xref: /linux/drivers/firmware/efi/efi.c (revision 9c92ab61914157664a2fbdf926df0eb937838e45)
1 /*
2  * efi.c - EFI subsystem
3  *
4  * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com>
5  * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com>
6  * Copyright (C) 2013 Tom Gundersen <teg@jklm.no>
7  *
8  * This code registers /sys/firmware/efi{,/efivars} when EFI is supported,
9  * allowing the efivarfs to be mounted or the efivars module to be loaded.
10  * The existance of /sys/firmware/efi may also be used by userspace to
11  * determine that the system supports EFI.
12  *
13  * This file is released under the GPLv2.
14  */
15 
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 
18 #include <linux/kobject.h>
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/device.h>
22 #include <linux/efi.h>
23 #include <linux/of.h>
24 #include <linux/of_fdt.h>
25 #include <linux/io.h>
26 #include <linux/kexec.h>
27 #include <linux/platform_device.h>
28 #include <linux/random.h>
29 #include <linux/reboot.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/ucs2_string.h>
33 #include <linux/memblock.h>
34 
35 #include <asm/early_ioremap.h>
36 
37 struct efi __read_mostly efi = {
38 	.mps			= EFI_INVALID_TABLE_ADDR,
39 	.acpi			= EFI_INVALID_TABLE_ADDR,
40 	.acpi20			= EFI_INVALID_TABLE_ADDR,
41 	.smbios			= EFI_INVALID_TABLE_ADDR,
42 	.smbios3		= EFI_INVALID_TABLE_ADDR,
43 	.sal_systab		= EFI_INVALID_TABLE_ADDR,
44 	.boot_info		= EFI_INVALID_TABLE_ADDR,
45 	.hcdp			= EFI_INVALID_TABLE_ADDR,
46 	.uga			= EFI_INVALID_TABLE_ADDR,
47 	.uv_systab		= EFI_INVALID_TABLE_ADDR,
48 	.fw_vendor		= EFI_INVALID_TABLE_ADDR,
49 	.runtime		= EFI_INVALID_TABLE_ADDR,
50 	.config_table		= EFI_INVALID_TABLE_ADDR,
51 	.esrt			= EFI_INVALID_TABLE_ADDR,
52 	.properties_table	= EFI_INVALID_TABLE_ADDR,
53 	.mem_attr_table		= EFI_INVALID_TABLE_ADDR,
54 	.rng_seed		= EFI_INVALID_TABLE_ADDR,
55 	.tpm_log		= EFI_INVALID_TABLE_ADDR,
56 	.mem_reserve		= EFI_INVALID_TABLE_ADDR,
57 };
58 EXPORT_SYMBOL(efi);
59 
60 static unsigned long *efi_tables[] = {
61 	&efi.mps,
62 	&efi.acpi,
63 	&efi.acpi20,
64 	&efi.smbios,
65 	&efi.smbios3,
66 	&efi.sal_systab,
67 	&efi.boot_info,
68 	&efi.hcdp,
69 	&efi.uga,
70 	&efi.uv_systab,
71 	&efi.fw_vendor,
72 	&efi.runtime,
73 	&efi.config_table,
74 	&efi.esrt,
75 	&efi.properties_table,
76 	&efi.mem_attr_table,
77 };
78 
79 struct mm_struct efi_mm = {
80 	.mm_rb			= RB_ROOT,
81 	.mm_users		= ATOMIC_INIT(2),
82 	.mm_count		= ATOMIC_INIT(1),
83 	.mmap_sem		= __RWSEM_INITIALIZER(efi_mm.mmap_sem),
84 	.page_table_lock	= __SPIN_LOCK_UNLOCKED(efi_mm.page_table_lock),
85 	.mmlist			= LIST_HEAD_INIT(efi_mm.mmlist),
86 	.cpu_bitmap		= { [BITS_TO_LONGS(NR_CPUS)] = 0},
87 };
88 
89 struct workqueue_struct *efi_rts_wq;
90 
91 static bool disable_runtime;
92 static int __init setup_noefi(char *arg)
93 {
94 	disable_runtime = true;
95 	return 0;
96 }
97 early_param("noefi", setup_noefi);
98 
99 bool efi_runtime_disabled(void)
100 {
101 	return disable_runtime;
102 }
103 
104 static int __init parse_efi_cmdline(char *str)
105 {
106 	if (!str) {
107 		pr_warn("need at least one option\n");
108 		return -EINVAL;
109 	}
110 
111 	if (parse_option_str(str, "debug"))
112 		set_bit(EFI_DBG, &efi.flags);
113 
114 	if (parse_option_str(str, "noruntime"))
115 		disable_runtime = true;
116 
117 	return 0;
118 }
119 early_param("efi", parse_efi_cmdline);
120 
121 struct kobject *efi_kobj;
122 
123 /*
124  * Let's not leave out systab information that snuck into
125  * the efivars driver
126  * Note, do not add more fields in systab sysfs file as it breaks sysfs
127  * one value per file rule!
