xref: /linux/drivers/firmware/efi/libstub/efi-stub.c (revision faabed295cccc2aba2b67f2e7b309f2892d55004)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * EFI stub implementation that is shared by arm and arm64 architectures.
4  * This should be #included by the EFI stub implementation files.
5  *
6  * Copyright (C) 2013,2014 Linaro Limited
7  *     Roy Franz <roy.franz@linaro.org
8  * Copyright (C) 2013 Red Hat, Inc.
9  *     Mark Salter <msalter@redhat.com>
10  */
11 
12 #include <linux/efi.h>
13 #include <linux/libfdt.h>
14 #include <asm/efi.h>
15 
16 #include "efistub.h"
17 
18 /*
19  * This is the base address at which to start allocating virtual memory ranges
20  * for UEFI Runtime Services. This is in the low TTBR0 range so that we can use
21  * any allocation we choose, and eliminate the risk of a conflict after kexec.
22  * The value chosen is the largest non-zero power of 2 suitable for this purpose
23  * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can
24  * be mapped efficiently.
25  * Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split,
26  * map everything below 1 GB. (512 MB is a reasonable upper bound for the
27  * entire footprint of the UEFI runtime services memory regions)
28  */
29 #define EFI_RT_VIRTUAL_BASE	SZ_512M
30 #define EFI_RT_VIRTUAL_SIZE	SZ_512M
31 
32 #ifdef CONFIG_ARM64
33 # define EFI_RT_VIRTUAL_LIMIT	DEFAULT_MAP_WINDOW_64
34 #else
35 # define EFI_RT_VIRTUAL_LIMIT	TASK_SIZE
36 #endif
37 
38 static u64 virtmap_base = EFI_RT_VIRTUAL_BASE;
39 static bool flat_va_mapping;
40 
41 const efi_system_table_t *efi_system_table;
42 
43 static struct screen_info *setup_graphics(void)
44 {
45 	efi_guid_t gop_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID;
46 	efi_status_t status;
47 	unsigned long size;
48 	void **gop_handle = NULL;
49 	struct screen_info *si = NULL;
50 
51 	size = 0;
52 	status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL,
53 			     &gop_proto, NULL, &size, gop_handle);
54 	if (status == EFI_BUFFER_TOO_SMALL) {
55 		si = alloc_screen_info();
56 		if (!si)
57 			return NULL;
58 		status = efi_setup_gop(si, &gop_proto, size);
59 		if (status != EFI_SUCCESS) {
60 			free_screen_info(si);
61 			return NULL;
62 		}
63 	}
64 	return si;
65 }
66 
67 static void install_memreserve_table(void)
68 {
69 	struct linux_efi_memreserve *rsv;
70 	efi_guid_t memreserve_table_guid = LINUX_EFI_MEMRESERVE_TABLE_GUID;
71 	efi_status_t status;
72 
73 	status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, sizeof(*rsv),
74 			     (void **)&rsv);
75 	if (status != EFI_SUCCESS) {
76 		efi_err("Failed to allocate memreserve entry!\n");
77 		return;
78 	}
79 
80 	rsv->next = 0;
81 	rsv->size = 0;
82 	atomic_set(&rsv->count, 0);
83 
84 	status = efi_bs_call(install_configuration_table,
85 			     &memreserve_table_guid, rsv);
86 	if (status != EFI_SUCCESS)
87 		efi_err("Failed to install memreserve config table!\n");
88 }
89 
90 static unsigned long get_dram_base(void)
91 {
92 	efi_status_t status;
93 	unsigned long map_size, buff_size;
94 	unsigned long membase  = EFI_ERROR;
95 	struct efi_memory_map map;
96 	efi_memory_desc_t *md;
97 	struct efi_boot_memmap boot_map;
98 
99 	boot_map.map		= (efi_memory_desc_t **)&map.map;
100 	boot_map.map_size	= &map_size;
101 	boot_map.desc_size	= &map.desc_size;
102 	boot_map.desc_ver	= NULL;
103 	boot_map.key_ptr	= NULL;
104 	boot_map.buff_size	= &buff_size;
105 
106 	status = efi_get_memory_map(&boot_map);
107 	if (status != EFI_SUCCESS)
108 		return membase;
109 
110 	map.map_end = map.map + map_size;
111 
112 	for_each_efi_memory_desc_in_map(&map, md) {
113 		if (md->attribute & EFI_MEMORY_WB) {
114 			if (membase > md->phys_addr)
115 				membase = md->phys_addr;
116 		}
117 	}
118 
119 	efi_bs_call(free_pool, map.map);
120 
121 	return membase;
122 }
123 
124 /*
125  * This function handles the architcture specific differences between arm and
126  * arm64 regarding where the kernel image must be loaded and any memory that
127  * must be reserved. On failure it is required to free all
128  * all allocations it has made.
