1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * efi.c - EFI subsystem 4 * 5 * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com> 6 * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com> 7 * Copyright (C) 2013 Tom Gundersen <teg@jklm.no> 8 * 9 * This code registers /sys/firmware/efi{,/efivars} when EFI is supported, 10 * allowing the efivarfs to be mounted or the efivars module to be loaded. 11 * The existance of /sys/firmware/efi may also be used by userspace to 12 * determine that the system supports EFI. 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/kobject.h> 18 #include <linux/module.h> 19 #include <linux/init.h> 20 #include <linux/debugfs.h> 21 #include <linux/device.h> 22 #include <linux/efi.h> 23 #include <linux/of.h> 24 #include <linux/initrd.h> 25 #include <linux/io.h> 26 #include <linux/kexec.h> 27 #include <linux/platform_device.h> 28 #include <linux/random.h> 29 #include <linux/reboot.h> 30 #include <linux/slab.h> 31 #include <linux/acpi.h> 32 #include <linux/ucs2_string.h> 33 #include <linux/memblock.h> 34 #include <linux/security.h> 35 #include <linux/notifier.h> 36 37 #include <asm/early_ioremap.h> 38 39 struct efi __read_mostly efi = { 40 .runtime_supported_mask = EFI_RT_SUPPORTED_ALL, 41 .acpi = EFI_INVALID_TABLE_ADDR, 42 .acpi20 = EFI_INVALID_TABLE_ADDR, 43 .smbios = EFI_INVALID_TABLE_ADDR, 44 .smbios3 = EFI_INVALID_TABLE_ADDR, 45 .esrt = EFI_INVALID_TABLE_ADDR, 46 .tpm_log = EFI_INVALID_TABLE_ADDR, 47 .tpm_final_log = EFI_INVALID_TABLE_ADDR, 48 .ovmf_debug_log = EFI_INVALID_TABLE_ADDR, 49 #ifdef CONFIG_LOAD_UEFI_KEYS 50 .mokvar_table = EFI_INVALID_TABLE_ADDR, 51 #endif 52 #ifdef CONFIG_EFI_COCO_SECRET 53 .coco_secret = EFI_INVALID_TABLE_ADDR, 54 #endif 55 #ifdef CONFIG_UNACCEPTED_MEMORY 56 .unaccepted = EFI_INVALID_TABLE_ADDR, 57 #endif 58 }; 59 EXPORT_SYMBOL(efi); 60 61 unsigned long __ro_after_init efi_rng_seed = EFI_INVALID_TABLE_ADDR; 62 static unsigned long __initdata mem_reserve = EFI_INVALID_TABLE_ADDR; 63 static unsigned long __initdata rt_prop = EFI_INVALID_TABLE_ADDR; 64 static unsigned long __initdata initrd = EFI_INVALID_TABLE_ADDR; 65 66 extern unsigned long screen_info_table; 67 68 struct mm_struct efi_mm = { 69 .mm_mt = MTREE_INIT_EXT(mm_mt, MM_MT_FLAGS, efi_mm.mmap_lock), 70 .mm_users = ATOMIC_INIT(2), 71 .mm_count = ATOMIC_INIT(1), 72 .write_protect_seq = SEQCNT_ZERO(efi_mm.write_protect_seq), 73 MMAP_LOCK_INITIALIZER(efi_mm) 74 .page_table_lock = __SPIN_LOCK_UNLOCKED(efi_mm.page_table_lock), 75 .mmlist = LIST_HEAD_INIT(efi_mm.mmlist), 76 .user_ns = &init_user_ns, 77 .cpu_bitmap = { [BITS_TO_LONGS(NR_CPUS)] = 0}, 78 #ifdef CONFIG_SCHED_MM_CID 79 .mm_cid.lock = __RAW_SPIN_LOCK_UNLOCKED(efi_mm.mm_cid.lock), 80 #endif 81 }; 82 83 struct workqueue_struct *efi_rts_wq; 84 85 static bool disable_runtime = IS_ENABLED(CONFIG_EFI_DISABLE_RUNTIME); 86 static int __init setup_noefi(char *arg) 87 { 88 disable_runtime = true; 89 return 0; 90 } 91 early_param("noefi", setup_noefi); 92 93 bool efi_runtime_disabled(void) 94 { 95 return disable_runtime; 96 } 97 98 bool __pure __efi_soft_reserve_enabled(void) 99 { 100 return !efi_enabled(EFI_MEM_NO_SOFT_RESERVE); 101 } 102 103 static int __init parse_efi_cmdline(char *str) 104 { 105 if (!str) { 106 pr_warn("need at least one option\n"); 107 return -EINVAL; 108 } 109 110 if (parse_option_str(str, "debug")) 111 set_bit(EFI_DBG, &efi.flags); 112 113 if (parse_option_str(str, "noruntime")) 114 disable_runtime = true; 115 116 if (parse_option_str(str, "runtime")) 117 disable_runtime = false; 118 119 if (parse_option_str(str, "nosoftreserve")) 120 set_bit(EFI_MEM_NO_SOFT_RESERVE, &efi.flags); 121 122 return 0; 123 } 124 early_param("efi", parse_efi_cmdline); 125 126 struct kobject *efi_kobj; 127 128 /* 129 * Let's not leave out systab information that snuck into 130 * the efivars driver 131 * Note, do not add more fields in systab sysfs file as it breaks sysfs 132 * one value per file rule! 133 */ 134 static ssize_t systab_show(struct kobject *kobj, 135 struct kobj_attribute *attr, char *buf) 136 { 137 char *str = buf; 138 139 if (!kobj || !buf) 140 return -EINVAL; 141 142 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR) 143 str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20); 144 if (efi.acpi != EFI_INVALID_TABLE_ADDR) 145 str += sprintf(str, "ACPI=0x%lx\n", efi.acpi); 146 /* 147 * If both SMBIOS and SMBIOS3 entry points are implemented, the 148 * SMBIOS3 entry point shall be preferred, so we list it first to 149 * let applications stop parsing after the first match. 