128  */
129 static ssize_t systab_show(struct kobject *kobj,
130 			   struct kobj_attribute *attr, char *buf)
131 {
132 	char *str = buf;
133 
134 	if (!kobj || !buf)
135 		return -EINVAL;
136 
137 	if (efi.mps != EFI_INVALID_TABLE_ADDR)
138 		str += sprintf(str, "MPS=0x%lx\n", efi.mps);
139 	if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
140 		str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20);
141 	if (efi.acpi != EFI_INVALID_TABLE_ADDR)
142 		str += sprintf(str, "ACPI=0x%lx\n", efi.acpi);
143 	/*
144 	 * If both SMBIOS and SMBIOS3 entry points are implemented, the
145 	 * SMBIOS3 entry point shall be preferred, so we list it first to
146 	 * let applications stop parsing after the first match.
147 	 */
148 	if (efi.smbios3 != EFI_INVALID_TABLE_ADDR)
149 		str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3);
150 	if (efi.smbios != EFI_INVALID_TABLE_ADDR)
151 		str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios);
152 	if (efi.hcdp != EFI_INVALID_TABLE_ADDR)
153 		str += sprintf(str, "HCDP=0x%lx\n", efi.hcdp);
154 	if (efi.boot_info != EFI_INVALID_TABLE_ADDR)
155 		str += sprintf(str, "BOOTINFO=0x%lx\n", efi.boot_info);
156 	if (efi.uga != EFI_INVALID_TABLE_ADDR)
157 		str += sprintf(str, "UGA=0x%lx\n", efi.uga);
158 
159 	return str - buf;
160 }
161 
162 static struct kobj_attribute efi_attr_systab = __ATTR_RO_MODE(systab, 0400);
163 
164 #define EFI_FIELD(var) efi.var
165 
166 #define EFI_ATTR_SHOW(name) \
167 static ssize_t name##_show(struct kobject *kobj, \
168 				struct kobj_attribute *attr, char *buf) \
169 { \
170 	return sprintf(buf, "0x%lx\n", EFI_FIELD(name)); \
171 }
172 
173 EFI_ATTR_SHOW(fw_vendor);
174 EFI_ATTR_SHOW(runtime);
175 EFI_ATTR_SHOW(config_table);
176 
177 static ssize_t fw_platform_size_show(struct kobject *kobj,
178 				     struct kobj_attribute *attr, char *buf)
179 {
180 	return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32);
181 }
182 
183 static struct kobj_attribute efi_attr_fw_vendor = __ATTR_RO(fw_vendor);
184 static struct kobj_attribute efi_attr_runtime = __ATTR_RO(runtime);
185 static struct kobj_attribute efi_attr_config_table = __ATTR_RO(config_table);
186 static struct kobj_attribute efi_attr_fw_platform_size =
187 	__ATTR_RO(fw_platform_size);
188 
189 static struct attribute *efi_subsys_attrs[] = {
190 	&efi_attr_systab.attr,
191 	&efi_attr_fw_vendor.attr,
192 	&efi_attr_runtime.attr,
193 	&efi_attr_config_table.attr,
194 	&efi_attr_fw_platform_size.attr,
195 	NULL,
196 };
197 
198 static umode_t efi_attr_is_visible(struct kobject *kobj,
199 				   struct attribute *attr, int n)
200 {
201 	if (attr == &efi_attr_fw_vendor.attr) {
202 		if (efi_enabled(EFI_PARAVIRT) ||
203 				efi.fw_vendor == EFI_INVALID_TABLE_ADDR)
204 			return 0;
205 	} else if (attr == &efi_attr_runtime.attr) {
206 		if (efi.runtime == EFI_INVALID_TABLE_ADDR)
207 			return 0;
208 	} else if (attr == &efi_attr_config_table.attr) {
209 		if (efi.config_table == EFI_INVALID_TABLE_ADDR)
210 			return 0;
211 	}
212 
213 	return attr->mode;
214 }
215 
216 static const struct attribute_group efi_subsys_attr_group = {
217 	.attrs = efi_subsys_attrs,
218 	.is_visible = efi_attr_is_visible,
219 };
220 
221 static struct efivars generic_efivars;
222 static struct efivar_operations generic_ops;
223 
224 static int generic_ops_register(void)
225 {
226 	generic_ops.get_variable = efi.get_variable;
227 	generic_ops.set_variable = efi.set_variable;
228 	generic_ops.set_variable_nonblocking = efi.set_variable_nonblocking;
229 	generic_ops.get_next_variable = efi.get_next_variable;
230 	generic_ops.query_variable_store = efi_query_variable_store;
231 
232 	return efivars_register(&generic_efivars, &generic_ops, efi_kobj);
233 }
234 
235 static void generic_ops_unregister(void)
236 {
237 	efivars_unregister(&generic_efivars);
238 }
239 
240 #if IS_ENABLED(CONFIG_ACPI)
241 #define EFIVAR_SSDT_NAME_MAX	16
242 static char efivar_ssdt[EFIVAR_SSDT_NAME_MAX] __initdata;
243 static int __init efivar_ssdt_setup(char *str)
244 {
245 	if (strlen(str) < sizeof(efivar_ssdt))
246 		memcpy(efivar_ssdt, str, strlen(str));
247 	else
248 		pr_warn("efivar_ssdt: name too long: %s\n", str);
249 	return 0;