129  */
130 efi_status_t handle_kernel_image(unsigned long *image_addr,
131 				 unsigned long *image_size,
132 				 unsigned long *reserve_addr,
133 				 unsigned long *reserve_size,
134 				 unsigned long dram_base,
135 				 efi_loaded_image_t *image);
136 
137 asmlinkage void __noreturn efi_enter_kernel(unsigned long entrypoint,
138 					    unsigned long fdt_addr,
139 					    unsigned long fdt_size);
140 
141 /*
142  * EFI entry point for the arm/arm64 EFI stubs.  This is the entrypoint
143  * that is described in the PE/COFF header.  Most of the code is the same
144  * for both archictectures, with the arch-specific code provided in the
145  * handle_kernel_image() function.
146  */
147 efi_status_t __efiapi efi_pe_entry(efi_handle_t handle,
148 				   efi_system_table_t *sys_table_arg)
149 {
150 	efi_loaded_image_t *image;
151 	efi_status_t status;
152 	unsigned long image_addr;
153 	unsigned long image_size = 0;
154 	unsigned long dram_base;
155 	/* addr/point and size pairs for memory management*/
156 	unsigned long initrd_addr = 0;
157 	unsigned long initrd_size = 0;
158 	unsigned long fdt_addr = 0;  /* Original DTB */
159 	unsigned long fdt_size = 0;
160 	char *cmdline_ptr = NULL;
161 	int cmdline_size = 0;
162 	efi_guid_t loaded_image_proto = LOADED_IMAGE_PROTOCOL_GUID;
163 	unsigned long reserve_addr = 0;
164 	unsigned long reserve_size = 0;
165 	enum efi_secureboot_mode secure_boot;
166 	struct screen_info *si;
167 	efi_properties_table_t *prop_tbl;
168 	unsigned long max_addr;
169 
170 	efi_system_table = sys_table_arg;
171 
172 	/* Check if we were booted by the EFI firmware */
173 	if (efi_system_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
174 		status = EFI_INVALID_PARAMETER;
175 		goto fail;
176 	}
177 
178 	status = check_platform_features();
179 	if (status != EFI_SUCCESS)
180 		goto fail;
181 
182 	/*
183 	 * Get a handle to the loaded image protocol.  This is used to get
184 	 * information about the running image, such as size and the command
185 	 * line.
186 	 */
187 	status = efi_system_table->boottime->handle_protocol(handle,
188 					&loaded_image_proto, (void *)&image);
189 	if (status != EFI_SUCCESS) {
190 		efi_err("Failed to get loaded image protocol\n");
191 		goto fail;
192 	}
193 
194 	dram_base = get_dram_base();
195 	if (dram_base == EFI_ERROR) {
196 		efi_err("Failed to find DRAM base\n");
197 		status = EFI_LOAD_ERROR;
198 		goto fail;
199 	}
200 
201 	/*
202 	 * Get the command line from EFI, using the LOADED_IMAGE
203 	 * protocol. We are going to copy the command line into the
204 	 * device tree, so this can be allocated anywhere.
