1 // SPDX-License-Identifier: GPL-2.0-only 2 3 /* ----------------------------------------------------------------------- 4 * 5 * Copyright 2011 Intel Corporation; author Matt Fleming 6 * 7 * ----------------------------------------------------------------------- */ 8 9 #include <linux/efi.h> 10 #include <linux/pci.h> 11 #include <linux/stddef.h> 12 13 #include <asm/efi.h> 14 #include <asm/e820/types.h> 15 #include <asm/setup.h> 16 #include <asm/desc.h> 17 #include <asm/boot.h> 18 #include <asm/kaslr.h> 19 #include <asm/sev.h> 20 21 #include "efistub.h" 22 #include "x86-stub.h" 23 24 const efi_system_table_t *efi_system_table; 25 const efi_dxe_services_table_t *efi_dxe_table; 26 static efi_loaded_image_t *image = NULL; 27 static efi_memory_attribute_protocol_t *memattr; 28 29 typedef union sev_memory_acceptance_protocol sev_memory_acceptance_protocol_t; 30 union sev_memory_acceptance_protocol { 31 struct { 32 efi_status_t (__efiapi * allow_unaccepted_memory)( 33 sev_memory_acceptance_protocol_t *); 34 }; 35 struct { 36 u32 allow_unaccepted_memory; 37 } mixed_mode; 38 }; 39 40 static efi_status_t 41 preserve_pci_rom_image(efi_pci_io_protocol_t *pci, struct pci_setup_rom **__rom) 42 { 43 struct pci_setup_rom *rom = NULL; 44 efi_status_t status; 45 unsigned long size; 46 uint64_t romsize; 47 void *romimage; 48 49 /* 50 * Some firmware images contain EFI function pointers at the place where 51 * the romimage and romsize fields are supposed to be. Typically the EFI 52 * code is mapped at high addresses, translating to an unrealistically 53 * large romsize. The UEFI spec limits the size of option ROMs to 16 54 * MiB so we reject any ROMs over 16 MiB in size to catch this. 55 */ 56 romimage = efi_table_attr(pci, romimage); 57 romsize = efi_table_attr(pci, romsize); 58 if (!romimage || !romsize || romsize > SZ_16M) 59 return EFI_INVALID_PARAMETER; 60 61 size = romsize + sizeof(*rom); 62 63 status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, size, 64 (void **)&rom); 65 if (status != EFI_SUCCESS) { 66 efi_err("Failed to allocate memory for 'rom'\n"); 67 return status; 68 } 69 70 memset(rom, 0, sizeof(*rom)); 71 72 rom->data.type = SETUP_PCI; 73 rom->data.len = size - sizeof(struct setup_data); 74 rom->data.next = 0; 75 rom->pcilen = romsize; 76 *__rom = rom; 77 78 status = efi_call_proto(pci, pci.read, EfiPciIoWidthUint16, 79 PCI_VENDOR_ID, 1, &rom->vendor); 80 81 if (status != EFI_SUCCESS) { 82 efi_err("Failed to read rom->vendor\n"); 83 goto free_struct; 84 } 85 86 status = efi_call_proto(pci, pci.read, EfiPciIoWidthUint16, 87 PCI_DEVICE_ID, 1, &rom->devid); 88 89 if (status != EFI_SUCCESS) { 90 efi_err("Failed to read rom->devid\n"); 91 goto free_struct; 92 } 93 94 status = efi_call_proto(pci, get_location, &rom->segment, &rom->bus, 95 &rom->device, &rom->function); 96 97 if (status != EFI_SUCCESS) 98 goto free_struct; 99 100 memcpy(rom->romdata, romimage, romsize); 101 return status; 102 103 free_struct: 104 efi_bs_call(free_pool, rom); 105 return status; 106 } 107 108 /* 109 * There's no way to return an informative status from this function, 110 * because any analysis (and printing of error messages) needs to be 111 * done directly at the EFI function call-site. 112 * 113 * For example, EFI_INVALID_PARAMETER could indicate a bug or maybe we 114 * just didn't find any PCI devices, but there's no way to tell outside 115 * the context of the call. 116 */ 117 static void setup_efi_pci(struct boot_params *params) 118 { 119 efi_status_t status; 120 void **pci_handle = NULL; 121 efi_guid_t pci_proto = EFI_PCI_IO_PROTOCOL_GUID; 122 unsigned long size = 0; 123 struct setup_data *data; 124 efi_handle_t h; 125 int i; 126 127 status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL, 128 &pci_proto, NULL, &size, pci_handle); 129 130 if (status == EFI_BUFFER_TOO_SMALL) { 131 status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, size, 132 (void **)&pci_handle); 133 134 if (status != EFI_SUCCESS) { 135 efi_err("Failed to allocate memory for 'pci_handle'\n"); 136 return; 137 } 138 139 status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL, 140 &pci_proto, NULL, &size, pci_handle); 141 } 142 143 if (status != EFI_SUCCESS) 144 goto free_handle; 145 146 data = (struct setup_data *)(unsigned long)params->hdr.setup_data; 147 148 while (data && data->next) 149 data = (struct setup_data *)(unsigned long)data->next; 150 151 for_each_efi_handle(h, pci_handle, size, i) { 152 efi_pci_io_protocol_t *pci = NULL; 153 struct pci_setup_rom *rom; 154 155 status = efi_bs_call(handle_protocol, h, &pci_proto, 156 (void **)&pci); 157 if (status != EFI_SUCCESS || !pci) 158 continue; 159 160 status = preserve_pci_rom_image(pci, &rom); 161 if (status != EFI_SUCCESS) 162 continue; 163 164 if (data) 165 data->next = (unsigned long)rom; 166 else 167 params->hdr.setup_data = (unsigned long)rom; 168 169 data = (struct setup_data *)rom; 170 } 171 172 free_handle: 173 efi_bs_call(free_pool, pci_handle); 174 } 175 176 static void retrieve_apple_device_properties(struct boot_params *boot_params) 177 { 178 efi_guid_t guid = APPLE_PROPERTIES_PROTOCOL_GUID; 179 struct setup_data *data, *new; 180 efi_status_t status; 181 u32 size = 0; 182 apple_properties_protocol_t *p; 183 184 status = efi_bs_call(locate_protocol, &guid, NULL, (void **)&p); 185 if (status != EFI_SUCCESS) 186 return; 187 188 if (efi_table_attr(p, version) != 0x10000) { 189 efi_err("Unsupported properties proto version\n"); 190 return; 191 } 192 193 efi_call_proto(p, get_all, NULL, &size); 194 if (!size) 195 return; 196 197 do { 198 status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, 199 size + sizeof(struct setup_data), 200 (void **)&new); 201 if (status != EFI_SUCCESS) { 202 efi_err("Failed to allocate memory for 'properties'\n"); 203 return; 204 } 205 206 status = efi_call_proto(p, get_all, new->data, &size); 207 208 if (status == EFI_BUFFER_TOO_SMALL) 209 efi_bs_call(free_pool, new); 210 } while (status == EFI_BUFFER_TOO_SMALL); 211 212 new->type = SETUP_APPLE_PROPERTIES; 213 new->len = size; 214 new->next = 0; 215 216 data = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data; 217 if (!data) { 218 boot_params->hdr.setup_data = (unsigned long)new; 219 } else { 220 while (data->next) 221 data = (struct setup_data *)(unsigned long)data->next; 222 data->next = (unsigned long)new; 223 } 224 } 225 226 efi_status_t efi_adjust_memory_range_protection(unsigned long start, 227 unsigned long size) 228 { 229 efi_status_t status; 230 efi_gcd_memory_space_desc_t desc; 231 unsigned long end, next; 232 unsigned long rounded_start, rounded_end; 233 unsigned long unprotect_start, unprotect_size; 234 235 rounded_start = rounddown(start, EFI_PAGE_SIZE); 236 rounded_end = roundup(start + size, EFI_PAGE_SIZE); 237 238 if (memattr != NULL) { 239 status = efi_call_proto(memattr, set_memory_attributes, 240 rounded_start, 241 rounded_end - rounded_start, 242 EFI_MEMORY_RO); 243 if (status != EFI_SUCCESS) { 244 efi_warn("Failed to set EFI_MEMORY_RO attribute\n"); 245 return status; 246 } 247 