150 */ 151 if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) 152 str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3); 153 if (efi.smbios != EFI_INVALID_TABLE_ADDR) 154 str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios); 155 156 return str - buf; 157 } 158 159 static struct kobj_attribute efi_attr_systab = __ATTR_RO_MODE(systab, 0400); 160 161 static ssize_t fw_platform_size_show(struct kobject *kobj, 162 struct kobj_attribute *attr, char *buf) 163 { 164 return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32); 165 } 166 167 extern __weak struct kobj_attribute efi_attr_fw_vendor; 168 extern __weak struct kobj_attribute efi_attr_runtime; 169 extern __weak struct kobj_attribute efi_attr_config_table; 170 static struct kobj_attribute efi_attr_fw_platform_size = 171 __ATTR_RO(fw_platform_size); 172 173 static struct attribute *efi_subsys_attrs[] = { 174 &efi_attr_systab.attr, 175 &efi_attr_fw_platform_size.attr, 176 &efi_attr_fw_vendor.attr, 177 &efi_attr_runtime.attr, 178 &efi_attr_config_table.attr, 179 NULL, 180 }; 181 182 umode_t __weak efi_attr_is_visible(struct kobject *kobj, struct attribute *attr, 183 int n) 184 { 185 return attr->mode; 186 } 187 188 static const struct attribute_group efi_subsys_attr_group = { 189 .attrs = efi_subsys_attrs, 190 .is_visible = efi_attr_is_visible, 191 }; 192 193 struct blocking_notifier_head efivar_ops_nh; 194 EXPORT_SYMBOL_GPL(efivar_ops_nh); 195 196 static struct efivars generic_efivars; 197 static struct efivar_operations generic_ops; 198 199 static bool generic_ops_supported(void) 200 { 201 unsigned long name_size; 202 efi_status_t status; 203 efi_char16_t name; 204 efi_guid_t guid; 205 206 name_size = sizeof(name); 207 208 if (!efi.get_next_variable) 209 return false; 210 status = efi.get_next_variable(&name_size, &name, &guid); 211 if (status == EFI_UNSUPPORTED) 212 return false; 213 214 return true; 215 } 216 217 static int generic_ops_register(void) 218 { 219 if (!generic_ops_supported()) 220 return 0; 221 222 generic_ops.get_variable = efi.get_variable; 223 generic_ops.get_next_variable = efi.get_next_variable; 224 generic_ops.query_variable_store = efi_query_variable_store; 225 generic_ops.query_variable_info = efi.query_variable_info; 226 227 if (efi_rt_services_supported(EFI_RT_SUPPORTED_SET_VARIABLE)) { 228 generic_ops.set_variable = efi.set_variable; 229 generic_ops.set_variable_nonblocking = efi.set_variable_nonblocking; 230 } 231 return efivars_register(&generic_efivars, &generic_ops); 232 } 233 234 static void generic_ops_unregister(void) 235 { 236 if (!generic_ops.get_variable) 237 return; 238 239 efivars_unregister(&generic_efivars); 240 } 241 242 void efivars_generic_ops_register(void) 243 { 244 generic_ops_register(); 245 } 246 EXPORT_SYMBOL_GPL(efivars_generic_ops_register); 247 248 void efivars_generic_ops_unregister(void) 249 { 250 generic_ops_unregister(); 251 } 252 EXPORT_SYMBOL_GPL(efivars_generic_ops_unregister); 253 254 #ifdef CONFIG_EFI_CUSTOM_SSDT_OVERLAYS 255 #define EFIVAR_SSDT_NAME_MAX 16UL 256 static char efivar_ssdt[EFIVAR_SSDT_NAME_MAX] __initdata; 257 static int __init efivar_ssdt_setup(char *str) 258 { 259 int ret = security_locked_down(LOCKDOWN_ACPI_TABLES); 260 261 if (ret) 262 return ret; 263 264 if (strlen(str) < sizeof(efivar_ssdt)) 265 memcpy(efivar_ssdt, str, strlen(str)); 266 else 267 pr_warn("efivar_ssdt: name too long: %s\n", str); 268 return 1; 269 } 270 __setup("efivar_ssdt=", efivar_ssdt_setup); 271 272 static __init int efivar_ssdt_load(void) 273 { 274 unsigned long name_size = 256; 275 efi_char16_t *name = NULL; 276 efi_status_t status; 277 efi_guid_t guid; 278 int ret = 0; 279 280 if (!efivar_ssdt[0]) 281 return 0; 282 283 name = kzalloc(name_size, GFP_KERNEL); 284 if (!name) 285 return -ENOMEM; 286 287 for (;;) { 288 char utf8_name[EFIVAR_SSDT_NAME_MAX]; 289 unsigned long data_size = 0; 290 void *data; 291 int limit; 292 293 status = efi.get_next_variable(&name_size, name, &guid); 294 if (status == EFI_NOT_FOUND) { 295 break; 296 } else if (status == EFI_BUFFER_TOO_SMALL) { 297 efi_char16_t *name_tmp = 298 krealloc(name, name_size, GFP_KERNEL); 299 if (!name_tmp) { 300 ret = -ENOMEM; 301 goto out; 302 } 303 name = name_tmp; 304 continue; 305 } 306 307 limit = min(EFIVAR_SSDT_NAME_MAX, name_size); 308 ucs2_as_utf8(utf8_name, name, limit - 1); 309 if (strncmp(utf8_name, efivar_ssdt, limit) != 0) 310 continue; 311 312 pr_info("loading SSDT from variable %s-%pUl\n", efivar_ssdt, &guid); 313 314 status = efi.get_variable(name, &guid, NULL, &data_size, NULL); 315 if (status != EFI_BUFFER_TOO_SMALL || !data_size) { 316 ret = -EIO; 317 goto out; 318 } 319 320 data = kmalloc(data_size, GFP_KERNEL); 321 if (!data) { 322 ret = -ENOMEM; 323 goto out; 324 } 325 326 status = efi.get_variable(name, &guid, NULL, &data_size, data); 327 if (status == EFI_SUCCESS) { 328 acpi_status acpi_ret = acpi_load_table(data, NULL); 329 if (ACPI_FAILURE(acpi_ret)) { 330 pr_err("efivar_ssdt: failed to load table: %u\n", 331 acpi_ret); 332 } else { 333 /* 334 * The @data will be in use by ACPI engine, 335 * do not free it! 336 */ 337 continue; 338 } 339 } else { 340 pr_err("efivar_ssdt: failed to get var data: 0x%lx\n", status); 341 } 342 kfree(data); 343 } 344 out: 345 kfree(name); 346 return ret; 347 } 348 #else 349 static inline int efivar_ssdt_load(void) { return 0; } 350 #endif 351 352 #ifdef CONFIG_DEBUG_FS 353 354 #define EFI_DEBUGFS_MAX_BLOBS 32 355 356 static struct debugfs_blob_wrapper debugfs_blob[EFI_DEBUGFS_MAX_BLOBS]; 357 358 static void __init efi_debugfs_init(void) 359 { 360 struct dentry *efi_debugfs; 361 efi_memory_desc_t *md; 362 char name[32]; 363 int type_count[EFI_BOOT_SERVICES_DATA + 1] = {}; 364 int i = 0; 365 366 efi_debugfs = debugfs_create_dir("efi", NULL); 367 if (IS_ERR(efi_debugfs)) 368 return; 369 370 for_each_efi_memory_desc(md) { 371 switch (md->type) { 372 case EFI_BOOT_SERVICES_CODE: 373 snprintf(name, sizeof(name), "boot_services_code%d", 374 type_count[md->type]++); 375 break; 376 case EFI_BOOT_SERVICES_DATA: 377 snprintf(name, sizeof(name), "boot_services_data%d", 378 type_count[md->type]++); 379 break; 380 default: 381 continue; 382 } 383 384 if (i >= EFI_DEBUGFS_MAX_BLOBS) { 385 pr_warn("More then %d EFI boot service segments, only showing first %d in debugfs\n", 386 EFI_DEBUGFS_MAX_BLOBS, EFI_DEBUGFS_MAX_BLOBS); 387 break; 388 } 389 390 debugfs_blob[i].size = md->num_pages << EFI_PAGE_SHIFT; 391 debugfs_blob[i].data = memremap(md->phys_addr, 392 debugfs_blob[i].size, 393 MEMREMAP_WB); 394 if (!debugfs_blob[i].data) 395 continue; 396 397 debugfs_create_blob(name, 0400, efi_debugfs, &debugfs_blob[i]); 398 i++; 399 } 400 } 401 #else 402 static inline void efi_debugfs_init(void) {} 403 #endif 404 405 /* 406 * We register the efi subsystem with the firmware subsystem and the 407 * efivars subsystem with the efi subsystem, if the system was booted with 408 * EFI. 409 */ 410 static int __init efisubsys_init(void) 411 { 412 int error; 413 414 if (!efi_enabled(EFI_RUNTIME_SERVICES)) 415 efi.runtime_supported_mask = 0; 416 417 if (!efi_enabled(EFI_BOOT)) 418 return 0; 419 420 if (efi.runtime_supported_mask) { 421 /* 422 * Since we process only one efi_runtime_service() at a time, an 423 * ordered workqueue (which creates only one execution context) 424 * should suffice for all our needs. 425 */ 426 efi_rts_wq = alloc_ordered_workqueue("efi_rts_wq", 0); 427 if (!efi_rts_wq) { 428 pr_err("Creating efi_rts_wq failed, EFI runtime services disabled.\n"); 429 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); 430 efi.runtime_supported_mask = 0; 431 return 0; 432 } 433 } 434 435 if (efi_rt_services_supported(EFI_RT_SUPPORTED_TIME_SERVICES)) 436 platform_device_register_simple("rtc-efi", 0, NULL, 0); 437 438 /* We register the efi directory at /sys/firmware/efi */ 439 efi_kobj = kobject_create_and_add("efi", firmware_kobj); 440 if (!efi_kobj) { 441 pr_err("efi: Firmware registration failed.\n"); 442 error = -ENOMEM; 443 goto err_destroy_wq; 444 } 445 446 if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE | 447 EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME)) { 448 error = generic_ops_register(); 449 if (error) 450 goto err_put; 451 error = efivar_ssdt_load(); 452 if (error) 453 pr_err("efi: failed to load SSDT, error %d.\n", error); 454 platform_device_register_simple("efivars", 0, NULL, 0); 455 } 456 457 BLOCKING_INIT_NOTIFIER_HEAD(&efivar_ops_nh); 458 459 error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group); 460 if (error) { 461 pr_err("efi: Sysfs attribute export failed with error %d.