205 	 */
206 	cmdline_ptr = efi_convert_cmdline(image, &cmdline_size);
207 	if (!cmdline_ptr) {
208 		efi_err("getting command line via LOADED_IMAGE_PROTOCOL\n");
209 		status = EFI_OUT_OF_RESOURCES;
210 		goto fail;
211 	}
212 
213 	if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) ||
214 	    IS_ENABLED(CONFIG_CMDLINE_FORCE) ||
215 	    cmdline_size == 0) {
216 		status = efi_parse_options(CONFIG_CMDLINE);
217 		if (status != EFI_SUCCESS) {
218 			efi_err("Failed to parse options\n");
219 			goto fail_free_cmdline;
220 		}
221 	}
222 
223 	if (!IS_ENABLED(CONFIG_CMDLINE_FORCE) && cmdline_size > 0) {
224 		status = efi_parse_options(cmdline_ptr);
225 		if (status != EFI_SUCCESS) {
226 			efi_err("Failed to parse options\n");
227 			goto fail_free_cmdline;
228 		}
229 	}
230 
231 	efi_info("Booting Linux Kernel...\n");
232 
233 	si = setup_graphics();
234 
235 	status = handle_kernel_image(&image_addr, &image_size,
236 				     &reserve_addr,
237 				     &reserve_size,
238 				     dram_base, image);
239 	if (status != EFI_SUCCESS) {
240 		efi_err("Failed to relocate kernel\n");
241 		goto fail_free_screeninfo;
242 	}
243 
244 	efi_retrieve_tpm2_eventlog();
245 
246 	/* Ask the firmware to clear memory on unclean shutdown */
247 	efi_enable_reset_attack_mitigation();
248 
249 	secure_boot = efi_get_secureboot();
250 
251 	/*
252 	 * Unauthenticated device tree data is a security hazard, so ignore
253 	 * 'dtb=' unless UEFI Secure Boot is disabled.  We assume that secure
254 	 * boot is enabled if we can't determine its state.
255 	 */
256 	if (!IS_ENABLED(CONFIG_EFI_ARMSTUB_DTB_LOADER) ||
257 	     secure_boot != efi_secureboot_mode_disabled) {
258 		if (strstr(cmdline_ptr, "dtb="))
259 			efi_err("Ignoring DTB from command line.\n");
260 	} else {
261 		status = efi_load_dtb(image, &fdt_addr, &fdt_size);
262 
263 		if (status != EFI_SUCCESS) {
264 			efi_err("Failed to load device tree!\n");
265 			goto fail_free_image;
266 		}
267 	}
268 
269 	if (fdt_addr) {
270 		efi_info("Using DTB from command line\n");
271 	} else {
272 		/* Look for a device tree configuration table entry. */
273 		fdt_addr = (uintptr_t)get_fdt(&fdt_size);
274 		if (fdt_addr)
275 			efi_info("Using DTB from configuration table\n");
276 	}
277 
278 	if (!fdt_addr)
279 		efi_info("Generating empty DTB\n");
280 
281 	if (!efi_noinitrd) {
282 		max_addr = efi_get_max_initrd_addr(dram_base, image_addr);
283 		status = efi_load_initrd(image, &initrd_addr, &initrd_size,
284 					 ULONG_MAX, max_addr);
285 		if (status != EFI_SUCCESS)
286 			efi_err("Failed to load initrd!\n");
287 	}
288 
289 	efi_random_get_seed();
290 
291 	/*
292 	 * If the NX PE data feature is enabled in the properties table, we
293 	 * should take care not to create a virtual mapping that changes the
294 	 * relative placement of runtime services code and data regions, as
295 	 * they may belong to the same PE/COFF executable image in memory.
296 	 * The easiest way to achieve that is to simply use a 1:1 mapping.
297 	 */
298 	prop_tbl = get_efi_config_table(EFI_PROPERTIES_TABLE_GUID);
299 	flat_va_mapping = prop_tbl &&
300 			  (prop_tbl->memory_protection_attribute &
301 			   EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA);
302 
303 	/* hibernation expects the runtime regions to stay in the same place */
304 	if (!IS_ENABLED(CONFIG_HIBERNATION) && !efi_nokaslr && !flat_va_mapping) {
305 		/*
306 		 * Randomize the base of the UEFI runtime services region.