248 status = efi_call_proto(memattr, clear_memory_attributes, 249 rounded_start, 250 rounded_end - rounded_start, 251 EFI_MEMORY_XP); 252 if (status != EFI_SUCCESS) 253 efi_warn("Failed to clear EFI_MEMORY_XP attribute\n"); 254 return status; 255 } 256 257 if (efi_dxe_table == NULL) 258 return EFI_SUCCESS; 259 260 /* 261 * Don't modify memory region attributes, they are 262 * already suitable, to lower the possibility to 263 * encounter firmware bugs. 264 */ 265 266 for (end = start + size; start < end; start = next) { 267 268 status = efi_dxe_call(get_memory_space_descriptor, start, &desc); 269 270 if (status != EFI_SUCCESS) 271 break; 272 273 next = desc.base_address + desc.length; 274 275 /* 276 * Only system memory is suitable for trampoline/kernel image placement, 277 * so only this type of memory needs its attributes to be modified. 278 */ 279 280 if (desc.gcd_memory_type != EfiGcdMemoryTypeSystemMemory || 281 (desc.attributes & (EFI_MEMORY_RO | EFI_MEMORY_XP)) == 0) 282 continue; 283 284 unprotect_start = max(rounded_start, (unsigned long)desc.base_address); 285 unprotect_size = min(rounded_end, next) - unprotect_start; 286 287 status = efi_dxe_call(set_memory_space_attributes, 288 unprotect_start, unprotect_size, 289 EFI_MEMORY_WB); 290 291 if (status != EFI_SUCCESS) { 292 efi_warn("Unable to unprotect memory range [%08lx,%08lx]: %lx\n", 293 unprotect_start, 294 unprotect_start + unprotect_size, 295 status); 296 break; 297 } 298 } 299 return EFI_SUCCESS; 300 } 301 302 static void setup_unaccepted_memory(void) 303 { 304 efi_guid_t mem_acceptance_proto = OVMF_SEV_MEMORY_ACCEPTANCE_PROTOCOL_GUID; 305 sev_memory_acceptance_protocol_t *proto; 306 efi_status_t status; 307 308 if (!IS_ENABLED(CONFIG_UNACCEPTED_MEMORY)) 309 return; 310 311 /* 312 * Enable unaccepted memory before calling exit boot services in order 313 * for the UEFI to not accept all memory on EBS. 314 */ 315 status = efi_bs_call(locate_protocol, &mem_acceptance_proto, NULL, 316 (void **)&proto); 317 if (status != EFI_SUCCESS) 318 return; 319 320 status = efi_call_proto(proto, allow_unaccepted_memory); 321 if (status != EFI_SUCCESS) 322 efi_err("Memory acceptance protocol failed\n"); 323 } 324 325 static efi_char16_t *efistub_fw_vendor(void) 326 { 327 unsigned long vendor = efi_table_attr(efi_system_table, fw_vendor); 328 329 return (efi_char16_t *)vendor; 330 } 331 332 static const efi_char16_t apple[] = L"Apple"; 333 334 static void setup_quirks(struct boot_params *boot_params) 335 { 336 if (IS_ENABLED(CONFIG_APPLE_PROPERTIES) && 337 !memcmp(efistub_fw_vendor(), apple, sizeof(apple))) 338 retrieve_apple_device_properties(boot_params); 339 } 340 341 /* 342 * See if we have Universal Graphics Adapter (UGA) protocol 343 */ 344 static efi_status_t 345 setup_uga(struct screen_info *si, efi_guid_t *uga_proto, unsigned long size) 346 { 347 efi_status_t status; 348 u32 width, height; 349 void **uga_handle = NULL; 350 efi_uga_draw_protocol_t *uga = NULL, *first_uga; 351 efi_handle_t handle; 352 int i; 353 354 status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, size, 355 (void **)&uga_handle); 356 if (status != EFI_SUCCESS) 357 return status; 358 359 status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL, 360 uga_proto, NULL, &size, uga_handle); 361 if (status != EFI_SUCCESS) 362 goto free_handle; 363 364 height = 0; 365 width = 0; 366 367 first_uga = NULL; 368 for_each_efi_handle(handle, uga_handle, size, i) { 369 efi_guid_t pciio_proto = EFI_PCI_IO_PROTOCOL_GUID; 370 u32 w, h, depth, refresh; 371 void *pciio; 372 373 status = efi_bs_call(handle_protocol, handle, uga_proto, 374 (void **)&uga); 375 if (status != EFI_SUCCESS) 376 continue; 377 378 pciio = NULL; 379 efi_bs_call(handle_protocol, handle, &pciio_proto, &pciio); 380 381 status = efi_call_proto(uga, get_mode, &w, &h, &depth, &refresh); 382 if (status == EFI_SUCCESS && (!first_uga || pciio)) { 383 width = w; 384 height = h; 385 386 /* 387 * Once we've found a UGA supporting PCIIO, 388 * don't bother looking any further. 