\n", 462 error); 463 goto err_unregister; 464 } 465 466 /* and the standard mountpoint for efivarfs */ 467 error = sysfs_create_mount_point(efi_kobj, "efivars"); 468 if (error) { 469 pr_err("efivars: Subsystem registration failed.\n"); 470 goto err_remove_group; 471 } 472 473 if (efi_enabled(EFI_DBG) && efi_enabled(EFI_PRESERVE_BS_REGIONS)) 474 efi_debugfs_init(); 475 476 #ifdef CONFIG_EFI_COCO_SECRET 477 if (efi.coco_secret != EFI_INVALID_TABLE_ADDR) 478 platform_device_register_simple("efi_secret", 0, NULL, 0); 479 #endif 480 481 if (IS_ENABLED(CONFIG_OVMF_DEBUG_LOG) && 482 efi.ovmf_debug_log != EFI_INVALID_TABLE_ADDR) 483 ovmf_log_probe(efi.ovmf_debug_log); 484 485 return 0; 486 487 err_remove_group: 488 sysfs_remove_group(efi_kobj, &efi_subsys_attr_group); 489 err_unregister: 490 if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE | 491 EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME)) 492 generic_ops_unregister(); 493 err_put: 494 kobject_put(efi_kobj); 495 efi_kobj = NULL; 496 err_destroy_wq: 497 if (efi_rts_wq) 498 destroy_workqueue(efi_rts_wq); 499 500 return error; 501 } 502 503 subsys_initcall(efisubsys_init); 504 505 void __init efi_find_mirror(void) 506 { 507 efi_memory_desc_t *md; 508 u64 mirror_size = 0, total_size = 0; 509 510 if (!efi_enabled(EFI_MEMMAP)) 511 return; 512 513 for_each_efi_memory_desc(md) { 514 unsigned long long start = md->phys_addr; 515 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT; 516 517 total_size += size; 518 if (md->attribute & EFI_MEMORY_MORE_RELIABLE) { 519 memblock_mark_mirror(start, size); 520 mirror_size += size; 521 } 522 } 523 if (mirror_size) 524 pr_info("Memory: %lldM/%lldM mirrored memory\n", 525 mirror_size>>20, total_size>>20); 526 } 527 528 /* 529 * Find the efi memory descriptor for a given physical address. Given a 530 * physical address, determine if it exists within an EFI Memory Map entry, 531 * and if so, populate the supplied memory descriptor with the appropriate 532 * data. 533 */ 534 int __efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md) 535 { 536 efi_memory_desc_t *md; 537 538 if (!efi_enabled(EFI_MEMMAP)) { 539 pr_err_once("EFI_MEMMAP is not enabled.\n"); 540 return -EINVAL; 541 } 542 543 if (!out_md) { 544 pr_err_once("out_md is null.\n"); 545 return -EINVAL; 546 } 547 548 for_each_efi_memory_desc(md) { 549 u64 size; 550 u64 end; 551 552 /* skip bogus entries (including empty ones) */ 553 if ((md->phys_addr & (EFI_PAGE_SIZE - 1)) || 554 (md->num_pages <= 0) || 555 (md->num_pages > (U64_MAX - md->phys_addr) >> EFI_PAGE_SHIFT)) 556 continue; 557 558 size = md->num_pages << EFI_PAGE_SHIFT; 559 end = md->phys_addr + size; 560 if (phys_addr >= md->phys_addr && phys_addr < end) { 561 memcpy(out_md, md, sizeof(*out_md)); 562 return 0; 563 } 564 } 565 return -ENOENT; 566 } 567 568 extern int efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md) 569 __weak __alias(__efi_mem_desc_lookup); 570 EXPORT_SYMBOL_GPL(efi_mem_desc_lookup); 571 572 /* 573 * Calculate the highest address of an efi memory descriptor. 574 */ 575 u64 __init efi_mem_desc_end(efi_memory_desc_t *md) 576 { 577 u64 size = md->num_pages << EFI_PAGE_SHIFT; 578 u64 end = md->phys_addr + size; 579 return end; 580 } 581 582 void __init __weak efi_arch_mem_reserve(phys_addr_t addr, u64 size) {} 583 584 /** 585 * efi_mem_reserve - Reserve an EFI memory region 586 * @addr: Physical address to reserve 587 * @size: Size of reservation 588 * 589 * Mark a region as reserved from general kernel allocation and 590 * prevent it being released by efi_free_boot_services(). 591 * 592 * This function should be called drivers once they've parsed EFI 593 * configuration tables to figure out where their data lives, e.g. 594 * efi_esrt_init(). 595 */ 596 void __init efi_mem_reserve(phys_addr_t addr, u64 size) 597 { 598 /* efi_mem_reserve() does not work under Xen */ 599 if (WARN_ON_ONCE(efi_enabled(EFI_PARAVIRT))) 600 return; 601 602 if (!memblock_is_region_reserved(addr, size)) 603 memblock_reserve(addr, size); 604 605 /* 606 * Some architectures (x86) reserve all boot services ranges 607 * until efi_free_boot_services() because of buggy firmware 608 * implementations. This means the above memblock_reserve() is 609 * superfluous on x86 and instead what it needs to do is 610 * ensure the @start, @size is not freed. 