xref: /linux/drivers/firmware/efi/efi.c (revision 25489a4f556414445d342951615178368ee45cde)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * efi.c - EFI subsystem
4  *
5  * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com>
6  * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com>
7  * Copyright (C) 2013 Tom Gundersen <teg@jklm.no>
8  *
9  * This code registers /sys/firmware/efi{,/efivars} when EFI is supported,
10  * allowing the efivarfs to be mounted or the efivars module to be loaded.
11  * The existance of /sys/firmware/efi may also be used by userspace to
12  * determine that the system supports EFI.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/kobject.h>
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/debugfs.h>
21 #include <linux/device.h>
22 #include <linux/efi.h>
23 #include <linux/of.h>
24 #include <linux/initrd.h>
25 #include <linux/io.h>
26 #include <linux/kexec.h>
27 #include <linux/platform_device.h>
28 #include <linux/random.h>
29 #include <linux/reboot.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/ucs2_string.h>
33 #include <linux/memblock.h>
34 #include <linux/security.h>
35 #include <linux/notifier.h>
36 
37 #include <asm/early_ioremap.h>
38 
39 struct efi __read_mostly efi = {
40 	.runtime_supported_mask = EFI_RT_SUPPORTED_ALL,
41 	.acpi			= EFI_INVALID_TABLE_ADDR,
42 	.acpi20			= EFI_INVALID_TABLE_ADDR,
43 	.smbios			= EFI_INVALID_TABLE_ADDR,
44 	.smbios3		= EFI_INVALID_TABLE_ADDR,
45 	.esrt			= EFI_INVALID_TABLE_ADDR,
46 	.tpm_log		= EFI_INVALID_TABLE_ADDR,
47 	.tpm_final_log		= EFI_INVALID_TABLE_ADDR,
48 #ifdef CONFIG_LOAD_UEFI_KEYS
49 	.mokvar_table		= EFI_INVALID_TABLE_ADDR,
50 #endif
51 #ifdef CONFIG_EFI_COCO_SECRET
52 	.coco_secret		= EFI_INVALID_TABLE_ADDR,
53 #endif
54 #ifdef CONFIG_UNACCEPTED_MEMORY
55 	.unaccepted		= EFI_INVALID_TABLE_ADDR,
56 #endif
57 };
58 EXPORT_SYMBOL(efi);
59 
60 unsigned long __ro_after_init efi_rng_seed = EFI_INVALID_TABLE_ADDR;
61 static unsigned long __initdata mem_reserve = EFI_INVALID_TABLE_ADDR;
62 static unsigned long __initdata rt_prop = EFI_INVALID_TABLE_ADDR;
63 static unsigned long __initdata initrd = EFI_INVALID_TABLE_ADDR;
64 
65 extern unsigned long screen_info_table;
66 
67 struct mm_struct efi_mm = {
68 	.mm_mt			= MTREE_INIT_EXT(mm_mt, MM_MT_FLAGS, efi_mm.mmap_lock),
69 	.mm_users		= ATOMIC_INIT(2),
70 	.mm_count		= ATOMIC_INIT(1),
71 	.write_protect_seq      = SEQCNT_ZERO(efi_mm.write_protect_seq),
72 	MMAP_LOCK_INITIALIZER(efi_mm)
73 	.page_table_lock	= __SPIN_LOCK_UNLOCKED(efi_mm.page_table_lock),
74 	.mmlist			= LIST_HEAD_INIT(efi_mm.mmlist),
75 	.cpu_bitmap		= { [BITS_TO_LONGS(NR_CPUS)] = 0},
76 };
77 
78 struct workqueue_struct *efi_rts_wq;
79 
80 static bool disable_runtime = IS_ENABLED(CONFIG_EFI_DISABLE_RUNTIME);
81 static int __init setup_noefi(char *arg)
82 {
83 	disable_runtime = true;
84 	return 0;
85 }
86 early_param("noefi", setup_noefi);
87 
88 bool efi_runtime_disabled(void)
89 {
90 	return disable_runtime;
91 }
92 
93 bool __pure __efi_soft_reserve_enabled(void)
94 {
95 	return !efi_enabled(EFI_MEM_NO_SOFT_RESERVE);
96 }
97 
98 static int __init parse_efi_cmdline(char *str)
99 {
100 	if (!str) {
101 		pr_warn("need at least one option\n");
102 		return -EINVAL;
103 	}
104 
105 	if (parse_option_str(str, "debug"))
106 		set_bit(EFI_DBG, &efi.flags);
107 
108 	if (parse_option_str(str, "noruntime"))
109 		disable_runtime = true;
110 
111 	if (parse_option_str(str, "runtime"))
112 		disable_runtime = false;
113 
114 	if (parse_option_str(str, "nosoftreserve"))
115 		set_bit(EFI_MEM_NO_SOFT_RESERVE, &efi.flags);
116 
117 	return 0;
118 }
119 early_param("efi", parse_efi_cmdline);
120 
121 struct kobject *efi_kobj;
122 
123 /*
124  * Let's not leave out systab information that snuck into
125  * the efivars driver
126  * Note, do not add more fields in systab sysfs file as it breaks sysfs
127  * one value per file rule!
128  */
129 static ssize_t systab_show(struct kobject *kobj,
130 			   struct kobj_attribute *attr, char *buf)
131 {
132 	char *str = buf;
133 
134 	if (!kobj || !buf)
135 		return -EINVAL;
136 
137 	if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
138 		str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20);
139 	if (efi.acpi != EFI_INVALID_TABLE_ADDR)
140 		str += sprintf(str, "ACPI=0x%lx\n", efi.acpi);
141 	/*
142 	 * If both SMBIOS and SMBIOS3 entry points are implemented, the
143 	 * SMBIOS3 entry point shall be preferred, so we list it first to
144 	 * let applications stop parsing after the first match.