389 */ 390 if (pciio) 391 break; 392 393 first_uga = uga; 394 } 395 } 396 397 if (!width && !height) 398 goto free_handle; 399 400 /* EFI framebuffer */ 401 si->orig_video_isVGA = VIDEO_TYPE_EFI; 402 403 si->lfb_depth = 32; 404 si->lfb_width = width; 405 si->lfb_height = height; 406 407 si->red_size = 8; 408 si->red_pos = 16; 409 si->green_size = 8; 410 si->green_pos = 8; 411 si->blue_size = 8; 412 si->blue_pos = 0; 413 si->rsvd_size = 8; 414 si->rsvd_pos = 24; 415 416 free_handle: 417 efi_bs_call(free_pool, uga_handle); 418 419 return status; 420 } 421 422 static void setup_graphics(struct boot_params *boot_params) 423 { 424 efi_guid_t graphics_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID; 425 struct screen_info *si; 426 efi_guid_t uga_proto = EFI_UGA_PROTOCOL_GUID; 427 efi_status_t status; 428 unsigned long size; 429 void **gop_handle = NULL; 430 void **uga_handle = NULL; 431 432 si = &boot_params->screen_info; 433 memset(si, 0, sizeof(*si)); 434 435 size = 0; 436 status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL, 437 &graphics_proto, NULL, &size, gop_handle); 438 if (status == EFI_BUFFER_TOO_SMALL) 439 status = efi_setup_gop(si, &graphics_proto, size); 440 441 if (status != EFI_SUCCESS) { 442 size = 0; 443 status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL, 444 &uga_proto, NULL, &size, uga_handle); 445 if (status == EFI_BUFFER_TOO_SMALL) 446 setup_uga(si, &uga_proto, size); 447 } 448 } 449 450 451 static void __noreturn efi_exit(efi_handle_t handle, efi_status_t status) 452 { 453 efi_bs_call(exit, handle, status, 0, NULL); 454 for(;;) 455 asm("hlt"); 456 } 457 458 void __noreturn efi_stub_entry(efi_handle_t handle, 459 efi_system_table_t *sys_table_arg, 460 struct boot_params *boot_params); 461 462 /* 463 * Because the x86 boot code expects to be passed a boot_params we 464 * need to create one ourselves (usually the bootloader would create 465 * one for us). 466 */ 467 efi_status_t __efiapi efi_pe_entry(efi_handle_t handle, 468 efi_system_table_t *sys_table_arg) 469 { 470 static struct boot_params boot_params __page_aligned_bss; 471 struct setup_header *hdr = &boot_params.hdr; 472 efi_guid_t proto = LOADED_IMAGE_PROTOCOL_GUID; 473 int options_size = 0; 474 efi_status_t status; 475 char *cmdline_ptr; 476 477 efi_system_table = sys_table_arg; 478 479 /* Check if we were booted by the EFI firmware */ 480 if (efi_system_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) 481 efi_exit(handle, EFI_INVALID_PARAMETER); 482 483 status = efi_bs_call(handle_protocol, handle, &proto, (void **)&image); 484 if (status != EFI_SUCCESS) { 485 efi_err("Failed to get handle for LOADED_IMAGE_PROTOCOL\n"); 486 efi_exit(handle, status); 487 } 488 489 /* Assign the setup_header fields that the kernel actually cares about */ 490 hdr->root_flags = 1; 491 hdr->vid_mode = 0xffff; 492 493 hdr->type_of_loader = 0x21; 494 495 /* Convert unicode cmdline to ascii */ 496 cmdline_ptr = efi_convert_cmdline(image, &options_size); 497 if (!cmdline_ptr) 498 goto