250 }
251 __setup("efivar_ssdt=", efivar_ssdt_setup);
252 
253 static __init int efivar_ssdt_iter(efi_char16_t *name, efi_guid_t vendor,
254 				   unsigned long name_size, void *data)
255 {
256 	struct efivar_entry *entry;
257 	struct list_head *list = data;
258 	char utf8_name[EFIVAR_SSDT_NAME_MAX];
259 	int limit = min_t(unsigned long, EFIVAR_SSDT_NAME_MAX, name_size);
260 
261 	ucs2_as_utf8(utf8_name, name, limit - 1);
262 	if (strncmp(utf8_name, efivar_ssdt, limit) != 0)
263 		return 0;
264 
265 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
266 	if (!entry)
267 		return 0;
268 
269 	memcpy(entry->var.VariableName, name, name_size);
270 	memcpy(&entry->var.VendorGuid, &vendor, sizeof(efi_guid_t));
271 
272 	efivar_entry_add(entry, list);
273 
274 	return 0;
275 }
276 
277 static __init int efivar_ssdt_load(void)
278 {
279 	LIST_HEAD(entries);
280 	struct efivar_entry *entry, *aux;
281 	unsigned long size;
282 	void *data;
283 	int ret;
284 
285 	ret = efivar_init(efivar_ssdt_iter, &entries, true, &entries);
286 
287 	list_for_each_entry_safe(entry, aux, &entries, list) {
288 		pr_info("loading SSDT from variable %s-%pUl\n", efivar_ssdt,
289 			&entry->var.VendorGuid);
290 
291 		list_del(&entry->list);
292 
293 		ret = efivar_entry_size(entry, &size);
294 		if (ret) {
295 			pr_err("failed to get var size\n");
296 			goto free_entry;
297 		}
298 
299 		data = kmalloc(size, GFP_KERNEL);
300 		if (!data) {
301 			ret = -ENOMEM;
302 			goto free_entry;
303 		}
304 
305 		ret = efivar_entry_get(entry, NULL, &size, data);
306 		if (ret) {
307 			pr_err("failed to get var data\n");
308 			goto free_data;
309 		}
310 
311 		ret = acpi_load_table(data);
312 		if (ret) {
313 			pr_err("failed to load table: %d\n", ret);
314 			goto free_data;
315 		}
316 
317 		goto free_entry;
318 
319 free_data:
320 		kfree(data);
321 
322 free_entry:
323 		kfree(entry);
324 	}
325 
326 	return ret;
327 }
328 #else
329 static inline int efivar_ssdt_load(void) { return 0; }
330 #endif
331 
332 /*
333  * We register the efi subsystem with the firmware subsystem and the
334  * efivars subsystem with the efi subsystem, if the system was booted with
335  * EFI.
336  */
337 static int __init efisubsys_init(void)
338 {
339 	int error;
340 
341 	if (!efi_enabled(EFI_BOOT))
342 		return 0;
343 
344 	/*
345 	 * Since we process only one efi_runtime_service() at a time, an
346 	 * ordered workqueue (which creates only one execution context)
347 	 * should suffice all our needs.
348 	 */
349 	efi_rts_wq = alloc_ordered_workqueue("efi_rts_wq", 0);
350 	if (!efi_rts_wq) {
351 		pr_err("Creating efi_rts_wq failed, EFI runtime services disabled.\n");
352 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
353 		return 0;
354 	}
355 
356 	/* We register the efi directory at /sys/firmware/efi */
357 	efi_kobj = kobject_create_and_add("efi", firmware_kobj);
358 	if (!efi_kobj) {
359 		pr_err("efi: Firmware registration failed.\n");
360 		return -ENOMEM;
361 	}
362 
363 	error = generic_ops_register();
364 	if (error)
365 		goto err_put;
366 
367 	if (efi_enabled(EFI_RUNTIME_SERVICES))
368 		efivar_ssdt_load();
369 
370 	error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group);
371 	if (error) {
372 		pr_err("efi: Sysfs attribute export failed with error %d.\n",
373 		       error);
374 		goto err_unregister;
375 	}
376 
377 	error = efi_runtime_map_init(efi_kobj);
378 	if (error)
379 		goto err_remove_group;
380 
381 	/* and the standard mountpoint for efivarfs */
382 	error = sysfs_create_mount_point(efi_kobj, "efivars");
383 	if (error) {
384 		pr_err("efivars: Subsystem registration failed.\n");
385 		goto err_remove_group;
386 	}
387 
388 	return 0;
389 
390 err_remove_group:
391 	sysfs_remove_group(efi_kobj, &efi_subsys_attr_group);
392 err_unregister:
393 	generic_ops_unregister();
394 err_put:
395 	kobject_put(efi_kobj);
396 	return error;
397 }
398 
399 subsys_initcall(efisubsys_init);
400 
401 /*
402  * Find the efi memory descriptor for a given physical address.  Given a
403  * physical address, determine if it exists within an EFI Memory Map entry,
404  * and if so, populate the supplied memory descriptor with the appropriate
405  * data.
