1 // SPDX-License-Identifier: GPL-2.0-only 2 3 /* ----------------------------------------------------------------------- 4 * 5 * Copyright 2011 Intel Corporation; author Matt Fleming 6 * 7 * ----------------------------------------------------------------------- */ 8 9 #include <linux/efi.h> 10 #include <linux/pci.h> 11 #include <linux/stddef.h> 12 13 #include <asm/efi.h> 14 #include <asm/e820/types.h> 15 #include <asm/setup.h> 16 #include <asm/desc.h> 17 #include <asm/boot.h> 18 #include <asm/kaslr.h> 19 #include <asm/sev.h> 20 21 #include "efistub.h" 22 #include "x86-stub.h" 23 24 extern char _bss[], _ebss[]; 25 26 const efi_system_table_t *efi_system_table; 27 const efi_dxe_services_table_t *efi_dxe_table; 28 static efi_loaded_image_t *image = NULL; 29 static efi_memory_attribute_protocol_t *memattr; 30 31 typedef union sev_memory_acceptance_protocol sev_memory_acceptance_protocol_t; 32 union sev_memory_acceptance_protocol { 33 struct { 34 efi_status_t (__efiapi * allow_unaccepted_memory)( 35 sev_memory_acceptance_protocol_t *); 36 }; 37 struct { 38 u32 allow_unaccepted_memory; 39 } mixed_mode; 40 }; 41 42 static efi_status_t 43 preserve_pci_rom_image(efi_pci_io_protocol_t *pci, struct pci_setup_rom **__rom) 44 { 45 struct pci_setup_rom *rom __free(efi_pool) = NULL; 46 efi_status_t status; 47 unsigned long size; 48 uint64_t romsize; 49 void *romimage; 50 51 /* 52 * Some firmware images contain EFI function pointers at the place where 53 * the romimage and romsize fields are supposed to be. Typically the EFI 54 * code is mapped at high addresses, translating to an unrealistically 55 * large romsize. The UEFI spec limits the size of option ROMs to 16 56 * MiB so we reject any ROMs over 16 MiB in size to catch this. 57 */ 58 romimage = efi_table_attr(pci, romimage); 59 romsize = efi_table_attr(pci, romsize); 60 if (!romimage || !romsize || romsize > SZ_16M) 61 return EFI_INVALID_PARAMETER; 62 63 size = romsize + sizeof(*rom); 64 65 status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, size, 66 (void **)&rom); 67 if (status != EFI_SUCCESS) { 68 efi_err("Failed to allocate memory for 'rom'\n"); 69 return status; 70 } 71 72 memset(rom, 0, sizeof(*rom)); 73 74 rom->data.type = SETUP_PCI; 75 rom->data.len = size - sizeof(struct setup_data); 76 rom->data.next = 0; 77 rom->pcilen = romsize; 78 79 status = efi_call_proto(pci, pci.read, EfiPciIoWidthUint16, 80 PCI_VENDOR_ID, 1, &rom->vendor); 81 82 if (status != EFI_SUCCESS) { 83 efi_err("Failed to read rom->vendor\n"); 84 return status; 85 } 86 87 status = efi_call_proto(pci, pci.read, EfiPciIoWidthUint16, 88 PCI_DEVICE_ID, 1, &rom->devid); 89 90 if (status != EFI_SUCCESS) { 91 efi_err("Failed to read rom->devid\n"); 92 return status; 93 } 94 95 status = efi_call_proto(pci, get_location, &rom->segment, &rom->bus, 96 &rom->device, &rom->function); 97 98 if (status != EFI_SUCCESS) 99 return status; 100 101 memcpy(rom->romdata, romimage, romsize); 102 *__rom = no_free_ptr(rom); 103 return EFI_SUCCESS; 104 } 105 106 /* 107 * There's no way to return an informative status from this function, 108 * because any analysis (and printing of error messages) needs to be 109 * done directly at the EFI function call-site. 110 * 111 * For example, EFI_INVALID_PARAMETER could indicate a bug or maybe we 112 * just didn't find any PCI devices, but there's no way to tell outside 113 * the context of the call. 114 */ 115 static void setup_efi_pci(struct boot_params *params) 116 { 117 