fail; 499 500 efi_set_u64_split((unsigned long)cmdline_ptr, &hdr->cmd_line_ptr, 501 &boot_params.ext_cmd_line_ptr); 502 503 efi_stub_entry(handle, sys_table_arg, &boot_params); 504 /* not reached */ 505 506 fail: 507 efi_exit(handle, status); 508 } 509 510 static void add_e820ext(struct boot_params *params, 511 struct setup_data *e820ext, u32 nr_entries) 512 { 513 struct setup_data *data; 514 515 e820ext->type = SETUP_E820_EXT; 516 e820ext->len = nr_entries * sizeof(struct boot_e820_entry); 517 e820ext->next = 0; 518 519 data = (struct setup_data *)(unsigned long)params->hdr.setup_data; 520 521 while (data && data->next) 522 data = (struct setup_data *)(unsigned long)data->next; 523 524 if (data) 525 data->next = (unsigned long)e820ext; 526 else 527 params->hdr.setup_data = (unsigned long)e820ext; 528 } 529 530 static efi_status_t 531 setup_e820(struct boot_params *params, struct setup_data *e820ext, u32 e820ext_size) 532 { 533 struct boot_e820_entry *entry = params->e820_table; 534 struct efi_info *efi = ¶ms->efi_info; 535 struct boot_e820_entry *prev = NULL; 536 u32 nr_entries; 537 u32 nr_desc; 538 int i; 539 540 nr_entries = 0; 541 nr_desc = efi->efi_memmap_size / efi->efi_memdesc_size; 542 543 for (i = 0; i < nr_desc; i++) { 544 efi_memory_desc_t *d; 545 unsigned int e820_type = 0; 546 unsigned long m = efi->efi_memmap; 547 548 #ifdef CONFIG_X86_64 549 m |= (u64)efi->efi_memmap_hi << 32; 550 #endif 551 552 d = efi_early_memdesc_ptr(m, efi->efi_memdesc_size, i); 553 switch (d->type) { 554 case EFI_RESERVED_TYPE: 555 case EFI_RUNTIME_SERVICES_CODE: 556 case EFI_RUNTIME_SERVICES_DATA: 557 case EFI_MEMORY_MAPPED_IO: 558 case EFI_MEMORY_MAPPED_IO_PORT_SPACE: 559 case EFI_PAL_CODE: 560 e820_type = E820_TYPE_RESERVED; 561 break; 562 563 case EFI_UNUSABLE_MEMORY: 564 e820_type = E820_TYPE_UNUSABLE; 565 break; 566 567 case EFI_ACPI_RECLAIM_MEMORY: 568 e820_type = E820_TYPE_ACPI; 569 break; 570 571 case EFI_LOADER_CODE: 572 case EFI_LOADER_DATA: 573 case EFI_BOOT_SERVICES_CODE: 574 case EFI_BOOT_SERVICES_DATA: 575 case EFI_CONVENTIONAL_MEMORY: 576 if (efi_soft_reserve_enabled() && 577 (d->attribute & EFI_MEMORY_SP)) 578 e820_type = E820_TYPE_SOFT_RESERVED; 579 else 580 e820_type = E820_TYPE_RAM; 581 break; 582 583 case EFI_ACPI_MEMORY_NVS: 584 e820_type = E820_TYPE_NVS; 585 break; 586 587 case EFI_PERSISTENT_MEMORY: 588 e820_type = E820_TYPE_PMEM; 589 break; 590 591 case EFI_UNACCEPTED_MEMORY: 592 if (!IS_ENABLED(CONFIG_UNACCEPTED_MEMORY)) 593 continue; 594 e820_type = E820_TYPE_RAM; 595 process_unaccepted_memory(d->phys_addr, 596 d->phys_addr + PAGE_SIZE * d->num_pages); 597 break; 598 default: 599 continue; 600 } 601 602 /* Merge adjacent mappings */ 603 if (prev && prev->type == e820_type && 604 (prev->addr + prev->size) == d->phys_addr) { 605 prev->size += d->num_pages << 12; 606 continue; 607 } 608 609 if (nr_entries == ARRAY_SIZE(params->e820_table)) { 610 u32 need = (nr_desc - i) * sizeof(struct e820_entry) + 611 sizeof(struct setup_data); 612 613 if (!e820ext || e820ext_size < need) 614 return EFI_BUFFER_TOO_SMALL; 615 616 /* boot_params map full, switch to e820 extended */ 617 entry = (struct boot_e820_entry *)e820ext->data; 618 } 619 620 entry->addr = d->phys_addr; 621 entry->size = d->num_pages << PAGE_SHIFT; 622 entry->type = e820_type; 623 prev = entry++; 624 nr_entries++; 625 } 626 627 if (nr_entries > ARRAY_SIZE(params->e820_table)) { 628 u32 nr_e820ext = nr_entries - ARRAY_SIZE(params->e820_table); 629 630 add_e820ext(params, e820ext, nr_e820ext); 631 