406  */
407 int efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
408 {
409 	efi_memory_desc_t *md;
410 
411 	if (!efi_enabled(EFI_MEMMAP)) {
412 		pr_err_once("EFI_MEMMAP is not enabled.\n");
413 		return -EINVAL;
414 	}
415 
416 	if (!out_md) {
417 		pr_err_once("out_md is null.\n");
418 		return -EINVAL;
419         }
420 
421 	for_each_efi_memory_desc(md) {
422 		u64 size;
423 		u64 end;
424 
425 		size = md->num_pages << EFI_PAGE_SHIFT;
426 		end = md->phys_addr + size;
427 		if (phys_addr >= md->phys_addr && phys_addr < end) {
428 			memcpy(out_md, md, sizeof(*out_md));
429 			return 0;
430 		}
431 	}
432 	return -ENOENT;
433 }
434 
435 /*
436  * Calculate the highest address of an efi memory descriptor.
437  */
438 u64 __init efi_mem_desc_end(efi_memory_desc_t *md)
439 {
440 	u64 size = md->num_pages << EFI_PAGE_SHIFT;
441 	u64 end = md->phys_addr + size;
442 	return end;
443 }
444 
445 void __init __weak efi_arch_mem_reserve(phys_addr_t addr, u64 size) {}
446 
447 /**
448  * efi_mem_reserve - Reserve an EFI memory region
449  * @addr: Physical address to reserve
450  * @size: Size of reservation
451  *
452  * Mark a region as reserved from general kernel allocation and
453  * prevent it being released by efi_free_boot_services().
454  *
455  * This function should be called drivers once they've parsed EFI
456  * configuration tables to figure out where their data lives, e.g.
457  * efi_esrt_init().
458  */
459 void __init efi_mem_reserve(phys_addr_t addr, u64 size)
460 {
461 	if (!memblock_is_region_reserved(addr, size))
462 		memblock_reserve(addr, size);
463 
464 	/*
465 	 * Some architectures (x86) reserve all boot services ranges
466 	 * until efi_free_boot_services() because of buggy firmware
467 	 * implementations. This means the above memblock_reserve() is
468 	 * superfluous on x86 and instead what it needs to do is
469 	 * ensure the @start, @size is not freed.
470 	 */
471 	efi_arch_mem_reserve(addr, size);
472 }
473 
474 static __initdata efi_config_table_type_t common_tables[] = {
475 	{ACPI_20_TABLE_GUID, "ACPI 2.0", &efi.acpi20},
476 	{ACPI_TABLE_GUID, "ACPI", &efi.acpi},
477 	{HCDP_TABLE_GUID, "HCDP", &efi.hcdp},
478 	{MPS_TABLE_GUID, "MPS", &efi.mps},
479 	{SAL_SYSTEM_TABLE_GUID, "SALsystab", &efi.sal_systab},
480 	{SMBIOS_TABLE_GUID, "SMBIOS", &efi.smbios},
481 	{SMBIOS3_TABLE_GUID, "SMBIOS 3.0", &efi.smbios3},
482 	{UGA_IO_PROTOCOL_GUID, "UGA", &efi.uga},
483 	{EFI_SYSTEM_RESOURCE_TABLE_GUID, "ESRT", &efi.esrt},
484 	{EFI_PROPERTIES_TABLE_GUID, "PROP", &efi.properties_table},
485 	{EFI_MEMORY_ATTRIBUTES_TABLE_GUID, "MEMATTR", &efi.mem_attr_table},
486 	{LINUX_EFI_RANDOM_SEED_TABLE_GUID, "RNG", &efi.rng_seed},
487 	{LINUX_EFI_TPM_EVENT_LOG_GUID, "TPMEventLog", &efi.tpm_log},
488 	{LINUX_EFI_MEMRESERVE_TABLE_GUID, "MEMRESERVE", &efi.mem_reserve},
489 	{NULL_GUID, NULL, NULL},
490 };
491 
492 static __init int match_config_table(efi_guid_t *guid,
493 				     unsigned long table,
494 				     efi_config_table_type_t *table_types)
495 {
496 	int i;
497 
498 	if (table_types) {
499 		for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) {
500 			if (!efi_guidcmp(*guid, table_types[i].guid)) {
501 				*(table_types[i].ptr) = table;
502 				if (table_types[i].name)
503 					pr_cont(" %s=0x%lx ",
504 						table_types[i].name, table);
505 				return 1;
506 			}
507 		}
508 	}
509 
510 	return 0;
511 }
512 
513 int __init efi_config_parse_tables(void *config_tables, int count, int sz,
514 				   efi_config_table_type_t *arch_tables)
515 {
516 	void *tablep;
517 	int i;
518 
519 	tablep = config_tables;