145 	 */
146 	if (efi.smbios3 != EFI_INVALID_TABLE_ADDR)
147 		str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3);
148 	if (efi.smbios != EFI_INVALID_TABLE_ADDR)
149 		str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios);
150 
151 	return str - buf;
152 }
153 
154 static struct kobj_attribute efi_attr_systab = __ATTR_RO_MODE(systab, 0400);
155 
156 static ssize_t fw_platform_size_show(struct kobject *kobj,
157 				     struct kobj_attribute *attr, char *buf)
158 {
159 	return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32);
160 }
161 
162 extern __weak struct kobj_attribute efi_attr_fw_vendor;
163 extern __weak struct kobj_attribute efi_attr_runtime;
164 extern __weak struct kobj_attribute efi_attr_config_table;
165 static struct kobj_attribute efi_attr_fw_platform_size =
166 	__ATTR_RO(fw_platform_size);
167 
168 static struct attribute *efi_subsys_attrs[] = {
169 	&efi_attr_systab.attr,
170 	&efi_attr_fw_platform_size.attr,
171 	&efi_attr_fw_vendor.attr,
172 	&efi_attr_runtime.attr,
173 	&efi_attr_config_table.attr,
174 	NULL,
175 };
176 
177 umode_t __weak efi_attr_is_visible(struct kobject *kobj, struct attribute *attr,
178 				   int n)
179 {
180 	return attr->mode;
181 }
182 
183 static const struct attribute_group efi_subsys_attr_group = {
184 	.attrs = efi_subsys_attrs,
185 	.is_visible = efi_attr_is_visible,
186 };
187 
188 struct blocking_notifier_head efivar_ops_nh;
189 EXPORT_SYMBOL_GPL(efivar_ops_nh);
190 
191 static struct efivars generic_efivars;
192 static struct efivar_operations generic_ops;
193 
194 static bool generic_ops_supported(void)
195 {
196 	unsigned long name_size;
197 	efi_status_t status;
198 	efi_char16_t name;
199 	efi_guid_t guid;
200 
201 	name_size = sizeof(name);
202 
203 	if (!efi.get_next_variable)
204 		return false;
205 	status = efi.get_next_variable(&name_size, &name, &guid);
206 	if (status == EFI_UNSUPPORTED)
207 		return false;
208 
209 	return true;
210 }
211 
212 static int generic_ops_register(void)
213 {
214 	if (!generic_ops_supported())
215 		return 0;
216 
217 	generic_ops.get_variable = efi.get_variable;
218 	generic_ops.get_next_variable = efi.get_next_variable;
219 	generic_ops.query_variable_store = efi_query_variable_store;
220 	generic_ops.query_variable_info = efi.query_variable_info;
221 
222 	if (efi_rt_services_supported(EFI_RT_SUPPORTED_SET_VARIABLE)) {
223 		generic_ops.set_variable = efi.set_variable;
224 		generic_ops.set_variable_nonblocking = efi.set_variable_nonblocking;
225 	}
226 	return efivars_register(&generic_efivars, &generic_ops);
227 }
228 
229 static void generic_ops_unregister(void)
230 {
231 	if (!generic_ops.get_variable)
232 		return;
233 
234 	efivars_unregister(&generic_efivars);
235 }
236 
237 void efivars_generic_ops_register(void)
238 {
239 	generic_ops_register();
240 }
241 EXPORT_SYMBOL_GPL(efivars_generic_ops_register);
242 
243 void efivars_generic_ops_unregister(void)
244 {
245 	generic_ops_unregister();
246 }
247 EXPORT_SYMBOL_GPL(efivars_generic_ops_unregister);
248 
249 #ifdef CONFIG_EFI_CUSTOM_SSDT_OVERLAYS
250 #define EFIVAR_SSDT_NAME_MAX	16UL
251 static char efivar_ssdt[EFIVAR_SSDT_NAME_MAX] __initdata;
252 static int __init efivar_ssdt_setup(char *str)
253 {
254 	int ret = security_locked_down(LOCKDOWN_ACPI_TABLES);
255 
256 	if (ret)
257 		return ret;
258 
259 	if (strlen(str) < sizeof(efivar_ssdt))
260 		memcpy(efivar_ssdt, str, strlen(str));
261 	else
262 		pr_warn("efivar_ssdt: name too long: %s\n", str);
263 	return 1;
264 }
265 __setup("efivar_ssdt=", efivar_ssdt_setup);
266 
267 static __init int efivar_ssdt_load(void)
268 {
269 	unsigned long name_size = 256;
270 	efi_char16_t *name = NULL;
271 	efi_status_t status;
272 	efi_guid_t guid;
273 	int ret = 0;
274 
275 	if (!efivar_ssdt[0])
276 		return 0;
277 
278 	name = kzalloc(name_size, GFP_KERNEL);
279 	if (!name)
280 		return -ENOMEM;
281 
282 	for (;;) {
283 		char utf8_name[EFIVAR_SSDT_NAME_MAX];
284 		unsigned long data_size = 0;
285 		void *data;
286 		int limit;
287 
288 		status = efi.get_next_variable(&name_size, name, &guid);
289 		if (status == EFI_NOT_FOUND) {
290 			break;
291 		} else if (status == EFI_BUFFER_TOO_SMALL) {
292 			efi_char16_t *name_tmp =
293 				krealloc(name, name_size, GFP_KERNEL);
294 			if (!name_tmp) {
295 				ret = -ENOMEM;
296 				goto out;
297 			}
298 			name = name_tmp;
299 			continue;
300 		}
301 
302 		limit = min(EFIVAR_SSDT_NAME_MAX, name_size);
303 		ucs2_as_utf8(utf8_name, name, limit - 1);
304 		if (strncmp(utf8_name, efivar_ssdt, limit) != 0)
305 			continue;
306 
307 		pr_info("loading SSDT from variable %s-%pUl\n", efivar_ssdt, &guid);
308 
309 		status = efi.get_variable(name, &guid, NULL, &data_size, NULL);
310 		if (status != EFI_BUFFER_TOO_SMALL || !data_size) {
311 			ret = -EIO;
312 			goto out;
313 		}
314 
315 		data = kmalloc(data_size, GFP_KERNEL);
316 		if (!data) {
317 			ret = -ENOMEM;
318 			goto out;
319 		}
320 
321 		status = efi.get_variable(name, &guid, NULL, &data_size, data);
322 		if (status == EFI_SUCCESS) {
323 			acpi_status acpi_ret = acpi_load_table(data, NULL);
324 			if (ACPI_FAILURE(acpi_ret)) {
325 				pr_err("efivar_ssdt: failed to load table: %u\n",
326 				       acpi_ret);
327 			} else {
328 				/*
329 				 * The @data will be in use by ACPI engine,
330 				 * do not free it!