nr_entries -= nr_e820ext; 632 } 633 634 params->e820_entries = (u8)nr_entries; 635 636 return EFI_SUCCESS; 637 } 638 639 static efi_status_t alloc_e820ext(u32 nr_desc, struct setup_data **e820ext, 640 u32 *e820ext_size) 641 { 642 efi_status_t status; 643 unsigned long size; 644 645 size = sizeof(struct setup_data) + 646 sizeof(struct e820_entry) * nr_desc; 647 648 if (*e820ext) { 649 efi_bs_call(free_pool, *e820ext); 650 *e820ext = NULL; 651 *e820ext_size = 0; 652 } 653 654 status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, size, 655 (void **)e820ext); 656 if (status == EFI_SUCCESS) 657 *e820ext_size = size; 658 659 return status; 660 } 661 662 static efi_status_t allocate_e820(struct boot_params *params, 663 struct setup_data **e820ext, 664 u32 *e820ext_size) 665 { 666 struct efi_boot_memmap *map; 667 efi_status_t status; 668 __u32 nr_desc; 669 670 status = efi_get_memory_map(&map, false); 671 if (status != EFI_SUCCESS) 672 return status; 673 674 nr_desc = map->map_size / map->desc_size; 675 if (nr_desc > ARRAY_SIZE(params->e820_table) - EFI_MMAP_NR_SLACK_SLOTS) { 676 u32 nr_e820ext = nr_desc - ARRAY_SIZE(params->e820_table) + 677 EFI_MMAP_NR_SLACK_SLOTS; 678 679 status = alloc_e820ext(nr_e820ext, e820ext, e820ext_size); 680 } 681 682 if (IS_ENABLED(CONFIG_UNACCEPTED_MEMORY) && status == EFI_SUCCESS) 683 status = allocate_unaccepted_bitmap(nr_desc, map); 684 685 efi_bs_call(free_pool, map); 686 return status; 687 } 688 689 struct exit_boot_struct { 690 struct boot_params *boot_params; 691 struct efi_info *efi; 692 }; 693 694 static efi_status_t exit_boot_func(struct efi_boot_memmap *map, 695 void *priv) 696 { 697 const char *signature; 698 struct exit_boot_struct *p = priv; 699 700 signature = efi_is_64bit() ? EFI64_LOADER_SIGNATURE 701 : EFI32_LOADER_SIGNATURE; 702 memcpy(&p->efi->efi_loader_signature, signature, sizeof(__u32)); 703 704 efi_set_u64_split((unsigned long)efi_system_table, 705 &p->efi->efi_systab, &p->efi->efi_systab_hi); 706 p->efi->efi_memdesc_size = map->desc_size; 707 p->efi->efi_memdesc_version = map->desc_ver; 708 efi_set_u64_split((unsigned long)map->map, 709 &p->efi->efi_memmap, &p->efi->efi_memmap_hi); 710 p->efi->efi_memmap_size = map->map_size; 711 712 return EFI_SUCCESS; 713 } 714 715 static efi_status_t exit_boot(struct boot_params *boot_params, void *handle) 716 { 717 struct setup_data *e820ext = NULL; 718 __u32 e820ext_size = 0; 719 efi_status_t status; 720 struct exit_boot_struct priv; 721 722 priv.boot_params = boot_params; 723 priv.efi = &boot_params->efi_info; 724 725 status = allocate_e820(boot_params, &e820ext, &e820ext_size); 726 if (status != EFI_SUCCESS) 727 return status; 728 729 /* Might as well exit boot services now */ 730 status = efi_exit_boot_services(handle, &priv, exit_boot_func); 731 if (status != EFI_SUCCESS) 732 return status; 733 734 /* Historic? */ 735 boot_params->alt_mem_k = 32 * 1024; 736 737 status = setup_e820(boot_params, e820ext, e820ext_size); 738 if (status != EFI_SUCCESS) 739 return status; 740 741 return EFI_SUCCESS; 742 } 743 744 static bool have_unsupported_snp_features(void) 745 { 746 u64 unsupported; 747 748 unsupported = snp_get_unsupported_features(sev_get_status()); 749 if (unsupported) { 750 efi_err("Unsupported SEV-SNP features detected: 0x%llx\n", 751 unsupported); 752 return true; 753 } 754 return false; 755 } 756 757 static void efi_get_seed(void *seed, int size) 758 { 759 efi_get_random_bytes(size, seed); 760 761 /* 762 * This only updates seed[0] when running on 32-bit, but