1 #include <linux/types.h> 2 #include <linux/string.h> 3 #include <linux/init.h> 4 #include <linux/module.h> 5 #include <linux/dmi.h> 6 #include <linux/efi.h> 7 #include <linux/bootmem.h> 8 #include <linux/slab.h> 9 #include <asm/dmi.h> 10 11 static char dmi_empty_string[] = " "; 12 13 static char * __init dmi_string(const struct dmi_header *dm, u8 s) 14 { 15 const u8 *bp = ((u8 *) dm) + dm->length; 16 char *str = ""; 17 18 if (s) { 19 s--; 20 while (s > 0 && *bp) { 21 bp += strlen(bp) + 1; 22 s--; 23 } 24 25 if (*bp != 0) { 26 size_t len = strlen(bp)+1; 27 size_t cmp_len = len > 8 ? 8 : len; 28 29 if (!memcmp(bp, dmi_empty_string, cmp_len)) 30 return dmi_empty_string; 31 str = dmi_alloc(len); 32 if (str != NULL) 33 strcpy(str, bp); 34 else 35 printk(KERN_ERR "dmi_string: cannot allocate %Zu bytes.\n", len); 36 } 37 } 38 39 return str; 40 } 41 42 /* 43 * We have to be cautious here. We have seen BIOSes with DMI pointers 44 * pointing to completely the wrong place for example 45 */ 46 static void dmi_table(u8 *buf, int len, int num, 47 void (*decode)(const struct dmi_header *)) 48 { 49 u8 *data = buf; 50 int i = 0; 51 52 /* 53 * Stop when we see all the items the table claimed to have 54 * OR we run off the end of the table (also happens) 55 */ 56 while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) { 57 const struct dmi_header *dm = (const struct dmi_header *)data; 58 59 /* 60 * We want to know the total length (formated area and strings) 61 * before decoding to make sure we won't run off the table in 62 * dmi_decode or dmi_string 63 */ 64 data += dm->length; 65 while ((data - buf < len - 1) && (data[0] || data[1])) 66 data++; 67 if (data - buf < len - 1) 68 decode(dm); 69 data += 2; 70 i++; 71 } 72 } 73 74 static u32 dmi_base; 75 static u16 dmi_len; 76 static u16 dmi_num; 77 78 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *)) 79 { 80 u8 *buf; 81 82 buf = dmi_ioremap(dmi_base, dmi_len); 83 if (buf == NULL) 84 return -1; 85 86 dmi_table(buf, dmi_len, dmi_num, decode); 87 88 dmi_iounmap(buf, dmi_len); 89 return 0; 90 } 91 92 static int __init dmi_checksum(const u8 *buf) 93 { 94 u8 sum = 0; 95 int a; 96 97 for (a = 0; a < 15; a++) 98 sum += buf[a]; 99 100 return sum == 0; 101 } 102 103 static char *dmi_ident[DMI_STRING_MAX]; 104 static LIST_HEAD(dmi_devices); 105 int dmi_available; 106 107 /* 108 * Save a DMI string 109 */ 110 static void __init dmi_save_ident(const struct dmi_header *dm, int slot, int string) 111 { 112 const char *d = (const char*) dm; 113 char *p; 114 115 if (dmi_ident[slot]) 116 return; 117 118 p = dmi_string(dm, d[string]); 119 if (p == NULL) 120 return; 121 122 dmi_ident[slot] = p; 123 } 124 125 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, int index) 126 { 127 const u8 *d = (u8*) dm + index; 128 char *s; 129 int is_ff = 1, is_00 = 1, i; 130 131 if (dmi_ident[slot]) 132 return; 133 134 for (i = 0; i < 16 && (is_ff || is_00); i++) { 135 if(d[i] != 0x00) is_ff = 0; 136 if(d[i] != 0xFF) is_00 = 0; 137 } 138 139 if (is_ff || is_00) 140 return; 141 142 s = dmi_alloc(16*2+4+1); 143 if (!s) 144 return; 145 146 sprintf(s, 147 "%02X%02X%02X%02X-%02X%02X-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X", 148 d[0], d[1], d[2], d[3], d[4], d[5], d[6], d[7], 149 d[8], d[9], d[10], d[11], d[12], d[13], d[14], d[15]); 150 151 dmi_ident[slot] = s; 152 } 153 154 static void __init dmi_save_type(const struct dmi_header *dm, int slot, int index) 155 { 156 const u8 *d = (u8*) dm + index; 157 char *s; 158 159 if (dmi_ident[slot]) 160 return; 161 