xref: /linux/drivers/firmware/efi/libstub/fdt.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * FDT related Helper functions used by the EFI stub on multiple
3  * architectures. This should be #included by the EFI stub
4  * implementation files.
5  *
6  * Copyright 2013 Linaro Limited; author Roy Franz
7  *
8  * This file is part of the Linux kernel, and is made available
9  * under the terms of the GNU General Public License version 2.
10  *
11  */
12 
13 #include <linux/efi.h>
14 #include <linux/libfdt.h>
15 #include <asm/efi.h>
16 
17 #include "efistub.h"
18 
19 efi_status_t update_fdt(efi_system_table_t *sys_table, void *orig_fdt,
20 			unsigned long orig_fdt_size,
21 			void *fdt, int new_fdt_size, char *cmdline_ptr,
22 			u64 initrd_addr, u64 initrd_size,
23 			efi_memory_desc_t *memory_map,
24 			unsigned long map_size, unsigned long desc_size,
25 			u32 desc_ver)
26 {
27 	int node, num_rsv;
28 	int status;
29 	u32 fdt_val32;
30 	u64 fdt_val64;
31 
32 	/* Do some checks on provided FDT, if it exists*/
33 	if (orig_fdt) {
34 		if (fdt_check_header(orig_fdt)) {
35 			pr_efi_err(sys_table, "Device Tree header not valid!\n");
36 			return EFI_LOAD_ERROR;
37 		}
38 		/*
39 		 * We don't get the size of the FDT if we get if from a
40 		 * configuration table.
41 		 */
42 		if (orig_fdt_size && fdt_totalsize(orig_fdt) > orig_fdt_size) {
43 			pr_efi_err(sys_table, "Truncated device tree! foo!\n");
44 			return EFI_LOAD_ERROR;
45 		}
46 	}
47 
48 	if (orig_fdt)
49 		status = fdt_open_into(orig_fdt, fdt, new_fdt_size);
50 	else
51 		status = fdt_create_empty_tree(fdt, new_fdt_size);
52 
53 	if (status != 0)
54 		goto fdt_set_fail;
55 
56 	/*
57 	 * Delete all memory reserve map entries. When booting via UEFI,
58 	 * kernel will use the UEFI memory map to find reserved regions.
59 	 */
60 	num_rsv = fdt_num_mem_rsv(fdt);
61 	while (num_rsv-- > 0)
62 		fdt_del_mem_rsv(fdt, num_rsv);
63 
64 	node = fdt_subnode_offset(fdt, 0, "chosen");
65 	if (node < 0) {
66 		node = fdt_add_subnode(fdt, 0, "chosen");
67 		if (node < 0) {
68 			status = node; /* node is error code when negative */
69 			goto fdt_set_fail;
70 		}
71 	}
72 
73 	if ((cmdline_ptr != NULL) && (strlen(cmdline_ptr) > 0)) {
74 		status = fdt_setprop(fdt, node, "bootargs", cmdline_ptr,
75 				     strlen(cmdline_ptr) + 1);
76 		if (status)
77 			goto fdt_set_fail;
78 	}
79 
80 	/* Set initrd address/end in device tree, if present */
81 	if (initrd_size != 0) {
82 		u64 initrd_image_end;
83 		u64 initrd_image_start = cpu_to_fdt64(initrd_addr);
84 
85 		status = fdt_setprop(fdt, node, "linux,initrd-start",
86 				     &initrd_image_start, sizeof(u64));
87 		if (status)
88 			goto fdt_set_fail;
89 		initrd_image_end = cpu_to_fdt64(initrd_addr + initrd_size);
90 		status = fdt_setprop(fdt, node, "linux,initrd-end",
91 				     &initrd_image_end, sizeof(u64));
92 		if (status)
93 			goto fdt_set_fail;
94 	}
95 
96 	/* Add FDT entries for EFI runtime services in chosen node. */
97 	node = fdt_subnode_offset(fdt, 0, "chosen");
98 	fdt_val64 = cpu_to_fdt64((u64)(unsigned long)sys_table);
99 	status = fdt_setprop(fdt, node, "linux,uefi-system-table",
100 			     &fdt_val64, sizeof(fdt_val64));
101 	if (status)
102 		goto fdt_set_fail;
103 
104 	fdt_val64 = cpu_to_fdt64((u64)(unsigned long)memory_map);
105 	status = fdt_setprop(fdt, node, "linux,uefi-mmap-start",
106 			     &fdt_val64,  sizeof(fdt_val64));
107 	if (status)
108 		goto fdt_set_fail;
109 
110 	fdt_val32 = cpu_to_fdt32(map_size);
111 	status = fdt_setprop(fdt, node, "linux,uefi-mmap-size",
112 			     &fdt_val32,  sizeof(fdt_val32));
113 	if (status)
114 		goto fdt_set_fail;
115 
116 	fdt_val32 = cpu_to_fdt32(desc_size);