331 				 */
332 				continue;
333 			}
334 		} else {
335 			pr_err("efivar_ssdt: failed to get var data: 0x%lx\n", status);
336 		}
337 		kfree(data);
338 	}
339 out:
340 	kfree(name);
341 	return ret;
342 }
343 #else
344 static inline int efivar_ssdt_load(void) { return 0; }
345 #endif
346 
347 #ifdef CONFIG_DEBUG_FS
348 
349 #define EFI_DEBUGFS_MAX_BLOBS 32
350 
351 static struct debugfs_blob_wrapper debugfs_blob[EFI_DEBUGFS_MAX_BLOBS];
352 
353 static void __init efi_debugfs_init(void)
354 {
355 	struct dentry *efi_debugfs;
356 	efi_memory_desc_t *md;
357 	char name[32];
358 	int type_count[EFI_BOOT_SERVICES_DATA + 1] = {};
359 	int i = 0;
360 
361 	efi_debugfs = debugfs_create_dir("efi", NULL);
362 	if (IS_ERR(efi_debugfs))
363 		return;
364 
365 	for_each_efi_memory_desc(md) {
366 		switch (md->type) {
367 		case EFI_BOOT_SERVICES_CODE:
368 			snprintf(name, sizeof(name), "boot_services_code%d",
369 				 type_count[md->type]++);
370 			break;
371 		case EFI_BOOT_SERVICES_DATA:
372 			snprintf(name, sizeof(name), "boot_services_data%d",
373 				 type_count[md->type]++);
374 			break;
375 		default:
376 			continue;
377 		}
378 
379 		if (i >= EFI_DEBUGFS_MAX_BLOBS) {
380 			pr_warn("More then %d EFI boot service segments, only showing first %d in debugfs\n",
381 				EFI_DEBUGFS_MAX_BLOBS, EFI_DEBUGFS_MAX_BLOBS);
382 			break;
383 		}
384 
385 		debugfs_blob[i].size = md->num_pages << EFI_PAGE_SHIFT;
386 		debugfs_blob[i].data = memremap(md->phys_addr,
387 						debugfs_blob[i].size,
388 						MEMREMAP_WB);
389 		if (!debugfs_blob[i].data)
390 			continue;
391 
392 		debugfs_create_blob(name, 0400, efi_debugfs, &debugfs_blob[i]);
393 		i++;
394 	}
395 }
396 #else
397 static inline void efi_debugfs_init(void) {}
398 #endif
399 
400 /*
401  * We register the efi subsystem with the firmware subsystem and the
402  * efivars subsystem with the efi subsystem, if the system was booted with
403  * EFI.
404  */
405 static int __init efisubsys_init(void)
406 {
407 	int error;
408 
409 	if (!efi_enabled(EFI_RUNTIME_SERVICES))
410 		efi.runtime_supported_mask = 0;
411 
412 	if (!efi_enabled(EFI_BOOT))
413 		return 0;
414 
415 	if (efi.runtime_supported_mask) {
416 		/*
417 		 * Since we process only one efi_runtime_service() at a time, an
418 		 * ordered workqueue (which creates only one execution context)
419 		 * should suffice for all our needs.
420 		 */
421 		efi_rts_wq = alloc_ordered_workqueue("efi_rts_wq", 0);
422 		if (!efi_rts_wq) {
423 			pr_err("Creating efi_rts_wq failed, EFI runtime services disabled.\n");
424 			clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
425 			efi.runtime_supported_mask = 0;
426 			return 0;
427 		}
428 	}
429 
430 	if (efi_rt_services_supported(EFI_RT_SUPPORTED_TIME_SERVICES))
431 		platform_device_register_simple("rtc-efi", 0, NULL, 0);
432 
433 	/* We register the efi directory at /sys/firmware/efi */
434 	efi_kobj = kobject_create_and_add("efi", firmware_kobj);
435 	if (!efi_kobj) {
436 		pr_err("efi: Firmware registration failed.\n");
437 		error = -ENOMEM;
438 		goto err_destroy_wq;
439 	}
440 
441 	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
442 				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME)) {
443 		error = generic_ops_register();
444 		if (error)
445 			goto err_put;
446 		error = efivar_ssdt_load();
447 		if (error)
448 			pr_err("efi: failed to load SSDT, error %d.\n", error);
449 		platform_device_register_simple("efivars", 0, NULL, 0);
450 	}
451 
452 	BLOCKING_INIT_NOTIFIER_HEAD(&efivar_ops_nh);
453 
454 	error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group);
455 	if (error) {
456 		pr_err("efi: Sysfs attribute export failed with error %d.\n",
457 		       error);
458 		goto err_unregister;
459 	}
460 
461 	/* and the standard mountpoint for efivarfs */
462 	error = sysfs_create_mount_point(efi_kobj, "efivars");
463 	if (error) {
464 		pr_err("efivars: Subsystem registration failed.\n");
465 		goto err_remove_group;
466 	}
467 
468 	if (efi_enabled(EFI_DBG) && efi_enabled(EFI_PRESERVE_BS_REGIONS))
469 		efi_debugfs_init();
470 
471 #ifdef CONFIG_EFI_COCO_SECRET
472 	if (efi.coco_secret != EFI_INVALID_TABLE_ADDR)
473 		platform_device_register_simple("efi_secret", 0, NULL, 0);
474 #endif
475 
476 	return 0;
477 
478 err_remove_group:
479 	sysfs_remove_group(efi_kobj, &efi_subsys_attr_group);
480 err_unregister:
481 	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
482 				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME))
483 		generic_ops_unregister();
484 err_put:
485 	kobject_put(efi_kobj);
486 	efi_kobj = NULL;
487 err_destroy_wq:
488 	if (efi_rts_wq)
489 		destroy_workqueue(efi_rts_wq);
490 
491 	return error;
492 }
493 
494 subsys_initcall(efisubsys_init);
495 
496 void __init efi_find_mirror(void)
497 {
498 	efi_memory_desc_t *md;
499 	u64 mirror_size = 0, total_size = 0;
500 
501 	if (!efi_enabled(EFI_MEMMAP))
502 		return;
503 
504 	for_each_efi_memory_desc(md) {
505 		unsigned long long start = md->phys_addr;
506 		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
507 
508 		total_size += size;
509 		if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
510 			memblock_mark_mirror(start, size);
511 			mirror_size += size;
512 		}
513 	}
514 	if (mirror_size)
515 		pr_info("Memory: %lldM/%lldM mirrored memory\n",
516 			mirror_size>>20, total_size>>20);
517 }
518 
519 /*
520  * Find the efi memory descriptor for a given physical address.  Given a
521  * physical address, determine if it exists within an EFI Memory Map entry,
522  * and if so, populate the supplied memory descriptor with the appropriate
523  * data.
