xref: /linux/drivers/firmware/efi/libstub/efi-stub-helper.c (revision 34dc1baba215b826e454b8d19e4f24adbeb7d00d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Helper functions used by the EFI stub on multiple
4  * architectures. This should be #included by the EFI stub
5  * implementation files.
6  *
7  * Copyright 2011 Intel Corporation; author Matt Fleming
8  */
9 
10 #include <linux/stdarg.h>
11 
12 #include <linux/efi.h>
13 #include <linux/kernel.h>
14 #include <asm/efi.h>
15 #include <asm/setup.h>
16 
17 #include "efistub.h"
18 
19 bool efi_nochunk;
20 bool efi_nokaslr = !IS_ENABLED(CONFIG_RANDOMIZE_BASE);
21 bool efi_novamap;
22 
23 static bool efi_noinitrd;
24 static bool efi_nosoftreserve;
25 static bool efi_disable_pci_dma = IS_ENABLED(CONFIG_EFI_DISABLE_PCI_DMA);
26 
27 bool __pure __efi_soft_reserve_enabled(void)
28 {
29 	return !efi_nosoftreserve;
30 }
31 
32 /**
33  * efi_parse_options() - Parse EFI command line options
34  * @cmdline:	kernel command line
35  *
36  * Parse the ASCII string @cmdline for EFI options, denoted by the efi=
37  * option, e.g. efi=nochunk.
38  *
39  * It should be noted that efi= is parsed in two very different
40  * environments, first in the early boot environment of the EFI boot
41  * stub, and subsequently during the kernel boot.
42  *
43  * Return:	status code
44  */
45 efi_status_t efi_parse_options(char const *cmdline)
46 {
47 	size_t len;
48 	efi_status_t status;
49 	char *str, *buf;
50 
51 	if (!cmdline)
52 		return EFI_SUCCESS;
53 
54 	len = strnlen(cmdline, COMMAND_LINE_SIZE - 1) + 1;
55 	status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, len, (void **)&buf);
56 	if (status != EFI_SUCCESS)
57 		return status;
58 
59 	memcpy(buf, cmdline, len - 1);
60 	buf[len - 1] = '\0';
61 	str = skip_spaces(buf);
62 
63 	while (*str) {
64 		char *param, *val;
65 
66 		str = next_arg(str, &param, &val);
67 		if (!val && !strcmp(param, "--"))
68 			break;
69 
70 		if (!strcmp(param, "nokaslr")) {
71 			efi_nokaslr = true;
72 		} else if (!strcmp(param, "quiet")) {
73 			efi_loglevel = CONSOLE_LOGLEVEL_QUIET;
74 		} else if (!strcmp(param, "noinitrd")) {
75 			efi_noinitrd = true;
76 		} else if (IS_ENABLED(CONFIG_X86_64) && !strcmp(param, "no5lvl")) {
77 			efi_no5lvl = true;
78 		} else if (!strcmp(param, "efi") && val) {
79 			efi_nochunk = parse_option_str(val, "nochunk");
80 			efi_novamap |= parse_option_str(val, "novamap");
81 
82 			efi_nosoftreserve = IS_ENABLED(CONFIG_EFI_SOFT_RESERVE) &&
83 					    parse_option_str(val, "nosoftreserve");
84 
85 			if (parse_option_str(val, "disable_early_pci_dma"))
86 				efi_disable_pci_dma = true;
87 			if (parse_option_str(val, "no_disable_early_pci_dma"))
88 				efi_disable_pci_dma = false;
89 			if (parse_option_str(val, "debug"))
90 				efi_loglevel = CONSOLE_LOGLEVEL_DEBUG;
91 		} else if (!strcmp(param, "video") &&
92 			   val && strstarts(val, "efifb:")) {
93 			efi_parse_option_graphics(val + strlen("efifb:"));
94 		}
95 	}
96 	efi_bs_call(free_pool, buf);
97 	return EFI_SUCCESS;
98 }
99 
100 /*
101  * The EFI_LOAD_OPTION descriptor has the following layout:
102  *	u32 Attributes;
103  *	u16 FilePathListLength;
104  *	u16 Description[];
105  *	efi_device_path_protocol_t FilePathList[];
106  *	u8 OptionalData[];
107  *
108  * This function validates and unpacks the variable-size data fields.