efi_status_t status; 118 efi_handle_t *pci_handle __free(efi_pool) = NULL; 119 efi_guid_t pci_proto = EFI_PCI_IO_PROTOCOL_GUID; 120 struct setup_data *data; 121 unsigned long num; 122 efi_handle_t h; 123 124 status = efi_bs_call(locate_handle_buffer, EFI_LOCATE_BY_PROTOCOL, 125 &pci_proto, NULL, &num, &pci_handle); 126 if (status != EFI_SUCCESS) 127 return; 128 129 data = (struct setup_data *)(unsigned long)params->hdr.setup_data; 130 131 while (data && data->next) 132 data = (struct setup_data *)(unsigned long)data->next; 133 134 for_each_efi_handle(h, pci_handle, num) { 135 efi_pci_io_protocol_t *pci = NULL; 136 struct pci_setup_rom *rom; 137 138 status = efi_bs_call(handle_protocol, h, &pci_proto, 139 (void **)&pci); 140 if (status != EFI_SUCCESS || !pci) 141 continue; 142 143 status = preserve_pci_rom_image(pci, &rom); 144 if (status != EFI_SUCCESS) 145 continue; 146 147 if (data) 148 data->next = (unsigned long)rom; 149 else 150 params->hdr.setup_data = (unsigned long)rom; 151 152 data = (struct setup_data *)rom; 153 } 154 } 155 156 static void retrieve_apple_device_properties(struct boot_params *boot_params) 157 { 158 efi_guid_t guid = APPLE_PROPERTIES_PROTOCOL_GUID; 159 struct setup_data *data, *new; 160 efi_status_t status; 161 u32 size = 0; 162 apple_properties_protocol_t *p; 163 164 status = efi_bs_call(locate_protocol, &guid, NULL, (void **)&p); 165 if (status != EFI_SUCCESS) 166 return; 167 168 if (efi_table_attr(p, version) != 0x10000) { 169 efi_err("Unsupported properties proto version\n"); 170 return; 171 } 172 173 efi_call_proto(p, get_all, NULL, &size); 174 if (!size) 175 return; 176 177 do { 178 status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, 179 size + sizeof(struct setup_data), 180 (void **)&new); 181 if (status != EFI_SUCCESS) { 182 efi_err("Failed to allocate memory for 'properties'\n"); 183 return; 184 } 185 186 status = efi_call_proto(p, get_all, new->data, &size); 187 188 if (status == EFI_BUFFER_TOO_SMALL) 189 efi_bs_call(free_pool, new); 190 } while (status == EFI_BUFFER_TOO_SMALL); 191 192 new->type = SETUP_APPLE_PROPERTIES; 193 new->len = size; 194 new->next = 0; 195 196 data = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data; 197 if (!data) { 198 boot_params->hdr.setup_data = (unsigned long)new; 199 } else { 200 while (data->next) 201 data = (struct setup_data *)(unsigned long)data->next; 202 data->next = (unsigned long)new; 203 } 204 } 205 206 static bool apple_match_product_name(void) 207 { 208 static const char type1_product_matches[][15] = { 209 "MacBookPro11,3", 210 "MacBookPro11,5", 211 "MacBookPro13,3", 212 "MacBookPro14,3", 213 "MacBookPro15,1", 214 "MacBookPro15,3", 215 "MacBookPro16,1", 216 "MacBookPro16,4", 217 }; 218 const struct efi_smbios_type1_record *record; 219 const u8 *product; 220 221 record = (struct efi_smbios_type1_record *)efi_get_smbios_record(1); 222 if (!record) 223 return false; 224 225 product = efi_get_smbios_string(record, product_name); 226 if (!product) 227 return false; 228 229 for (int i = 0; i < ARRAY_SIZE(type1_product_matches); i++) { 230 if (!strcmp(product, type1_product_matches[i])) 231 return true; 232 } 233 234 return false; 235 } 236 237 static void apple_set_os(void) 238 { 239 struct { 240 unsigned long version; 241 efi_status_t (__efiapi *set_os_version)(const char *); 242 efi_status_t (__efiapi *set_os_vendor)(const char *); 243 } *set_os; 244 efi_status_t status; 245 246 if (!efi_is_64bit() || !apple_match_product_name()) 