611 */ 612 efi_arch_mem_reserve(addr, size); 613 } 614 615 static const efi_config_table_type_t common_tables[] __initconst = { 616 {ACPI_20_TABLE_GUID, &efi.acpi20, "ACPI 2.0" }, 617 {ACPI_TABLE_GUID, &efi.acpi, "ACPI" }, 618 {SMBIOS_TABLE_GUID, &efi.smbios, "SMBIOS" }, 619 {SMBIOS3_TABLE_GUID, &efi.smbios3, "SMBIOS 3.0" }, 620 {EFI_SYSTEM_RESOURCE_TABLE_GUID, &efi.esrt, "ESRT" }, 621 {EFI_MEMORY_ATTRIBUTES_TABLE_GUID, &efi_mem_attr_table, "MEMATTR" }, 622 {LINUX_EFI_RANDOM_SEED_TABLE_GUID, &efi_rng_seed, "RNG" }, 623 {LINUX_EFI_TPM_EVENT_LOG_GUID, &efi.tpm_log, "TPMEventLog" }, 624 {EFI_TCG2_FINAL_EVENTS_TABLE_GUID, &efi.tpm_final_log, "TPMFinalLog" }, 625 {EFI_CC_FINAL_EVENTS_TABLE_GUID, &efi.tpm_final_log, "CCFinalLog" }, 626 {LINUX_EFI_MEMRESERVE_TABLE_GUID, &mem_reserve, "MEMRESERVE" }, 627 {LINUX_EFI_INITRD_MEDIA_GUID, &initrd, "INITRD" }, 628 {EFI_RT_PROPERTIES_TABLE_GUID, &rt_prop, "RTPROP" }, 629 #ifdef CONFIG_OVMF_DEBUG_LOG 630 {OVMF_MEMORY_LOG_TABLE_GUID, &efi.ovmf_debug_log, "OvmfDebugLog" }, 631 #endif 632 #ifdef CONFIG_EFI_RCI2_TABLE 633 {DELLEMC_EFI_RCI2_TABLE_GUID, &rci2_table_phys }, 634 #endif 635 #ifdef CONFIG_LOAD_UEFI_KEYS 636 {LINUX_EFI_MOK_VARIABLE_TABLE_GUID, &efi.mokvar_table, "MOKvar" }, 637 #endif 638 #ifdef CONFIG_EFI_COCO_SECRET 639 {LINUX_EFI_COCO_SECRET_AREA_GUID, &efi.coco_secret, "CocoSecret" }, 640 #endif 641 #ifdef CONFIG_UNACCEPTED_MEMORY 642 {LINUX_EFI_UNACCEPTED_MEM_TABLE_GUID, &efi.unaccepted, "Unaccepted" }, 643 #endif 644 #ifdef CONFIG_EFI_GENERIC_STUB 645 {LINUX_EFI_SCREEN_INFO_TABLE_GUID, &screen_info_table }, 646 #endif 647 {}, 648 }; 649 650 static __init int match_config_table(const efi_guid_t *guid, 651 unsigned long table, 652 const efi_config_table_type_t *table_types) 653 { 654 int i; 655 656 for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) { 657 if (efi_guidcmp(*guid, table_types[i].guid)) 658 continue; 659 660 if (!efi_config_table_is_usable(guid, table)) { 661 if (table_types[i].name[0]) 662 pr_cont("(%s=0x%lx unusable) ", 663 table_types[i].name, table); 664 return 1; 665 } 666 667 *(table_types[i].ptr) = table; 668 if (table_types[i].name[0]) 669 pr_cont("%s=0x%lx ", table_types[i].name, table); 670 return 1; 671 } 672 673 return 0; 674 } 675 676 /** 677 * reserve_unaccepted - Map and reserve unaccepted configuration table 678 * @unaccepted: Pointer to unaccepted memory table 679 * 680 * memblock_add() makes sure that the table is mapped in direct mapping. During 681 * normal boot it happens automatically because the table is allocated from 682 * usable memory. But during crashkernel boot only memory specifically reserved 683 * for crash scenario is mapped. memblock_add() forces the table to be mapped 684 * in crashkernel case. 685 * 686 * Align the range to the nearest page borders. Ranges smaller than page size 687 * are not going to be mapped. 688 * 689 * memblock_reserve() makes sure that future allocations will not touch the 690 * table. 691 */ 692 693 static __init void reserve_unaccepted(struct efi_unaccepted_memory *unaccepted) 694 { 695 phys_addr_t start, size; 696 697 start = PAGE_ALIGN_DOWN(efi.unaccepted); 698 size = PAGE_ALIGN(sizeof(*unaccepted) + unaccepted->size); 699 700 memblock_add(start, size); 701 memblock_reserve(start, size); 702 } 703 704 int __init efi_config_parse_tables(const efi_config_table_t *config_tables, 705 int count, 706 const efi_config_table_type_t *arch_tables) 707 { 708 const efi_config_table_64_t *tbl64 = (void *)config_tables; 709 const efi_config_table_32_t *tbl32 = (void *)config_tables; 710 const efi_guid_t *guid; 711 unsigned long table; 712 int i; 713 714 pr_info(""); 715 for (i = 0; i < count; i++) { 716 if (!IS_ENABLED(CONFIG_X86)) { 717 guid = &config_tables[i].guid; 718 table = (unsigned long)config_tables[i].table; 719 } else if (efi_enabled(EFI_64BIT)) { 720 guid = &tbl64[i].guid; 721 table = tbl64[i].table; 722 723 if (IS_ENABLED(CONFIG_X86_32) && 724 tbl64[i].table > U32_MAX) { 725 pr_cont("\n"); 726 pr_err("Table located above 4GB, disabling EFI.