520 	pr_info("");
521 	for (i = 0; i < count; i++) {
522 		efi_guid_t guid;
523 		unsigned long table;
524 
525 		if (efi_enabled(EFI_64BIT)) {
526 			u64 table64;
527 			guid = ((efi_config_table_64_t *)tablep)->guid;
528 			table64 = ((efi_config_table_64_t *)tablep)->table;
529 			table = table64;
530 #ifndef CONFIG_64BIT
531 			if (table64 >> 32) {
532 				pr_cont("\n");
533 				pr_err("Table located above 4GB, disabling EFI.\n");
534 				return -EINVAL;
535 			}
536 #endif
537 		} else {
538 			guid = ((efi_config_table_32_t *)tablep)->guid;
539 			table = ((efi_config_table_32_t *)tablep)->table;
540 		}
541 
542 		if (!match_config_table(&guid, table, common_tables))
543 			match_config_table(&guid, table, arch_tables);
544 
545 		tablep += sz;
546 	}
547 	pr_cont("\n");
548 	set_bit(EFI_CONFIG_TABLES, &efi.flags);
549 
550 	if (efi.rng_seed != EFI_INVALID_TABLE_ADDR) {
551 		struct linux_efi_random_seed *seed;
552 		u32 size = 0;
553 
554 		seed = early_memremap(efi.rng_seed, sizeof(*seed));
555 		if (seed != NULL) {
556 			size = seed->size;
557 			early_memunmap(seed, sizeof(*seed));
558 		} else {
559 			pr_err("Could not map UEFI random seed!\n");
560 		}
561 		if (size > 0) {
562 			seed = early_memremap(efi.rng_seed,
563 					      sizeof(*seed) + size);
564 			if (seed != NULL) {
565 				pr_notice("seeding entropy pool\n");
566 				add_device_randomness(seed->bits, seed->size);
567 				early_memunmap(seed, sizeof(*seed) + size);
568 			} else {
569 				pr_err("Could not map UEFI random seed!\n");
570 			}
571 		}
572 	}
573 
574 	if (efi_enabled(EFI_MEMMAP))
575 		efi_memattr_init();
576 
577 	efi_tpm_eventlog_init();
578 
579 	/* Parse the EFI Properties table if it exists */
580 	if (efi.properties_table != EFI_INVALID_TABLE_ADDR) {
581 		efi_properties_table_t *tbl;
582 
583 		tbl = early_memremap(efi.properties_table, sizeof(*tbl));
584 		if (tbl == NULL) {
585 			pr_err("Could not map Properties table!\n");
586 			return -ENOMEM;
587 		}
588 
589 		if (tbl->memory_protection_attribute &
590 		    EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA)
591 			set_bit(EFI_NX_PE_DATA, &efi.flags);
592 
593 		early_memunmap(tbl, sizeof(*tbl));
594 	}
595 
596 	if (efi.mem_reserve != EFI_INVALID_TABLE_ADDR) {
597 		unsigned long prsv = efi.mem_reserve;
598 
599 		while (prsv) {
600 			struct linux_efi_memreserve *rsv;
601 			u8 *p;
602 			int i;
603 
604 			/*
605 			 * Just map a full page: that is what we will get
606 			 * anyway, and it permits us to map the entire entry
607 			 * before knowing its size.
608 			 */
609 			p = early_memremap(ALIGN_DOWN(prsv, PAGE_SIZE),
610 					   PAGE_SIZE);
611 			if (p == NULL) {
612 				pr_err("Could not map UEFI memreserve entry!\n");
613 				return -ENOMEM;
614 			}
615 
616 			rsv = (void *)(p + prsv % PAGE_SIZE);
617 
618 			/* reserve the entry itself */
619 			memblock_reserve(prsv, EFI_MEMRESERVE_SIZE(rsv->size));
620 
621 			for (i = 0; i < atomic_read(&rsv->count); i++) {
622 				memblock_reserve(rsv->entry[i].base,
623 						 rsv->entry[i].size);
624 			}
625 
626 			prsv = rsv->next;
627 			early_memunmap(p, PAGE_SIZE);
628 		}
629 	}
630 
631 	return 0;
632 }
633 
634 int __init efi_config_init(efi_config_table_type_t *arch_tables)
635 {
636 	void *config_tables;
637 	int sz, ret;
638 
639 	if (efi.systab->nr_tables == 0)
640 		return 0;
641 
642 	if (efi_enabled(EFI_64BIT))
643 		sz = sizeof(efi_config_table_64_t);
644 	else
645 		sz = sizeof(efi_config_table_32_t);
646 
647 	/*
648 	 * Let's see what config tables the firmware passed to us.
