xref: /linux/drivers/firmware/efi/libstub/fdt.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * FDT related Helper functions used by the EFI stub on multiple
3  * architectures. This should be #included by the EFI stub
4  * implementation files.
5  *
6  * Copyright 2013 Linaro Limited; author Roy Franz
7  *
8  * This file is part of the Linux kernel, and is made available
9  * under the terms of the GNU General Public License version 2.
10  *
11  */
12 
13 #include <linux/efi.h>
14 #include <linux/libfdt.h>
15 #include <asm/efi.h>
16 
17 #include "efistub.h"
18 
19 efi_status_t update_fdt(efi_system_table_t *sys_table, void *orig_fdt,
20 			unsigned long orig_fdt_size,
21 			void *fdt, int new_fdt_size, char *cmdline_ptr,
22 			u64 initrd_addr, u64 initrd_size,
23 			efi_memory_desc_t *memory_map,
24 			unsigned long map_size, unsigned long desc_size,
25 			u32 desc_ver)
26 {
27 	int node, prev, num_rsv;
28 	int status;
29 	u32 fdt_val32;
30 	u64 fdt_val64;
31 
32 	/* Do some checks on provided FDT, if it exists*/
33 	if (orig_fdt) {
34 		if (fdt_check_header(orig_fdt)) {
35 			pr_efi_err(sys_table, "Device Tree header not valid!\n");
36 			return EFI_LOAD_ERROR;
37 		}
38 		/*
39 		 * We don't get the size of the FDT if we get if from a
40 		 * configuration table.
41 		 */
42 		if (orig_fdt_size && fdt_totalsize(orig_fdt) > orig_fdt_size) {
43 			pr_efi_err(sys_table, "Truncated device tree! foo!\n");
44 			return EFI_LOAD_ERROR;
45 		}
46 	}
47 
48 	if (orig_fdt)
49 		status = fdt_open_into(orig_fdt, fdt, new_fdt_size);
50 	else
51 		status = fdt_create_empty_tree(fdt, new_fdt_size);
52 
53 	if (status != 0)
54 		goto fdt_set_fail;
55 
56 	/*
57 	 * Delete any memory nodes present. We must delete nodes which
58 	 * early_init_dt_scan_memory may try to use.
59 	 */
60 	prev = 0;
61 	for (;;) {
62 		const char *type;
63 		int len;
64 
65 		node = fdt_next_node(fdt, prev, NULL);
66 		if (node < 0)
67 			break;
68 
69 		type = fdt_getprop(fdt, node, "device_type", &len);
70 		if (type && strncmp(type, "memory", len) == 0) {
71 			fdt_del_node(fdt, node);
72 			continue;
73 		}
74 
75 		prev = node;
76 	}
77 
78 	/*
79 	 * Delete all memory reserve map entries. When booting via UEFI,
80 	 * kernel will use the UEFI memory map to find reserved regions.
81 	 */
82 	num_rsv = fdt_num_mem_rsv(fdt);
83 	while (num_rsv-- > 0)
84 		fdt_del_mem_rsv(fdt, num_rsv);
85 
86 	node = fdt_subnode_offset(fdt, 0, "chosen");
87 	if (node < 0) {
88 		node = fdt_add_subnode(fdt, 0, "chosen");
89 		if (node < 0) {
90 			status = node; /* node is error code when negative */
91 			goto fdt_set_fail;
92 		}
93 	}
94 
95 	if ((cmdline_ptr != NULL) && (strlen(cmdline_ptr) > 0)) {
96 		status = fdt_setprop(fdt, node, "bootargs", cmdline_ptr,
97 				     strlen(cmdline_ptr) + 1);
98 		if (status)
99 			goto fdt_set_fail;
100 	}
101 
102 	/* Set initrd address/end in device tree, if present */
103 	if (initrd_size != 0) {
104 		u64 initrd_image_end;
105 		u64 initrd_image_start = cpu_to_fdt64(initrd_addr);
106 
107 		status = fdt_setprop(fdt, node, "linux,initrd-start",
108 				     &initrd_image_start, sizeof(u64));
109 		if (status)
110 			goto fdt_set_fail;
111 		initrd_image_end = cpu_to_fdt64(initrd_addr + initrd_size);
112 		status = fdt_setprop(fdt, node, "linux,initrd-end",
113 				     &initrd_image_end, sizeof(u64));
114 		if (status)
115 			goto fdt_set_fail;
116 	}
117 
118 	/* Add FDT entries for EFI runtime services in chosen node. */
119 	node = fdt_subnode_offset(fdt, 0, "chosen");
120 	fdt_val64 = cpu_to_fdt64((u64)(unsigned long)sys_table);
121 	status = fdt_setprop(fdt, node, "linux,uefi-system-table",
122 			     &fdt_val64, sizeof(fdt_val64));
123 	if (status)
124 		goto fdt_set_fail;
125 
126 	fdt_val64 = cpu_to_fdt64((u64)(unsigned long)memory_map);
127 	status = fdt_setprop(fdt, node, "linux,uefi-mmap-start",
128 			     &fdt_val64,  sizeof(fdt_val64));
129 	if (status)
130 		goto fdt_set_fail;
131 
132 	fdt_val32 = cpu_to_fdt32(map_size);
133 	status = fdt_setprop(fdt, node, "linux,uefi-mmap-size",
134 			     &fdt_val32,  sizeof(fdt_val32));
135 	if (status)
136 		goto fdt_set_fail;
137 
138 	fdt_val32 = cpu_to_fdt32(desc_size);
139 	status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-size",
140 			     &fdt_val32, sizeof(fdt_val32));
141 	if (status)
142 		goto fdt_set_fail;
143 
144 	fdt_val32 = cpu_to_fdt32(desc_ver);
145 	status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-ver",
146 			     &fdt_val32, sizeof(fdt_val32));
147 	if (status)
148 		goto fdt_set_fail;
149 
150 	/*
151 	 * Add kernel version banner so stub/kernel match can be
152 	 * verified.