109  */
110 static
111 bool efi_load_option_unpack(efi_load_option_unpacked_t *dest,
112 			    const efi_load_option_t *src, size_t size)
113 {
114 	const void *pos;
115 	u16 c;
116 	efi_device_path_protocol_t header;
117 	const efi_char16_t *description;
118 	const efi_device_path_protocol_t *file_path_list;
119 
120 	if (size < offsetof(efi_load_option_t, variable_data))
121 		return false;
122 	pos = src->variable_data;
123 	size -= offsetof(efi_load_option_t, variable_data);
124 
125 	if ((src->attributes & ~EFI_LOAD_OPTION_MASK) != 0)
126 		return false;
127 
128 	/* Scan description. */
129 	description = pos;
130 	do {
131 		if (size < sizeof(c))
132 			return false;
133 		c = *(const u16 *)pos;
134 		pos += sizeof(c);
135 		size -= sizeof(c);
136 	} while (c != L'\0');
137 
138 	/* Scan file_path_list. */
139 	file_path_list = pos;
140 	do {
141 		if (size < sizeof(header))
142 			return false;
143 		header = *(const efi_device_path_protocol_t *)pos;
144 		if (header.length < sizeof(header))
145 			return false;
146 		if (size < header.length)
147 			return false;
148 		pos += header.length;
149 		size -= header.length;
150 	} while ((header.type != EFI_DEV_END_PATH && header.type != EFI_DEV_END_PATH2) ||
151 		 (header.sub_type != EFI_DEV_END_ENTIRE));
152 	if (pos != (const void *)file_path_list + src->file_path_list_length)
153 		return false;
154 
155 	dest->attributes = src->attributes;
156 	dest->file_path_list_length = src->file_path_list_length;
157 	dest->description = description;
158 	dest->file_path_list = file_path_list;
159 	dest->optional_data_size = size;
160 	dest->optional_data = size ? pos : NULL;
161 
162 	return true;
163 }
164 
165 /*
166  * At least some versions of Dell firmware pass the entire contents of the
167  * Boot#### variable, i.e. the EFI_LOAD_OPTION descriptor, rather than just the
168  * OptionalData field.
169  *
170  * Detect this case and extract OptionalData.
171  */
172 void efi_apply_loadoptions_quirk(const void **load_options, u32 *load_options_size)
173 {
174 	const efi_load_option_t *load_option = *load_options;
175 	efi_load_option_unpacked_t load_option_unpacked;
176 
177 	if (!IS_ENABLED(CONFIG_X86))
178 		return;
179 	if (!load_option)
180 		return;
181 	if (*load_options_size < sizeof(*load_option))
182 		return;
183 	if ((load_option->attributes & ~EFI_LOAD_OPTION_BOOT_MASK) != 0)
184 		return;
185 
186 	if (!efi_load_option_unpack(&load_option_unpacked, load_option, *load_options_size))
187 		return;
188 
189 	efi_warn_once(FW_BUG "LoadOptions is an EFI_LOAD_OPTION descriptor\n");
190 	efi_warn_once(FW_BUG "Using OptionalData as a workaround\n");
191 
192 	*load_options = load_option_unpacked.optional_data;
193 	*load_options_size = load_option_unpacked.optional_data_size;
194 }
195 
196 enum efistub_event {
197 	EFISTUB_EVT_INITRD,
198 	EFISTUB_EVT_LOAD_OPTIONS,
199 	EFISTUB_EVT_COUNT,
200 };
201 
202 #define STR_WITH_SIZE(s)	sizeof(s), s
203 
204 static const struct {
205 	u32		pcr_index;
206 	u32		event_id;
207 	u32		event_data_len;
208 	u8		event_data[52];
209 } events[] = {
210 	[EFISTUB_EVT_INITRD] = {
211 		9,
212 		INITRD_EVENT_TAG_ID,
213 		STR_WITH_SIZE("Linux initrd")
214 	},
215 	[EFISTUB_EVT_LOAD_OPTIONS] = {
216 		9,
217 		LOAD_OPTIONS_EVENT_TAG_ID,
