xref: /linux/drivers/firmware/efi/memmap.c (revision 98838d95075a5295f3478ceba18bcccf472e30f4)
1 /*
2  * Common EFI memory map functions.
3  */
4 
5 #define pr_fmt(fmt) "efi: " fmt
6 
7 #include <linux/init.h>
8 #include <linux/kernel.h>
9 #include <linux/efi.h>
10 #include <linux/io.h>
11 #include <asm/early_ioremap.h>
12 
13 /**
14  * __efi_memmap_init - Common code for mapping the EFI memory map
15  * @data: EFI memory map data
16  * @late: Use early or late mapping function?
17  *
18  * This function takes care of figuring out which function to use to
19  * map the EFI memory map in efi.memmap based on how far into the boot
20  * we are.
21  *
22  * During bootup @late should be %false since we only have access to
23  * the early_memremap*() functions as the vmalloc space isn't setup.
24  * Once the kernel is fully booted we can fallback to the more robust
25  * memremap*() API.
26  *
27  * Returns zero on success, a negative error code on failure.
28  */
29 static int __init
30 __efi_memmap_init(struct efi_memory_map_data *data, bool late)
31 {
32 	struct efi_memory_map map;
33 	phys_addr_t phys_map;
34 
35 	if (efi_enabled(EFI_PARAVIRT))
36 		return 0;
37 
38 	phys_map = data->phys_map;
39 
40 	if (late)
41 		map.map = memremap(phys_map, data->size, MEMREMAP_WB);
42 	else
43 		map.map = early_memremap(phys_map, data->size);
44 
45 	if (!map.map) {
46 		pr_err("Could not map the memory map!\n");
47 		return -ENOMEM;
48 	}
49 
50 	map.phys_map = data->phys_map;
51 	map.nr_map = data->size / data->desc_size;
52 	map.map_end = map.map + data->size;
53 
54 	map.desc_version = data->desc_version;
55 	map.desc_size = data->desc_size;
56 	map.late = late;
57 
58 	set_bit(EFI_MEMMAP, &efi.flags);
59 
60 	efi.memmap = map;
61 
62 	return 0;
63 }
64 
65 /**
66  * efi_memmap_init_early - Map the EFI memory map data structure
67  * @data: EFI memory map data
68  *
69  * Use early_memremap() to map the passed in EFI memory map and assign
70  * it to efi.memmap.
71  */
72 int __init efi_memmap_init_early(struct efi_memory_map_data *data)
73 {
74 	/* Cannot go backwards */
75 	WARN_ON(efi.memmap.late);
76 
77 	return __efi_memmap_init(data, false);
78 }
79 
80 void __init efi_memmap_unmap(void)
81 {
82 	if (!efi.memmap.late) {
83 		unsigned long size;
84 
85 		size = efi.memmap.desc_size * efi.memmap.nr_map;
86 		early_memunmap(efi.memmap.map, size);
87 	} else {
88 		memunmap(efi.memmap.map);
89 	}
90 
91 	efi.memmap.map = NULL;
92 	clear_bit(EFI_MEMMAP, &efi.flags);
93 }
94 
95 /**
96  * efi_memmap_init_late - Map efi.memmap with memremap()
97  * @phys_addr: Physical address of the new EFI memory map
98  * @size: Size in bytes of the new EFI memory map
99  *
100  * Setup a mapping of the EFI memory map using ioremap_cache(). This
101  * function should only be called once the vmalloc space has been
102  * setup and is therefore not suitable for calling during early EFI
103  * initialise, e.g. in efi_init(). Additionally, it expects
104  * efi_memmap_init_early() to have already been called.
105  *
106  * The reason there are two EFI memmap initialisation
107  * (efi_memmap_init_early() and this late version) is because the
108  * early EFI memmap should be explicitly unmapped once EFI
109  * initialisation is complete as the fixmap space used to map the EFI
110  * memmap (via early_memremap()) is a scarce resource.
111  *
112  * This late mapping is intended to persist for the duration of
113  * runtime so that things like efi_mem_desc_lookup() and
114  * efi_mem_attributes() always work.
115  *
116  * Returns zero on success, a negative error code on failure.
117  */
118 int __init efi_memmap_init_late(phys_addr_t addr, unsigned long size)
119 {
120 	struct efi_memory_map_data data = {
121 		.phys_map = addr,
122 		.size = size,
123 	};
124 
125 	/* Did we forget to unmap the early EFI memmap? */
126 	WARN_ON(efi.memmap.map);
127 
128 	/* Were we already called? */
129 	WARN_ON(efi.memmap.late);
130 
131 	/*
132 	 * It makes no sense to allow callers to register different
133 	 * values for the following fields. Copy them out of the
134 	 * existing early EFI memmap.
135 	 */
136 	data.desc_version = efi.memmap.desc_version;
137 	data.desc_size = efi.memmap.desc_size;
138 
139 	return __efi_memmap_init(&data, true);
140 }
141 
142 /**
143  * efi_memmap_install - Install a new EFI memory map in efi.memmap
144  * @addr: Physical address of the memory map
145  * @nr_map: Number of entries in the memory map
146  *
147  * Unlike efi_memmap_init_*(), this function does not allow the caller
148  * to switch from early to late mappings. It simply uses the existing
149  * mapping function and installs the new memmap.
150  *
151  * Returns zero on success, a negative error code on failure.