524  */
525 int __efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
526 {
527 	efi_memory_desc_t *md;
528 
529 	if (!efi_enabled(EFI_MEMMAP)) {
530 		pr_err_once("EFI_MEMMAP is not enabled.\n");
531 		return -EINVAL;
532 	}
533 
534 	if (!out_md) {
535 		pr_err_once("out_md is null.\n");
536 		return -EINVAL;
537         }
538 
539 	for_each_efi_memory_desc(md) {
540 		u64 size;
541 		u64 end;
542 
543 		/* skip bogus entries (including empty ones) */
544 		if ((md->phys_addr & (EFI_PAGE_SIZE - 1)) ||
545 		    (md->num_pages <= 0) ||
546 		    (md->num_pages > (U64_MAX - md->phys_addr) >> EFI_PAGE_SHIFT))
547 			continue;
548 
549 		size = md->num_pages << EFI_PAGE_SHIFT;
550 		end = md->phys_addr + size;
551 		if (phys_addr >= md->phys_addr && phys_addr < end) {
552 			memcpy(out_md, md, sizeof(*out_md));
553 			return 0;
554 		}
555 	}
556 	return -ENOENT;
557 }
558 
559 extern int efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
560 	__weak __alias(__efi_mem_desc_lookup);
561 EXPORT_SYMBOL_GPL(efi_mem_desc_lookup);
562 
563 /*
564  * Calculate the highest address of an efi memory descriptor.
565  */
566 u64 __init efi_mem_desc_end(efi_memory_desc_t *md)
567 {
568 	u64 size = md->num_pages << EFI_PAGE_SHIFT;
569 	u64 end = md->phys_addr + size;
570 	return end;
571 }
572 
573 void __init __weak efi_arch_mem_reserve(phys_addr_t addr, u64 size) {}
574 
575 /**
576  * efi_mem_reserve - Reserve an EFI memory region
577  * @addr: Physical address to reserve
578  * @size: Size of reservation
579  *
580  * Mark a region as reserved from general kernel allocation and
581  * prevent it being released by efi_free_boot_services().
582  *
583  * This function should be called drivers once they've parsed EFI
584  * configuration tables to figure out where their data lives, e.g.
585  * efi_esrt_init().
586  */
587 void __init efi_mem_reserve(phys_addr_t addr, u64 size)
588 {
589 	/* efi_mem_reserve() does not work under Xen */
590 	if (WARN_ON_ONCE(efi_enabled(EFI_PARAVIRT)))
591 		return;
592 
593 	if (!memblock_is_region_reserved(addr, size))
594 		memblock_reserve(addr, size);
595 
596 	/*
597 	 * Some architectures (x86) reserve all boot services ranges
598 	 * until efi_free_boot_services() because of buggy firmware
599 	 * implementations. This means the above memblock_reserve() is
600 	 * superfluous on x86 and instead what it needs to do is
601 	 * ensure the @start, @size is not freed.