117 	status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-size",
118 			     &fdt_val32, sizeof(fdt_val32));
119 	if (status)
120 		goto fdt_set_fail;
121 
122 	fdt_val32 = cpu_to_fdt32(desc_ver);
123 	status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-ver",
124 			     &fdt_val32, sizeof(fdt_val32));
125 	if (status)
126 		goto fdt_set_fail;
127 
128 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
129 		efi_status_t efi_status;
130 
131 		efi_status = efi_get_random_bytes(sys_table, sizeof(fdt_val64),
132 						  (u8 *)&fdt_val64);
133 		if (efi_status == EFI_SUCCESS) {
134 			status = fdt_setprop(fdt, node, "kaslr-seed",
135 					     &fdt_val64, sizeof(fdt_val64));
136 			if (status)
137 				goto fdt_set_fail;
138 		} else if (efi_status != EFI_NOT_FOUND) {
139 			return efi_status;
140 		}
141 	}
142 	return EFI_SUCCESS;
143 
144 fdt_set_fail:
145 	if (status == -FDT_ERR_NOSPACE)
146 		return EFI_BUFFER_TOO_SMALL;
147 
148 	return EFI_LOAD_ERROR;
149 }
150 
151 #ifndef EFI_FDT_ALIGN
152 #define EFI_FDT_ALIGN EFI_PAGE_SIZE
153 #endif
154 
155 /*
156  * Allocate memory for a new FDT, then add EFI, commandline, and
157  * initrd related fields to the FDT.  This routine increases the
158  * FDT allocation size until the allocated memory is large
159  * enough.  EFI allocations are in EFI_PAGE_SIZE granules,
160  * which are fixed at 4K bytes, so in most cases the first
161  * allocation should succeed.
162  * EFI boot services are exited at the end of this function.
163  * There must be no allocations between the get_memory_map()
164  * call and the exit_boot_services() call, so the exiting of
165  * boot services is very tightly tied to the creation of the FDT
166  * with the final memory map in it.
167  */
168 
169 efi_status_t allocate_new_fdt_and_exit_boot(efi_system_table_t *sys_table,
170 					    void *handle,
171 					    unsigned long *new_fdt_addr,
172 					    unsigned long max_addr,
173 					    u64 initrd_addr, u64 initrd_size,
174 					    char *cmdline_ptr,
175 					    unsigned long fdt_addr,
176 					    unsigned long fdt_size)
177 {
178 	unsigned long map_size, desc_size;
179 	u32 desc_ver;
180 	unsigned long mmap_key;
181 	efi_memory_desc_t *memory_map, *runtime_map;
182 	unsigned long new_fdt_size;
183 	efi_status_t status;
184 	int runtime_entry_count = 0;
185 
186 	/*
187 	 * Get a copy of the current memory map that we will use to prepare
188 	 * the input for SetVirtualAddressMap(). We don't have to worry about
189 	 * subsequent allocations adding entries, since they could not affect
190 	 * the number of EFI_MEMORY_RUNTIME regions.
191 	 */
192 	status = efi_get_memory_map(sys_table, &runtime_map, &map_size,
193 				    &desc_size, &desc_ver, &mmap_key);
194 	if (status != EFI_SUCCESS) {
195 		pr_efi_err(sys_table, "Unable to retrieve UEFI memory map.\n");
196 		return status;
197 	}
198 
199 	pr_efi(sys_table,
200 	       "Exiting boot services and installing virtual address map...\n");
201 
202 	/*
203 	 * Estimate size of new FDT, and allocate memory for it. We
204 	 * will allocate a bigger buffer if this ends up being too
205 	 * small, so a rough guess is OK here.
206 	 */
207 	new_fdt_size = fdt_size + EFI_PAGE_SIZE;
208 	while (1) {
209 		status = efi_high_alloc(sys_table, new_fdt_size, EFI_FDT_ALIGN,
210 					new_fdt_addr, max_addr);
211 		if (status != EFI_SUCCESS) {
212 			pr_efi_err(sys_table, "Unable to allocate memory for new device tree.\n");
213 			goto fail;
214 		}
215 
216 		/*
217 		 * Now that we have done our final memory allocation (and free)
218 		 * we can get the memory map key  needed for
219 		 * exit_boot_services().
