1 /* 2 * Common EFI memory map functions. 3 */ 4 5 #define pr_fmt(fmt) "efi: " fmt 6 7 #include <linux/init.h> 8 #include <linux/kernel.h> 9 #include <linux/efi.h> 10 #include <linux/io.h> 11 #include <asm/early_ioremap.h> 12 13 /** 14 * __efi_memmap_init - Common code for mapping the EFI memory map 15 * @data: EFI memory map data 16 * @late: Use early or late mapping function? 17 * 18 * This function takes care of figuring out which function to use to 19 * map the EFI memory map in efi.memmap based on how far into the boot 20 * we are. 21 * 22 * During bootup @late should be %false since we only have access to 23 * the early_memremap*() functions as the vmalloc space isn't setup. 24 * Once the kernel is fully booted we can fallback to the more robust 25 * memremap*() API. 26 * 27 * Returns zero on success, a negative error code on failure. 28 */ 29 static int __init 30 __efi_memmap_init(struct efi_memory_map_data *data, bool late) 31 { 32 struct efi_memory_map map; 33 phys_addr_t phys_map; 34 35 if (efi_enabled(EFI_PARAVIRT)) 36 return 0; 37 38 phys_map = data->phys_map; 39 40 if (late) 41 map.map = memremap(phys_map, data->size, MEMREMAP_WB); 42 else 43 map.map = early_memremap(phys_map, data->size); 44 45 if (!map.map) { 46 pr_err("Could not map the memory map!\n"); 47 return -ENOMEM; 48 } 49 50 map.phys_map = data->phys_map; 51 map.nr_map = data->size / data->desc_size; 52 map.map_end = map.map + data->size; 53 54 map.desc_version = data->desc_version; 55 map.desc_size = data->desc_size; 56 map.late = late; 57 58 set_bit(EFI_MEMMAP, &efi.flags); 59 60 efi.memmap = map; 61 62 return 0; 63 } 64 65 /** 66 * efi_memmap_init_early - Map the EFI memory map data structure 67 * @data: EFI memory map data 68 * 69 * Use early_memremap() to map the passed in EFI memory map and assign 70 * it to efi.memmap. 71 */ 72 int __init efi_memmap_init_early(struct efi_memory_map_data *data) 73 { 74 /* Cannot go backwards */ 75 WARN_ON(efi.memmap.late); 76 77 return __efi_memmap_init(data, false); 78 } 79 80 void __init efi_memmap_unmap(void) 81 { 82 if (!efi.memmap.late) { 83 unsigned long size; 84 85 size = efi.memmap.desc_size * efi.memmap.nr_map; 86 early_memunmap(efi.memmap.map, size); 87 } else { 88 memunmap(efi.memmap.map); 89 } 90 91 efi.memmap.map = NULL; 92 clear_bit(EFI_MEMMAP, &efi.flags); 93 } 94 95 /** 96 * efi_memmap_init_late - Map efi.memmap with memremap() 97 * @phys_addr: Physical address of the new EFI memory map 98 * @size: Size in bytes of the new EFI memory map 99 * 100 * Setup a mapping of the EFI memory map using ioremap_cache(). This 101 * function should only be called once the vmalloc space has been 102 * setup and is therefore not suitable for calling during early EFI 103 * initialise, e.g. in efi_init(). Additionally, it expects 104 * efi_memmap_init_early() to have already been called. 105 * 106 * The reason there are two EFI memmap initialisation 107 * (efi_memmap_init_early() and this late version) is because the 108 * early EFI memmap should be explicitly unmapped once EFI 109 * initialisation is complete as the fixmap space used to map the EFI 110 * memmap (via early_memremap()) is a scarce resource. 111 * 112 * This late mapping is intended to persist for the duration of 113 * runtime so that things like efi_mem_desc_lookup() and 114 * efi_mem_attributes() always work. 115 * 116 * Returns zero on success, a negative error code on failure. 117 */ 118 int __init efi_memmap_init_late(phys_addr_t addr, unsigned long size) 119 { 120 struct efi_memory_map_data data = { 121 .phys_map = addr, 122 .size = size, 123 }; 124 125 /* Did we forget to unmap the early EFI memmap? */ 126 WARN_ON(efi.memmap.map); 127 128 /* Were we already called? */ 129 WARN_ON(efi.memmap.late); 130 131 /* 132 * It makes no sense to allow callers to register different 133 * values for the following fields. Copy them out of the 134 * existing early EFI memmap. 135 */ 136 data.desc_version = efi.memmap.desc_version; 137 data.desc_size = efi.memmap.desc_size; 138 139 return __efi_memmap_init(&data, true); 140 } 141 142 /** 143 * efi_memmap_install - Install a new EFI memory map in efi.memmap 144 * @addr: Physical address of the memory map 145 * @nr_map: Number of entries in the memory map 146 * 147 * Unlike efi_memmap_init_*(), this function does not allow the caller 148 * to switch from early to late mappings. It simply uses the existing 149 * mapping function and installs the new memmap. 