xref: /linux/drivers/firmware/efi/efi.c (revision 0b364cf53b20204e92bac7c6ebd1ee7d3ec62931)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * efi.c - EFI subsystem
4  *
5  * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com>
6  * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com>
7  * Copyright (C) 2013 Tom Gundersen <teg@jklm.no>
8  *
9  * This code registers /sys/firmware/efi{,/efivars} when EFI is supported,
10  * allowing the efivarfs to be mounted or the efivars module to be loaded.
11  * The existance of /sys/firmware/efi may also be used by userspace to
12  * determine that the system supports EFI.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/kobject.h>
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/debugfs.h>
21 #include <linux/device.h>
22 #include <linux/efi.h>
23 #include <linux/of.h>
24 #include <linux/initrd.h>
25 #include <linux/io.h>
26 #include <linux/kexec.h>
27 #include <linux/platform_device.h>
28 #include <linux/random.h>
29 #include <linux/reboot.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/ucs2_string.h>
33 #include <linux/memblock.h>
34 #include <linux/security.h>
35 #include <linux/notifier.h>
36 
37 #include <asm/early_ioremap.h>
38 
39 struct efi __read_mostly efi = {
40 	.runtime_supported_mask = EFI_RT_SUPPORTED_ALL,
41 	.acpi			= EFI_INVALID_TABLE_ADDR,
42 	.acpi20			= EFI_INVALID_TABLE_ADDR,
43 	.smbios			= EFI_INVALID_TABLE_ADDR,
44 	.smbios3		= EFI_INVALID_TABLE_ADDR,
45 	.esrt			= EFI_INVALID_TABLE_ADDR,
46 	.tpm_log		= EFI_INVALID_TABLE_ADDR,
47 	.tpm_final_log		= EFI_INVALID_TABLE_ADDR,
48 #ifdef CONFIG_LOAD_UEFI_KEYS
49 	.mokvar_table		= EFI_INVALID_TABLE_ADDR,
50 #endif
51 #ifdef CONFIG_EFI_COCO_SECRET
52 	.coco_secret		= EFI_INVALID_TABLE_ADDR,
53 #endif
54 #ifdef CONFIG_UNACCEPTED_MEMORY
55 	.unaccepted		= EFI_INVALID_TABLE_ADDR,
56 #endif
57 };
58 EXPORT_SYMBOL(efi);
59 
60 unsigned long __ro_after_init efi_rng_seed = EFI_INVALID_TABLE_ADDR;
61 static unsigned long __initdata mem_reserve = EFI_INVALID_TABLE_ADDR;
62 static unsigned long __initdata rt_prop = EFI_INVALID_TABLE_ADDR;
63 static unsigned long __initdata initrd = EFI_INVALID_TABLE_ADDR;
64 
65 extern unsigned long screen_info_table;
66 
67 struct mm_struct efi_mm = {
68 	.mm_mt			= MTREE_INIT_EXT(mm_mt, MM_MT_FLAGS, efi_mm.mmap_lock),
69 	.mm_users		= ATOMIC_INIT(2),
70 	.mm_count		= ATOMIC_INIT(1),
71 	.write_protect_seq      = SEQCNT_ZERO(efi_mm.write_protect_seq),
72 	MMAP_LOCK_INITIALIZER(efi_mm)
73 	.page_table_lock	= __SPIN_LOCK_UNLOCKED(efi_mm.page_table_lock),
74 	.mmlist			= LIST_HEAD_INIT(efi_mm.mmlist),
75 	.cpu_bitmap		= { [BITS_TO_LONGS(NR_CPUS)] = 0},
76 };
77 
78 struct workqueue_struct *efi_rts_wq;
79 
80 static bool disable_runtime = IS_ENABLED(CONFIG_EFI_DISABLE_RUNTIME);
81 static int __init setup_noefi(char *arg)
82 {
83 	disable_runtime = true;
84 	return 0;
85 }
86 early_param("noefi", setup_noefi);
87 
88 bool efi_runtime_disabled(void)
89 {
90 	return disable_runtime;
91 }
92 
93 bool __pure __efi_soft_reserve_enabled(void)
94 {
95 	return !efi_enabled(EFI_MEM_NO_SOFT_RESERVE);
96 }
97 
98 static int __init parse_efi_cmdline(char *str)
99 {
100 	if (!str) {
101 		pr_warn("need at least one option\n");
102 		return -EINVAL;
103 	}
104 
105 	if (parse_option_str(str, "debug"))
106 		set_bit(EFI_DBG, &efi.flags);
107 
108 	if (parse_option_str(str, "noruntime"))
109 		disable_runtime = true;
110 
111 	if (parse_option_str(str, "runtime"))
112 		disable_runtime = false;
113 
114 	if (parse_option_str(str, "nosoftreserve"))
115 		set_bit(EFI_MEM_NO_SOFT_RESERVE, &efi.flags);
116 
117 	return 0;
118 }
119 early_param("efi", parse_efi_cmdline);
120 
121 struct kobject *efi_kobj;
122 
123 /*
124  * Let's not leave out systab information that snuck into
125  * the efivars driver
126  * Note, do not add more fields in systab sysfs file as it breaks sysfs
127  * one value per file rule!
128  */
129 static ssize_t systab_show(struct kobject *kobj,
130 			   struct kobj_attribute *attr, char *buf)
131 {
132 	char *str = buf;
133 
134 	if (!kobj || !buf)
135 		return -EINVAL;
136 
137 	if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
138 		str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20);
139 	if (efi.acpi != EFI_INVALID_TABLE_ADDR)
140 		str += sprintf(str, "ACPI=0x%lx\n", efi.acpi);
141 	/*
142 	 * If both SMBIOS and SMBIOS3 entry points are implemented, the
143 	 * SMBIOS3 entry point shall be preferred, so we list it first to
144 	 * let applications stop parsing after the first match.