218 		STR_WITH_SIZE("LOADED_IMAGE::LoadOptions")
219 	},
220 };
221 
222 static efi_status_t efi_measure_tagged_event(unsigned long load_addr,
223 					     unsigned long load_size,
224 					     enum efistub_event event)
225 {
226 	efi_guid_t tcg2_guid = EFI_TCG2_PROTOCOL_GUID;
227 	efi_tcg2_protocol_t *tcg2 = NULL;
228 	efi_status_t status;
229 
230 	efi_bs_call(locate_protocol, &tcg2_guid, NULL, (void **)&tcg2);
231 	if (tcg2) {
232 		struct efi_measured_event {
233 			efi_tcg2_event_t	event_data;
234 			efi_tcg2_tagged_event_t tagged_event;
235 			u8			tagged_event_data[];
236 		} *evt;
237 		int size = sizeof(*evt) + events[event].event_data_len;
238 
239 		status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, size,
240 				     (void **)&evt);
241 		if (status != EFI_SUCCESS)
242 			goto fail;
243 
244 		evt->event_data = (struct efi_tcg2_event){
245 			.event_size			= size,
246 			.event_header.header_size	= sizeof(evt->event_data.event_header),
247 			.event_header.header_version	= EFI_TCG2_EVENT_HEADER_VERSION,
248 			.event_header.pcr_index		= events[event].pcr_index,
249 			.event_header.event_type	= EV_EVENT_TAG,
250 		};
251 
252 		evt->tagged_event = (struct efi_tcg2_tagged_event){
253 			.tagged_event_id		= events[event].event_id,
254 			.tagged_event_data_size		= events[event].event_data_len,
255 		};
256 
257 		memcpy(evt->tagged_event_data, events[event].event_data,
258 		       events[event].event_data_len);
259 
260 		status = efi_call_proto(tcg2, hash_log_extend_event, 0,
261 					load_addr, load_size, &evt->event_data);
262 		efi_bs_call(free_pool, evt);
263 
264 		if (status != EFI_SUCCESS)
265 			goto fail;
266 		return EFI_SUCCESS;
267 	}
268 
269 	return EFI_UNSUPPORTED;
270 fail:
271 	efi_warn("Failed to measure data for event %d: 0x%lx\n", event, status);
272 	return status;
273 }
274 
275 /*
276  * Convert the unicode UEFI command line to ASCII to pass to kernel.
277  * Size of memory allocated return in *cmd_line_len.
278  * Returns NULL on error.
279  */
280 char *efi_convert_cmdline(efi_loaded_image_t *image, int *cmd_line_len)
281 {
282 	const efi_char16_t *options = efi_table_attr(image, load_options);
283 	u32 options_size = efi_table_attr(image, load_options_size);
284 	int options_bytes = 0, safe_options_bytes = 0;  /* UTF-8 bytes */
285 	unsigned long cmdline_addr = 0;
286 	const efi_char16_t *s2;
287 	bool in_quote = false;
288 	efi_status_t status;
289 	u32 options_chars;
290 
291 	if (options_size > 0)
292 		efi_measure_tagged_event((unsigned long)options, options_size,
293 					 EFISTUB_EVT_LOAD_OPTIONS);
294 
295 	efi_apply_loadoptions_quirk((const void **)&options, &options_size);
296 	options_chars = options_size / sizeof(efi_char16_t);
297 
298 	if (options) {
299 		s2 = options;
300 		while (options_bytes < COMMAND_LINE_SIZE && options_chars--) {
301 			efi_char16_t c = *s2++;
302 
303 			if (c < 0x80) {
304 				if (c == L'\0' || c == L'\n')
305 					break;
306 				if (c == L'"')
307 					in_quote = !in_quote;
308 				else if (!in_quote && isspace((char)c))
309 					safe_options_bytes = options_bytes;
310 
311 				options_bytes++;
312 				continue;
313 			}
314 
315 			/*
316 			 * Get the number of UTF-8 bytes corresponding to a
317 			 * UTF-16 character.