649 	 */
650 	config_tables = early_memremap(efi.systab->tables,
651 				       efi.systab->nr_tables * sz);
652 	if (config_tables == NULL) {
653 		pr_err("Could not map Configuration table!\n");
654 		return -ENOMEM;
655 	}
656 
657 	ret = efi_config_parse_tables(config_tables, efi.systab->nr_tables, sz,
658 				      arch_tables);
659 
660 	early_memunmap(config_tables, efi.systab->nr_tables * sz);
661 	return ret;
662 }
663 
664 #ifdef CONFIG_EFI_VARS_MODULE
665 static int __init efi_load_efivars(void)
666 {
667 	struct platform_device *pdev;
668 
669 	if (!efi_enabled(EFI_RUNTIME_SERVICES))
670 		return 0;
671 
672 	pdev = platform_device_register_simple("efivars", 0, NULL, 0);
673 	return PTR_ERR_OR_ZERO(pdev);
674 }
675 device_initcall(efi_load_efivars);
676 #endif
677 
678 #ifdef CONFIG_EFI_PARAMS_FROM_FDT
679 
680 #define UEFI_PARAM(name, prop, field)			   \
681 	{						   \
682 		{ name },				   \
683 		{ prop },				   \
684 		offsetof(struct efi_fdt_params, field),    \
685 		FIELD_SIZEOF(struct efi_fdt_params, field) \
686 	}
687 
688 struct params {
689 	const char name[32];
690 	const char propname[32];
691 	int offset;
692 	int size;
693 };
694 
695 static __initdata struct params fdt_params[] = {
696 	UEFI_PARAM("System Table", "linux,uefi-system-table", system_table),
697 	UEFI_PARAM("MemMap Address", "linux,uefi-mmap-start", mmap),
698 	UEFI_PARAM("MemMap Size", "linux,uefi-mmap-size", mmap_size),
699 	UEFI_PARAM("MemMap Desc. Size", "linux,uefi-mmap-desc-size", desc_size),
700 	UEFI_PARAM("MemMap Desc. Version", "linux,uefi-mmap-desc-ver", desc_ver)
701 };
702 
703 static __initdata struct params xen_fdt_params[] = {
704 	UEFI_PARAM("System Table", "xen,uefi-system-table", system_table),
705 	UEFI_PARAM("MemMap Address", "xen,uefi-mmap-start", mmap),
706 	UEFI_PARAM("MemMap Size", "xen,uefi-mmap-size", mmap_size),
707 	UEFI_PARAM("MemMap Desc. Size", "xen,uefi-mmap-desc-size", desc_size),
708 	UEFI_PARAM("MemMap Desc. Version", "xen,uefi-mmap-desc-ver", desc_ver)
709 };
710 
711 #define EFI_FDT_PARAMS_SIZE	ARRAY_SIZE(fdt_params)
712 
713 static __initdata struct {
714 	const char *uname;
715 	const char *subnode;
716 	struct params *params;
717 } dt_params[] = {
718 	{ "hypervisor", "uefi", xen_fdt_params },
719 	{ "chosen", NULL, fdt_params },
720 };
721 
722 struct param_info {
723 	int found;
724 	void *params;
725 	const char *missing;
726 };
727 
728 static int __init __find_uefi_params(unsigned long node,
729 				     struct param_info *info,
730 				     struct params *params)
731 {
732 	const void *prop;
733 	void *dest;
734 	u64 val;
735 	int i, len;
736 
737 	for (i = 0; i < EFI_FDT_PARAMS_SIZE; i++) {
738 		prop = of_get_flat_dt_prop(node, params[i].propname, &len);
739 		if (!prop) {
740 			info->missing = params[i].name;
741 			return 0;
742 		}
743 
744 		dest = info->params + params[i].offset;
745 		info->found++;
746 
747 		val = of_read_number(prop, len / sizeof(u32));
748 
749 		if (params[i].size == sizeof(u32))
750 			*(u32 *)dest = val;
751 		else
752 			*(u64 *)dest = val;
753 
754 		if (efi_enabled(EFI_DBG))
755 			pr_info("  %s: 0x%0*llx\n", params[i].name,
756 				params[i].size * 2, val);
757 	}
758 
759 	return 1;
760 }
761 
762 static int __init fdt_find_uefi_params(unsigned long node, const char *uname,
763 				       int depth, void *data)
764 {
765 	struct param_info *info = data;
766 	int i;
767 
768 	for (i = 0; i < ARRAY_SIZE(dt_params); i++) {
769 		const char *subnode = dt_params[i].subnode;
770 
771 		if (depth != 1 || strcmp(uname, dt_params[i].uname) != 0) {
772 			info->missing = dt_params[i].params[0].name;
773 			continue;
774 		}
775 
776 		if (subnode) {
777 			int err = of_get_flat_dt_subnode_by_name(node, subnode);
778 
779 			if (err < 0)
780 				return 0;
781 
782 			node = err;
783 		}
784 