145 	 */
146 	if (efi.smbios3 != EFI_INVALID_TABLE_ADDR)
147 		str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3);
148 	if (efi.smbios != EFI_INVALID_TABLE_ADDR)
149 		str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios);
150 
151 	if (IS_ENABLED(CONFIG_X86))
152 		str = efi_systab_show_arch(str);
153 
154 	return str - buf;
155 }
156 
157 static struct kobj_attribute efi_attr_systab = __ATTR_RO_MODE(systab, 0400);
158 
159 static ssize_t fw_platform_size_show(struct kobject *kobj,
160 				     struct kobj_attribute *attr, char *buf)
161 {
162 	return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32);
163 }
164 
165 extern __weak struct kobj_attribute efi_attr_fw_vendor;
166 extern __weak struct kobj_attribute efi_attr_runtime;
167 extern __weak struct kobj_attribute efi_attr_config_table;
168 static struct kobj_attribute efi_attr_fw_platform_size =
169 	__ATTR_RO(fw_platform_size);
170 
171 static struct attribute *efi_subsys_attrs[] = {
172 	&efi_attr_systab.attr,
173 	&efi_attr_fw_platform_size.attr,
174 	&efi_attr_fw_vendor.attr,
175 	&efi_attr_runtime.attr,
176 	&efi_attr_config_table.attr,
177 	NULL,
178 };
179 
180 umode_t __weak efi_attr_is_visible(struct kobject *kobj, struct attribute *attr,
181 				   int n)
182 {
183 	return attr->mode;
184 }
185 
186 static const struct attribute_group efi_subsys_attr_group = {
187 	.attrs = efi_subsys_attrs,
188 	.is_visible = efi_attr_is_visible,
189 };
190 
191 struct blocking_notifier_head efivar_ops_nh;
192 EXPORT_SYMBOL_GPL(efivar_ops_nh);
193 
194 static struct efivars generic_efivars;
195 static struct efivar_operations generic_ops;
196 
197 static bool generic_ops_supported(void)
198 {
199 	unsigned long name_size;
200 	efi_status_t status;
201 	efi_char16_t name;
202 	efi_guid_t guid;
203 
204 	name_size = sizeof(name);
205 
206 	if (!efi.get_next_variable)
207 		return false;
208 	status = efi.get_next_variable(&name_size, &name, &guid);
209 	if (status == EFI_UNSUPPORTED)
210 		return false;
211 
212 	return true;
213 }
214 
215 static int generic_ops_register(void)
216 {
217 	if (!generic_ops_supported())
218 		return 0;
219 
220 	generic_ops.get_variable = efi.get_variable;
221 	generic_ops.get_next_variable = efi.get_next_variable;
222 	generic_ops.query_variable_store = efi_query_variable_store;
223 	generic_ops.query_variable_info = efi.query_variable_info;
224 
225 	if (efi_rt_services_supported(EFI_RT_SUPPORTED_SET_VARIABLE)) {
226 		generic_ops.set_variable = efi.set_variable;
227 		generic_ops.set_variable_nonblocking = efi.set_variable_nonblocking;
228 	}
229 	return efivars_register(&generic_efivars, &generic_ops);
230 }
231 
232 static void generic_ops_unregister(void)
233 {
234 	if (!generic_ops.get_variable)
235 		return;
236 
237 	efivars_unregister(&generic_efivars);
238 }
239 
240 void efivars_generic_ops_register(void)
241 {
242 	generic_ops_register();
243 }
244 EXPORT_SYMBOL_GPL(efivars_generic_ops_register);
245 
246 void efivars_generic_ops_unregister(void)
247 {
248 	generic_ops_unregister();
249 }
250 EXPORT_SYMBOL_GPL(efivars_generic_ops_unregister);
251 
252 #ifdef CONFIG_EFI_CUSTOM_SSDT_OVERLAYS
253 #define EFIVAR_SSDT_NAME_MAX	16UL
254 static char efivar_ssdt[EFIVAR_SSDT_NAME_MAX] __initdata;
255 static int __init efivar_ssdt_setup(char *str)
256 {
257 	int ret = security_locked_down(LOCKDOWN_ACPI_TABLES);
258 
259 	if (ret)
260 		return ret;
261 
262 	if (strlen(str) < sizeof(efivar_ssdt))
263 		memcpy(efivar_ssdt, str, strlen(str));
264 	else
265 		pr_warn("efivar_ssdt: name too long: %s\n", str);
266 	return 1;
267 }
268 __setup("efivar_ssdt=", efivar_ssdt_setup);
269 
270 static __init int efivar_ssdt_load(void)
271 {
272 	unsigned long name_size = 256;
273 	efi_char16_t *name = NULL;
274 	efi_status_t status;
275 	efi_guid_t guid;
276 
277 	if (!efivar_ssdt[0])
278 		return 0;
279 
280 	name = kzalloc(name_size, GFP_KERNEL);
281 	if (!name)
282 		return -ENOMEM;
283 
284 	for (;;) {
285 		char utf8_name[EFIVAR_SSDT_NAME_MAX];
286 		unsigned long data_size = 0;
287 		void *data;
288 		int limit;
289 
290 		status = efi.get_next_variable(&name_size, name, &guid);
291 		if (status == EFI_NOT_FOUND) {
292 			break;
293 		} else if (status == EFI_BUFFER_TOO_SMALL) {
294 			efi_char16_t *name_tmp =
295 				krealloc(name, name_size, GFP_KERNEL);
296 			if (!name_tmp) {
297 				kfree(name);
298 				return -ENOMEM;
299 			}
300 			name = name_tmp;
301 			continue;
302 		}
303 
304 		limit = min(EFIVAR_SSDT_NAME_MAX, name_size);
305 		ucs2_as_utf8(utf8_name, name, limit - 1);
306 		if (strncmp(utf8_name, efivar_ssdt, limit) != 0)
307 			continue;
308 
309 		pr_info("loading SSDT from variable %s-%pUl\n", efivar_ssdt, &guid);
310 
311 		status = efi.get_variable(name, &guid, NULL, &data_size, NULL);
312 		if (status != EFI_BUFFER_TOO_SMALL || !data_size)
313 			return -EIO;
314 
315 		data = kmalloc(data_size, GFP_KERNEL);
316 		if (!data)
317 			return -ENOMEM;
318 
319 		status = efi.get_variable(name, &guid, NULL, &data_size, data);
320 		if (status == EFI_SUCCESS) {
321 			acpi_status ret = acpi_load_table(data, NULL);
322 			if (ret)
323 				pr_err("failed to load table: %u\n", ret);
324 			else
325 				continue;
326 		} else {
327 			pr_err("failed to get var data: 0x%lx\n", status);
328 		}
329 		kfree(data);
330 	}
331 	return 0;
