_for_each_entry_safe(entry, n, head, list) {
817 		strsize1 = ucs2_strsize(name, 1024);
818 		strsize2 = ucs2_strsize(entry->var.VariableName, 1024);
819 		if (strsize1 == strsize2 &&
820 		    !memcmp(name, &(entry->var.VariableName), strsize1) &&
821 		    !efi_guidcmp(guid, entry->var.VendorGuid)) {
822 			found = true;
823 			break;
824 		}
825 	}
826 
827 	if (!found)
828 		return NULL;
829 
830 	if (remove) {
831 		if (entry->scanning) {
832 			/*
833 			 * The entry will be deleted
834 			 * after scanning is completed.
835 			 */
836 			entry->deleting = true;
837 		} else
838 			list_del(&entry->list);
839 	}
840 
841 	return entry;
842 }
843 EXPORT_SYMBOL_GPL(efivar_entry_find);
844 
845 /**
846  * efivar_entry_size - obtain the size of a variable
847  * @entry: entry for this variable
848  * @size: location to store the variable's size
849  */
850 int efivar_entry_size(struct efivar_entry *entry, unsigned long *size)
851 {
852 	const struct efivar_operations *ops;
853 	efi_status_t status;
854 
855 	*size = 0;
856 
857 	if (down_interruptible(&efivars_lock))
858 		return -EINTR;
859 	if (!__efivars) {
860 		up(&efivars_lock);
861 		return -EINVAL;
862 	}
863 	ops = __efivars->ops;
864 	status = ops->get_variable(entry->var.VariableName,
865 				   &entry->var.VendorGuid, NULL, size, NULL);
866 	up(&efivars_lock);
867 
868 	if (status != EFI_BUFFER_TOO_SMALL)
869 		return efi_status_to_err(status);
870 
871 	return 0;
872 }
873 EXPORT_SYMBOL_GPL(efivar_entry_size);
874 
875 /**
876  * __efivar_entry_get - call get_variable()
877  * @entry: read data for this variable
878  * @attributes: variable attributes
879  * @size: size of @data buffer
880  * @data: buffer to store variable data
881  *
882  * The caller MUST call efivar_entry_iter_begin() and
883  * efivar_entry_iter_end() before and after the invocation of this
884  * function, respectively.
885  */
886 int __efivar_entry_get(struct efivar_entry *entry, u32 *attributes,
887 		       unsigned long *size, void *data)
888 {
889 	efi_status_t status;
890 
891 	if (!__efivars)
892 		return -EINVAL;
893 
894 	status = __efivars->ops->get_variable(entry->var.VariableName,
895 					      &entry->var.VendorGuid,
896 					      attributes, size, data);
897 
898 	return efi_status_to_err(status);
899 }
900 EXPORT_SYMBOL_GPL(__efivar_entry_get);
901 
902 /**
903  * efivar_entry_get - call get_variable()
904  * @entry: read data for this variable
905  * @attributes: variable attributes
906  * @size: size of @data buffer
907  * @data: buffer to store variable data
908  */
909 int efivar_entry_get(struct efivar_entry *entry, u32 *attributes,
910 		     unsigned long *size, void *data)
911 {
912 	efi_status_t status;
913 
914 	if (down_interruptible(&efivars_lock))
915 		return -EINTR;
916 
917 	if (!__efivars) {
918 		up(&efivars_lock);
919 		return -EINVAL;
920 	}
921 
922 	status = __efivars->ops->get_variable(entry->var.VariableName,
923 					      &entry->var.VendorGuid,
924 					      attributes, size, data);
925 	up(&efivars_lock);
926 
927 	return efi_status_to_err(status);
928 }
929 EXPORT_SYMBOL_GPL(efivar_entry_get);
930 
931 /**
932  * efivar_entry_set_get_size - call set_variable() and get new size (atomic)
933  * @entry: entry containing variable to set and get
934  * @attributes: attributes of variable to be written
935  * @size: size of data buffer
936  * @data: buffer containing data to write
937  * @set: did the set_variable() call succeed?
938  *
939  * This is a pretty special (complex) function. See efivarfs_file_write().
940  *
941  * Atomically call set_variable() for @entry and if the call is
942  * successful, return the new size of the variable from get_variable()
943  * in @size. The success of set_variable() is indicated by @set.
944  *
945  * Returns 0 on success, -EINVAL if the variable data is invalid,
946  * -ENOSPC if the firmware does not have enough available space, or a
947  * converted EFI status code if either of set_variable() or
948  * get_variable() fail.