162 s = dmi_alloc(4); 163 if (!s) 164 return; 165 166 sprintf(s, "%u", *d & 0x7F); 167 dmi_ident[slot] = s; 168 } 169 170 static void __init dmi_save_devices(const struct dmi_header *dm) 171 { 172 int i, count = (dm->length - sizeof(struct dmi_header)) / 2; 173 struct dmi_device *dev; 174 175 for (i = 0; i < count; i++) { 176 const char *d = (char *)(dm + 1) + (i * 2); 177 178 /* Skip disabled device */ 179 if ((*d & 0x80) == 0) 180 continue; 181 182 dev = dmi_alloc(sizeof(*dev)); 183 if (!dev) { 184 printk(KERN_ERR "dmi_save_devices: out of memory.\n"); 185 break; 186 } 187 188 dev->type = *d++ & 0x7f; 189 dev->name = dmi_string(dm, *d); 190 dev->device_data = NULL; 191 list_add(&dev->list, &dmi_devices); 192 } 193 } 194 195 static struct dmi_device empty_oem_string_dev = { 196 .name = dmi_empty_string, 197 }; 198 199 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm) 200 { 201 int i, count = *(u8 *)(dm + 1); 202 struct dmi_device *dev; 203 204 for (i = 1; i <= count; i++) { 205 char *devname = dmi_string(dm, i); 206 207 if (!strcmp(devname, dmi_empty_string)) { 208 list_add(&empty_oem_string_dev.list, &dmi_devices); 209 continue; 210 } 211 212 dev = dmi_alloc(sizeof(*dev)); 213 if (!dev) { 214 printk(KERN_ERR 215 "dmi_save_oem_strings_devices: out of memory.\n"); 216 break; 217 } 218 219 dev->type = DMI_DEV_TYPE_OEM_STRING; 220 dev->name = devname; 221 dev->device_data = NULL; 222 223 list_add(&dev->list, &dmi_devices); 224 } 225 } 226 227 static void __init dmi_save_ipmi_device(const struct dmi_header *dm) 228 { 229 struct dmi_device *dev; 230 void * data; 231 232 data = dmi_alloc(dm->length); 233 if (data == NULL) { 234 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n"); 235 return; 236 } 237 238 memcpy(data, dm, dm->length); 239 240 dev = dmi_alloc(sizeof(*dev)); 241 if (!dev) { 242 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n"); 243 return; 244 } 245 246 dev->type = DMI_DEV_TYPE_IPMI; 247 dev->name = "IPMI controller"; 248 dev->device_data = data; 249 250 list_add(&dev->list, &dmi_devices); 251 } 252 253 static void __init dmi_save_extended_devices(const struct dmi_header *dm) 254 { 255 const u8 *d = (u8*) dm + 5; 256 struct dmi_device *dev; 257 258 /* Skip disabled device */ 259 if ((*d & 0x80) == 0) 260 return; 261 262 dev = dmi_alloc(sizeof(*dev)); 263 if (!dev) { 264 printk(KERN_ERR "dmi_save_extended_devices: out of memory.\n"); 265 return; 266 } 267 268 dev->type = *d-- & 0x7f; 269 dev->name = dmi_string(dm, *d); 270 dev->device_data = NULL; 271 272 list_add(&dev->list, &dmi_devices); 273 } 274 275 /* 276 * Process a DMI table entry. Right now all we care about are the BIOS 277 * and machine entries. For 2.5 we should pull the smbus controller info 278 * out of here. 279 */ 280 static void __init dmi_decode(const struct dmi_header *dm) 281 { 282 switch(dm->type) { 283 case 0: /* BIOS Information */ 284 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4); 285 dmi_save_ident(dm, DMI_BIOS_VERSION, 5); 286 dmi_save_ident(dm, DMI_BIOS_DATE, 8); 287 break; 288 case 1: /* System Information */ 289 dmi_save_ident(dm, DMI_SYS_VENDOR, 4); 290 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5); 291 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6); 292 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7); 293 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8); 294 break; 295 case 2: /* Base Board Information */ 296 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4); 297 dmi_save_ident(dm, DMI_BOARD_NAME, 5); 298 