332 }
333 #else
334 static inline int efivar_ssdt_load(void) { return 0; }
335 #endif
336 
337 #ifdef CONFIG_DEBUG_FS
338 
339 #define EFI_DEBUGFS_MAX_BLOBS 32
340 
341 static struct debugfs_blob_wrapper debugfs_blob[EFI_DEBUGFS_MAX_BLOBS];
342 
343 static void __init efi_debugfs_init(void)
344 {
345 	struct dentry *efi_debugfs;
346 	efi_memory_desc_t *md;
347 	char name[32];
348 	int type_count[EFI_BOOT_SERVICES_DATA + 1] = {};
349 	int i = 0;
350 
351 	efi_debugfs = debugfs_create_dir("efi", NULL);
352 	if (IS_ERR(efi_debugfs))
353 		return;
354 
355 	for_each_efi_memory_desc(md) {
356 		switch (md->type) {
357 		case EFI_BOOT_SERVICES_CODE:
358 			snprintf(name, sizeof(name), "boot_services_code%d",
359 				 type_count[md->type]++);
360 			break;
361 		case EFI_BOOT_SERVICES_DATA:
362 			snprintf(name, sizeof(name), "boot_services_data%d",
363 				 type_count[md->type]++);
364 			break;
365 		default:
366 			continue;
367 		}
368 
369 		if (i >= EFI_DEBUGFS_MAX_BLOBS) {
370 			pr_warn("More then %d EFI boot service segments, only showing first %d in debugfs\n",
371 				EFI_DEBUGFS_MAX_BLOBS, EFI_DEBUGFS_MAX_BLOBS);
372 			break;
373 		}
374 
375 		debugfs_blob[i].size = md->num_pages << EFI_PAGE_SHIFT;
376 		debugfs_blob[i].data = memremap(md->phys_addr,
377 						debugfs_blob[i].size,
378 						MEMREMAP_WB);
379 		if (!debugfs_blob[i].data)
380 			continue;
381 
382 		debugfs_create_blob(name, 0400, efi_debugfs, &debugfs_blob[i]);
383 		i++;
384 	}
385 }
386 #else
387 static inline void efi_debugfs_init(void) {}
388 #endif
389 
390 /*
391  * We register the efi subsystem with the firmware subsystem and the
392  * efivars subsystem with the efi subsystem, if the system was booted with
393  * EFI.
394  */
395 static int __init efisubsys_init(void)
396 {
397 	int error;
398 
399 	if (!efi_enabled(EFI_RUNTIME_SERVICES))
400 		efi.runtime_supported_mask = 0;
401 
402 	if (!efi_enabled(EFI_BOOT))
403 		return 0;
404 
405 	if (efi.runtime_supported_mask) {
406 		/*
407 		 * Since we process only one efi_runtime_service() at a time, an
408 		 * ordered workqueue (which creates only one execution context)
409 		 * should suffice for all our needs.
410 		 */
411 		efi_rts_wq = alloc_ordered_workqueue("efi_rts_wq", 0);
412 		if (!efi_rts_wq) {
413 			pr_err("Creating efi_rts_wq failed, EFI runtime services disabled.\n");
414 			clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
415 			efi.runtime_supported_mask = 0;
416 			return 0;
417 		}
418 	}
419 
420 	if (efi_rt_services_supported(EFI_RT_SUPPORTED_TIME_SERVICES))
421 		platform_device_register_simple("rtc-efi", 0, NULL, 0);
422 
423 	/* We register the efi directory at /sys/firmware/efi */
424 	efi_kobj = kobject_create_and_add("efi", firmware_kobj);
425 	if (!efi_kobj) {
426 		pr_err("efi: Firmware registration failed.\n");
427 		error = -ENOMEM;
428 		goto err_destroy_wq;
429 	}
430 
431 	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
432 				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME)) {
433 		error = generic_ops_register();
434 		if (error)
435 			goto err_put;
436 		efivar_ssdt_load();
437 		platform_device_register_simple("efivars", 0, NULL, 0);
438 	}
439 
440 	BLOCKING_INIT_NOTIFIER_HEAD(&efivar_ops_nh);
441 
442 	error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group);
443 	if (error) {
444 		pr_err("efi: Sysfs attribute export failed with error %d.\n",
445 		       error);
446 		goto err_unregister;
447 	}
448 
449 	/* and the standard mountpoint for efivarfs */
450 	error = sysfs_create_mount_point(efi_kobj, "efivars");
451 	if (error) {
452 		pr_err("efivars: Subsystem registration failed.\n");
453 		goto err_remove_group;
454 	}
455 
456 	if (efi_enabled(EFI_DBG) && efi_enabled(EFI_PRESERVE_BS_REGIONS))
457 		efi_debugfs_init();
458 
459 #ifdef CONFIG_EFI_COCO_SECRET
460 	if (efi.coco_secret != EFI_INVALID_TABLE_ADDR)
461 		platform_device_register_simple("efi_secret", 0, NULL, 0);
462 #endif
463 
464 	return 0;
465 
466 err_remove_group:
467 	sysfs_remove_group(efi_kobj, &efi_subsys_attr_group);
468 err_unregister:
469 	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
470 				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME))
471 		generic_ops_unregister();
472 err_put:
473 	kobject_put(efi_kobj);
474 	efi_kobj = NULL;
475 err_destroy_wq:
476 	if (efi_rts_wq)
477 		destroy_workqueue(efi_rts_wq);
478 
479 	return error;
480 }
481 
482 subsys_initcall(efisubsys_init);
483 
484 void __init efi_find_mirror(void)
485 {
486 	efi_memory_desc_t *md;
487 	u64 mirror_size = 0, total_size = 0;
488 
489 	if (!efi_enabled(EFI_MEMMAP))
490 		return;
491 
492 	for_each_efi_memory_desc(md) {
493 		unsigned long long start = md->phys_addr;
494 		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
495 
496 		total_size += size;
497 		if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
498 			memblock_mark_mirror(start, size);
499 			mirror_size += size;
500 		}
501 	}
502 	if (mirror_size)
503 		pr_info("Memory: %lldM/%lldM mirrored memory\n",
504 			mirror_size>>20, total_size>>20);
505 }
506 
507 /*
508  * Find the efi memory descriptor for a given physical address.  Given a
509  * physical address, determine if it exists within an EFI Memory Map entry,
510  * and if so, populate the supplied memory descriptor with the appropriate
511  * data.