785 		return __find_uefi_params(node, info, dt_params[i].params);
786 	}
787 
788 	return 0;
789 }
790 
791 int __init efi_get_fdt_params(struct efi_fdt_params *params)
792 {
793 	struct param_info info;
794 	int ret;
795 
796 	pr_info("Getting EFI parameters from FDT:\n");
797 
798 	info.found = 0;
799 	info.params = params;
800 
801 	ret = of_scan_flat_dt(fdt_find_uefi_params, &info);
802 	if (!info.found)
803 		pr_info("UEFI not found.\n");
804 	else if (!ret)
805 		pr_err("Can't find '%s' in device tree!\n",
806 		       info.missing);
807 
808 	return ret;
809 }
810 #endif /* CONFIG_EFI_PARAMS_FROM_FDT */
811 
812 static __initdata char memory_type_name[][20] = {
813 	"Reserved",
814 	"Loader Code",
815 	"Loader Data",
816 	"Boot Code",
817 	"Boot Data",
818 	"Runtime Code",
819 	"Runtime Data",
820 	"Conventional Memory",
821 	"Unusable Memory",
822 	"ACPI Reclaim Memory",
823 	"ACPI Memory NVS",
824 	"Memory Mapped I/O",
825 	"MMIO Port Space",
826 	"PAL Code",
827 	"Persistent Memory",
828 };
829 
830 char * __init efi_md_typeattr_format(char *buf, size_t size,
831 				     const efi_memory_desc_t *md)
832 {
833 	char *pos;
834 	int type_len;
835 	u64 attr;
836 
837 	pos = buf;
838 	if (md->type >= ARRAY_SIZE(memory_type_name))
839 		type_len = snprintf(pos, size, "[type=%u", md->type);
840 	else
841 		type_len = snprintf(pos, size, "[%-*s",
842 				    (int)(sizeof(memory_type_name[0]) - 1),
843 				    memory_type_name[md->type]);
844 	if (type_len >= size)
845 		return buf;
846 
847 	pos += type_len;
848 	size -= type_len;
849 
850 	attr = md->attribute;
851 	if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT |
852 		     EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO |
853 		     EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP |
854 		     EFI_MEMORY_NV |
855 		     EFI_MEMORY_RUNTIME | EFI_MEMORY_MORE_RELIABLE))
856 		snprintf(pos, size, "|attr=0x%016llx]",
857 			 (unsigned long long)attr);
858 	else
859 		snprintf(pos, size,
860 			 "|%3s|%2s|%2s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]",
861 			 attr & EFI_MEMORY_RUNTIME ? "RUN" : "",
862 			 attr & EFI_MEMORY_MORE_RELIABLE ? "MR" : "",
863 			 attr & EFI_MEMORY_NV      ? "NV"  : "",
864 			 attr & EFI_MEMORY_XP      ? "XP"  : "",
865 			 attr & EFI_MEMORY_RP      ? "RP"  : "",
866 			 attr & EFI_MEMORY_WP      ? "WP"  : "",
867 			 attr & EFI_MEMORY_RO      ? "RO"  : "",
868 			 attr & EFI_MEMORY_UCE     ? "UCE" : "",
869 			 attr & EFI_MEMORY_WB      ? "WB"  : "",
870 			 attr & EFI_MEMORY_WT      ? "WT"  : "",
871 			 attr & EFI_MEMORY_WC      ? "WC"  : "",
872 			 attr & EFI_MEMORY_UC      ? "UC"  : "");
873 	return buf;
874 }
875 
876 /*
877  * IA64 has a funky EFI memory map that doesn't work the same way as
878  * other architectures.
879  */
880 #ifndef CONFIG_IA64
881 /*
882  * efi_mem_attributes - lookup memmap attributes for physical address
883  * @phys_addr: the physical address to lookup
884  *
885  * Search in the EFI memory map for the region covering
886  * @phys_addr. Returns the EFI memory attributes if the region
887  * was found in the memory map, 0 otherwise.
888  */
889 u64 efi_mem_attributes(unsigned long phys_addr)
890 {
891 	efi_memory_desc_t *md;
892 
893 	if (!efi_enabled(EFI_MEMMAP))
894 		return 0;
895 
896 	for_each_efi_memory_desc(md) {
897 		if ((md->phys_addr <= phys_addr) &&
898 		    (phys_addr < (md->phys_addr +
899 		    (md->num_pages << EFI_PAGE_SHIFT))))
900 			return md->attribute;
901 	}
902 	return 0;
903 }
904 
905 /*
906  * efi_mem_type - lookup memmap type for physical address
907  * @phys_addr: the physical address to lookup
908  *
909  * Search in the EFI memory map for the region covering @phys_addr.
910  * Returns the EFI memory type if the region was found in the memory
911  * map, EFI_RESERVED_TYPE (zero) otherwise.