\n"); 727 return -EINVAL; 728 } 729 } else { 730 guid = &tbl32[i].guid; 731 table = tbl32[i].table; 732 } 733 734 if (!match_config_table(guid, table, common_tables) && arch_tables) 735 match_config_table(guid, table, arch_tables); 736 } 737 pr_cont("\n"); 738 set_bit(EFI_CONFIG_TABLES, &efi.flags); 739 740 if (efi_rng_seed != EFI_INVALID_TABLE_ADDR) { 741 struct linux_efi_random_seed *seed; 742 u32 size = 0; 743 744 seed = early_memremap(efi_rng_seed, sizeof(*seed)); 745 if (seed != NULL) { 746 size = min_t(u32, seed->size, SZ_1K); // sanity check 747 early_memunmap(seed, sizeof(*seed)); 748 } else { 749 pr_err("Could not map UEFI random seed!\n"); 750 } 751 if (size > 0) { 752 seed = early_memremap(efi_rng_seed, 753 sizeof(*seed) + size); 754 if (seed != NULL) { 755 add_bootloader_randomness(seed->bits, size); 756 memzero_explicit(seed->bits, size); 757 early_memunmap(seed, sizeof(*seed) + size); 758 } else { 759 pr_err("Could not map UEFI random seed!\n"); 760 } 761 } 762 } 763 764 if (!IS_ENABLED(CONFIG_X86_32) && efi_enabled(EFI_MEMMAP)) 765 efi_memattr_init(); 766 767 efi_tpm_eventlog_init(); 768 769 if (mem_reserve != EFI_INVALID_TABLE_ADDR) { 770 unsigned long prsv = mem_reserve; 771 772 while (prsv) { 773 struct linux_efi_memreserve *rsv; 774 u8 *p; 775 776 /* 777 * Just map a full page: that is what we will get 778 * anyway, and it permits us to map the entire entry 779 * before knowing its size. 780 */ 781 p = early_memremap(ALIGN_DOWN(prsv, PAGE_SIZE), 782 PAGE_SIZE); 783 if (p == NULL) { 784 pr_err("Could not map UEFI memreserve entry!\n"); 785 return -ENOMEM; 786 } 787 788 rsv = (void *)(p + prsv % PAGE_SIZE); 789 790 /* reserve the entry itself */ 791 memblock_reserve(prsv, 792 struct_size(rsv, entry, rsv->size)); 793 794 for (i = 0; i < atomic_read(&rsv->count); i++) { 795 memblock_reserve(rsv->entry[i].base, 796 rsv->entry[i].size); 797 } 798 799 prsv = rsv->next; 800 early_memunmap(p, PAGE_SIZE); 801 } 802 } 803 804 if (rt_prop != EFI_INVALID_TABLE_ADDR) { 805 efi_rt_properties_table_t *tbl; 806 807 tbl = early_memremap(rt_prop, sizeof(*tbl)); 808 if (tbl) { 809 efi.runtime_supported_mask &= tbl->runtime_services_supported; 810 early_memunmap(tbl, sizeof(*tbl)); 811 } 812 } 813 814 if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && 815 initrd != EFI_INVALID_TABLE_ADDR && phys_initrd_size == 0) { 816 struct linux_efi_initrd *tbl; 817 818 tbl = early_memremap(initrd, sizeof(*tbl)); 819 if (tbl) { 820 phys_initrd_start = tbl->base; 821 phys_initrd_size = tbl->size; 822 early_memunmap(tbl, sizeof(*tbl)); 823 } 824 } 825 826 if (IS_ENABLED(CONFIG_UNACCEPTED_MEMORY) && 827 efi.unaccepted != EFI_INVALID_TABLE_ADDR) { 828 struct efi_unaccepted_memory *unaccepted; 829 830 unaccepted = early_memremap(efi.unaccepted, sizeof(*unaccepted)); 831 if (unaccepted) { 832 833 if (unaccepted->version == 1) { 834 reserve_unaccepted(unaccepted); 835 } else { 836 efi.unaccepted = EFI_INVALID_TABLE_ADDR; 837 } 838 839 early_memunmap(unaccepted, sizeof(*unaccepted)); 840 } 841 } 842 843 return 0; 844 } 845 846 int __init efi_systab_check_header(const efi_table_hdr_t *systab_hdr) 847 { 848 if (systab_hdr->signature != EFI_SYSTEM_TABLE_SIGNATURE) { 849 pr_err("System table signature incorrect!\n"); 850 return -EINVAL; 851 } 852 853 return 0; 854 } 855 856 static const efi_char16_t *__init map_fw_vendor(unsigned long fw_vendor, 857 size_t size) 858 { 859 const efi_char16_t *ret; 860 861 ret = early_memremap_ro(fw_vendor, size); 862 if (!ret) 863 pr_err("Could not map the firmware vendor!\n"); 864 return ret; 865 } 866 867 static void __init unmap_fw_vendor(const void *fw_vendor, size_t size) 868 { 869 early_memunmap((void *)fw_vendor, size); 870 } 871 872 void __init efi_systab_report_header(const efi_table_hdr_t *systab_hdr, 873 unsigned long fw_vendor) 874 { 875 char vendor[100] = "unknown"; 876 const efi_char16_t *c16; 877 size_t i; 878 u16 rev; 879 880 c16 = map_fw_vendor(fw_vendor, sizeof(vendor) * sizeof(efi_char16_t)); 881 if (c16) { 882 for (i = 0; i < sizeof(vendor) - 1 && c16[i]; ++i) 883 vendor[i] = c16[i]; 884 vendor[i] = '\0'; 885 886 unmap_fw_vendor(c16, sizeof(vendor) * sizeof(efi_char16_t)); 887 } 888 889 rev = (u16)systab_hdr->revision; 890 pr_info("EFI v%u.%u", systab_hdr->revision >> 16, rev / 10); 891 892 rev %= 10; 893 if (rev) 894 pr_cont(".