512  */
513 int __efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
514 {
515 	efi_memory_desc_t *md;
516 
517 	if (!efi_enabled(EFI_MEMMAP)) {
518 		pr_err_once("EFI_MEMMAP is not enabled.\n");
519 		return -EINVAL;
520 	}
521 
522 	if (!out_md) {
523 		pr_err_once("out_md is null.\n");
524 		return -EINVAL;
525         }
526 
527 	for_each_efi_memory_desc(md) {
528 		u64 size;
529 		u64 end;
530 
531 		/* skip bogus entries (including empty ones) */
532 		if ((md->phys_addr & (EFI_PAGE_SIZE - 1)) ||
533 		    (md->num_pages <= 0) ||
534 		    (md->num_pages > (U64_MAX - md->phys_addr) >> EFI_PAGE_SHIFT))
535 			continue;
536 
537 		size = md->num_pages << EFI_PAGE_SHIFT;
538 		end = md->phys_addr + size;
539 		if (phys_addr >= md->phys_addr && phys_addr < end) {
540 			memcpy(out_md, md, sizeof(*out_md));
541 			return 0;
542 		}
543 	}
544 	return -ENOENT;
545 }
546 
547 extern int efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
548 	__weak __alias(__efi_mem_desc_lookup);
549 
550 /*
551  * Calculate the highest address of an efi memory descriptor.
552  */
553 u64 __init efi_mem_desc_end(efi_memory_desc_t *md)
554 {
555 	u64 size = md->num_pages << EFI_PAGE_SHIFT;
556 	u64 end = md->phys_addr + size;
557 	return end;
558 }
559 
560 void __init __weak efi_arch_mem_reserve(phys_addr_t addr, u64 size) {}
561 
562 /**
563  * efi_mem_reserve - Reserve an EFI memory region
564  * @addr: Physical address to reserve
565  * @size: Size of reservation
566  *
567  * Mark a region as reserved from general kernel allocation and
568  * prevent it being released by efi_free_boot_services().
569  *
570  * This function should be called drivers once they've parsed EFI
571  * configuration tables to figure out where their data lives, e.g.
572  * efi_esrt_init().
573  */
574 void __init efi_mem_reserve(phys_addr_t addr, u64 size)
575 {
576 	/* efi_mem_reserve() does not work under Xen */
577 	if (WARN_ON_ONCE(efi_enabled(EFI_PARAVIRT)))
578 		return;
579 
580 	if (!memblock_is_region_reserved(addr, size))
581 		memblock_reserve(addr, size);
582 
583 	/*
584 	 * Some architectures (x86) reserve all boot services ranges
585 	 * until efi_free_boot_services() because of buggy firmware
586 	 * implementations. This means the above memblock_reserve() is
587 	 * superfluous on x86 and instead what it needs to do is
588 	 * ensure the @start, @size is not freed.