153 	 */
154 	status = fdt_setprop_string(fdt, node, "linux,uefi-stub-kern-ver",
155 			     linux_banner);
156 	if (status)
157 		goto fdt_set_fail;
158 
159 	return EFI_SUCCESS;
160 
161 fdt_set_fail:
162 	if (status == -FDT_ERR_NOSPACE)
163 		return EFI_BUFFER_TOO_SMALL;
164 
165 	return EFI_LOAD_ERROR;
166 }
167 
168 #ifndef EFI_FDT_ALIGN
169 #define EFI_FDT_ALIGN EFI_PAGE_SIZE
170 #endif
171 
172 /*
173  * Allocate memory for a new FDT, then add EFI, commandline, and
174  * initrd related fields to the FDT.  This routine increases the
175  * FDT allocation size until the allocated memory is large
176  * enough.  EFI allocations are in EFI_PAGE_SIZE granules,
177  * which are fixed at 4K bytes, so in most cases the first
178  * allocation should succeed.
179  * EFI boot services are exited at the end of this function.
180  * There must be no allocations between the get_memory_map()
181  * call and the exit_boot_services() call, so the exiting of
182  * boot services is very tightly tied to the creation of the FDT
183  * with the final memory map in it.
184  */
185 
186 efi_status_t allocate_new_fdt_and_exit_boot(efi_system_table_t *sys_table,
187 					    void *handle,
188 					    unsigned long *new_fdt_addr,
189 					    unsigned long max_addr,
190 					    u64 initrd_addr, u64 initrd_size,
191 					    char *cmdline_ptr,
192 					    unsigned long fdt_addr,
193 					    unsigned long fdt_size)
194 {
195 	unsigned long map_size, desc_size;
196 	u32 desc_ver;
197 	unsigned long mmap_key;
198 	efi_memory_desc_t *memory_map, *runtime_map;
199 	unsigned long new_fdt_size;
200 	efi_status_t status;
201 	int runtime_entry_count = 0;
202 
203 	/*
204 	 * Get a copy of the current memory map that we will use to prepare
205 	 * the input for SetVirtualAddressMap(). We don't have to worry about
206 	 * subsequent allocations adding entries, since they could not affect
207 	 * the number of EFI_MEMORY_RUNTIME regions.
208 	 */
209 	status = efi_get_memory_map(sys_table, &runtime_map, &map_size,
210 				    &desc_size, &desc_ver, &mmap_key);
211 	if (status != EFI_SUCCESS) {
212 		pr_efi_err(sys_table, "Unable to retrieve UEFI memory map.\n");
213 		return status;
214 	}
215 
216 	pr_efi(sys_table,
217 	       "Exiting boot services and installing virtual address map...\n");
218 
219 	/*
220 	 * Estimate size of new FDT, and allocate memory for it. We
221 	 * will allocate a bigger buffer if this ends up being too
222 	 * small, so a rough guess is OK here.
223 	 */
224 	new_fdt_size = fdt_size + EFI_PAGE_SIZE;
225 	while (1) {
226 		status = efi_high_alloc(sys_table, new_fdt_size, EFI_FDT_ALIGN,
227 					new_fdt_addr, max_addr);
228 		if (status != EFI_SUCCESS) {
229 			pr_efi_err(sys_table, "Unable to allocate memory for new device tree.\n");
230 			goto fail;
231 		}
232 
233 		/*
234 		 * Now that we have done our final memory allocation (and free)
235 		 * we can get the memory map key  needed for
236 		 * exit_boot_services().