318 			 * The first part handles everything in the BMP.
319 			 */
320 			options_bytes += 2 + (c >= 0x800);
321 			/*
322 			 * Add one more byte for valid surrogate pairs. Invalid
323 			 * surrogates will be replaced with 0xfffd and take up
324 			 * only 3 bytes.
325 			 */
326 			if ((c & 0xfc00) == 0xd800) {
327 				/*
328 				 * If the very last word is a high surrogate,
329 				 * we must ignore it since we can't access the
330 				 * low surrogate.
331 				 */
332 				if (!options_chars) {
333 					options_bytes -= 3;
334 				} else if ((*s2 & 0xfc00) == 0xdc00) {
335 					options_bytes++;
336 					options_chars--;
337 					s2++;
338 				}
339 			}
340 		}
341 		if (options_bytes >= COMMAND_LINE_SIZE) {
342 			options_bytes = safe_options_bytes;
343 			efi_err("Command line is too long: truncated to %d bytes\n",
344 				options_bytes);
345 		}
346 	}
347 
348 	options_bytes++;	/* NUL termination */
349 
350 	status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, options_bytes,
351 			     (void **)&cmdline_addr);
352 	if (status != EFI_SUCCESS)
353 		return NULL;
354 
355 	snprintf((char *)cmdline_addr, options_bytes, "%.*ls",
356 		 options_bytes - 1, options);
357 
358 	*cmd_line_len = options_bytes;
359 	return (char *)cmdline_addr;
360 }
361 
362 /**
363  * efi_exit_boot_services() - Exit boot services
364  * @handle:	handle of the exiting image
365  * @priv:	argument to be passed to @priv_func
366  * @priv_func:	function to process the memory map before exiting boot services
367  *
368  * Handle calling ExitBootServices according to the requirements set out by the
369  * spec.  Obtains the current memory map, and returns that info after calling
370  * ExitBootServices.  The client must specify a function to perform any
371  * processing of the memory map data prior to ExitBootServices.  A client
372  * specific structure may be passed to the function via priv.  The client
373  * function may be called multiple times.
374  *
375  * Return:	status code
376  */
377 efi_status_t efi_exit_boot_services(void *handle, void *priv,
378 				    efi_exit_boot_map_processing priv_func)
379 {
380 	struct efi_boot_memmap *map;
381 	efi_status_t status;
382 
383 	if (efi_disable_pci_dma)
384 		efi_pci_disable_bridge_busmaster();
385 
386 	status = efi_get_memory_map(&map, true);
387 	if (status != EFI_SUCCESS)
388 		return status;
389 
390 	status = priv_func(map, priv);
391 	if (status != EFI_SUCCESS) {
392 		efi_bs_call(free_pool, map);
393 		return status;
394 	}
395 
396 	status = efi_bs_call(exit_boot_services, handle, map->map_key);
397 
398 	if (status == EFI_INVALID_PARAMETER) {
399 		/*
400 		 * The memory map changed between efi_get_memory_map() and
401 		 * exit_boot_services().  Per the UEFI Spec v2.6, Section 6.4:
402 		 * EFI_BOOT_SERVICES.ExitBootServices we need to get the
403 		 * updated map, and try again.  The spec implies one retry
404 		 * should be sufficent, which is confirmed against the EDK2
405 		 * implementation.  Per the spec, we can only invoke
406 		 * get_memory_map() and exit_boot_services() - we cannot alloc
407 		 * so efi_get_memory_map() cannot be used, and we must reuse
408 		 * the buffer.  For all practical purposes, the headroom in the
409 		 * buffer should account for any changes in the map so the call
410 		 * to get_memory_map() is expected to succeed here.