247 return; 248 249 status = efi_bs_call(locate_protocol, &APPLE_SET_OS_PROTOCOL_GUID, NULL, 250 (void **)&set_os); 251 if (status != EFI_SUCCESS) 252 return; 253 254 if (set_os->version >= 2) { 255 status = set_os->set_os_vendor("Apple Inc."); 256 if (status != EFI_SUCCESS) 257 efi_err("Failed to set OS vendor via apple_set_os\n"); 258 } 259 260 if (set_os->version > 0) { 261 /* The version being set doesn't seem to matter */ 262 status = set_os->set_os_version("Mac OS X 10.9"); 263 if (status != EFI_SUCCESS) 264 efi_err("Failed to set OS version via apple_set_os\n"); 265 } 266 } 267 268 efi_status_t efi_adjust_memory_range_protection(unsigned long start, 269 unsigned long size) 270 { 271 efi_status_t status; 272 efi_gcd_memory_space_desc_t desc; 273 unsigned long end, next; 274 unsigned long rounded_start, rounded_end; 275 unsigned long unprotect_start, unprotect_size; 276 277 rounded_start = rounddown(start, EFI_PAGE_SIZE); 278 rounded_end = roundup(start + size, EFI_PAGE_SIZE); 279 280 if (memattr != NULL) { 281 status = efi_call_proto(memattr, set_memory_attributes, 282 rounded_start, 283 rounded_end - rounded_start, 284 EFI_MEMORY_RO); 285 if (status != EFI_SUCCESS) { 286 efi_warn("Failed to set EFI_MEMORY_RO attribute\n"); 287 return status; 288 } 289 290 status = efi_call_proto(memattr, clear_memory_attributes, 291 rounded_start, 292 rounded_end - rounded_start, 293 EFI_MEMORY_XP); 294 if (status != EFI_SUCCESS) 295 efi_warn("Failed to clear EFI_MEMORY_XP attribute\n"); 296 return status; 297 } 298 299 if (efi_dxe_table == NULL) 300 return EFI_SUCCESS; 301 302 /* 303 * Don't modify memory region attributes, if they are 304 * already suitable, to lower the possibility to 305 * encounter firmware bugs. 306 */ 307 308 for (end = start + size; start < end; start = next) { 309 310 status = efi_dxe_call(get_memory_space_descriptor, start, &desc); 311 312 if (status != EFI_SUCCESS) 313 break; 314 315 next = desc.base_address + desc.length; 316 317 /* 318 * Only system memory and more reliable memory are suitable for 319 * trampoline/kernel image placement. So only those memory types 320 * may need to have attributes modified. 321 */ 322 323 if ((desc.gcd_memory_type != EfiGcdMemoryTypeSystemMemory && 324 desc.gcd_memory_type != EfiGcdMemoryTypeMoreReliable) || 325 (desc.attributes & (EFI_MEMORY_RO | EFI_MEMORY_XP)) == 0) 326 continue; 327 328 unprotect_start = max(rounded_start, (unsigned long)desc.base_address); 329 unprotect_size = min(rounded_end, next) - unprotect_start; 330 331 status = efi_dxe_call(set_memory_space_attributes, 332 unprotect_start, unprotect_size, 333 EFI_MEMORY_WB); 334 335 if (status != EFI_SUCCESS) { 336 efi_warn("Unable to unprotect memory range [%08lx,%08lx]: %lx\n", 337 unprotect_start, 338 unprotect_start + unprotect_size, 339 status); 340 break; 341 } 342 } 343 return EFI_SUCCESS; 344 } 345 346 static void setup_unaccepted_memory(void) 347 { 348 efi_guid_t mem_acceptance_proto = OVMF_SEV_MEMORY_ACCEPTANCE_PROTOCOL_GUID; 349 sev_memory_acceptance_protocol_t *proto; 350 efi_status_t status; 351 352 if (!IS_ENABLED(CONFIG_UNACCEPTED_MEMORY)) 353 return; 354 355 /* 356 * Enable unaccepted memory before calling exit boot services in order 357 * for the UEFI to not accept all memory on EBS. 358 */ 359 status = efi_bs_call(locate_protocol, &mem_acceptance_proto, NULL, 360 (void **)&proto); 361 if (status != EFI_SUCCESS) 362 return; 363 364 status = efi_call_proto(proto, allow_unaccepted_memory); 