307 		 * Preserve the 2 MB alignment of the region by taking a
308 		 * shift of 21 bit positions into account when scaling
309 		 * the headroom value using a 32-bit random value.
310 		 */
311 		static const u64 headroom = EFI_RT_VIRTUAL_LIMIT -
312 					    EFI_RT_VIRTUAL_BASE -
313 					    EFI_RT_VIRTUAL_SIZE;
314 		u32 rnd;
315 
316 		status = efi_get_random_bytes(sizeof(rnd), (u8 *)&rnd);
317 		if (status == EFI_SUCCESS) {
318 			virtmap_base = EFI_RT_VIRTUAL_BASE +
319 				       (((headroom >> 21) * rnd) >> (32 - 21));
320 		}
321 	}
322 
323 	install_memreserve_table();
324 
325 	status = allocate_new_fdt_and_exit_boot(handle, &fdt_addr,
326 						efi_get_max_fdt_addr(dram_base),
327 						initrd_addr, initrd_size,
328 						cmdline_ptr, fdt_addr, fdt_size);
329 	if (status != EFI_SUCCESS)
330 		goto fail_free_initrd;
331 
332 	if (IS_ENABLED(CONFIG_ARM))
333 		efi_handle_post_ebs_state();
334 
335 	efi_enter_kernel(image_addr, fdt_addr, fdt_totalsize((void *)fdt_addr));
336 	/* not reached */
337 
338 fail_free_initrd:
339 	efi_err("Failed to update FDT and exit boot services\n");
340 
341 	efi_free(initrd_size, initrd_addr);
342 	efi_free(fdt_size, fdt_addr);
343 
344 fail_free_image:
345 	efi_free(image_size, image_addr);
346 	efi_free(reserve_size, reserve_addr);
347 fail_free_screeninfo:
348 	free_screen_info(si);
349 fail_free_cmdline:
350 	efi_bs_call(free_pool, cmdline_ptr);
351 fail:
352 	return status;
353 }
354 
355 /*
356  * efi_get_virtmap() - create a virtual mapping for the EFI memory map
357  *
358  * This function populates the virt_addr fields of all memory region descriptors
359  * in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors
360  * are also copied to @runtime_map, and their total count is returned in @count.
361  */
362 void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size,
363 		     unsigned long desc_size, efi_memory_desc_t *runtime_map,
364 		     int *count)
365 {
366 	u64 efi_virt_base = virtmap_base;
367 	efi_memory_desc_t *in, *out = runtime_map;
368 	int l;
369 
370 	for (l = 0; l < map_size; l += desc_size) {
371 		u64 paddr, size;
372 
373 		in = (void *)memory_map + l;
374 		if (!(in->attribute & EFI_MEMORY_RUNTIME))
375 			continue;
376 
377 		paddr = in->phys_addr;
378 		size = in->num_pages * EFI_PAGE_SIZE;
379 
380 		in->virt_addr = in->phys_addr;
381 		if (efi_novamap) {
382 			continue;
383 		}
384 
385 		/*
386 		 * Make the mapping compatible with 64k pages: this allows
387 		 * a 4k page size kernel to kexec a 64k page size kernel and
388 		 * vice versa.
389 		 */
390 		if (!flat_va_mapping) {
391 
392 			paddr = round_down(in->phys_addr, SZ_64K);
393 			size += in->phys_addr - paddr;
394 
395 			/*
396 			 * Avoid wasting memory on PTEs by choosing a virtual
397 			 * base that is compatible with section mappings if this
398 			 * region has the appropriate size and physical
399 			 * alignment. (Sections are 2 MB on 4k granule kernels)
400 			 */
401 			if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M)
402 				efi_virt_base = round_up(efi_virt_base, SZ_2M);
403 			else
404 				efi_virt_base = round_up(efi_virt_base, SZ_64K);
405 
406 			in->virt_addr += efi_virt_base - paddr;
407 			efi_virt_base += size;
408 		}
409 
410 		memcpy(out, in, desc_size);
411 		out = (void *)out + desc_size;
412 		++*count;
413 	}
414 }
415