949  *
950  * If the EFI variable does not exist when calling set_variable()
951  * (EFI_NOT_FOUND), @entry is removed from the variable list.
952  */
953 int efivar_entry_set_get_size(struct efivar_entry *entry, u32 attributes,
954 			      unsigned long *size, void *data, bool *set)
955 {
956 	const struct efivar_operations *ops;
957 	efi_char16_t *name = entry->var.VariableName;
958 	efi_guid_t *vendor = &entry->var.VendorGuid;
959 	efi_status_t status;
960 	int err;
961 
962 	*set = false;
963 
964 	if (efivar_validate(*vendor, name, data, *size) == false)
965 		return -EINVAL;
966 
967 	/*
968 	 * The lock here protects the get_variable call, the conditional
969 	 * set_variable call, and removal of the variable from the efivars
970 	 * list (in the case of an authenticated delete).
971 	 */
972 	if (down_interruptible(&efivars_lock))
973 		return -EINTR;
974 
975 	if (!__efivars) {
976 		err = -EINVAL;
977 		goto out;
978 	}
979 
980 	/*
981 	 * Ensure that the available space hasn't shrunk below the safe level
982 	 */
983 	status = check_var_size(attributes, *size + ucs2_strsize(name, 1024));
984 	if (status != EFI_SUCCESS) {
985 		if (status != EFI_UNSUPPORTED) {
986 			err = efi_status_to_err(status);
987 			goto out;
988 		}
989 
990 		if (*size > 65536) {
991 			err = -ENOSPC;
992 			goto out;
993 		}
994 	}
995 
996 	ops = __efivars->ops;
997 
998 	status = ops->set_variable(name, vendor, attributes, *size, data);
999 	if (status != EFI_SUCCESS) {
1000 		err = efi_status_to_err(status);
1001 		goto out;
1002 	}
1003 
1004 	*set = true;
1005 
1006 	/*
1007 	 * Writing to the variable may have caused a change in size (which
1008 	 * could either be an append or an overwrite), or the variable to be
1009 	 * deleted. Perform a GetVariable() so we can tell what actually
1010 	 * happened.
1011 	 */
1012 	*size = 0;
1013 	status = ops->get_variable(entry->var.VariableName,
1014 				   &entry->var.VendorGuid,
1015 				   NULL, size, NULL);
1016 
1017 	if (status == EFI_NOT_FOUND)
1018 		efivar_entry_list_del_unlock(entry);
1019 	else
1020 		up(&efivars_lock);
1021 
1022 	if (status && status != EFI_BUFFER_TOO_SMALL)
1023 		return efi_status_to_err(status);
1024 
1025 	return 0;
1026 
1027 out:
1028 	up(&efivars_lock);
1029 	return err;
1030 
1031 }
1032 EXPORT_SYMBOL_GPL(efivar_entry_set_get_size);
1033 
1034 /**
1035  * efivar_entry_iter_begin - begin iterating the variable list
1036  *
1037  * Lock the variable list to prevent entry insertion and removal until
1038  * efivar_entry_iter_end() is called. This function is usually used in
1039  * conjunction with __efivar_entry_iter() or efivar_entry_iter().
1040  */
1041 int efivar_entry_iter_begin(void)
1042 {
1043 	return down_interruptible(&efivars_lock);
1044 }
1045 EXPORT_SYMBOL_GPL(efivar_entry_iter_begin);
1046 
1047 /**
1048  * efivar_entry_iter_end - finish iterating the variable list
1049  *
1050  * Unlock the variable list and allow modifications to the list again.
1051  */
1052 void efivar_entry_iter_end(void)
1053 {
1054 	up(&efivars_lock);
1055 }
1056 EXPORT_SYMBOL_GPL(efivar_entry_iter_end);
1057 
1058 /**
1059  * __efivar_entry_iter - iterate over variable list
1060  * @func: callback function
1061  * @head: head of the variable list
1062  * @data: function-specific data to pass to callback
1063  * @prev: entry to begin iterating from
1064  *
1065  * Iterate over the list of EFI variables and call @func with every
1066  * entry on the list. It is safe for @func to remove entries in the
1067  * list via efivar_entry_delete().
1068  *
1069  * You MUST call efivar_entry_iter_begin() before this function, and
1070  * efivar_entry_iter_end() afterwards.
1071  *
1072  * It is possible to begin iteration from an arbitrary entry within
1073  * the list by passing @prev. @prev is updated on return to point to
1074  * the last entry passed to @func. To begin iterating from the
1075  * beginning of the list @prev must be %NULL.
1076  *
1077  * The restrictions for @func are the same as documented for
1078  * efivar_entry_iter().