in that case, 763 * seed[1] is not used anyway, as there is no virtual KASLR on 32-bit. 764 */ 765 *(unsigned long *)seed ^= kaslr_get_random_long("EFI"); 766 } 767 768 static void error(char *str) 769 { 770 efi_warn("Decompression failed: %s\n", str); 771 } 772 773 static efi_status_t efi_decompress_kernel(unsigned long *kernel_entry) 774 { 775 unsigned long virt_addr = LOAD_PHYSICAL_ADDR; 776 unsigned long addr, alloc_size, entry; 777 efi_status_t status; 778 u32 seed[2] = {}; 779 780 /* determine the required size of the allocation */ 781 alloc_size = ALIGN(max_t(unsigned long, output_len, kernel_total_size), 782 MIN_KERNEL_ALIGN); 783 784 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && !efi_nokaslr) { 785 u64 range = KERNEL_IMAGE_SIZE - LOAD_PHYSICAL_ADDR - kernel_total_size; 786 static const efi_char16_t ami[] = L"American Megatrends"; 787 788 efi_get_seed(seed, sizeof(seed)); 789 790 virt_addr += (range * seed[1]) >> 32; 791 virt_addr &= ~(CONFIG_PHYSICAL_ALIGN - 1); 792 793 /* 794 * Older Dell systems with AMI UEFI firmware v2.0 may hang 795 * while decompressing the kernel if physical address 796 * randomization is enabled. 797 * 798 * https://bugzilla.kernel.org/show_bug.cgi?id=218173 799 */ 800 if (efi_system_table->hdr.revision <= EFI_2_00_SYSTEM_TABLE_REVISION && 801 !memcmp(efistub_fw_vendor(), ami, sizeof(ami))) { 802 efi_debug("AMI firmware v2.0 or older detected - disabling physical KASLR\n"); 803 seed[0] = 0; 804 } 805 806 boot_params_ptr->hdr.loadflags |= KASLR_FLAG; 807 } 808 809 status = efi_random_alloc(alloc_size, CONFIG_PHYSICAL_ALIGN, &addr, 810 seed[0], EFI_LOADER_CODE, 811 LOAD_PHYSICAL_ADDR, 812 EFI_X86_KERNEL_ALLOC_LIMIT); 813 if (status != EFI_SUCCESS) 814 return status; 815 816 entry = decompress_kernel((void *)addr, virt_addr, error); 817 if (entry == ULONG_MAX) { 818 efi_free(alloc_size, addr); 819 return EFI_LOAD_ERROR; 820 } 821 822 *kernel_entry = addr + entry; 823 824 return efi_adjust_memory_range_protection(addr, kernel_text_size); 825 } 826 827 static void __noreturn enter_kernel(unsigned long kernel_addr, 828 struct boot_params *boot_params) 829 { 830 /* enter decompressed kernel with boot_params pointer in RSI/ESI */ 831 asm("jmp *%0"::"r"(kernel_addr), "S"(boot_params)); 832 833 unreachable(); 834 } 835 836 /* 837 * On success, this routine will jump to the relocated image directly and never 838 * return. On failure, it will exit to the firmware via efi_exit() instead of 839 * returning. 840 */ 841 void __noreturn efi_stub_entry(efi_handle_t handle, 842 efi_system_table_t *sys_table_arg, 843 struct boot_params *boot_params) 844 { 845 efi_guid_t guid = EFI_MEMORY_ATTRIBUTE_PROTOCOL_GUID; 846 struct setup_header *hdr = &boot_params->hdr; 847 const struct linux_efi_initrd *initrd = NULL; 848 unsigned long kernel_entry; 849 efi_status_t status; 850 851 boot_params_ptr = boot_params; 852 853 efi_system_table = sys_table_arg; 854 /* Check if we were booted by the EFI firmware */ 855 if (efi_system_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) 856 efi_exit(handle, EFI_INVALID_PARAMETER); 857 858 if (have_unsupported_snp_features()) 859 efi_exit(handle, EFI_UNSUPPORTED); 860 861 if (IS_ENABLED(CONFIG_EFI_DXE_MEM_ATTRIBUTES)) { 862 efi_dxe_table = get_efi_config_table(EFI_DXE_SERVICES_TABLE_GUID); 863 if (efi_dxe_table && 864 efi_dxe_table->hdr.signature != EFI_DXE_SERVICES_TABLE_SIGNATURE) { 865 efi_warn("Ignoring DXE services table: invalid signature\n"); 866 efi_dxe_table = NULL; 867 } 868 } 869 870 /* grab the memory attributes protocol if it exists */ 871 efi_bs_call(locate_protocol, &guid, NULL, (void **)&memattr); 872 873 status = efi_setup_5level_paging(); 874 if (status != EFI_SUCCESS) { 875 efi_err("efi_setup_5level_paging() failed!