xref: /linux/drivers/firmware/efi/memmap.c (revision 288440de9e5fdb4a3ff73864850f080c1250fc81)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common EFI memory map functions.
4  */
5 
6 #define pr_fmt(fmt) "efi: " fmt
7 
8 #include <linux/init.h>
9 #include <linux/kernel.h>
10 #include <linux/efi.h>
11 #include <linux/io.h>
12 #include <asm/early_ioremap.h>
13 #include <linux/memblock.h>
14 #include <linux/slab.h>
15 
16 static phys_addr_t __init __efi_memmap_alloc_early(unsigned long size)
17 {
18 	return memblock_phys_alloc(size, SMP_CACHE_BYTES);
19 }
20 
21 static phys_addr_t __init __efi_memmap_alloc_late(unsigned long size)
22 {
23 	unsigned int order = get_order(size);
24 	struct page *p = alloc_pages(GFP_KERNEL, order);
25 
26 	if (!p)
27 		return 0;
28 
29 	return PFN_PHYS(page_to_pfn(p));
30 }
31 
32 void __init __efi_memmap_free(u64 phys, unsigned long size, unsigned long flags)
33 {
34 	if (flags & EFI_MEMMAP_MEMBLOCK) {
35 		if (slab_is_available())
36 			memblock_free_late(phys, size);
37 		else
38 			memblock_phys_free(phys, size);
39 	} else if (flags & EFI_MEMMAP_SLAB) {
40 		struct page *p = pfn_to_page(PHYS_PFN(phys));
41 		unsigned int order = get_order(size);
42 
43 		free_pages((unsigned long) page_address(p), order);
44 	}
45 }
46 
47 static void __init efi_memmap_free(void)
48 {
49 	__efi_memmap_free(efi.memmap.phys_map,
50 			efi.memmap.desc_size * efi.memmap.nr_map,
51 			efi.memmap.flags);
52 }
53 
54 /**
55  * efi_memmap_alloc - Allocate memory for the EFI memory map
56  * @num_entries: Number of entries in the allocated map.
57  * @data: efi memmap installation parameters
58  *
59  * Depending on whether mm_init() has already been invoked or not,
60  * either memblock or "normal" page allocation is used.
61  *
62  * Returns zero on success, a negative error code on failure.
63  */
64 int __init efi_memmap_alloc(unsigned int num_entries,
65 		struct efi_memory_map_data *data)
66 {
67 	/* Expect allocation parameters are zero initialized */
68 	WARN_ON(data->phys_map || data->size);
69 
70 	data->size = num_entries * efi.memmap.desc_size;
71 	data->desc_version = efi.memmap.desc_version;
72 	data->desc_size = efi.memmap.desc_size;
73 	data->flags &= ~(EFI_MEMMAP_SLAB | EFI_MEMMAP_MEMBLOCK);
74 	data->flags |= efi.memmap.flags & EFI_MEMMAP_LATE;
75 
76 	if (slab_is_available()) {
77 		data->flags |= EFI_MEMMAP_SLAB;
78 		data->phys_map = __efi_memmap_alloc_late(data->size);
79 	} else {
80 		data->flags |= EFI_MEMMAP_MEMBLOCK;
81 		data->phys_map = __efi_memmap_alloc_early(data->size);
82 	}
83 
84 	if (!data->phys_map)
85 		return -ENOMEM;
86 	return 0;
87 }
88 
89 /**
90  * __efi_memmap_init - Common code for mapping the EFI memory map
91  * @data: EFI memory map data
92  *
93  * This function takes care of figuring out which function to use to
94  * map the EFI memory map in efi.memmap based on how far into the boot
95  * we are.
96  *
97  * During bootup EFI_MEMMAP_LATE in data->flags should be clear since we
98  * only have access to the early_memremap*() functions as the vmalloc
99  * space isn't setup.  Once the kernel is fully booted we can fallback
100  * to the more robust memremap*() API.
101  *
102  * Returns zero on success, a negative error code on failure.