1079  */
1080 int __efivar_entry_iter(int (*func)(struct efivar_entry *, void *),
1081 			struct list_head *head, void *data,
1082 			struct efivar_entry **prev)
1083 {
1084 	struct efivar_entry *entry, *n;
1085 	int err = 0;
1086 
1087 	if (!prev || !*prev) {
1088 		list_for_each_entry_safe(entry, n, head, list) {
1089 			err = func(entry, data);
1090 			if (err)
1091 				break;
1092 		}
1093 
1094 		if (prev)
1095 			*prev = entry;
1096 
1097 		return err;
1098 	}
1099 
1100 
1101 	list_for_each_entry_safe_continue((*prev), n, head, list) {
1102 		err = func(*prev, data);
1103 		if (err)
1104 			break;
1105 	}
1106 
1107 	return err;
1108 }
1109 EXPORT_SYMBOL_GPL(__efivar_entry_iter);
1110 
1111 /**
1112  * efivar_entry_iter - iterate over variable list
1113  * @func: callback function
1114  * @head: head of variable list
1115  * @data: function-specific data to pass to callback
1116  *
1117  * Iterate over the list of EFI variables and call @func with every
1118  * entry on the list. It is safe for @func to remove entries in the
1119  * list via efivar_entry_delete() while iterating.
1120  *
1121  * Some notes for the callback function:
1122  *  - a non-zero return value indicates an error and terminates the loop
1123  *  - @func is called from atomic context
1124  */
1125 int efivar_entry_iter(int (*func)(struct efivar_entry *, void *),
1126 		      struct list_head *head, void *data)
1127 {
1128 	int err = 0;
1129 
1130 	err = efivar_entry_iter_begin();
1131 	if (err)
1132 		return err;
1133 	err = __efivar_entry_iter(func, head, data, NULL);
1134 	efivar_entry_iter_end();
1135 
1136 	return err;
1137 }
1138 EXPORT_SYMBOL_GPL(efivar_entry_iter);
1139 
1140 /**
1141  * efivars_kobject - get the kobject for the registered efivars
1142  *
1143  * If efivars_register() has not been called we return NULL,
1144  * otherwise return the kobject used at registration time.
1145  */
1146 struct kobject *efivars_kobject(void)
1147 {
1148 	if (!__efivars)
1149 		return NULL;
1150 
1151 	return __efivars->kobject;
1152 }
1153 EXPORT_SYMBOL_GPL(efivars_kobject);
1154 
1155 /**
1156  * efivars_register - register an efivars
1157  * @efivars: efivars to register
1158  * @ops: efivars operations
1159  * @kobject: @efivars-specific kobject
1160  *
1161  * Only a single efivars can be registered at any time.
1162  */
1163 int efivars_register(struct efivars *efivars,
1164 		     const struct efivar_operations *ops,
1165 		     struct kobject *kobject)
1166 {
1167 	if (down_interruptible(&efivars_lock))
1168 		return -EINTR;
1169 
1170 	efivars->ops = ops;
1171 	efivars->kobject = kobject;
1172 
1173 	__efivars = efivars;
1174 
1175 	pr_info("Registered efivars operations\n");
1176 
1177 	up(&efivars_lock);
1178 
1179 	return 0;
1180 }
1181 EXPORT_SYMBOL_GPL(efivars_register);
1182 
1183 /**
1184  * efivars_unregister - unregister an efivars
1185  * @efivars: efivars to unregister
1186  *
1187  * The caller must have already removed every entry from the list,
1188  * failure to do so is an error.
1189  */
1190 int efivars_unregister(struct efivars *efivars)
1191 {
1192 	int rv;
1193 
1194 	if (down_interruptible(&efivars_lock))
1195 		return -EINTR;
1196 
1197 	if (!__efivars) {
1198 		printk(KERN_ERR "efivars not registered\n");
1199 		rv = -EINVAL;
1200 		goto out;
1201 	}
1202 
1203 	if (__efivars != efivars) {
1204 		rv = -EINVAL;
1205 		goto out;
1206 	}
1207 
1208 	pr_info("Unregistered efivars operations\n");
1209 	__efivars = NULL;
1210 
1211 	rv = 0;
1212 out:
1213 	up(&efivars_lock);
1214 	return rv;
1215 }
1216 EXPORT_SYMBOL_GPL(efivars_unregister);
1217 
1218 int efivar_supports_writes(void)
1219 {
1220 	return __efivars && __efivars->ops->set_variable;
1221 }
1222 EXPORT_SYMBOL_GPL(efivar_supports_writes);
1223