589 	 */
590 	efi_arch_mem_reserve(addr, size);
591 }
592 
593 static const efi_config_table_type_t common_tables[] __initconst = {
594 	{ACPI_20_TABLE_GUID,			&efi.acpi20,		"ACPI 2.0"	},
595 	{ACPI_TABLE_GUID,			&efi.acpi,		"ACPI"		},
596 	{SMBIOS_TABLE_GUID,			&efi.smbios,		"SMBIOS"	},
597 	{SMBIOS3_TABLE_GUID,			&efi.smbios3,		"SMBIOS 3.0"	},
598 	{EFI_SYSTEM_RESOURCE_TABLE_GUID,	&efi.esrt,		"ESRT"		},
599 	{EFI_MEMORY_ATTRIBUTES_TABLE_GUID,	&efi_mem_attr_table,	"MEMATTR"	},
600 	{LINUX_EFI_RANDOM_SEED_TABLE_GUID,	&efi_rng_seed,		"RNG"		},
601 	{LINUX_EFI_TPM_EVENT_LOG_GUID,		&efi.tpm_log,		"TPMEventLog"	},
602 	{EFI_TCG2_FINAL_EVENTS_TABLE_GUID,	&efi.tpm_final_log,	"TPMFinalLog"	},
603 	{EFI_CC_FINAL_EVENTS_TABLE_GUID,	&efi.tpm_final_log,	"CCFinalLog"	},
604 	{LINUX_EFI_MEMRESERVE_TABLE_GUID,	&mem_reserve,		"MEMRESERVE"	},
605 	{LINUX_EFI_INITRD_MEDIA_GUID,		&initrd,		"INITRD"	},
606 	{EFI_RT_PROPERTIES_TABLE_GUID,		&rt_prop,		"RTPROP"	},
607 #ifdef CONFIG_EFI_RCI2_TABLE
608 	{DELLEMC_EFI_RCI2_TABLE_GUID,		&rci2_table_phys			},
609 #endif
610 #ifdef CONFIG_LOAD_UEFI_KEYS
611 	{LINUX_EFI_MOK_VARIABLE_TABLE_GUID,	&efi.mokvar_table,	"MOKvar"	},
612 #endif
613 #ifdef CONFIG_EFI_COCO_SECRET
614 	{LINUX_EFI_COCO_SECRET_AREA_GUID,	&efi.coco_secret,	"CocoSecret"	},
615 #endif
616 #ifdef CONFIG_UNACCEPTED_MEMORY
617 	{LINUX_EFI_UNACCEPTED_MEM_TABLE_GUID,	&efi.unaccepted,	"Unaccepted"	},
618 #endif
619 #ifdef CONFIG_EFI_GENERIC_STUB
620 	{LINUX_EFI_SCREEN_INFO_TABLE_GUID,	&screen_info_table			},
621 #endif
622 	{},
623 };
624 
625 static __init int match_config_table(const efi_guid_t *guid,
626 				     unsigned long table,
627 				     const efi_config_table_type_t *table_types)
628 {
629 	int i;
630 
631 	for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) {
632 		if (efi_guidcmp(*guid, table_types[i].guid))
633 			continue;
634 
635 		if (!efi_config_table_is_usable(guid, table)) {
636 			if (table_types[i].name[0])
637 				pr_cont("(%s=0x%lx unusable) ",
638 					table_types[i].name, table);
639 			return 1;
640 		}
641 
642 		*(table_types[i].ptr) = table;
643 		if (table_types[i].name[0])
644 			pr_cont("%s=0x%lx ", table_types[i].name, table);
645 		return 1;
646 	}
647 
648 	return 0;
649 }
650 
651 /**
652  * reserve_unaccepted - Map and reserve unaccepted configuration table
653  * @unaccepted: Pointer to unaccepted memory table
654  *
655  * memblock_add() makes sure that the table is mapped in direct mapping. During
656  * normal boot it happens automatically because the table is allocated from
657  * usable memory. But during crashkernel boot only memory specifically reserved
658  * for crash scenario is mapped. memblock_add() forces the table to be mapped
659  * in crashkernel case.
660  *
661  * Align the range to the nearest page borders. Ranges smaller than page size
662  * are not going to be mapped.
663  *
664  * memblock_reserve() makes sure that future allocations will not touch the
665  * table.
666  */
667 
668 static __init void reserve_unaccepted(struct efi_unaccepted_memory *unaccepted)
669 {
670 	phys_addr_t start, size;
671 
672 	start = PAGE_ALIGN_DOWN(efi.unaccepted);
673 	size = PAGE_ALIGN(sizeof(*unaccepted) + unaccepted->size);
674 
675 	memblock_add(start, size);
676 	memblock_reserve(start, size);
677 }
678 
679 int __init efi_config_parse_tables(const efi_config_table_t *config_tables,
680 				   int count,
681 				   const efi_config_table_type_t *arch_tables)
682 {
683 	const efi_config_table_64_t *tbl64 = (void *)config_tables;
684 	const efi_config_table_32_t *tbl32 = (void *)config_tables;
685 	const efi_guid_t *guid;
686 	unsigned long table;
687 	int i;
688 
689 	pr_info("");
690 	for (i = 0; i < count; i++) {
691 		if (!IS_ENABLED(CONFIG_X86)) {
692 			guid = &config_tables[i].guid;
693 			table = (unsigned long)config_tables[i].table;
694 		} else if (efi_enabled(EFI_64BIT)) {
695 			guid = &tbl64[i].guid;
696 			table = tbl64[i].table;
697 
698 			if (IS_ENABLED(CONFIG_X86_32) &&
699 			    tbl64[i].table > U32_MAX) {
700 				pr_cont("\n");
701 				pr_err("Table located above 4GB, disabling EFI.\n");
702 				return -EINVAL;
703 			}
704 		} else {
705 			guid = &tbl32[i].guid;
706 			table = tbl32[i].table;
707 		}
708 
709 		if (!match_config_table(guid, table, common_tables) && arch_tables)
710 			match_config_table(guid, table, arch_tables);
711 	}
712 	pr_cont("\n");
713 	set_bit(EFI_CONFIG_TABLES, &efi.flags);
714 
715 	if (efi_rng_seed != EFI_INVALID_TABLE_ADDR) {
716 		struct linux_efi_random_seed *seed;
717 		u32 size = 0;
718 
719 		seed = early_memremap(efi_rng_seed, sizeof(*seed));
720 		if (seed != NULL) {
721 			size = min_t(u32, seed->size, SZ_1K); // sanity check
722 			early_memunmap(seed, sizeof(*seed));
723 		} else {
724 			pr_err("Could not map UEFI random seed!\n");
725 		}
726 		if (size > 0) {
727 			seed = early_memremap(efi_rng_seed,
728 					      sizeof(*seed) + size);
729 			if (seed != NULL) {
730 				add_bootloader_randomness(seed->bits, size);
731 				memzero_explicit(seed->bits, size);
732 				early_memunmap(seed, sizeof(*seed) + size);
733 			} else {
734 				pr_err("Could not map UEFI random seed!\n");
735 			}
736 		}
737 	}
738 
739 	if (!IS_ENABLED(CONFIG_X86_32) && efi_enabled(EFI_MEMMAP))
740 		efi_memattr_init();
741 
742 	efi_tpm_eventlog_init();
743 
744 	if (mem_reserve != EFI_INVALID_TABLE_ADDR) {
745 		unsigned long prsv = mem_reserve;
746 
747 		while (prsv) {
748 			struct linux_efi_memreserve *rsv;
749 			u8 *p;
750 
751 			/*
752 			 * Just map a full page: that is what we will get
753 			 * anyway, and it permits us to map the entire entry
754 			 * before knowing its size.