411 		 */
412 		map->map_size = map->buff_size;
413 		status = efi_bs_call(get_memory_map,
414 				     &map->map_size,
415 				     &map->map,
416 				     &map->map_key,
417 				     &map->desc_size,
418 				     &map->desc_ver);
419 
420 		/* exit_boot_services() was called, thus cannot free */
421 		if (status != EFI_SUCCESS)
422 			return status;
423 
424 		status = priv_func(map, priv);
425 		/* exit_boot_services() was called, thus cannot free */
426 		if (status != EFI_SUCCESS)
427 			return status;
428 
429 		status = efi_bs_call(exit_boot_services, handle, map->map_key);
430 	}
431 
432 	return status;
433 }
434 
435 /**
436  * get_efi_config_table() - retrieve UEFI configuration table
437  * @guid:	GUID of the configuration table to be retrieved
438  * Return:	pointer to the configuration table or NULL
439  */
440 void *get_efi_config_table(efi_guid_t guid)
441 {
442 	unsigned long tables = efi_table_attr(efi_system_table, tables);
443 	int nr_tables = efi_table_attr(efi_system_table, nr_tables);
444 	int i;
445 
446 	for (i = 0; i < nr_tables; i++) {
447 		efi_config_table_t *t = (void *)tables;
448 
449 		if (efi_guidcmp(t->guid, guid) == 0)
450 			return efi_table_attr(t, table);
451 
452 		tables += efi_is_native() ? sizeof(efi_config_table_t)
453 					  : sizeof(efi_config_table_32_t);
454 	}
455 	return NULL;
456 }
457 
458 /*
459  * The LINUX_EFI_INITRD_MEDIA_GUID vendor media device path below provides a way
460  * for the firmware or bootloader to expose the initrd data directly to the stub
461  * via the trivial LoadFile2 protocol, which is defined in the UEFI spec, and is
462  * very easy to implement. It is a simple Linux initrd specific conduit between
463  * kernel and firmware, allowing us to put the EFI stub (being part of the
464  * kernel) in charge of where and when to load the initrd, while leaving it up
465  * to the firmware to decide whether it needs to expose its filesystem hierarchy
466  * via EFI protocols.
467  */
468 static const struct {
469 	struct efi_vendor_dev_path	vendor;
470 	struct efi_generic_dev_path	end;
471 } __packed initrd_dev_path = {
472 	{
473 		{
474 			EFI_DEV_MEDIA,
475 			EFI_DEV_MEDIA_VENDOR,
476 			sizeof(struct efi_vendor_dev_path),
477 		},
478 		LINUX_EFI_INITRD_MEDIA_GUID
479 	}, {
480 		EFI_DEV_END_PATH,
481 		EFI_DEV_END_ENTIRE,
482 		sizeof(struct efi_generic_dev_path)
483 	}
484 };
485 
486 /**
487  * efi_load_initrd_dev_path() - load the initrd from the Linux initrd device path
488  * @initrd:	pointer of struct to store the address where the initrd was loaded
489  *		and the size of the loaded initrd
490  * @max:	upper limit for the initrd memory allocation
491  *
492  * Return:
493  * * %EFI_SUCCESS if the initrd was loaded successfully, in which
494  *   case @load_addr and @load_size are assigned accordingly
495  * * %EFI_NOT_FOUND if no LoadFile2 protocol exists on the initrd device path
496  * * %EFI_OUT_OF_RESOURCES if memory allocation failed
497  * * %EFI_LOAD_ERROR in all other cases
498  */
499 static
500 efi_status_t efi_load_initrd_dev_path(struct linux_efi_initrd *initrd,
501 				      unsigned long max)
502 {
503 	efi_guid_t lf2_proto_guid = EFI_LOAD_FILE2_PROTOCOL_GUID;
504 	efi_device_path_protocol_t *dp;
505 	efi_load_file2_protocol_t *lf2;
506 	efi_handle_t handle;
507 	efi_status_t status;
508 
509 	dp = (efi_device_path_protocol_t *)&initrd_dev_path;
510 	status = efi_bs_call(locate_device_path, &lf2_proto_guid, &dp, &handle);