dmi_save_ident(dm, DMI_BOARD_VERSION, 6); 299 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7); 300 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8); 301 break; 302 case 3: /* Chassis Information */ 303 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4); 304 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5); 305 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6); 306 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7); 307 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8); 308 break; 309 case 10: /* Onboard Devices Information */ 310 dmi_save_devices(dm); 311 break; 312 case 11: /* OEM Strings */ 313 dmi_save_oem_strings_devices(dm); 314 break; 315 case 38: /* IPMI Device Information */ 316 dmi_save_ipmi_device(dm); 317 break; 318 case 41: /* Onboard Devices Extended Information */ 319 dmi_save_extended_devices(dm); 320 } 321 } 322 323 static int __init dmi_present(const char __iomem *p) 324 { 325 u8 buf[15]; 326 327 memcpy_fromio(buf, p, 15); 328 if ((memcmp(buf, "_DMI_", 5) == 0) && dmi_checksum(buf)) { 329 dmi_num = (buf[13] << 8) | buf[12]; 330 dmi_len = (buf[7] << 8) | buf[6]; 331 dmi_base = (buf[11] << 24) | (buf[10] << 16) | 332 (buf[9] << 8) | buf[8]; 333 334 /* 335 * DMI version 0.0 means that the real version is taken from 336 * the SMBIOS version, which we don't know at this point. 337 */ 338 if (buf[14] != 0) 339 printk(KERN_INFO "DMI %d.%d present.\n", 340 buf[14] >> 4, buf[14] & 0xF); 341 else 342 printk(KERN_INFO "DMI present.\n"); 343 if (dmi_walk_early(dmi_decode) == 0) 344 return 0; 345 } 346 return 1; 347 } 348 349 void __init dmi_scan_machine(void) 350 { 351 char __iomem *p, *q; 352 int rc; 353 354 if (efi_enabled) { 355 if (efi.smbios == EFI_INVALID_TABLE_ADDR) 356 goto out; 357 358 /* This is called as a core_initcall() because it isn't 359 * needed during early boot. This also means we can 360 * iounmap the space when we're done with it. 361 */ 362 p = dmi_ioremap(efi.smbios, 32); 363 if (p == NULL) 364 goto out; 365 366 rc = dmi_present(p + 0x10); /* offset of _DMI_ string */ 367 dmi_iounmap(p, 32); 368 if (!rc) { 369 dmi_available = 1; 370 return; 371 } 372 } 373 else { 374 /* 375 * no iounmap() for that ioremap(); it would be a no-op, but 376 * it's so early in setup that sucker gets confused into doing 377 * what it shouldn't if we actually call it. 378 */ 379 p = dmi_ioremap(0xF0000, 0x10000); 380 if (p == NULL) 381 goto out; 382 383 for (q = p; q < p + 0x10000; q += 16) { 384 rc = dmi_present(q); 385 if (!rc) { 386 dmi_available = 1; 387 dmi_iounmap(p, 0x10000); 388 return; 389 } 390 } 391 dmi_iounmap(p, 0x10000); 392 } 393 out: printk(KERN_INFO "DMI not present or invalid.\n"); 394 } 395 396 /** 397 * dmi_check_system - check system DMI data 398 * @list: array of dmi_system_id structures to match against 399 * All non-null elements of the list must match 400 * their slot's (field index's) data (i.e., each 401 * list string must be a substring of the specified 402 * DMI slot's string data) to be considered a 403 * successful match. 404 * 405 * Walk the blacklist table running matching functions until someone 406 * returns non zero or we hit the end. Callback function is called for 407 * each successful match. Returns the number of matches. 