220 		 */
221 		status = efi_get_memory_map(sys_table, &memory_map, &map_size,
222 					    &desc_size, &desc_ver, &mmap_key);
223 		if (status != EFI_SUCCESS)
224 			goto fail_free_new_fdt;
225 
226 		status = update_fdt(sys_table,
227 				    (void *)fdt_addr, fdt_size,
228 				    (void *)*new_fdt_addr, new_fdt_size,
229 				    cmdline_ptr, initrd_addr, initrd_size,
230 				    memory_map, map_size, desc_size, desc_ver);
231 
232 		/* Succeeding the first time is the expected case. */
233 		if (status == EFI_SUCCESS)
234 			break;
235 
236 		if (status == EFI_BUFFER_TOO_SMALL) {
237 			/*
238 			 * We need to allocate more space for the new
239 			 * device tree, so free existing buffer that is
240 			 * too small.  Also free memory map, as we will need
241 			 * to get new one that reflects the free/alloc we do
242 			 * on the device tree buffer.
243 			 */
244 			efi_free(sys_table, new_fdt_size, *new_fdt_addr);
245 			sys_table->boottime->free_pool(memory_map);
246 			new_fdt_size += EFI_PAGE_SIZE;
247 		} else {
248 			pr_efi_err(sys_table, "Unable to construct new device tree.\n");
249 			goto fail_free_mmap;
250 		}
251 	}
252 
253 	/*
254 	 * Update the memory map with virtual addresses. The function will also
255 	 * populate @runtime_map with copies of just the EFI_MEMORY_RUNTIME
256 	 * entries so that we can pass it straight into SetVirtualAddressMap()
257 	 */
258 	efi_get_virtmap(memory_map, map_size, desc_size, runtime_map,
259 			&runtime_entry_count);
260 
261 	/* Now we are ready to exit_boot_services.*/
262 	status = sys_table->boottime->exit_boot_services(handle, mmap_key);
263 
264 	if (status == EFI_SUCCESS) {
265 		efi_set_virtual_address_map_t *svam;
266 
267 		/* Install the new virtual address map */
268 		svam = sys_table->runtime->set_virtual_address_map;
269 		status = svam(runtime_entry_count * desc_size, desc_size,
270 			      desc_ver, runtime_map);
271 
272 		/*
273 		 * We are beyond the point of no return here, so if the call to
274 		 * SetVirtualAddressMap() failed, we need to signal that to the
275 		 * incoming kernel but proceed normally otherwise.
276 		 */
277 		if (status != EFI_SUCCESS) {
278 			int l;
279 
280 			/*
281 			 * Set the virtual address field of all
282 			 * EFI_MEMORY_RUNTIME entries to 0. This will signal
283 			 * the incoming kernel that no virtual translation has
284 			 * been installed.
285 			 */
286 			for (l = 0; l < map_size; l += desc_size) {
287 				efi_memory_desc_t *p = (void *)memory_map + l;
288 
289 				if (p->attribute & EFI_MEMORY_RUNTIME)
290 					p->virt_addr = 0;
291 			}
292 		}
293 		return EFI_SUCCESS;
294 	}
295 
296 	pr_efi_err(sys_table, "Exit boot services failed.\n");
297 
298 fail_free_mmap:
299 	sys_table->boottime->free_pool(memory_map);
300 
301 fail_free_new_fdt:
302 	efi_free(sys_table, new_fdt_size, *new_fdt_addr);
303 
304 fail:
305 	sys_table->boottime->free_pool(runtime_map);
306 	return EFI_LOAD_ERROR;
307 }
308 
309 void *get_fdt(efi_system_table_t *sys_table, unsigned long *fdt_size)
310 {
311 	efi_guid_t fdt_guid = DEVICE_TREE_GUID;
312 	efi_config_table_t *tables;
313 	void *fdt;
314 	int i;
315 
316 	tables = (efi_config_table_t *) sys_table->tables;
317 	fdt = NULL;
318 
319 	for (i = 0; i < sys_table->nr_tables; i++)
320 		if (efi_guidcmp(tables[i].guid, fdt_guid) == 0) {
321 			fdt = (void *) tables[i].table;
322 			if (fdt_check_header(fdt) != 0) {
323 				pr_efi_err(sys_table, "Invalid header detected on UEFI supplied FDT, ignoring ...\n");
324 				return NULL;
325 			}
326 			*fdt_size = fdt_totalsize(fdt);
327 			break;
328 	 }
329 
330 	return fdt;
331 }
332