103  */
104 static int __init __efi_memmap_init(struct efi_memory_map_data *data)
105 {
106 	struct efi_memory_map map;
107 	phys_addr_t phys_map;
108 
109 	if (efi_enabled(EFI_PARAVIRT))
110 		return 0;
111 
112 	phys_map = data->phys_map;
113 
114 	if (data->flags & EFI_MEMMAP_LATE)
115 		map.map = memremap(phys_map, data->size, MEMREMAP_WB);
116 	else
117 		map.map = early_memremap(phys_map, data->size);
118 
119 	if (!map.map) {
120 		pr_err("Could not map the memory map!\n");
121 		return -ENOMEM;
122 	}
123 
124 	/* NOP if data->flags & (EFI_MEMMAP_MEMBLOCK | EFI_MEMMAP_SLAB) == 0 */
125 	efi_memmap_free();
126 
127 	map.phys_map = data->phys_map;
128 	map.nr_map = data->size / data->desc_size;
129 	map.map_end = map.map + data->size;
130 
131 	map.desc_version = data->desc_version;
132 	map.desc_size = data->desc_size;
133 	map.flags = data->flags;
134 
135 	set_bit(EFI_MEMMAP, &efi.flags);
136 
137 	efi.memmap = map;
138 
139 	return 0;
140 }
141 
142 /**
143  * efi_memmap_init_early - Map the EFI memory map data structure
144  * @data: EFI memory map data
145  *
146  * Use early_memremap() to map the passed in EFI memory map and assign
147  * it to efi.memmap.
148  */
149 int __init efi_memmap_init_early(struct efi_memory_map_data *data)
150 {
151 	/* Cannot go backwards */
152 	WARN_ON(efi.memmap.flags & EFI_MEMMAP_LATE);
153 
154 	data->flags = 0;
155 	return __efi_memmap_init(data);
156 }
157 
158 void __init efi_memmap_unmap(void)
159 {
160 	if (!efi_enabled(EFI_MEMMAP))
161 		return;
162 
163 	if (!(efi.memmap.flags & EFI_MEMMAP_LATE)) {
164 		unsigned long size;
165 
166 		size = efi.memmap.desc_size * efi.memmap.nr_map;
167 		early_memunmap(efi.memmap.map, size);
168 	} else {
169 		memunmap(efi.memmap.map);
170 	}
171 
172 	efi.memmap.map = NULL;
173 	clear_bit(EFI_MEMMAP, &efi.flags);
174 }
175 
176 /**
177  * efi_memmap_init_late - Map efi.memmap with memremap()
178  * @phys_addr: Physical address of the new EFI memory map
179  * @size: Size in bytes of the new EFI memory map
180  *
181  * Setup a mapping of the EFI memory map using ioremap_cache(). This
182  * function should only be called once the vmalloc space has been
183  * setup and is therefore not suitable for calling during early EFI
184  * initialise, e.g. in efi_init(). Additionally, it expects
185  * efi_memmap_init_early() to have already been called.
186  *
187  * The reason there are two EFI memmap initialisation
188  * (efi_memmap_init_early() and this late version) is because the
189  * early EFI memmap should be explicitly unmapped once EFI
190  * initialisation is complete as the fixmap space used to map the EFI
191  * memmap (via early_memremap()) is a scarce resource.
192  *
193  * This late mapping is intended to persist for the duration of
194  * runtime so that things like efi_mem_desc_lookup() and
195  * efi_mem_attributes() always work.
196  *
197  * Returns zero on success, a negative error code on failure.
198  */
199 int __init efi_memmap_init_late(phys_addr_t addr, unsigned long size)
200 {
201 	struct efi_memory_map_data data = {
202 		.phys_map = addr,
203 		.size = size,
204 		.flags = EFI_MEMMAP_LATE,
205 	};
206 
207 	/* Did we forget to unmap the early EFI memmap? */
208 	WARN_ON(efi.memmap.map);
209 
210 	/* Were we already called? */
211 	WARN_ON(efi.memmap.flags & EFI_MEMMAP_LATE);
212 
213 	/*
214 	 * It makes no sense to allow callers to register different
215 	 * values for the following fields. Copy them out of the
216 	 * existing early EFI memmap.
217 	 */
218 	data.desc_version = efi.memmap.desc_version;
219 	data.desc_size = efi.memmap.desc_size;
220 
221 	return __efi_memmap_init(&data);
222 }
223 
224 /**
225  * efi_memmap_install - Install a new EFI memory map in efi.memmap
226  * @ctx: map allocation parameters (address, size, flags)
227  *
228  * Unlike efi_memmap_init_*(), this function does not allow the caller
229  * to switch from early to late mappings. It simply uses the existing
230  * mapping function and installs the new memmap.
231  *
232  * Returns zero on success, a negative error code on failure.
233  */
234 int __init efi_memmap_install(struct efi_memory_map_data *data)
235 {
236 	efi_memmap_unmap();
237 
238 	return __efi_memmap_init(data);
239 }
240 
241 /**
242  * efi_memmap_split_count - Count number of additional EFI memmap entries
243  * @md: EFI memory descriptor to split
244  * @range: Address range (start, end) to split around
245  *
246  * Returns the number of additional EFI memmap entries required to
247  * accommodate @range.