755 			 */
756 			p = early_memremap(ALIGN_DOWN(prsv, PAGE_SIZE),
757 					   PAGE_SIZE);
758 			if (p == NULL) {
759 				pr_err("Could not map UEFI memreserve entry!\n");
760 				return -ENOMEM;
761 			}
762 
763 			rsv = (void *)(p + prsv % PAGE_SIZE);
764 
765 			/* reserve the entry itself */
766 			memblock_reserve(prsv,
767 					 struct_size(rsv, entry, rsv->size));
768 
769 			for (i = 0; i < atomic_read(&rsv->count); i++) {
770 				memblock_reserve(rsv->entry[i].base,
771 						 rsv->entry[i].size);
772 			}
773 
774 			prsv = rsv->next;
775 			early_memunmap(p, PAGE_SIZE);
776 		}
777 	}
778 
779 	if (rt_prop != EFI_INVALID_TABLE_ADDR) {
780 		efi_rt_properties_table_t *tbl;
781 
782 		tbl = early_memremap(rt_prop, sizeof(*tbl));
783 		if (tbl) {
784 			efi.runtime_supported_mask &= tbl->runtime_services_supported;
785 			early_memunmap(tbl, sizeof(*tbl));
786 		}
787 	}
788 
789 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) &&
790 	    initrd != EFI_INVALID_TABLE_ADDR && phys_initrd_size == 0) {
791 		struct linux_efi_initrd *tbl;
792 
793 		tbl = early_memremap(initrd, sizeof(*tbl));
794 		if (tbl) {
795 			phys_initrd_start = tbl->base;
796 			phys_initrd_size = tbl->size;
797 			early_memunmap(tbl, sizeof(*tbl));
798 		}
799 	}
800 
801 	if (IS_ENABLED(CONFIG_UNACCEPTED_MEMORY) &&
802 	    efi.unaccepted != EFI_INVALID_TABLE_ADDR) {
803 		struct efi_unaccepted_memory *unaccepted;
804 
805 		unaccepted = early_memremap(efi.unaccepted, sizeof(*unaccepted));
806 		if (unaccepted) {
807 
808 			if (unaccepted->version == 1) {
809 				reserve_unaccepted(unaccepted);
810 			} else {
811 				efi.unaccepted = EFI_INVALID_TABLE_ADDR;
812 			}
813 
814 			early_memunmap(unaccepted, sizeof(*unaccepted));
815 		}
816 	}
817 
818 	return 0;
819 }
820 
821 int __init efi_systab_check_header(const efi_table_hdr_t *systab_hdr)
822 {
823 	if (systab_hdr->signature != EFI_SYSTEM_TABLE_SIGNATURE) {
824 		pr_err("System table signature incorrect!\n");
825 		return -EINVAL;
826 	}
827 
828 	return 0;
829 }
830 
831 static const efi_char16_t *__init map_fw_vendor(unsigned long fw_vendor,
832 						size_t size)
833 {
834 	const efi_char16_t *ret;
835 
836 	ret = early_memremap_ro(fw_vendor, size);
837 	if (!ret)
838 		pr_err("Could not map the firmware vendor!\n");
839 	return ret;
840 }
841 
842 static void __init unmap_fw_vendor(const void *fw_vendor, size_t size)
843 {
844 	early_memunmap((void *)fw_vendor, size);
845 }
846 
847 void __init efi_systab_report_header(const efi_table_hdr_t *systab_hdr,
848 				     unsigned long fw_vendor)
849 {
850 	char vendor[100] = "unknown";
851 	const efi_char16_t *c16;
852 	size_t i;
853 	u16 rev;
854 
855 	c16 = map_fw_vendor(fw_vendor, sizeof(vendor) * sizeof(efi_char16_t));
856 	if (c16) {
857 		for (i = 0; i < sizeof(vendor) - 1 && c16[i]; ++i)
858 			vendor[i] = c16[i];
859 		vendor[i] = '\0';
860 
861 		unmap_fw_vendor(c16, sizeof(vendor) * sizeof(efi_char16_t));
862 	}
863 
864 	rev = (u16)systab_hdr->revision;
865 	pr_info("EFI v%u.%u", systab_hdr->revision >> 16, rev / 10);
866 
867 	rev %= 10;
868 	if (rev)
869 		pr_cont(".%u", rev);
870 
871 	pr_cont(" by %s\n", vendor);
872 
873 	if (IS_ENABLED(CONFIG_X86_64) &&
874 	    systab_hdr->revision > EFI_1_10_SYSTEM_TABLE_REVISION &&
875 	    !strcmp(vendor, "Apple")) {
876 		pr_info("Apple Mac detected, using EFI v1.10 runtime services only\n");
877 		efi.runtime_version = EFI_1_10_SYSTEM_TABLE_REVISION;
878 	}
879 }
880 
881 static __initdata char memory_type_name[][13] = {
882 	"Reserved",
883 	"Loader Code",
884 	"Loader Data",
885 	"Boot Code",
886 	"Boot Data",
887 	"Runtime Code",
888 	"Runtime Data",
889 	"Conventional",
890 	"Unusable",
891 	"ACPI Reclaim",
892 	"ACPI Mem NVS",
893 	"MMIO",
894 	"MMIO Port",
895 	"PAL Code",
896 	"Persistent",
897 	"Unaccepted",
898 };
899 
900 char * __init efi_md_typeattr_format(char *buf, size_t size,
901 				     const efi_memory_desc_t *md)
902 {
903 	char *pos;
904 	int type_len;
905 	u64 attr;
906 
907 	pos = buf;
908 	if (md->type >= ARRAY_SIZE(memory_type_name))
909 		type_len = snprintf(pos, size, "[type=%u", md->type);
910 	else
911 		type_len = snprintf(pos, size, "[%-*s",
912 				    (int)(sizeof(memory_type_name[0]) - 1),
913 				    memory_type_name[md->type]);
914 	if (type_len >= size)
915 		return buf;
916 
917 	pos += type_len;
918 	size -= type_len;
919 
920 	attr = md->attribute;
921 	if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT |
922 		     EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO |
923 		     EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP |
924 		     EFI_MEMORY_NV | EFI_MEMORY_SP | EFI_MEMORY_CPU_CRYPTO |
925 		     EFI_MEMORY_RUNTIME | EFI_MEMORY_MORE_RELIABLE))
926 		snprintf(pos, size, "|attr=0x%016llx]",
927 			 (unsigned long long)attr);
928 	else
929 		snprintf(pos, size,
930 			 "|%3s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]",
931 			 attr & EFI_MEMORY_RUNTIME		? "RUN" : "",
932 			 attr & EFI_MEMORY_MORE_RELIABLE	? "MR"  : "",
933 			 attr & EFI_MEMORY_CPU_CRYPTO   	? "CC"  : "",
934 			 attr & EFI_MEMORY_SP			? "SP"  : "",
935 			 attr & EFI_MEMORY_NV			? "NV"  : "",
936 			 attr & EFI_MEMORY_XP			? "XP"  : "",
937 			 attr & EFI_MEMORY_RP			? "RP"  : "",
938 			 attr & EFI_MEMORY_WP			? "WP"  : "",
939 			 attr & EFI_MEMORY_RO			? "RO"  : "",
940 			 attr & EFI_MEMORY_UCE			? "UCE" : "",
941 			 attr & EFI_MEMORY_WB			? "WB"  : "",
942 			 attr & EFI_MEMORY_WT			? "WT"  : "",
943 			 attr & EFI_MEMORY_WC			? "WC"  : "",
944 			 attr & EFI_MEMORY_UC			? "UC"  : "");
945 	return buf;
946 }
947 
948 /*
949  * efi_mem_attributes - lookup memmap attributes for physical address
950  * @phys_addr: the physical address to lookup
951  *
952  * Search in the EFI memory map for the region covering
953  * @phys_addr. Returns the EFI memory attributes if the region
954  * was found in the memory map, 0 otherwise.
955  */
956 u64 efi_mem_attributes(unsigned long phys_addr)
957 {
958 	efi_memory_desc_t *md;
959 
960 	if (!efi_enabled(EFI_MEMMAP))
961 		return 0;
962 
963 	for_each_efi_memory_desc(md) {
964 		if ((md->phys_addr <= phys_addr) &&
965 		    (phys_addr < (md->phys_addr +
966 		    (md->num_pages << EFI_PAGE_SHIFT))))
967 			return md->attribute;
968 	}
969 	return 0;
970 }
971 
972 /*
973  * efi_mem_type - lookup memmap type for physical address
974  * @phys_addr: the physical address to lookup
975  *
976  * Search in the EFI memory map for the region covering @phys_addr.
977  * Returns the EFI memory type if the region was found in the memory
978  * map, -EINVAL otherwise.
979  */
980 int efi_mem_type(unsigned long phys_addr)
981 {
982 	const efi_memory_desc_t *md;
983 
984 	if (!efi_enabled(EFI_MEMMAP))
985 		return -ENOTSUPP;
986 
987 	for_each_efi_memory_desc(md) {
988 		if ((md->phys_addr <= phys_addr) &&
989 		    (phys_addr < (md->phys_addr +
990 				  (md->num_pages << EFI_PAGE_SHIFT))))
991 			return md->type;
992 	}
993 	return -EINVAL;
994 }
995 
996 int efi_status_to_err(efi_status_t status)
997 {
998 	int err;
999 
1000 	switch (status) {
1001 	case EFI_SUCCESS:
1002 		err = 0;
1003 		break;
1004 	case EFI_INVALID_PARAMETER:
1005 		err = -EINVAL;
1006 		break;
1007 	case EFI_OUT_OF_RESOURCES:
1008 		err = -ENOSPC;
1009 		break;
1010 	case EFI_DEVICE_ERROR:
1011 		err = -EIO;
1012 		break;
1013 	case EFI_WRITE_PROTECTED:
1014 		err = -EROFS;
1015 		break;
1016 	case EFI_SECURITY_VIOLATION:
1017 		err = -EACCES;
1018 		break;
1019 	case EFI_NOT_FOUND:
1020 		err = -ENOENT;
1021 		break;
1022 	case EFI_ABORTED:
1023 		err = -EINTR;
1024 		break;
1025 	default:
1026 		err = -EINVAL;
1027 	}
1028 
1029 	return err;
1030 }
1031 EXPORT_SYMBOL_GPL(efi_status_to_err);
1032 
1033 static DEFINE_SPINLOCK(efi_mem_reserve_persistent_lock);
1034 static struct linux_efi_memreserve *efi_memreserve_root __ro_after_init;
1035 
1036 static int __init efi_memreserve_map_root(void)
1037 {
1038 	if (mem_reserve == EFI_INVALID_TABLE_ADDR)
1039 		return -ENODEV;
1040 
1041 	efi_memreserve_root = memremap(mem_reserve,
1042 				       sizeof(*efi_memreserve_root),
1043 				       MEMREMAP_WB);
1044 	if (WARN_ON_ONCE(!efi_memreserve_root))
1045 		return -ENOMEM;
1046 	return 0;
1047 }
1048 
1049 static int efi_mem_reserve_iomem(phys_addr_t addr, u64 size)
1050 {
1051 	struct resource *res, *parent;
1052 	int ret;
1053 
1054 	res = kzalloc(sizeof(struct resource), GFP_ATOMIC);
1055 	if (!res)
1056 		return -ENOMEM;
1057 
1058 	res->name	= "reserved";
1059 	res->flags	= IORESOURCE_MEM;
1060 	res->start	= addr;
1061 	res->end	= addr + size - 1;
1062 
1063 	/* we expect a conflict with a 'System RAM' region */
1064 	parent = request_resource_conflict(&iomem_resource, res);
1065 	ret = parent ? request_resource(parent, res) : 0;
1066 
1067 	/*
1068 	 * Given that efi_mem_reserve_iomem() can be called at any
1069 	 * time, only call memblock_reserve() if the architecture
1070 	 * keeps the infrastructure around.