602 	 */
603 	efi_arch_mem_reserve(addr, size);
604 }
605 
606 static const efi_config_table_type_t common_tables[] __initconst = {
607 	{ACPI_20_TABLE_GUID,			&efi.acpi20,		"ACPI 2.0"	},
608 	{ACPI_TABLE_GUID,			&efi.acpi,		"ACPI"		},
609 	{SMBIOS_TABLE_GUID,			&efi.smbios,		"SMBIOS"	},
610 	{SMBIOS3_TABLE_GUID,			&efi.smbios3,		"SMBIOS 3.0"	},
611 	{EFI_SYSTEM_RESOURCE_TABLE_GUID,	&efi.esrt,		"ESRT"		},
612 	{EFI_MEMORY_ATTRIBUTES_TABLE_GUID,	&efi_mem_attr_table,	"MEMATTR"	},
613 	{LINUX_EFI_RANDOM_SEED_TABLE_GUID,	&efi_rng_seed,		"RNG"		},
614 	{LINUX_EFI_TPM_EVENT_LOG_GUID,		&efi.tpm_log,		"TPMEventLog"	},
615 	{EFI_TCG2_FINAL_EVENTS_TABLE_GUID,	&efi.tpm_final_log,	"TPMFinalLog"	},
616 	{EFI_CC_FINAL_EVENTS_TABLE_GUID,	&efi.tpm_final_log,	"CCFinalLog"	},
617 	{LINUX_EFI_MEMRESERVE_TABLE_GUID,	&mem_reserve,		"MEMRESERVE"	},
618 	{LINUX_EFI_INITRD_MEDIA_GUID,		&initrd,		"INITRD"	},
619 	{EFI_RT_PROPERTIES_TABLE_GUID,		&rt_prop,		"RTPROP"	},
620 #ifdef CONFIG_EFI_RCI2_TABLE
621 	{DELLEMC_EFI_RCI2_TABLE_GUID,		&rci2_table_phys			},
622 #endif
623 #ifdef CONFIG_LOAD_UEFI_KEYS
624 	{LINUX_EFI_MOK_VARIABLE_TABLE_GUID,	&efi.mokvar_table,	"MOKvar"	},
625 #endif
626 #ifdef CONFIG_EFI_COCO_SECRET
627 	{LINUX_EFI_COCO_SECRET_AREA_GUID,	&efi.coco_secret,	"CocoSecret"	},
628 #endif
629 #ifdef CONFIG_UNACCEPTED_MEMORY
630 	{LINUX_EFI_UNACCEPTED_MEM_TABLE_GUID,	&efi.unaccepted,	"Unaccepted"	},
631 #endif
632 #ifdef CONFIG_EFI_GENERIC_STUB
633 	{LINUX_EFI_SCREEN_INFO_TABLE_GUID,	&screen_info_table			},
634 #endif
635 	{},
636 };
637 
638 static __init int match_config_table(const efi_guid_t *guid,
639 				     unsigned long table,
640 				     const efi_config_table_type_t *table_types)
641 {
642 	int i;
643 
644 	for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) {
645 		if (efi_guidcmp(*guid, table_types[i].guid))
646 			continue;
647 
648 		if (!efi_config_table_is_usable(guid, table)) {
649 			if (table_types[i].name[0])
650 				pr_cont("(%s=0x%lx unusable) ",
651 					table_types[i].name, table);
652 			return 1;
653 		}
654 
655 		*(table_types[i].ptr) = table;
656 		if (table_types[i].name[0])
657 			pr_cont("%s=0x%lx ", table_types[i].name, table);
658 		return 1;
659 	}
660 
661 	return 0;
662 }
663 
664 /**
665  * reserve_unaccepted - Map and reserve unaccepted configuration table
666  * @unaccepted: Pointer to unaccepted memory table
667  *
668  * memblock_add() makes sure that the table is mapped in direct mapping. During
669  * normal boot it happens automatically because the table is allocated from
670  * usable memory. But during crashkernel boot only memory specifically reserved
671  * for crash scenario is mapped. memblock_add() forces the table to be mapped
672  * in crashkernel case.
673  *
674  * Align the range to the nearest page borders. Ranges smaller than page size
675  * are not going to be mapped.
676  *
677  * memblock_reserve() makes sure that future allocations will not touch the
678  * table.
679  */
680 
681 static __init void reserve_unaccepted(struct efi_unaccepted_memory *unaccepted)
682 {
683 	phys_addr_t start, size;
684 
685 	start = PAGE_ALIGN_DOWN(efi.unaccepted);
686 	size = PAGE_ALIGN(sizeof(*unaccepted) + unaccepted->size);
687 
688 	memblock_add(start, size);
689 	memblock_reserve(start, size);
690 }
691 
692 int __init efi_config_parse_tables(const efi_config_table_t *config_tables,
693 				   int count,
694 				   const efi_config_table_type_t *arch_tables)
695 {
696 	const efi_config_table_64_t *tbl64 = (void *)config_tables;
697 	const efi_config_table_32_t *tbl32 = (void *)config_tables;
698 	const efi_guid_t *guid;
699 	unsigned long table;
700 	int i;
701 
702 	pr_info("");
703 	for (i = 0; i < count; i++) {
704 		if (!IS_ENABLED(CONFIG_X86)) {
705 			guid = &config_tables[i].guid;
706 			table = (unsigned long)config_tables[i].table;
707 		} else if (efi_enabled(EFI_64BIT)) {
708 			guid = &tbl64[i].guid;
709 			table = tbl64[i].table;
710 
711 			if (IS_ENABLED(CONFIG_X86_32) &&
712 			    tbl64[i].table > U32_MAX) {
713 				pr_cont("\n");
714 				pr_err("Table located above 4GB, disabling EFI.\n");
715 				return -EINVAL;
716 			}
717 		} else {
718 			guid = &tbl32[i].guid;
719 			table = tbl32[i].table;
720 		}
721 
722 		if (!match_config_table(guid, table, common_tables) && arch_tables)
723 			match_config_table(guid, table, arch_tables);
724 	}
725 	pr_cont("\n");
726 	set_bit(EFI_CONFIG_TABLES, &efi.flags);
727 
728 	if (efi_rng_seed != EFI_INVALID_TABLE_ADDR) {
729 		struct linux_efi_random_seed *seed;
730 		u32 size = 0;
731 
732 		seed = early_memremap(efi_rng_seed, sizeof(*seed));
733 		if (seed != NULL) {
734 			size = min_t(u32, seed->size, SZ_1K); // sanity check
735 			early_memunmap(seed, sizeof(*seed));
736 		} else {
737 			pr_err("Could not map UEFI random seed!\n");
738 		}
739 		if (size > 0) {
740 			seed = early_memremap(efi_rng_seed,
741 					      sizeof(*seed) + size);
742 			if (seed != NULL) {
743 				add_bootloader_randomness(seed->bits, size);
744 				memzero_explicit(seed->bits, size);
745 				early_memunmap(seed, sizeof(*seed) + size);
746 			} else {
747 				pr_err("Could not map UEFI random seed!\n");
748 			}
749 		}
750 	}
751 
752 	if (!IS_ENABLED(CONFIG_X86_32) && efi_enabled(EFI_MEMMAP))
753 		efi_memattr_init();
754 
755 	efi_tpm_eventlog_init();
756 
757 	if (mem_reserve != EFI_INVALID_TABLE_ADDR) {
758 		unsigned long prsv = mem_reserve;
759 
760 		while (prsv) {
761 			struct linux_efi_memreserve *rsv;
762 			u8 *p;
763 
764 			/*
765 			 * Just map a full page: that is what we will get
766 			 * anyway, and it permits us to map the entire entry
767 			 * before knowing its size.