248  */
249 int __init efi_memmap_split_count(efi_memory_desc_t *md, struct range *range)
250 {
251 	u64 m_start, m_end;
252 	u64 start, end;
253 	int count = 0;
254 
255 	start = md->phys_addr;
256 	end = start + (md->num_pages << EFI_PAGE_SHIFT) - 1;
257 
258 	/* modifying range */
259 	m_start = range->start;
260 	m_end = range->end;
261 
262 	if (m_start <= start) {
263 		/* split into 2 parts */
264 		if (start < m_end && m_end < end)
265 			count++;
266 	}
267 
268 	if (start < m_start && m_start < end) {
269 		/* split into 3 parts */
270 		if (m_end < end)
271 			count += 2;
272 		/* split into 2 parts */
273 		if (end <= m_end)
274 			count++;
275 	}
276 
277 	return count;
278 }
279 
280 /**
281  * efi_memmap_insert - Insert a memory region in an EFI memmap
282  * @old_memmap: The existing EFI memory map structure
283  * @buf: Address of buffer to store new map
284  * @mem: Memory map entry to insert
285  *
286  * It is suggested that you call efi_memmap_split_count() first
287  * to see how large @buf needs to be.
288  */
289 void __init efi_memmap_insert(struct efi_memory_map *old_memmap, void *buf,
290 			      struct efi_mem_range *mem)
291 {
292 	u64 m_start, m_end, m_attr;
293 	efi_memory_desc_t *md;
294 	u64 start, end;
295 	void *old, *new;
296 
297 	/* modifying range */
298 	m_start = mem->range.start;
299 	m_end = mem->range.end;
300 	m_attr = mem->attribute;
301 
302 	/*
303 	 * The EFI memory map deals with regions in EFI_PAGE_SIZE
304 	 * units. Ensure that the region described by 'mem' is aligned
305 	 * correctly.
306 	 */
307 	if (!IS_ALIGNED(m_start, EFI_PAGE_SIZE) ||
308 	    !IS_ALIGNED(m_end + 1, EFI_PAGE_SIZE)) {
309 		WARN_ON(1);
310 		return;
311 	}
312 
313 	for (old = old_memmap->map, new = buf;
314 	     old < old_memmap->map_end;
315 	     old += old_memmap->desc_size, new += old_memmap->desc_size) {
316 
317 		/* copy original EFI memory descriptor */
318 		memcpy(new, old, old_memmap->desc_size);
319 		md = new;
320 		start = md->phys_addr;
321 		end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1;
322 
323 		if (m_start <= start && end <= m_end)
324 			md->attribute |= m_attr;
325 
326 		if (m_start <= start &&
327 		    (start < m_end && m_end < end)) {
328 			/* first part */
329 			md->attribute |= m_attr;
330 			md->num_pages = (m_end - md->phys_addr + 1) >>
331 				EFI_PAGE_SHIFT;
332 			/* latter part */
333 			new += old_memmap->desc_size;
334 			memcpy(new, old, old_memmap->desc_size);
335 			md = new;
336 			md->phys_addr = m_end + 1;
337 			md->num_pages = (end - md->phys_addr + 1) >>
338 				EFI_PAGE_SHIFT;
339 		}
340 
341 		if ((start < m_start && m_start < end) && m_end < end) {
342 			/* first part */
343 			md->num_pages = (m_start - md->phys_addr) >>
344 				EFI_PAGE_SHIFT;
345 			/* middle part */
346 			new += old_memmap->desc_size;
347 			memcpy(new, old, old_memmap->desc_size);
348 			md = new;
349 			md->attribute |= m_attr;
350 			md->phys_addr = m_start;
351 			md->num_pages = (m_end - m_start + 1) >>
352 				EFI_PAGE_SHIFT;
353 			/* last part */
354 			new += old_memmap->desc_size;
355 			memcpy(new, old, old_memmap->desc_size);
356 			md = new;
357 			md->phys_addr = m_end + 1;
358 			md->num_pages = (end - m_end) >>
359 				EFI_PAGE_SHIFT;
360 		}
361 
362 		if ((start < m_start && m_start < end) &&
363 		    (end <= m_end)) {
364 			/* first part */
365 			md->num_pages = (m_start - md->phys_addr) >>
366 				EFI_PAGE_SHIFT;
367 			/* latter part */
368 			new += old_memmap->desc_size;
369 			memcpy(new, old, old_memmap->desc_size);
370 			md = new;
371 			md->phys_addr = m_start;
372 			md->num_pages = (end - md->phys_addr + 1) >>
373 				EFI_PAGE_SHIFT;
374 			md->attribute |= m_attr;
375 		}
376 	}
377 }
378