1071 	 */
1072 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK) && !ret)
1073 		memblock_reserve(addr, size);
1074 
1075 	return ret;
1076 }
1077 
1078 int __ref efi_mem_reserve_persistent(phys_addr_t addr, u64 size)
1079 {
1080 	struct linux_efi_memreserve *rsv;
1081 	unsigned long prsv;
1082 	int rc, index;
1083 
1084 	if (efi_memreserve_root == (void *)ULONG_MAX)
1085 		return -ENODEV;
1086 
1087 	if (!efi_memreserve_root) {
1088 		rc = efi_memreserve_map_root();
1089 		if (rc)
1090 			return rc;
1091 	}
1092 
1093 	/* first try to find a slot in an existing linked list entry */
1094 	for (prsv = efi_memreserve_root->next; prsv; ) {
1095 		rsv = memremap(prsv, sizeof(*rsv), MEMREMAP_WB);
1096 		if (!rsv)
1097 			return -ENOMEM;
1098 		index = atomic_fetch_add_unless(&rsv->count, 1, rsv->size);
1099 		if (index < rsv->size) {
1100 			rsv->entry[index].base = addr;
1101 			rsv->entry[index].size = size;
1102 
1103 			memunmap(rsv);
1104 			return efi_mem_reserve_iomem(addr, size);
1105 		}
1106 		prsv = rsv->next;
1107 		memunmap(rsv);
1108 	}
1109 
1110 	/* no slot found - allocate a new linked list entry */
1111 	rsv = (struct linux_efi_memreserve *)__get_free_page(GFP_ATOMIC);
1112 	if (!rsv)
1113 		return -ENOMEM;
1114 
1115 	rc = efi_mem_reserve_iomem(__pa(rsv), SZ_4K);
1116 	if (rc) {
1117 		free_page((unsigned long)rsv);
1118 		return rc;
1119 	}
1120 
1121 	/*
1122 	 * The memremap() call above assumes that a linux_efi_memreserve entry
1123 	 * never crosses a page boundary, so let's ensure that this remains true
1124 	 * even when kexec'ing a 4k pages kernel from a >4k pages kernel, by
1125 	 * using SZ_4K explicitly in the size calculation below.
1126 	 */
1127 	rsv->size = EFI_MEMRESERVE_COUNT(SZ_4K);
1128 	atomic_set(&rsv->count, 1);
1129 	rsv->entry[0].base = addr;
1130 	rsv->entry[0].size = size;
1131 
1132 	spin_lock(&efi_mem_reserve_persistent_lock);
1133 	rsv->next = efi_memreserve_root->next;
1134 	efi_memreserve_root->next = __pa(rsv);
1135 	spin_unlock(&efi_mem_reserve_persistent_lock);
1136 
1137 	return efi_mem_reserve_iomem(addr, size);
1138 }
1139 
1140 static int __init efi_memreserve_root_init(void)
1141 {
1142 	if (efi_memreserve_root)
1143 		return 0;
1144 	if (efi_memreserve_map_root())
1145 		efi_memreserve_root = (void *)ULONG_MAX;
1146 	return 0;
1147 }
1148 early_initcall(efi_memreserve_root_init);
1149 
1150 #ifdef CONFIG_KEXEC
1151 static int update_efi_random_seed(struct notifier_block *nb,
1152 				  unsigned long code, void *unused)
1153 {
1154 	struct linux_efi_random_seed *seed;
1155 	u32 size = 0;
1156 
1157 	if (!kexec_in_progress)
1158 		return NOTIFY_DONE;
1159 
1160 	seed = memremap(efi_rng_seed, sizeof(*seed), MEMREMAP_WB);
1161 	if (seed != NULL) {
1162 		size = min(seed->size, EFI_RANDOM_SEED_SIZE);
1163 		memunmap(seed);
1164 	} else {
1165 		pr_err("Could not map UEFI random seed!\n");
1166 	}
1167 	if (size > 0) {
1168 		seed = memremap(efi_rng_seed, sizeof(*seed) + size,
1169 				MEMREMAP_WB);
1170 		if (seed != NULL) {
1171 			seed->size = size;
1172 			get_random_bytes(seed->bits, seed->size);
1173 			memunmap(seed);
1174 		} else {
1175 			pr_err("Could not map UEFI random seed!\n");
1176 		}
1177 	}
1178 	return NOTIFY_DONE;
1179 }
1180 
1181 static struct notifier_block efi_random_seed_nb = {
1182 	.notifier_call = update_efi_random_seed,
1183 };
1184 
1185 static int __init register_update_efi_random_seed(void)
1186 {
1187 	if (efi_rng_seed == EFI_INVALID_TABLE_ADDR)
1188 		return 0;
1189 	return register_reboot_notifier(&efi_random_seed_nb);
1190 }
1191 late_initcall(register_update_efi_random_seed);
1192 #endif
1193