\n"); 876 goto fail; 877 } 878 879 #ifdef CONFIG_CMDLINE_BOOL 880 status = efi_parse_options(CONFIG_CMDLINE); 881 if (status != EFI_SUCCESS) { 882 efi_err("Failed to parse options\n"); 883 goto fail; 884 } 885 #endif 886 if (!IS_ENABLED(CONFIG_CMDLINE_OVERRIDE)) { 887 unsigned long cmdline_paddr = ((u64)hdr->cmd_line_ptr | 888 ((u64)boot_params->ext_cmd_line_ptr << 32)); 889 status = efi_parse_options((char *)cmdline_paddr); 890 if (status != EFI_SUCCESS) { 891 efi_err("Failed to parse options\n"); 892 goto fail; 893 } 894 } 895 896 if (efi_mem_encrypt > 0) 897 hdr->xloadflags |= XLF_MEM_ENCRYPTION; 898 899 status = efi_decompress_kernel(&kernel_entry); 900 if (status != EFI_SUCCESS) { 901 efi_err("Failed to decompress kernel\n"); 902 goto fail; 903 } 904 905 /* 906 * At this point, an initrd may already have been loaded by the 907 * bootloader and passed via bootparams. We permit an initrd loaded 908 * from the LINUX_EFI_INITRD_MEDIA_GUID device path to supersede it. 909 * 910 * If the device path is not present, any command-line initrd= 911 * arguments will be processed only if image is not NULL, which will be 912 * the case only if we were loaded via the PE entry point. 913 */ 914 status = efi_load_initrd(image, hdr->initrd_addr_max, ULONG_MAX, 915 &initrd); 916 if (status != EFI_SUCCESS) 917 goto fail; 918 if (initrd && initrd->size > 0) { 919 efi_set_u64_split(initrd->base, &hdr->ramdisk_image, 920 &boot_params->ext_ramdisk_image); 921 efi_set_u64_split(initrd->size, &hdr->ramdisk_size, 922 &boot_params->ext_ramdisk_size); 923 } 924 925 926 /* 927 * If the boot loader gave us a value for secure_boot then we use that, 928 * otherwise we ask the BIOS. 929 */ 930 if (boot_params->secure_boot == efi_secureboot_mode_unset) 931 boot_params->secure_boot = efi_get_secureboot(); 932 933 /* Ask the firmware to clear memory on unclean shutdown */ 934 efi_enable_reset_attack_mitigation(); 935 936 efi_random_get_seed(); 937 938 efi_retrieve_eventlog(); 939 940 setup_graphics(boot_params); 941 942 setup_efi_pci(boot_params); 943 944 setup_quirks(boot_params); 945 946 setup_unaccepted_memory(); 947 948 status = exit_boot(boot_params, handle); 949 if (status != EFI_SUCCESS) { 950 efi_err("exit_boot() failed!\n"); 951 goto fail; 952 } 953 954 /* 955 * Call the SEV init code while still running with the firmware's 956 * GDT/IDT, so #VC exceptions will be handled by EFI. 957 */ 958 sev_enable(boot_params); 959 960 efi_5level_switch(); 961 962 enter_kernel(kernel_entry, boot_params); 963 fail: 964 efi_err("efi_stub_entry() failed!\n"); 965 966 efi_exit(handle, status); 967 } 968 969 #ifdef CONFIG_EFI_HANDOVER_PROTOCOL 970 void efi_handover_entry(efi_handle_t handle, efi_system_table_t *sys_table_arg, 971 struct boot_params *boot_params) 972 { 973 extern char _bss[], _ebss[]; 974 975 memset(_bss, 0, _ebss - _bss); 976 efi_stub_entry(handle, sys_table_arg, boot_params); 977 } 978 979 #ifndef CONFIG_EFI_MIXED 980 extern __alias(efi_handover_entry) 981 void efi32_stub_entry(efi_handle_t handle, efi_system_table_t *sys_table_arg, 982 struct boot_params *boot_params); 983 984 extern __alias(efi_handover_entry) 985 void efi64_stub_entry(efi_handle_t handle, efi_system_table_t *sys_table_arg, 986 struct boot_params *boot_params); 987 #endif 988 #endif 989