365 if (status != EFI_SUCCESS) 366 efi_err("Memory acceptance protocol failed\n"); 367 } 368 369 static efi_char16_t *efistub_fw_vendor(void) 370 { 371 unsigned long vendor = efi_table_attr(efi_system_table, fw_vendor); 372 373 return (efi_char16_t *)vendor; 374 } 375 376 static const efi_char16_t apple[] = L"Apple"; 377 378 static void setup_quirks(struct boot_params *boot_params) 379 { 380 if (!memcmp(efistub_fw_vendor(), apple, sizeof(apple))) { 381 if (IS_ENABLED(CONFIG_APPLE_PROPERTIES)) 382 retrieve_apple_device_properties(boot_params); 383 384 apple_set_os(); 385 } 386 } 387 388 static void setup_graphics(struct boot_params *boot_params) 389 { 390 struct screen_info *si = memset(&boot_params->screen_info, 0, sizeof(*si)); 391 392 efi_setup_gop(si); 393 } 394 395 static void __noreturn efi_exit(efi_handle_t handle, efi_status_t status) 396 { 397 efi_bs_call(exit, handle, status, 0, NULL); 398 for(;;) 399 asm("hlt"); 400 } 401 402 /* 403 * Because the x86 boot code expects to be passed a boot_params we 404 * need to create one ourselves (usually the bootloader would create 405 * one for us). 406 */ 407 static efi_status_t efi_allocate_bootparams(efi_handle_t handle, 408 struct boot_params **bp) 409 { 410 efi_guid_t proto = LOADED_IMAGE_PROTOCOL_GUID; 411 struct boot_params *boot_params; 412 struct setup_header *hdr; 413 efi_status_t status; 414 unsigned long alloc; 415 char *cmdline_ptr; 416 417 status = efi_bs_call(handle_protocol, handle, &proto, (void **)&image); 418 if (status != EFI_SUCCESS) { 419 efi_err("Failed to get handle for LOADED_IMAGE_PROTOCOL\n"); 420 return status; 421 } 422 423 status = efi_allocate_pages(PARAM_SIZE, &alloc, ULONG_MAX); 424 if (status != EFI_SUCCESS) 425 return status; 426 427 boot_params = memset((void *)alloc, 0x0, PARAM_SIZE); 428 hdr = &boot_params->hdr; 429 430 /* Assign the setup_header fields that the kernel actually cares about */ 431 hdr->root_flags = 1; 432 hdr->vid_mode = 0xffff; 433 434 hdr->type_of_loader = 0x21; 435 hdr->initrd_addr_max = INT_MAX; 436 437 /* Convert unicode cmdline to ascii */ 438 cmdline_ptr = efi_convert_cmdline(image); 439 if (!cmdline_ptr) { 440 efi_free(PARAM_SIZE, alloc); 441 return EFI_OUT_OF_RESOURCES; 442 } 443 444 efi_set_u64_split((unsigned long)cmdline_ptr, &hdr->cmd_line_ptr, 445 &boot_params->ext_cmd_line_ptr); 446 447 *bp = boot_params; 448 return EFI_SUCCESS; 449 } 450 451 static void add_e820ext(struct boot_params *params, 452 struct setup_data *e820ext, u32 nr_entries) 453 { 454 struct setup_data *data; 455 456 e820ext->type = SETUP_E820_EXT; 457 e820ext->len = nr_entries * sizeof(struct boot_e820_entry); 458 e820ext->next = 0; 459 460 data = (struct setup_data *)(unsigned long)params->hdr.setup_data; 461 462 while (data && data->next) 463 data = (struct setup_data *)(unsigned long)data->next; 464 465 if (data) 466 data->next = (unsigned long)e820ext; 467 else 468 params->hdr.setup_data = (unsigned long)e820ext; 469 } 470 471 static efi_status_t 472 setup_e820(struct boot_params *params, struct setup_data *e820ext, u32 e820ext_size) 473 { 474 struct boot_e820_entry *entry = params->e820_table; 475 struct efi_info *efi = ¶ms->efi_info; 476 struct boot_e820_entry *prev = NULL; 477 u32 nr_entries; 478 u32 nr_desc; 479 int i; 480 481 nr_entries = 0; 482 nr_desc = efi->efi_memmap_size / efi->efi_memdesc_size; 483 484 for (i = 0; i < nr_desc; i++) { 485 efi_memory_desc_t *d; 486 unsigned int e820_type = 0; 487 unsigned long m = efi->efi_memmap; 488 489 #ifdef CONFIG_X86_64 490 m |= (u64)efi->efi_memmap_hi << 32; 491 #endif 492 493 d = efi_memdesc_ptr(m, efi->efi_memdesc_size, i); 494 switch (d->type) { 495 case EFI_RESERVED_TYPE: 496 case EFI_RUNTIME_SERVICES_CODE: 497 case EFI_RUNTIME_SERVICES_DATA: 498 case EFI_MEMORY_MAPPED_IO: 499 case EFI_MEMORY_MAPPED_IO_PORT_SPACE: 500 case EFI_PAL_CODE: 501 e820_type = E820_TYPE_RESERVED; 502 break; 503 504 case EFI_UNUSABLE_MEMORY: 505 e820_type = E820_TYPE_UNUSABLE; 506 break; 507 508 case EFI_ACPI_RECLAIM_MEMORY: 509 e820_type = E820_TYPE_ACPI; 510 break; 511 512 case EFI_LOADER_CODE: 513 case EFI_LOADER_DATA: 514 case EFI_BOOT_SERVICES_CODE: 515 case EFI_BOOT_SERVICES_DATA: 516 case EFI_CONVENTIONAL_MEMORY: 517 if (efi_soft_reserve_enabled() && 518 (d->attribute & EFI_MEMORY_SP)) 519 e820_type = E820_TYPE_SOFT_RESERVED; 520 else 521 e820_type = E820_TYPE_RAM; 522 break; 523 524 case EFI_ACPI_MEMORY_NVS: 525 e820_type = E820_TYPE_NVS; 526 break; 527 528 case EFI_PERSISTENT_MEMORY: 529 e820_type = E820_TYPE_PMEM; 530 break; 531 532 case EFI_UNACCEPTED_MEMORY: 533 if (!IS_ENABLED(CONFIG_UNACCEPTED_MEMORY)) 534 continue; 535 e820_type = E820_TYPE_RAM; 536 process_unaccepted_memory(d->phys_addr, 537 d->phys_addr + PAGE_SIZE * d->num_pages); 538 break; 539 default: 540 continue; 541 } 542 543 /* Merge adjacent mappings */ 544 if (prev && prev->type == e820_type && 545 (prev->addr + prev->size) == d->phys_addr) { 546 prev->size += d->num_pages << 12; 547 continue; 548 } 549 550 if (nr_entries == ARRAY_SIZE(params->e820_table)) { 551 u32 need = (nr_desc - i) * sizeof(struct e820_entry) + 552 sizeof(struct setup_data); 553 554 if (!e820ext || e820ext_size < need) 555 return EFI_BUFFER_TOO_SMALL; 556 557 /* boot_params map full, switch to e820 extended */ 558 entry = (struct boot_e820_entry *)e820ext->data; 559 } 560 561 entry->addr = d->phys_addr; 562 entry->size = d->num_pages << PAGE_SHIFT; 563 entry->type = e820_type; 564 prev = entry++; 565 nr_entries++; 566 } 567 568 if (nr_entries > ARRAY_SIZE(params->e820_table)) { 569 u32 nr_e820ext = nr_entries - ARRAY_SIZE(params->e820_table); 570 571 add_e820ext(params, e820ext, nr_e820ext); 572 nr_entries -= nr_e820ext; 573 } 574 575 params->e820_entries = (u8)nr_entries; 576 577 return EFI_SUCCESS; 578 } 579 580 static efi_status_t alloc_e820ext(u32 nr_desc, struct setup_data **e820ext, 581 u32 *e820ext_size) 582 { 583 efi_status_t status; 584 unsigned long size; 585 586 size = sizeof(struct setup_data) + 587 sizeof(struct e820_entry) * nr_desc; 588 589 if (*e820ext) { 590 efi_bs_call(free_pool, *e820ext); 591 *e820ext = NULL; 592 *e820ext_size = 0; 593 } 594 595 status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, size, 596 (void **)e820ext); 597 if (status == EFI_SUCCESS) 598 *e820ext_size = size; 599 600 return status; 601 } 602 603 static efi_status_t allocate_e820(struct boot_params *params, 604 struct setup_data **e820ext, 605 u32 *e820ext_size) 606 { 607 struct efi_boot_memmap *map __free(efi_pool) = NULL; 608 efi_status_t status; 609 __u32 nr_desc; 610 611 status = efi_get_memory_map(&map, false); 612 if (status != EFI_SUCCESS) 613 return status; 614 615 nr_desc = map->map_size / map->desc_size; 616 if (nr_desc > ARRAY_SIZE(params->e820_table) - EFI_MMAP_NR_SLACK_SLOTS) { 617 u32 nr_e820ext = nr_desc - ARRAY_SIZE(params->e820_table) + 618 EFI_MMAP_NR_SLACK_SLOTS; 619 620 status = alloc_e820ext(nr_e820ext, e820ext, e820ext_size); 621 if (status != EFI_SUCCESS) 622 return status; 623 } 624 625 if (IS_ENABLED(CONFIG_UNACCEPTED_MEMORY)) 626 return allocate_unaccepted_bitmap(nr_desc, map); 627 628 return EFI_SUCCESS; 629 } 630 631 struct exit_boot_struct { 632 struct boot_params *boot_params; 633 struct efi_info *efi; 634 }; 635 636 static efi_status_t exit_boot_func(struct efi_boot_memmap *map, 637 void *priv) 638 { 639 const char *signature; 640 struct exit_boot_struct *p = priv; 641 642 signature = efi_is_64bit() ? EFI64_LOADER_SIGNATURE 643 : EFI32_LOADER_SIGNATURE; 644 memcpy(&p->efi->efi_loader_signature, signature, sizeof(__u32)); 645 646 efi_set_u64_split((unsigned long)efi_system_table, 647 &p->efi->efi_systab, &p->efi->efi_systab_hi); 648 p->efi->efi_memdesc_size = map->desc_size; 649 p->efi->efi_memdesc_version = map->desc_ver; 650 efi_set_u64_split((unsigned long)map->map, 651 &p->efi->efi_memmap, &p->efi->efi_memmap_hi); 652 p->efi->efi_memmap_size = map->map_size; 653 654 return EFI_SUCCESS; 655 } 656 657 static efi_status_t exit_boot(struct boot_params *boot_params, void *handle) 658 { 659 struct setup_data *e820ext = NULL; 660 __u32 e820ext_size = 0; 661 efi_status_t status; 662 struct exit_boot_struct priv; 663 664 priv.boot_params = boot_params; 665 priv.efi = &boot_params->efi_info; 666 667 status = allocate_e820(boot_params, &e820ext, &e820ext_size); 668 if (status != EFI_SUCCESS) 669 return status; 670 671 /* Might as well exit boot services now */ 672 status = efi_exit_boot_services(handle, &priv, exit_boot_func); 673 if (status != EFI_SUCCESS) 674 return status; 675 676 /* Historic? */ 677 boot_params->alt_mem_k = 32 * 1024; 678 679 status = setup_e820(boot_params, e820ext, e820ext_size); 680 if (status != EFI_SUCCESS) 681 return status; 682 683 return EFI_SUCCESS; 684 } 685 686 static bool have_unsupported_snp_features(void) 687 { 688 u64 unsupported; 689 690 unsupported = snp_get_unsupported_features(sev_get_status()); 691 if (unsupported) { 692 efi_err("Unsupported SEV-SNP features detected: 0x%llx\n", 693 unsupported); 694 return true; 695 } 696 return false; 697 } 698 699 static void efi_get_seed(void *seed, int size) 700 { 701 efi_get_random_bytes(size, seed); 702 703 /* 704 * This only updates seed[0] when running on 32-bit, but in that case, 705 * seed[1] is not used anyway, as there is no virtual KASLR on 32-bit. 706 */ 707 *(unsigned long *)seed ^= kaslr_get_random_long("EFI"); 708 } 709 710 static void error(char *str) 711 { 712 efi_warn("Decompression failed: %s\n", str); 713 } 714 715 static const char *cmdline_memmap_override; 716 717 static efi_status_t parse_options(const char *cmdline) 718 { 719 static const char opts[][14] = { 720 "mem=", "memmap=", "hugepages=" 721 }; 722 723 for (int i = 0; i < ARRAY_SIZE(opts); i++) { 724 const char *p = strstr(cmdline, opts[i]); 725 726 if (p == cmdline || (p > cmdline && isspace(p[-1]))) { 727 cmdline_memmap_override = opts[i]; 728 break; 729 } 730 } 731 732 return efi_parse_options(cmdline); 733 } 734 735 static efi_status_t efi_decompress_kernel(unsigned long *kernel_entry, 736 struct boot_params *boot_params) 737 { 738 unsigned long virt_addr = LOAD_PHYSICAL_ADDR; 739 unsigned long addr, alloc_size, entry; 740 efi_status_t status; 741 u32 seed[2] = {}; 742 743 boot_params_ptr = boot_params; 744 745 /* determine the required size of the allocation */ 746 alloc_size = ALIGN(max_t(unsigned long, output_len, kernel_total_size), 747 MIN_KERNEL_ALIGN); 748 749 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && !efi_nokaslr) { 750 u64 range = KERNEL_IMAGE_SIZE - LOAD_PHYSICAL_ADDR - kernel_total_size; 751 static const efi_char16_t ami[] = L"American Megatrends"; 752 753 efi_get_seed(seed, sizeof(seed)); 754 755 virt_addr += (range * seed[1]) >> 32; 756 virt_addr &= ~(CONFIG_PHYSICAL_ALIGN - 1); 757 758 /* 759 * Older Dell systems with AMI UEFI firmware v2.0 may hang 760 * while decompressing the kernel if physical address 761 * randomization is enabled. 