152  */
153 int __init efi_memmap_install(phys_addr_t addr, unsigned int nr_map)
154 {
155 	struct efi_memory_map_data data;
156 
157 	efi_memmap_unmap();
158 
159 	data.phys_map = addr;
160 	data.size = efi.memmap.desc_size * nr_map;
161 	data.desc_version = efi.memmap.desc_version;
162 	data.desc_size = efi.memmap.desc_size;
163 
164 	return __efi_memmap_init(&data, efi.memmap.late);
165 }
166 
167 /**
168  * efi_memmap_split_count - Count number of additional EFI memmap entries
169  * @md: EFI memory descriptor to split
170  * @range: Address range (start, end) to split around
171  *
172  * Returns the number of additional EFI memmap entries required to
173  * accomodate @range.
174  */
175 int __init efi_memmap_split_count(efi_memory_desc_t *md, struct range *range)
176 {
177 	u64 m_start, m_end;
178 	u64 start, end;
179 	int count = 0;
180 
181 	start = md->phys_addr;
182 	end = start + (md->num_pages << EFI_PAGE_SHIFT) - 1;
183 
184 	/* modifying range */
185 	m_start = range->start;
186 	m_end = range->end;
187 
188 	if (m_start <= start) {
189 		/* split into 2 parts */
190 		if (start < m_end && m_end < end)
191 			count++;
192 	}
193 
194 	if (start < m_start && m_start < end) {
195 		/* split into 3 parts */
196 		if (m_end < end)
197 			count += 2;
198 		/* split into 2 parts */
199 		if (end <= m_end)
200 			count++;
201 	}
202 
203 	return count;
204 }
205 
206 /**
207  * efi_memmap_insert - Insert a memory region in an EFI memmap
208  * @old_memmap: The existing EFI memory map structure
209  * @buf: Address of buffer to store new map
210  * @mem: Memory map entry to insert
211  *
212  * It is suggested that you call efi_memmap_split_count() first
213  * to see how large @buf needs to be.
214  */
215 void __init efi_memmap_insert(struct efi_memory_map *old_memmap, void *buf,
216 			      struct efi_mem_range *mem)
217 {
218 	u64 m_start, m_end, m_attr;
219 	efi_memory_desc_t *md;
220 	u64 start, end;
221 	void *old, *new;
222 
223 	/* modifying range */
224 	m_start = mem->range.start;
225 	m_end = mem->range.end;
226 	m_attr = mem->attribute;
227 
228 	/*
229 	 * The EFI memory map deals with regions in EFI_PAGE_SIZE
230 	 * units. Ensure that the region described by 'mem' is aligned
231 	 * correctly.
232 	 */
233 	if (!IS_ALIGNED(m_start, EFI_PAGE_SIZE) ||
234 	    !IS_ALIGNED(m_end + 1, EFI_PAGE_SIZE)) {
235 		WARN_ON(1);
236 		return;
237 	}
238 
239 	for (old = old_memmap->map, new = buf;
240 	     old < old_memmap->map_end;
241 	     old += old_memmap->desc_size, new += old_memmap->desc_size) {
242 
243 		/* copy original EFI memory descriptor */
244 		memcpy(new, old, old_memmap->desc_size);
245 		md = new;
246 		start = md->phys_addr;
247 		end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1;
248 
249 		if (m_start <= start && end <= m_end)
250 			md->attribute |= m_attr;
251 
252 		if (m_start <= start &&
253 		    (start < m_end && m_end < end)) {
254 			/* first part */
255 			md->attribute |= m_attr;
256 			md->num_pages = (m_end - md->phys_addr + 1) >>
257 				EFI_PAGE_SHIFT;
258 			/* latter part */
259 			new += old_memmap->desc_size;
260 			memcpy(new, old, old_memmap->desc_size);
261 			md = new;
262 			md->phys_addr = m_end + 1;
263 			md->num_pages = (end - md->phys_addr + 1) >>
264 				EFI_PAGE_SHIFT;
265 		}
266 
267 		if ((start < m_start && m_start < end) && m_end < end) {
268 			/* first part */
269 			md->num_pages = (m_start - md->phys_addr) >>
270 				EFI_PAGE_SHIFT;
271 			/* middle part */
272 			new += old_memmap->desc_size;
273 			memcpy(new, old, old_memmap->desc_size);
274 			md = new;
275 			md->attribute |= m_attr;
276 			md->phys_addr = m_start;
277 			md->num_pages = (m_end - m_start + 1) >>
278 				EFI_PAGE_SHIFT;
279 			/* last part */
280 			new += old_memmap->desc_size;
281 			memcpy(new, old, old_memmap->desc_size);
282 			md = new;
283 			md->phys_addr = m_end + 1;
284 			md->num_pages = (end - m_end) >>
285 				EFI_PAGE_SHIFT;
286 		}
287 
288 		if ((start < m_start && m_start < end) &&
289 		    (end <= m_end)) {
290 			/* first part */
291 			md->num_pages = (m_start - md->phys_addr) >>
292 				EFI_PAGE_SHIFT;
293 			/* latter part */
294 			new += old_memmap->desc_size;
295 			memcpy(new, old, old_memmap->desc_size);
296 			md = new;
297 			md->phys_addr = m_start;
298 			md->num_pages = (end - md->phys_addr + 1) >>
299 				EFI_PAGE_SHIFT;
300 			md->attribute |= m_attr;
301 		}
302 	}
303 }
304