912  */
913 int efi_mem_type(unsigned long phys_addr)
914 {
915 	const efi_memory_desc_t *md;
916 
917 	if (!efi_enabled(EFI_MEMMAP))
918 		return -ENOTSUPP;
919 
920 	for_each_efi_memory_desc(md) {
921 		if ((md->phys_addr <= phys_addr) &&
922 		    (phys_addr < (md->phys_addr +
923 				  (md->num_pages << EFI_PAGE_SHIFT))))
924 			return md->type;
925 	}
926 	return -EINVAL;
927 }
928 #endif
929 
930 int efi_status_to_err(efi_status_t status)
931 {
932 	int err;
933 
934 	switch (status) {
935 	case EFI_SUCCESS:
936 		err = 0;
937 		break;
938 	case EFI_INVALID_PARAMETER:
939 		err = -EINVAL;
940 		break;
941 	case EFI_OUT_OF_RESOURCES:
942 		err = -ENOSPC;
943 		break;
944 	case EFI_DEVICE_ERROR:
945 		err = -EIO;
946 		break;
947 	case EFI_WRITE_PROTECTED:
948 		err = -EROFS;
949 		break;
950 	case EFI_SECURITY_VIOLATION:
951 		err = -EACCES;
952 		break;
953 	case EFI_NOT_FOUND:
954 		err = -ENOENT;
955 		break;
956 	case EFI_ABORTED:
957 		err = -EINTR;
958 		break;
959 	default:
960 		err = -EINVAL;
961 	}
962 
963 	return err;
964 }
965 
966 bool efi_is_table_address(unsigned long phys_addr)
967 {
968 	unsigned int i;
969 
970 	if (phys_addr == EFI_INVALID_TABLE_ADDR)
971 		return false;
972 
973 	for (i = 0; i < ARRAY_SIZE(efi_tables); i++)
974 		if (*(efi_tables[i]) == phys_addr)
975 			return true;
976 
977 	return false;
978 }
979 
980 static DEFINE_SPINLOCK(efi_mem_reserve_persistent_lock);
981 static struct linux_efi_memreserve *efi_memreserve_root __ro_after_init;
982 
983 static int __init efi_memreserve_map_root(void)
984 {
985 	if (efi.mem_reserve == EFI_INVALID_TABLE_ADDR)
986 		return -ENODEV;
987 
988 	efi_memreserve_root = memremap(efi.mem_reserve,
989 				       sizeof(*efi_memreserve_root),
990 				       MEMREMAP_WB);
991 	if (WARN_ON_ONCE(!efi_memreserve_root))
992 		return -ENOMEM;
993 	return 0;
994 }
995 
996 int __ref efi_mem_reserve_persistent(phys_addr_t addr, u64 size)
997 {
998 	struct linux_efi_memreserve *rsv;
999 	unsigned long prsv;
1000 	int rc, index;
1001 
1002 	if (efi_memreserve_root == (void *)ULONG_MAX)
1003 		return -ENODEV;
1004 
1005 	if (!efi_memreserve_root) {
1006 		rc = efi_memreserve_map_root();
1007 		if (rc)
1008 			return rc;
1009 	}
1010 
1011 	/* first try to find a slot in an existing linked list entry */
1012 	for (prsv = efi_memreserve_root->next; prsv; prsv = rsv->next) {
1013 		rsv = __va(prsv);
1014 		index = atomic_fetch_add_unless(&rsv->count, 1, rsv->size);
1015 		if (index < rsv->size) {
1016 			rsv->entry[index].base = addr;
1017 			rsv->entry[index].size = size;
1018 
1019 			return 0;
1020 		}
1021 	}
1022 
1023 	/* no slot found - allocate a new linked list entry */
1024 	rsv = (struct linux_efi_memreserve *)__get_free_page(GFP_ATOMIC);
1025 	if (!rsv)
1026 		return -ENOMEM;
1027 
1028 	rsv->size = EFI_MEMRESERVE_COUNT(PAGE_SIZE);
1029 	atomic_set(&rsv->count, 1);
1030 	rsv->entry[0].base = addr;
1031 	rsv->entry[0].size = size;
1032 
1033 	spin_lock(&efi_mem_reserve_persistent_lock);
1034 	rsv->next = efi_memreserve_root->next;
1035 	efi_memreserve_root->next = __pa(rsv);
1036 	spin_unlock(&efi_mem_reserve_persistent_lock);
1037 
1038 	return 0;
1039 }
1040 
1041 static int __init efi_memreserve_root_init(void)
1042 {
1043 	if (efi_memreserve_root)
1044 		return 0;
1045 	if (efi_memreserve_map_root())
1046 		efi_memreserve_root = (void *)ULONG_MAX;
1047 	return 0;
1048 }
1049 early_initcall(efi_memreserve_root_init);
1050 
1051 #ifdef CONFIG_KEXEC
1052 static int update_efi_random_seed(struct notifier_block *nb,
1053 				  unsigned long code, void *unused)
1054 {
1055 	struct linux_efi_random_seed *seed;
1056 	u32 size = 0;
1057 
1058 	if (!kexec_in_progress)
1059 		return NOTIFY_DONE;
1060 
1061 	seed = memremap(efi.rng_seed, sizeof(*seed), MEMREMAP_WB);
1062 	if (seed != NULL) {
1063 		size = min(seed->size, EFI_RANDOM_SEED_SIZE);
1064 		memunmap(seed);
1065 	} else {
1066 		pr_err("Could not map UEFI random seed!\n");
1067 	}
1068 	if (size > 0) {
1069 		seed = memremap(efi.rng_seed, sizeof(*seed) + size,
1070 				MEMREMAP_WB);
1071 		if (seed != NULL) {
1072 			seed->size = size;
1073 			get_random_bytes(seed->bits, seed->size);
1074 			memunmap(seed);
1075 		} else {
1076 			pr_err("Could not map UEFI random seed!\n");
1077 		}
1078 	}
1079 	return NOTIFY_DONE;
1080 }
1081 
1082 static struct notifier_block efi_random_seed_nb = {
1083 	.notifier_call = update_efi_random_seed,
1084 };
1085 
1086 static int register_update_efi_random_seed(void)
1087 {
1088 	if (efi.rng_seed == EFI_INVALID_TABLE_ADDR)
1089 		return 0;
1090 	return register_reboot_notifier(&efi_random_seed_nb);
1091 }
1092 late_initcall(register_update_efi_random_seed);
1093 #endif
1094