762 * 763 * https://bugzilla.kernel.org/show_bug.cgi?id=218173 764 */ 765 if (efi_system_table->hdr.revision <= EFI_2_00_SYSTEM_TABLE_REVISION && 766 !memcmp(efistub_fw_vendor(), ami, sizeof(ami))) { 767 efi_debug("AMI firmware v2.0 or older detected - disabling physical KASLR\n"); 768 seed[0] = 0; 769 } else if (cmdline_memmap_override) { 770 efi_info("%s detected on the kernel command line - disabling physical KASLR\n", 771 cmdline_memmap_override); 772 seed[0] = 0; 773 } 774 775 boot_params->hdr.loadflags |= KASLR_FLAG; 776 } 777 778 status = efi_random_alloc(alloc_size, CONFIG_PHYSICAL_ALIGN, &addr, 779 seed[0], EFI_LOADER_CODE, 780 LOAD_PHYSICAL_ADDR, 781 EFI_X86_KERNEL_ALLOC_LIMIT); 782 if (status != EFI_SUCCESS) 783 return status; 784 785 entry = decompress_kernel((void *)addr, virt_addr, error); 786 if (entry == ULONG_MAX) { 787 efi_free(alloc_size, addr); 788 return EFI_LOAD_ERROR; 789 } 790 791 *kernel_entry = addr + entry; 792 793 return efi_adjust_memory_range_protection(addr, kernel_text_size) ?: 794 efi_adjust_memory_range_protection(addr + kernel_inittext_offset, 795 kernel_inittext_size); 796 } 797 798 static void __noreturn enter_kernel(unsigned long kernel_addr, 799 struct boot_params *boot_params) 800 { 801 /* enter decompressed kernel with boot_params pointer in RSI/ESI */ 802 asm("jmp *%0"::"r"(kernel_addr), "S"(boot_params)); 803 804 unreachable(); 805 } 806 807 /* 808 * On success, this routine will jump to the relocated image directly and never 809 * return. On failure, it will exit to the firmware via efi_exit() instead of 810 * returning. 811 */ 812 void __noreturn efi_stub_entry(efi_handle_t handle, 813 efi_system_table_t *sys_table_arg, 814 struct boot_params *boot_params) 815 816 { 817 efi_guid_t guid = EFI_MEMORY_ATTRIBUTE_PROTOCOL_GUID; 818 const struct linux_efi_initrd *initrd = NULL; 819 unsigned long kernel_entry; 820 struct setup_header *hdr; 821 efi_status_t status; 822 823 efi_system_table = sys_table_arg; 824 /* Check if we were booted by the EFI firmware */ 825 if (efi_system_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) 826 efi_exit(handle, EFI_INVALID_PARAMETER); 827 828 if (!IS_ENABLED(CONFIG_EFI_HANDOVER_PROTOCOL) || !boot_params) { 829 status = efi_allocate_bootparams(handle, &boot_params); 830 if (status != EFI_SUCCESS) 831 efi_exit(handle, status); 832 } 833 834 hdr = &boot_params->hdr; 835 836 if (have_unsupported_snp_features()) 837 efi_exit(handle, EFI_UNSUPPORTED); 838 839 if (IS_ENABLED(CONFIG_EFI_DXE_MEM_ATTRIBUTES)) { 840 efi_dxe_table = get_efi_config_table(EFI_DXE_SERVICES_TABLE_GUID); 841 if (efi_dxe_table && 842 efi_dxe_table->hdr.signature != EFI_DXE_SERVICES_TABLE_SIGNATURE) { 843 efi_warn("Ignoring DXE services table: invalid signature\n"); 844 efi_dxe_table = NULL; 845 } 846 } 847 848 /* grab the memory attributes protocol if it exists */ 849 efi_bs_call(locate_protocol, &guid, NULL, (void **)&memattr); 850 851 status = efi_setup_5level_paging(); 852 if (status != EFI_SUCCESS) { 853 efi_err("efi_setup_5level_paging() failed!