511 	if (status != EFI_SUCCESS)
512 		return status;
513 
514 	status = efi_bs_call(handle_protocol, handle, &lf2_proto_guid,
515 			     (void **)&lf2);
516 	if (status != EFI_SUCCESS)
517 		return status;
518 
519 	initrd->size = 0;
520 	status = efi_call_proto(lf2, load_file, dp, false, &initrd->size, NULL);
521 	if (status != EFI_BUFFER_TOO_SMALL)
522 		return EFI_LOAD_ERROR;
523 
524 	status = efi_allocate_pages(initrd->size, &initrd->base, max);
525 	if (status != EFI_SUCCESS)
526 		return status;
527 
528 	status = efi_call_proto(lf2, load_file, dp, false, &initrd->size,
529 				(void *)initrd->base);
530 	if (status != EFI_SUCCESS) {
531 		efi_free(initrd->size, initrd->base);
532 		return EFI_LOAD_ERROR;
533 	}
534 	return EFI_SUCCESS;
535 }
536 
537 static
538 efi_status_t efi_load_initrd_cmdline(efi_loaded_image_t *image,
539 				     struct linux_efi_initrd *initrd,
540 				     unsigned long soft_limit,
541 				     unsigned long hard_limit)
542 {
543 	if (image == NULL)
544 		return EFI_UNSUPPORTED;
545 
546 	return handle_cmdline_files(image, L"initrd=", sizeof(L"initrd=") - 2,
547 				    soft_limit, hard_limit,
548 				    &initrd->base, &initrd->size);
549 }
550 
551 /**
552  * efi_load_initrd() - Load initial RAM disk
553  * @image:	EFI loaded image protocol
554  * @soft_limit:	preferred address for loading the initrd
555  * @hard_limit:	upper limit address for loading the initrd
556  *
557  * Return:	status code
558  */
559 efi_status_t efi_load_initrd(efi_loaded_image_t *image,
560 			     unsigned long soft_limit,
561 			     unsigned long hard_limit,
562 			     const struct linux_efi_initrd **out)
563 {
564 	efi_guid_t tbl_guid = LINUX_EFI_INITRD_MEDIA_GUID;
565 	efi_status_t status = EFI_SUCCESS;
566 	struct linux_efi_initrd initrd, *tbl;
567 
568 	if (!IS_ENABLED(CONFIG_BLK_DEV_INITRD) || efi_noinitrd)
569 		return EFI_SUCCESS;
570 
571 	status = efi_load_initrd_dev_path(&initrd, hard_limit);
572 	if (status == EFI_SUCCESS) {
573 		efi_info("Loaded initrd from LINUX_EFI_INITRD_MEDIA_GUID device path\n");
574 		if (initrd.size > 0 &&
575 		    efi_measure_tagged_event(initrd.base, initrd.size,
576 					     EFISTUB_EVT_INITRD) == EFI_SUCCESS)
577 			efi_info("Measured initrd data into PCR 9\n");
578 	} else if (status == EFI_NOT_FOUND) {
579 		status = efi_load_initrd_cmdline(image, &initrd, soft_limit,
580 						 hard_limit);
581 		/* command line loader disabled or no initrd= passed? */
582 		if (status == EFI_UNSUPPORTED || status == EFI_NOT_READY)
583 			return EFI_SUCCESS;
584 		if (status == EFI_SUCCESS)
585 			efi_info("Loaded initrd from command line option\n");
586 	}
587 	if (status != EFI_SUCCESS)
588 		goto failed;
589 
590 	status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, sizeof(initrd),
591 			     (void **)&tbl);
592 	if (status != EFI_SUCCESS)
593 		goto free_initrd;
594 
595 	*tbl = initrd;
596 	status = efi_bs_call(install_configuration_table, &tbl_guid, tbl);
597 	if (status != EFI_SUCCESS)
598 		goto free_tbl;
599 
600 	if (out)
601 		*out = tbl;
602 	return EFI_SUCCESS;
603 
604 free_tbl:
605 	efi_bs_call(free_pool, tbl);
606 free_initrd:
607 	efi_free(initrd.size, initrd.base);
608 failed:
609 	efi_err("Failed to load initrd: 0x%lx\n", status);
610 	return status;
611 }
612 
613 /**
614  * efi_wait_for_key() - Wait for key stroke
615  * @usec:	number of microseconds to wait for key stroke
616  * @key:	key entered
617  *
618  * Wait for up to @usec microseconds for a key stroke.