408 */ 409 int dmi_check_system(const struct dmi_system_id *list) 410 { 411 int i, count = 0; 412 const struct dmi_system_id *d = list; 413 414 while (d->ident) { 415 for (i = 0; i < ARRAY_SIZE(d->matches); i++) { 416 int s = d->matches[i].slot; 417 if (s == DMI_NONE) 418 continue; 419 if (dmi_ident[s] && strstr(dmi_ident[s], d->matches[i].substr)) 420 continue; 421 /* No match */ 422 goto fail; 423 } 424 count++; 425 if (d->callback && d->callback(d)) 426 break; 427 fail: d++; 428 } 429 430 return count; 431 } 432 EXPORT_SYMBOL(dmi_check_system); 433 434 /** 435 * dmi_get_system_info - return DMI data value 436 * @field: data index (see enum dmi_field) 437 * 438 * Returns one DMI data value, can be used to perform 439 * complex DMI data checks. 440 */ 441 const char *dmi_get_system_info(int field) 442 { 443 return dmi_ident[field]; 444 } 445 EXPORT_SYMBOL(dmi_get_system_info); 446 447 448 /** 449 * dmi_name_in_vendors - Check if string is anywhere in the DMI vendor information. 450 * @str: Case sensitive Name 451 */ 452 int dmi_name_in_vendors(const char *str) 453 { 454 static int fields[] = { DMI_BIOS_VENDOR, DMI_BIOS_VERSION, DMI_SYS_VENDOR, 455 DMI_PRODUCT_NAME, DMI_PRODUCT_VERSION, DMI_BOARD_VENDOR, 456 DMI_BOARD_NAME, DMI_BOARD_VERSION, DMI_NONE }; 457 int i; 458 for (i = 0; fields[i] != DMI_NONE; i++) { 459 int f = fields[i]; 460 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 461 return 1; 462 } 463 return 0; 464 } 465 EXPORT_SYMBOL(dmi_name_in_vendors); 466 467 /** 468 * dmi_find_device - find onboard device by type/name 469 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types 470 * @name: device name string or %NULL to match all 471 * @from: previous device found in search, or %NULL for new search. 472 * 473 * Iterates through the list of known onboard devices. If a device is 474 * found with a matching @vendor and @device, a pointer to its device 475 * structure is returned. Otherwise, %NULL is returned. 476 * A new search is initiated by passing %NULL as the @from argument. 477 * If @from is not %NULL, searches continue from next device. 478 */ 479 const struct dmi_device * dmi_find_device(int type, const char *name, 480 const struct dmi_device *from) 481 { 482 const struct list_head *head = from ? &from->list : &dmi_devices; 483 struct list_head *d; 484 485 for(d = head->next; d != &dmi_devices; d = d->next) { 486 const struct dmi_device *dev = 487 list_entry(d, struct dmi_device, list); 488 489 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) && 490 ((name == NULL) || (strcmp(dev->name, name) == 0))) 491 return dev; 492 } 493 494 return NULL; 495 } 496 EXPORT_SYMBOL(dmi_find_device); 497 498 /** 499 * dmi_get_year - Return year of a DMI date 500 * @field: data index (like dmi_get_system_info) 501 * 502 * Returns -1 when the field doesn't exist. 0 when it is broken. 503 */ 504 int dmi_get_year(int field) 505 { 506 int year; 507 const char *s = dmi_get_system_info(field); 508 509 if (!s) 510 return -1; 511 if (*s == '\0') 512 return 0; 513 s = strrchr(s, '/'); 514 if (!s) 515 return 0; 516 517 s += 1; 518 year = simple_strtoul(s, NULL, 0); 519 if (year && year < 100) { /* 2-digit year */ 520 year += 1900; 521 if (year < 1996) /* no dates < spec 1.0 */ 522 year += 100; 523 } 524 525 return year; 526 } 527 528 /** 529 * dmi_walk - Walk the DMI table and get called back for every record 530 * @decode: Callback function 531 * 532 * Returns -1 when the DMI table can't be reached, 0 on success. 533 */ 534 int dmi_walk(void (*decode)(const struct dmi_header *)) 535 { 536 u8 *buf; 537 538 if (!dmi_available) 539 return -1; 540 541 buf = ioremap(dmi_base, dmi_len); 542 if (buf == NULL) 543 return -1; 544 545 dmi_table(buf, dmi_len, dmi_num, decode); 546 547 iounmap(buf); 548 return 0; 549 } 550 EXPORT_SYMBOL_GPL(dmi_walk); 551