\n"); 854 goto fail; 855 } 856 857 #ifdef CONFIG_CMDLINE_BOOL 858 status = parse_options(CONFIG_CMDLINE); 859 if (status != EFI_SUCCESS) { 860 efi_err("Failed to parse options\n"); 861 goto fail; 862 } 863 #endif 864 if (!IS_ENABLED(CONFIG_CMDLINE_OVERRIDE)) { 865 unsigned long cmdline_paddr = ((u64)hdr->cmd_line_ptr | 866 ((u64)boot_params->ext_cmd_line_ptr << 32)); 867 status = parse_options((char *)cmdline_paddr); 868 if (status != EFI_SUCCESS) { 869 efi_err("Failed to parse options\n"); 870 goto fail; 871 } 872 } 873 874 if (efi_mem_encrypt > 0) 875 hdr->xloadflags |= XLF_MEM_ENCRYPTION; 876 877 status = efi_decompress_kernel(&kernel_entry, boot_params); 878 if (status != EFI_SUCCESS) { 879 efi_err("Failed to decompress kernel\n"); 880 goto fail; 881 } 882 883 /* 884 * At this point, an initrd may already have been loaded by the 885 * bootloader and passed via bootparams. We permit an initrd loaded 886 * from the LINUX_EFI_INITRD_MEDIA_GUID device path to supersede it. 887 * 888 * If the device path is not present, any command-line initrd= 889 * arguments will be processed only if image is not NULL, which will be 890 * the case only if we were loaded via the PE entry point. 891 */ 892 status = efi_load_initrd(image, hdr->initrd_addr_max, ULONG_MAX, 893 &initrd); 894 if (status != EFI_SUCCESS) 895 goto fail; 896 if (initrd && initrd->size > 0) { 897 efi_set_u64_split(initrd->base, &hdr->ramdisk_image, 898 &boot_params->ext_ramdisk_image); 899 efi_set_u64_split(initrd->size, &hdr->ramdisk_size, 900 &boot_params->ext_ramdisk_size); 901 } 902 903 904 /* 905 * If the boot loader gave us a value for secure_boot then we use that, 906 * otherwise we ask the BIOS. 907 */ 908 if (boot_params->secure_boot == efi_secureboot_mode_unset) 909 boot_params->secure_boot = efi_get_secureboot(); 910 911 /* Ask the firmware to clear memory on unclean shutdown */ 912 efi_enable_reset_attack_mitigation(); 913 914 efi_random_get_seed(); 915 916 efi_retrieve_eventlog(); 917 918 setup_graphics(boot_params); 919 920 setup_efi_pci(boot_params); 921 922 setup_quirks(boot_params); 923 924 setup_unaccepted_memory(); 925 926 status = exit_boot(boot_params, handle); 927 if (status != EFI_SUCCESS) { 928 efi_err("exit_boot() failed!\n"); 929 goto fail; 930 } 931 932 /* 933 * Call the SEV init code while still running with the firmware's 934 * GDT/IDT, so #VC exceptions will be handled by EFI. 935 */ 936 sev_enable(boot_params); 937 938 efi_5level_switch(); 939 940 enter_kernel(kernel_entry, boot_params); 941 fail: 942 efi_err("efi_stub_entry() failed!\n"); 943 944 efi_exit(handle, status); 945 } 946 947 efi_status_t __efiapi efi_pe_entry(efi_handle_t handle, 948 efi_system_table_t *sys_table_arg) 949 { 950 efi_stub_entry(handle, sys_table_arg, NULL); 951 } 952 953 #ifdef CONFIG_EFI_HANDOVER_PROTOCOL 954 void efi_handover_entry(efi_handle_t handle, efi_system_table_t *sys_table_arg, 955 struct boot_params *boot_params) 956 { 957 memset(_bss, 0, _ebss - _bss); 958 efi_stub_entry(handle, sys_table_arg, boot_params); 959 } 960 961 #ifndef CONFIG_EFI_MIXED 962 extern __alias(efi_handover_entry) 963 void efi32_stub_entry(efi_handle_t handle, efi_system_table_t *sys_table_arg, 964 struct boot_params *boot_params); 965 966 extern __alias(efi_handover_entry) 967 void efi64_stub_entry(efi_handle_t handle, efi_system_table_t *sys_table_arg, 968 struct boot_params *boot_params); 969 #endif 970 #endif 971