768 			 */
769 			p = early_memremap(ALIGN_DOWN(prsv, PAGE_SIZE),
770 					   PAGE_SIZE);
771 			if (p == NULL) {
772 				pr_err("Could not map UEFI memreserve entry!\n");
773 				return -ENOMEM;
774 			}
775 
776 			rsv = (void *)(p + prsv % PAGE_SIZE);
777 
778 			/* reserve the entry itself */
779 			memblock_reserve(prsv,
780 					 struct_size(rsv, entry, rsv->size));
781 
782 			for (i = 0; i < atomic_read(&rsv->count); i++) {
783 				memblock_reserve(rsv->entry[i].base,
784 						 rsv->entry[i].size);
785 			}
786 
787 			prsv = rsv->next;
788 			early_memunmap(p, PAGE_SIZE);
789 		}
790 	}
791 
792 	if (rt_prop != EFI_INVALID_TABLE_ADDR) {
793 		efi_rt_properties_table_t *tbl;
794 
795 		tbl = early_memremap(rt_prop, sizeof(*tbl));
796 		if (tbl) {
797 			efi.runtime_supported_mask &= tbl->runtime_services_supported;
798 			early_memunmap(tbl, sizeof(*tbl));
799 		}
800 	}
801 
802 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) &&
803 	    initrd != EFI_INVALID_TABLE_ADDR && phys_initrd_size == 0) {
804 		struct linux_efi_initrd *tbl;
805 
806 		tbl = early_memremap(initrd, sizeof(*tbl));
807 		if (tbl) {
808 			phys_initrd_start = tbl->base;
809 			phys_initrd_size = tbl->size;
810 			early_memunmap(tbl, sizeof(*tbl));
811 		}
812 	}
813 
814 	if (IS_ENABLED(CONFIG_UNACCEPTED_MEMORY) &&
815 	    efi.unaccepted != EFI_INVALID_TABLE_ADDR) {
816 		struct efi_unaccepted_memory *unaccepted;
817 
818 		unaccepted = early_memremap(efi.unaccepted, sizeof(*unaccepted));
819 		if (unaccepted) {
820 
821 			if (unaccepted->version == 1) {
822 				reserve_unaccepted(unaccepted);
823 			} else {
824 				efi.unaccepted = EFI_INVALID_TABLE_ADDR;
825 			}
826 
827 			early_memunmap(unaccepted, sizeof(*unaccepted));
828 		}
829 	}
830 
831 	return 0;
832 }
833 
834 int __init efi_systab_check_header(const efi_table_hdr_t *systab_hdr)
835 {
836 	if (systab_hdr->signature != EFI_SYSTEM_TABLE_SIGNATURE) {
837 		pr_err("System table signature incorrect!\n");
838 		return -EINVAL;
839 	}
840 
841 	return 0;
842 }
843 
844 static const efi_char16_t *__init map_fw_vendor(unsigned long fw_vendor,
845 						size_t size)
846 {
847 	const efi_char16_t *ret;
848 
849 	ret = early_memremap_ro(fw_vendor, size);
850 	if (!ret)
851 		pr_err("Could not map the firmware vendor!\n");
852 	return ret;
853 }
854 
855 static void __init unmap_fw_vendor(const void *fw_vendor, size_t size)
856 {
857 	early_memunmap((void *)fw_vendor, size);
858 }
859 
860 void __init efi_systab_report_header(const efi_table_hdr_t *systab_hdr,
861 				     unsigned long fw_vendor)
862 {
863 	char vendor[100] = "unknown";
864 	const efi_char16_t *c16;
865 	size_t i;
866 	u16 rev;
867 
868 	c16 = map_fw_vendor(fw_vendor, sizeof(vendor) * sizeof(efi_char16_t));
869 	if (c16) {
870 		for (i = 0; i < sizeof(vendor) - 1 && c16[i]; ++i)
871 			vendor[i] = c16[i];
872 		vendor[i] = '\0';
873 
874 		unmap_fw_vendor(c16, sizeof(vendor) * sizeof(efi_char16_t));
875 	}
876 
877 	rev = (u16)systab_hdr->revision;
878 	pr_info("EFI v%u.%u", systab_hdr->revision >> 16, rev / 10);
879 
880 	rev %= 10;
881 	if (rev)
882 		pr_cont(".%u", rev);
883 
884 	pr_cont(" by %s\n", vendor);
885 
886 	if (IS_ENABLED(CONFIG_X86_64) &&
887 	    systab_hdr->revision > EFI_1_10_SYSTEM_TABLE_REVISION &&
888 	    !strcmp(vendor, "Apple")) {
889 		pr_info("Apple Mac detected, using EFI v1.10 runtime services only\n");
890 		efi.runtime_version = EFI_1_10_SYSTEM_TABLE_REVISION;
891 	}
892 }
893 
894 static __initdata char memory_type_name[][13] = {
895 	"Reserved",
896 	"Loader Code",
897 	"Loader Data",
898 	"Boot Code",
899 	"Boot Data",
900 	"Runtime Code",
901 	"Runtime Data",
902 	"Conventional",
903 	"Unusable",
904 	"ACPI Reclaim",
905 	"ACPI Mem NVS",
906 	"MMIO",
907 	"MMIO Port",
908 	"PAL Code",
909 	"Persistent",
910 	"Unaccepted",
911 };
912 
913 char * __init efi_md_typeattr_format(char *buf, size_t size,
914 				     const efi_memory_desc_t *md)
915 {
916 	char *pos;
917 	int type_len;
918 	u64 attr;
919 
920 	pos = buf;
921 	if (md->type >= ARRAY_SIZE(memory_type_name))
922 		type_len = snprintf(pos, size, "[type=%u", md->type);
923 	else
924 		type_len = snprintf(pos, size, "[%-*s",
925 				    (int)(sizeof(memory_type_name[0]) - 1),
926 				    memory_type_name[md->type]);
927 	if (type_len >= size)
928 		return buf;
929 
930 	pos += type_len;
931 	size -= type_len;
932 
933 	attr = md->attribute;
934 	if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT |
935 		     EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO |
936 		     EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP |
937 		     EFI_MEMORY_NV | EFI_MEMORY_SP | EFI_MEMORY_CPU_CRYPTO |
938 		     EFI_MEMORY_MORE_RELIABLE | EFI_MEMORY_HOT_PLUGGABLE |
939 		     EFI_MEMORY_RUNTIME))
940 		snprintf(pos, size, "|attr=0x%016llx]",
941 			 (unsigned long long)attr);
942 	else
943 		snprintf(pos, size,
944 			 "|%3s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]",
945 			 attr & EFI_MEMORY_RUNTIME		? "RUN" : "",
946 			 attr & EFI_MEMORY_HOT_PLUGGABLE	? "HP"  : "",
947 			 attr & EFI_MEMORY_MORE_RELIABLE	? "MR"  : "",
948 			 attr & EFI_MEMORY_CPU_CRYPTO   	? "CC"  : "",
949 			 attr & EFI_MEMORY_SP			? "SP"  : "",
950 			 attr & EFI_MEMORY_NV			? "NV"  : "",
951 			 attr & EFI_MEMORY_XP			? "XP"  : "",
952 			 attr & EFI_MEMORY_RP			? "RP"  : "",
953 			 attr & EFI_MEMORY_WP			? "WP"  : "",
954 			 attr & EFI_MEMORY_RO			? "RO"  : "",
955 			 attr & EFI_MEMORY_UCE			? "UCE" : "",
956 			 attr & EFI_MEMORY_WB			? "WB"  : "",
957 			 attr & EFI_MEMORY_WT			? "WT"  : "",
958 			 attr & EFI_MEMORY_WC			? "WC"  : "",
959 			 attr & EFI_MEMORY_UC			? "UC"  : "");
960 	return buf;
961 }
962 
963 /*
964  * efi_mem_attributes - lookup memmap attributes for physical address
965  * @phys_addr: the physical address to lookup
966  *
967  * Search in the EFI memory map for the region covering
968  * @phys_addr. Returns the EFI memory attributes if the region
969  * was found in the memory map, 0 otherwise.
970  */
971 u64 efi_mem_attributes(unsigned long phys_addr)
972 {
973 	efi_memory_desc_t *md;
974 
975 	if (!efi_enabled(EFI_MEMMAP))
976 		return 0;
977 
978 	for_each_efi_memory_desc(md) {
979 		if ((md->phys_addr <= phys_addr) &&
980 		    (phys_addr < (md->phys_addr +
981 		    (md->num_pages << EFI_PAGE_SHIFT))))
982 			return md->attribute;
983 	}
984 	return 0;
985 }
986 
987 /*
988  * efi_mem_type - lookup memmap type for physical address
989  * @phys_addr: the physical address to lookup
990  *
991  * Search in the EFI memory map for the region covering @phys_addr.
992  * Returns the EFI memory type if the region was found in the memory
993  * map, -EINVAL otherwise.
994  */
995 int efi_mem_type(unsigned long phys_addr)
996 {
997 	const efi_memory_desc_t *md;
998 
999 	if (!efi_enabled(EFI_MEMMAP))
1000 		return -ENOTSUPP;
1001 
1002 	for_each_efi_memory_desc(md) {
1003 		if ((md->phys_addr <= phys_addr) &&
1004 		    (phys_addr < (md->phys_addr +
1005 				  (md->num_pages << EFI_PAGE_SHIFT))))
1006 			return md->type;
1007 	}
1008 	return -EINVAL;
1009 }
1010 
1011 int efi_status_to_err(efi_status_t status)
1012 {
1013 	int err;
1014 
1015 	switch (status) {
1016 	case EFI_SUCCESS:
1017 		err = 0;
1018 		break;
1019 	case EFI_INVALID_PARAMETER:
1020 		err = -EINVAL;
1021 		break;
1022 	case EFI_OUT_OF_RESOURCES:
1023 		err = -ENOSPC;
1024 		break;
1025 	case EFI_DEVICE_ERROR:
1026 		err = -EIO;
1027 		break;
1028 	case EFI_WRITE_PROTECTED:
1029 		err = -EROFS;
1030 		break;
1031 	case EFI_SECURITY_VIOLATION:
1032 		err = -EACCES;
1033 		break;
1034 	case EFI_NOT_FOUND:
1035 		err = -ENOENT;
1036 		break;
1037 	case EFI_ABORTED:
1038 		err = -EINTR;
1039 		break;
1040 	default:
1041 		err = -EINVAL;
1042 	}
1043 
1044 	return err;
1045 }
1046 EXPORT_SYMBOL_GPL(efi_status_to_err);
1047 
1048 static DEFINE_SPINLOCK(efi_mem_reserve_persistent_lock);
1049 static struct linux_efi_memreserve *efi_memreserve_root __ro_after_init;
1050 
1051 static int __init efi_memreserve_map_root(void)
1052 {
1053 	if (mem_reserve == EFI_INVALID_TABLE_ADDR)
1054 		return -ENODEV;
1055 
1056 	efi_memreserve_root = memremap(mem_reserve,
1057 				       sizeof(*efi_memreserve_root),
1058 				       MEMREMAP_WB);
1059 	if (WARN_ON_ONCE(!efi_memreserve_root))
1060 		return -ENOMEM;
1061 	return 0;
1062 }
1063 
1064 static int efi_mem_reserve_iomem(phys_addr_t addr, u64 size)
1065 {
1066 	struct resource *res, *parent;
1067 	int ret;
1068 
1069 	res = kzalloc(sizeof(struct resource), GFP_ATOMIC);
1070 	if (!res)
1071 		return -ENOMEM;
1072 
1073 	res->name	= "reserved";
1074 	res->flags	= IORESOURCE_MEM;
1075 	res->start	= addr;
1076 	res->end	= addr + size - 1;
1077 
1078 	/* we expect a conflict with a 'System RAM' region */
1079 	parent = request_resource_conflict(&iomem_resource, res);
1080 	ret = parent ? request_resource(parent, res) : 0;
1081 
1082 	/*
1083 	 * Given that efi_mem_reserve_iomem() can be called at any
1084 	 * time, only call memblock_reserve() if the architecture
1085 	 * keeps the infrastructure around.