150 * 151 * Returns zero on success, a negative error code on failure. 152 */ 153 int __init efi_memmap_install(phys_addr_t addr, unsigned int nr_map) 154 { 155 struct efi_memory_map_data data; 156 157 efi_memmap_unmap(); 158 159 data.phys_map = addr; 160 data.size = efi.memmap.desc_size * nr_map; 161 data.desc_version = efi.memmap.desc_version; 162 data.desc_size = efi.memmap.desc_size; 163 164 return __efi_memmap_init(&data, efi.memmap.late); 165 } 166 167 /** 168 * efi_memmap_split_count - Count number of additional EFI memmap entries 169 * @md: EFI memory descriptor to split 170 * @range: Address range (start, end) to split around 171 * 172 * Returns the number of additional EFI memmap entries required to 173 * accomodate @range. 174 */ 175 int __init efi_memmap_split_count(efi_memory_desc_t *md, struct range *range) 176 { 177 u64 m_start, m_end; 178 u64 start, end; 179 int count = 0; 180 181 start = md->phys_addr; 182 end = start + (md->num_pages << EFI_PAGE_SHIFT) - 1; 183 184 /* modifying range */ 185 m_start = range->start; 186 m_end = range->end; 187 188 if (m_start <= start) { 189 /* split into 2 parts */ 190 if (start < m_end && m_end < end) 191 count++; 192 } 193 194 if (start < m_start && m_start < end) { 195 /* split into 3 parts */ 196 if (m_end < end) 197 count += 2; 198 /* split into 2 parts */ 199 if (end <= m_end) 200 count++; 201 } 202 203 return count; 204 } 205 206 /** 207 * efi_memmap_insert - Insert a memory region in an EFI memmap 208 * @old_memmap: The existing EFI memory map structure 209 * @buf: Address of buffer to store new map 210 * @mem: Memory map entry to insert 211 * 212 * It is suggested that you call efi_memmap_split_count() first 213 * to see how large @buf needs to be. 214 */ 215 void __init efi_memmap_insert(struct efi_memory_map *old_memmap, void *buf, 216 struct efi_mem_range *mem) 217 { 218 u64 m_start, m_end, m_attr; 219 efi_memory_desc_t *md; 220 u64 start, end; 221 void *old, *new; 222 223 /* modifying range */ 224 m_start = mem->range.start; 225 m_end = mem->range.end; 226 m_attr = mem->attribute; 227 228 /* 229 * The EFI memory map deals with regions in EFI_PAGE_SIZE 230 * units. Ensure that the region described by 'mem' is aligned 231 * correctly. 232 */ 233 if (!IS_ALIGNED(m_start, EFI_PAGE_SIZE) || 234 !IS_ALIGNED(m_end + 1, EFI_PAGE_SIZE)) { 235 WARN_ON(1); 236 return; 237 } 238 239 for (old = old_memmap->map, new = buf; 240 old < old_memmap->map_end; 241 old += old_memmap->desc_size, new += old_memmap->desc_size) { 242 243 /* copy original EFI memory descriptor */ 244 memcpy(new, old, old_memmap->desc_size); 245 md = new; 246 start = md->phys_addr; 247 end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1; 248 249 if (m_start <= start && end <= m_end) 250 md->attribute |= m_attr; 251 252 if (m_start <= start && 253 (start < m_end && m_end < end)) { 254 /* first part */ 255 md->attribute |= m_attr; 256 md->num_pages = (m_end - md->phys_addr + 1) >> 257 EFI_PAGE_SHIFT; 258 /* latter part */ 259 new += old_memmap->desc_size; 260 memcpy(new, old, old_memmap->desc_size); 261 md = new; 262 md->phys_addr = m_end + 1; 263 md->num_pages = (end - md->phys_addr + 1) >> 264 EFI_PAGE_SHIFT; 265 } 266 267 if ((start < m_start && m_start < end) && m_end < end) { 268 /* first part */ 269 md->num_pages = (m_start - md->phys_addr) >> 270 EFI_PAGE_SHIFT; 271 /* middle part */ 272 new += old_memmap->desc_size; 273 memcpy(new, old, old_memmap->desc_size); 274 md = new; 275 md->attribute |= m_attr; 276 md->phys_addr = m_start; 277 md->num_pages = (m_end - m_start + 1) >> 278 EFI_PAGE_SHIFT; 279 /* last part */ 280 new += old_memmap->desc_size; 281 memcpy(new, old, old_memmap->desc_size); 282 md = new; 283 md->phys_addr = m_end + 1; 284 md->num_pages = (end - m_end) >> 285 EFI_PAGE_SHIFT; 286 } 287 288 if ((start < m_start && m_start < end) && 289 (end <= m_end)) { 290 /* first part */ 291 md->num_pages = (m_start - md->phys_addr) >> 292 EFI_PAGE_SHIFT; 293 /* latter part */ 294 new += old_memmap->desc_size; 295 memcpy(new, old, old_memmap->desc_size); 296 md = new; 297 md->phys_addr = m_start; 298 md->num_pages = (end - md->phys_addr + 1) >> 299 EFI_PAGE_SHIFT; 300 md->attribute |= m_attr; 301 } 302 } 303 } 304