237 		 */
238 		status = efi_get_memory_map(sys_table, &memory_map, &map_size,
239 					    &desc_size, &desc_ver, &mmap_key);
240 		if (status != EFI_SUCCESS)
241 			goto fail_free_new_fdt;
242 
243 		status = update_fdt(sys_table,
244 				    (void *)fdt_addr, fdt_size,
245 				    (void *)*new_fdt_addr, new_fdt_size,
246 				    cmdline_ptr, initrd_addr, initrd_size,
247 				    memory_map, map_size, desc_size, desc_ver);
248 
249 		/* Succeeding the first time is the expected case. */
250 		if (status == EFI_SUCCESS)
251 			break;
252 
253 		if (status == EFI_BUFFER_TOO_SMALL) {
254 			/*
255 			 * We need to allocate more space for the new
256 			 * device tree, so free existing buffer that is
257 			 * too small.  Also free memory map, as we will need
258 			 * to get new one that reflects the free/alloc we do
259 			 * on the device tree buffer.
260 			 */
261 			efi_free(sys_table, new_fdt_size, *new_fdt_addr);
262 			sys_table->boottime->free_pool(memory_map);
263 			new_fdt_size += EFI_PAGE_SIZE;
264 		} else {
265 			pr_efi_err(sys_table, "Unable to constuct new device tree.\n");
266 			goto fail_free_mmap;
267 		}
268 	}
269 
270 	/*
271 	 * Update the memory map with virtual addresses. The function will also
272 	 * populate @runtime_map with copies of just the EFI_MEMORY_RUNTIME
273 	 * entries so that we can pass it straight into SetVirtualAddressMap()
274 	 */
275 	efi_get_virtmap(memory_map, map_size, desc_size, runtime_map,
276 			&runtime_entry_count);
277 
278 	/* Now we are ready to exit_boot_services.*/
279 	status = sys_table->boottime->exit_boot_services(handle, mmap_key);
280 
281 	if (status == EFI_SUCCESS) {
282 		efi_set_virtual_address_map_t *svam;
283 
284 		/* Install the new virtual address map */
285 		svam = sys_table->runtime->set_virtual_address_map;
286 		status = svam(runtime_entry_count * desc_size, desc_size,
287 			      desc_ver, runtime_map);
288 
289 		/*
290 		 * We are beyond the point of no return here, so if the call to
291 		 * SetVirtualAddressMap() failed, we need to signal that to the
292 		 * incoming kernel but proceed normally otherwise.
293 		 */
294 		if (status != EFI_SUCCESS) {
295 			int l;
296 
297 			/*
298 			 * Set the virtual address field of all
299 			 * EFI_MEMORY_RUNTIME entries to 0. This will signal
300 			 * the incoming kernel that no virtual translation has
301 			 * been installed.
302 			 */
303 			for (l = 0; l < map_size; l += desc_size) {
304 				efi_memory_desc_t *p = (void *)memory_map + l;
305 
306 				if (p->attribute & EFI_MEMORY_RUNTIME)
307 					p->virt_addr = 0;
308 			}
309 		}
310 		return EFI_SUCCESS;
311 	}
312 
313 	pr_efi_err(sys_table, "Exit boot services failed.\n");
314 
315 fail_free_mmap:
316 	sys_table->boottime->free_pool(memory_map);
317 
318 fail_free_new_fdt:
319 	efi_free(sys_table, new_fdt_size, *new_fdt_addr);
320 
321 fail:
322 	sys_table->boottime->free_pool(runtime_map);
323 	return EFI_LOAD_ERROR;
324 }
325 
326 void *get_fdt(efi_system_table_t *sys_table, unsigned long *fdt_size)
327 {
328 	efi_guid_t fdt_guid = DEVICE_TREE_GUID;
329 	efi_config_table_t *tables;
330 	void *fdt;
331 	int i;
332 
333 	tables = (efi_config_table_t *) sys_table->tables;
334 	fdt = NULL;
335 
336 	for (i = 0; i < sys_table->nr_tables; i++)
337 		if (efi_guidcmp(tables[i].guid, fdt_guid) == 0) {
338 			fdt = (void *) tables[i].table;
339 			if (fdt_check_header(fdt) != 0) {
340 				pr_efi_err(sys_table, "Invalid header detected on UEFI supplied FDT, ignoring ...\n");
341 				return NULL;
342 			}
343 			*fdt_size = fdt_totalsize(fdt);
344 			break;
345 	 }
346 
347 	return fdt;
348 }
349