1086 	 */
1087 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK) && !ret)
1088 		memblock_reserve(addr, size);
1089 
1090 	return ret;
1091 }
1092 
1093 int __ref efi_mem_reserve_persistent(phys_addr_t addr, u64 size)
1094 {
1095 	struct linux_efi_memreserve *rsv;
1096 	unsigned long prsv;
1097 	int rc, index;
1098 
1099 	if (efi_memreserve_root == (void *)ULONG_MAX)
1100 		return -ENODEV;
1101 
1102 	if (!efi_memreserve_root) {
1103 		rc = efi_memreserve_map_root();
1104 		if (rc)
1105 			return rc;
1106 	}
1107 
1108 	/* first try to find a slot in an existing linked list entry */
1109 	for (prsv = efi_memreserve_root->next; prsv; ) {
1110 		rsv = memremap(prsv, sizeof(*rsv), MEMREMAP_WB);
1111 		if (!rsv)
1112 			return -ENOMEM;
1113 		index = atomic_fetch_add_unless(&rsv->count, 1, rsv->size);
1114 		if (index < rsv->size) {
1115 			rsv->entry[index].base = addr;
1116 			rsv->entry[index].size = size;
1117 
1118 			memunmap(rsv);
1119 			return efi_mem_reserve_iomem(addr, size);
1120 		}
1121 		prsv = rsv->next;
1122 		memunmap(rsv);
1123 	}
1124 
1125 	/* no slot found - allocate a new linked list entry */
1126 	rsv = (struct linux_efi_memreserve *)__get_free_page(GFP_ATOMIC);
1127 	if (!rsv)
1128 		return -ENOMEM;
1129 
1130 	rc = efi_mem_reserve_iomem(__pa(rsv), SZ_4K);
1131 	if (rc) {
1132 		free_page((unsigned long)rsv);
1133 		return rc;
1134 	}
1135 
1136 	/*
1137 	 * The memremap() call above assumes that a linux_efi_memreserve entry
1138 	 * never crosses a page boundary, so let's ensure that this remains true
1139 	 * even when kexec'ing a 4k pages kernel from a >4k pages kernel, by
1140 	 * using SZ_4K explicitly in the size calculation below.
1141 	 */
1142 	rsv->size = EFI_MEMRESERVE_COUNT(SZ_4K);
1143 	atomic_set(&rsv->count, 1);
1144 	rsv->entry[0].base = addr;
1145 	rsv->entry[0].size = size;
1146 
1147 	spin_lock(&efi_mem_reserve_persistent_lock);
1148 	rsv->next = efi_memreserve_root->next;
1149 	efi_memreserve_root->next = __pa(rsv);
1150 	spin_unlock(&efi_mem_reserve_persistent_lock);
1151 
1152 	return efi_mem_reserve_iomem(addr, size);
1153 }
1154 
1155 static int __init efi_memreserve_root_init(void)
1156 {
1157 	if (efi_memreserve_root)
1158 		return 0;
1159 	if (efi_memreserve_map_root())
1160 		efi_memreserve_root = (void *)ULONG_MAX;
1161 	return 0;
1162 }
1163 early_initcall(efi_memreserve_root_init);
1164 
1165 #ifdef CONFIG_KEXEC
1166 static int update_efi_random_seed(struct notifier_block *nb,
1167 				  unsigned long code, void *unused)
1168 {
1169 	struct linux_efi_random_seed *seed;
1170 	u32 size = 0;
1171 
1172 	if (!kexec_in_progress)
1173 		return NOTIFY_DONE;
1174 
1175 	seed = memremap(efi_rng_seed, sizeof(*seed), MEMREMAP_WB);
1176 	if (seed != NULL) {
1177 		size = min(seed->size, EFI_RANDOM_SEED_SIZE);
1178 		memunmap(seed);
1179 	} else {
1180 		pr_err("Could not map UEFI random seed!\n");
1181 	}
1182 	if (size > 0) {
1183 		seed = memremap(efi_rng_seed, sizeof(*seed) + size,
1184 				MEMREMAP_WB);
1185 		if (seed != NULL) {
1186 			seed->size = size;
1187 			get_random_bytes(seed->bits, seed->size);
1188 			memunmap(seed);
1189 		} else {
1190 			pr_err("Could not map UEFI random seed!\n");
1191 		}
1192 	}
1193 	return NOTIFY_DONE;
1194 }
1195 
1196 static struct notifier_block efi_random_seed_nb = {
1197 	.notifier_call = update_efi_random_seed,
1198 };
1199 
1200 static int __init register_update_efi_random_seed(void)
1201 {
1202 	if (efi_rng_seed == EFI_INVALID_TABLE_ADDR)
1203 		return 0;
1204 	return register_reboot_notifier(&efi_random_seed_nb);
1205 }
1206 late_initcall(register_update_efi_random_seed);
1207 #endif
1208