%u", rev); 895 896 pr_cont(" by %s\n", vendor); 897 898 if (IS_ENABLED(CONFIG_X86_64) && 899 systab_hdr->revision > EFI_1_10_SYSTEM_TABLE_REVISION && 900 !strcmp(vendor, "Apple")) { 901 pr_info("Apple Mac detected, using EFI v1.10 runtime services only\n"); 902 efi.runtime_version = EFI_1_10_SYSTEM_TABLE_REVISION; 903 } 904 } 905 906 static __initdata char memory_type_name[][13] = { 907 "Reserved", 908 "Loader Code", 909 "Loader Data", 910 "Boot Code", 911 "Boot Data", 912 "Runtime Code", 913 "Runtime Data", 914 "Conventional", 915 "Unusable", 916 "ACPI Reclaim", 917 "ACPI Mem NVS", 918 "MMIO", 919 "MMIO Port", 920 "PAL Code", 921 "Persistent", 922 "Unaccepted", 923 }; 924 925 char * __init efi_md_typeattr_format(char *buf, size_t size, 926 const efi_memory_desc_t *md) 927 { 928 char *pos; 929 int type_len; 930 u64 attr; 931 932 pos = buf; 933 if (md->type >= ARRAY_SIZE(memory_type_name)) 934 type_len = snprintf(pos, size, "[type=%u", md->type); 935 else 936 type_len = snprintf(pos, size, "[%-*s", 937 (int)(sizeof(memory_type_name[0]) - 1), 938 memory_type_name[md->type]); 939 if (type_len >= size) 940 return buf; 941 942 pos += type_len; 943 size -= type_len; 944 945 attr = md->attribute; 946 if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT | 947 EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO | 948 EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP | 949 EFI_MEMORY_NV | EFI_MEMORY_SP | EFI_MEMORY_CPU_CRYPTO | 950 EFI_MEMORY_MORE_RELIABLE | EFI_MEMORY_HOT_PLUGGABLE | 951 EFI_MEMORY_RUNTIME)) 952 snprintf(pos, size, "|attr=0x%016llx]", 953 (unsigned long long)attr); 954 else 955 snprintf(pos, size, 956 "|%3s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]", 957 attr & EFI_MEMORY_RUNTIME ? "RUN" : "", 958 attr & EFI_MEMORY_HOT_PLUGGABLE ? "HP" : "", 959 attr & EFI_MEMORY_MORE_RELIABLE ? "MR" : "", 960 attr & EFI_MEMORY_CPU_CRYPTO ? "CC" : "", 961 attr & EFI_MEMORY_SP ? "SP" : "", 962 attr & EFI_MEMORY_NV ? "NV" : "", 963 attr & EFI_MEMORY_XP ? "XP" : "", 964 attr & EFI_MEMORY_RP ? "RP" : "", 965 attr & EFI_MEMORY_WP ? "WP" : "", 966 attr & EFI_MEMORY_RO ? "RO" : "", 967 attr & EFI_MEMORY_UCE ? "UCE" : "", 968 attr & EFI_MEMORY_WB ? "WB" : "", 969 attr & EFI_MEMORY_WT ? "WT" : "", 970 attr & EFI_MEMORY_WC ? "WC" : "", 971 attr & EFI_MEMORY_UC ? "UC" : ""); 972 return buf; 973 } 974 975 /* 976 * efi_mem_attributes - lookup memmap attributes for physical address 977 * @phys_addr: the physical address to lookup 978 * 979 * Search in the EFI memory map for the region covering 980 * @phys_addr. Returns the EFI memory attributes if the region 981 * was found in the memory map, 0 otherwise. 982 */ 983 u64 efi_mem_attributes(unsigned long phys_addr) 984 { 985 efi_memory_desc_t *md; 986 987 if (!efi_enabled(EFI_MEMMAP)) 988 return 0; 989 990 for_each_efi_memory_desc(md) { 991 if ((md->phys_addr <= phys_addr) && 992 (phys_addr < (md->phys_addr + 993 (md->num_pages << EFI_PAGE_SHIFT)))) 994 return md->attribute; 995 } 996 return 0; 997 } 998 999 /* 1000 * efi_mem_type - lookup memmap type for physical address 1001 * @phys_addr: the physical address to lookup 1002 * 1003 * Search in the EFI memory map for the region covering @phys_addr. 1004 * Returns the EFI memory type if the region was found in the memory 1005 * map, -EINVAL otherwise. 1006 */ 1007 int efi_mem_type(unsigned long phys_addr) 1008 { 1009 const efi_memory_desc_t *md; 1010 1011 if (!efi_enabled(EFI_MEMMAP)) 1012 return -ENOTSUPP; 1013 1014 for_each_efi_memory_desc(md) { 1015 if ((md->phys_addr <= phys_addr) && 1016 (phys_addr < (md->phys_addr + 1017 (md->num_pages << EFI_PAGE_SHIFT)))) 1018 return md->type; 1019 } 1020 return -EINVAL; 1021 } 1022 1023 int efi_status_to_err(efi_status_t status) 1024 { 1025 int err; 1026 1027 switch (status) { 1028 case EFI_SUCCESS: 1029 err = 0; 1030 break; 1031 case EFI_INVALID_PARAMETER: 1032 err = -EINVAL; 1033 break; 1034 case EFI_OUT_OF_RESOURCES: 1035 err = -ENOSPC; 1036 break; 1037 case EFI_DEVICE_ERROR: 1038 err = -EIO; 1039 break; 1040 case EFI_WRITE_PROTECTED: 1041 err = -EROFS; 1042 break; 1043 case EFI_SECURITY_VIOLATION: 1044 err = -EACCES; 1045 break; 1046 case EFI_NOT_FOUND: 1047 err = -ENOENT; 1048 break; 1049 case EFI_ABORTED: 1050 err = -EINTR; 1051 break; 1052 default: 1053 err = -EINVAL; 1054 } 1055 1056 return err; 1057 } 1058 EXPORT_SYMBOL_GPL(efi_status_to_err); 1059 1060 static DEFINE_SPINLOCK(efi_mem_reserve_persistent_lock); 1061 static struct linux_efi_memreserve *efi_memreserve_root __ro_after_init; 1062 1063 static int __init efi_memreserve_map_root(void) 1064 { 1065 if (mem_reserve == EFI_INVALID_TABLE_ADDR) 1066 return -ENODEV; 1067 1068 efi_memreserve_root = memremap(mem_reserve, 1069 sizeof(*efi_memreserve_root), 1070 MEMREMAP_WB); 1071 if (WARN_ON_ONCE(!efi_memreserve_root)) 1072 return -ENOMEM; 1073 return 0; 1074 } 1075 1076 static int efi_mem_reserve_iomem(phys_addr_t addr, u64 size) 1077 { 1078 struct resource *res, *parent; 1079 int ret; 1080 1081 res = kzalloc(sizeof(struct resource), GFP_ATOMIC); 1082 if (!res) 1083 return -ENOMEM; 1084 1085 res->name = "reserved"; 1086 res->flags = IORESOURCE_MEM; 1087 res->start = addr; 1088 res->end = addr + size - 1; 1089 1090 /* we expect a conflict with a 'System RAM' region */ 1091 parent = request_resource_conflict(&iomem_resource, res); 1092 ret = parent ? request_resource(parent, res) : 0; 1093 1094 /* 1095 * Given that efi_mem_reserve_iomem() can be called at any 1096 * time, only call memblock_reserve() if the architecture 1097 * keeps the infrastructure around. 1098 */ 1099 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK) && !ret) 1100 memblock_reserve(addr, size); 1101 1102 return ret; 1103 } 1104 1105 int __ref efi_mem_reserve_persistent(phys_addr_t addr, u64 size) 1106 { 1107 struct linux_efi_memreserve *rsv; 1108 unsigned long prsv; 1109 int rc, index; 1110 1111 if (efi_memreserve_root == (void *)ULONG_MAX) 1112 return -ENODEV; 1113 1114 if (!efi_memreserve_root) { 1115 rc = efi_memreserve_map_root(); 1116 if (rc) 1117 return rc; 1118 } 1119 1120 /* first try to find a slot in an existing linked list entry */ 1121 for (prsv = efi_memreserve_root->next; prsv; ) { 1122 rsv = memremap(prsv, sizeof(*rsv), MEMREMAP_WB); 1123 if (!rsv) 1124 return -ENOMEM; 1125 index = atomic_fetch_add_unless(&rsv->count, 1, rsv->size); 1126 if (index < rsv->size) { 1127 rsv->entry[index].base = addr; 1128 rsv->entry[index].size = size; 1129 1130 memunmap(rsv); 1131 return efi_mem_reserve_iomem(addr, size); 1132 } 1133 prsv = rsv->next; 1134 memunmap(rsv); 1135 } 1136 1137 /* no slot found - allocate a new linked list entry */ 1138 rsv = (struct linux_efi_memreserve *)__get_free_page(GFP_ATOMIC); 1139 if (!rsv) 1140 return -ENOMEM; 1141 1142 rc = efi_mem_reserve_iomem(__pa(rsv), SZ_4K); 1143 if (rc) { 1144 free_page((unsigned long)rsv); 1145 return rc; 1146 } 1147 1148 /* 1149 * The memremap() call above assumes that a linux_efi_memreserve entry 1150 * never crosses a page boundary, so let's ensure that this remains true 1151 * even when kexec'ing a 4k pages kernel from a >4k pages kernel, by 1152 * using SZ_4K explicitly in the size calculation below. 1153 */ 1154 rsv->size = EFI_MEMRESERVE_COUNT(SZ_4K); 1155 atomic_set(&rsv->count, 1); 1156 rsv->entry[0].base = addr; 1157 rsv->entry[0].size = size; 1158 1159 spin_lock(&efi_mem_reserve_persistent_lock); 1160 rsv->next = efi_memreserve_root->next; 1161 efi_memreserve_root->next = __pa(rsv); 1162 spin_unlock(&efi_mem_reserve_persistent_lock); 1163 1164 return efi_mem_reserve_iomem(addr, size); 1165 } 1166 1167 static int __init efi_memreserve_root_init(void) 1168 { 1169 if (efi_memreserve_root) 1170 return 0; 1171 if (efi_memreserve_map_root()) 1172 efi_memreserve_root = (void *)ULONG_MAX; 1173 return 0; 1174 } 1175 early_initcall(efi_memreserve_root_init); 1176 1177 #ifdef CONFIG_KEXEC 1178 static int update_efi_random_seed(struct notifier_block *nb, 1179 unsigned long code, void *unused) 1180 { 1181 struct linux_efi_random_seed *seed; 1182 u32 size = 0; 1183 1184 if (!kexec_in_progress) 1185 return NOTIFY_DONE; 1186 1187 seed = memremap(efi_rng_seed, sizeof(*seed), MEMREMAP_WB); 1188 if (seed != NULL) { 1189 size = min(seed->size, EFI_RANDOM_SEED_SIZE); 1190 memunmap(seed); 1191 } else { 1192 pr_err("Could not map UEFI random seed!\n"); 1193 } 1194 if (size > 0) { 1195 seed = memremap(efi_rng_seed, sizeof(*seed) + size, 1196 MEMREMAP_WB); 1197 if (seed != NULL) { 1198 seed->size = size; 1199 get_random_bytes(seed->bits, seed->size); 1200 memunmap(seed); 1201 } else { 1202 pr_err("Could not map UEFI random seed!\n"); 1203 } 1204 } 1205 return NOTIFY_DONE; 1206 } 1207 1208 static struct notifier_block efi_random_seed_nb = { 1209 .notifier_call = update_efi_random_seed, 1210 }; 1211 1212 static int __init register_update_efi_random_seed(void) 1213 { 1214 if (efi_rng_seed == EFI_INVALID_TABLE_ADDR) 1215 return 0; 1216 return register_reboot_notifier(&efi_random_seed_nb); 1217 } 1218 late_initcall(register_update_efi_random_seed); 1219 #endif 1220