619  *
620  * Return:	status code, EFI_SUCCESS if key received
621  */
622 efi_status_t efi_wait_for_key(unsigned long usec, efi_input_key_t *key)
623 {
624 	efi_event_t events[2], timer;
625 	unsigned long index;
626 	efi_simple_text_input_protocol_t *con_in;
627 	efi_status_t status;
628 
629 	con_in = efi_table_attr(efi_system_table, con_in);
630 	if (!con_in)
631 		return EFI_UNSUPPORTED;
632 	efi_set_event_at(events, 0, efi_table_attr(con_in, wait_for_key));
633 
634 	status = efi_bs_call(create_event, EFI_EVT_TIMER, 0, NULL, NULL, &timer);
635 	if (status != EFI_SUCCESS)
636 		return status;
637 
638 	status = efi_bs_call(set_timer, timer, EfiTimerRelative,
639 			     EFI_100NSEC_PER_USEC * usec);
640 	if (status != EFI_SUCCESS)
641 		return status;
642 	efi_set_event_at(events, 1, timer);
643 
644 	status = efi_bs_call(wait_for_event, 2, events, &index);
645 	if (status == EFI_SUCCESS) {
646 		if (index == 0)
647 			status = efi_call_proto(con_in, read_keystroke, key);
648 		else
649 			status = EFI_TIMEOUT;
650 	}
651 
652 	efi_bs_call(close_event, timer);
653 
654 	return status;
655 }
656 
657 /**
658  * efi_remap_image - Remap a loaded image with the appropriate permissions
659  *                   for code and data
660  *
661  * @image_base:	the base of the image in memory
662  * @alloc_size:	the size of the area in memory occupied by the image
663  * @code_size:	the size of the leading part of the image containing code
664  * 		and read-only data
665  *
666  * efi_remap_image() uses the EFI memory attribute protocol to remap the code
667  * region of the loaded image read-only/executable, and the remainder
668  * read-write/non-executable. The code region is assumed to start at the base
669  * of the image, and will therefore cover the PE/COFF header as well.
670  */
671 void efi_remap_image(unsigned long image_base, unsigned alloc_size,
672 		     unsigned long code_size)
673 {
674 	efi_guid_t guid = EFI_MEMORY_ATTRIBUTE_PROTOCOL_GUID;
675 	efi_memory_attribute_protocol_t *memattr;
676 	efi_status_t status;
677 	u64 attr;
678 
679 	/*
680 	 * If the firmware implements the EFI_MEMORY_ATTRIBUTE_PROTOCOL, let's
681 	 * invoke it to remap the text/rodata region of the decompressed image
682 	 * as read-only and the data/bss region as non-executable.
683 	 */
684 	status = efi_bs_call(locate_protocol, &guid, NULL, (void **)&memattr);
685 	if (status != EFI_SUCCESS)
686 		return;
687 
688 	// Get the current attributes for the entire region
689 	status = memattr->get_memory_attributes(memattr, image_base,
690 						alloc_size, &attr);
691 	if (status != EFI_SUCCESS) {
692 		efi_warn("Failed to retrieve memory attributes for image region: 0x%lx\n",
693 			 status);
694 		return;
695 	}
696 
697 	// Mark the code region as read-only
698 	status = memattr->set_memory_attributes(memattr, image_base, code_size,
699 						EFI_MEMORY_RO);
700 	if (status != EFI_SUCCESS) {
701 		efi_warn("Failed to remap code region read-only\n");
702 		return;
703 	}
704 
705 	// If the entire region was already mapped as non-exec, clear the
706 	// attribute from the code region. Otherwise, set it on the data
707 	// region.
708 	if (attr & EFI_MEMORY_XP) {
709 		status = memattr->clear_memory_attributes(memattr, image_base,
710 							  code_size,
711 							  EFI_MEMORY_XP);
712 		if (status != EFI_SUCCESS)
713 			efi_warn("Failed to remap code region executable\n");
714 	} else {
715 		status = memattr->set_memory_attributes(memattr,
716 							image_base + code_size,
717 							alloc_size - code_size,
718 							EFI_MEMORY_XP);
719 		if (status != EFI_SUCCESS)
720 			efi_warn("Failed to remap data region non-executable\n");
721 	}
722 }
723