xref: /linux/drivers/firmware/dmi_scan.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 #include <linux/types.h>
2 #include <linux/string.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/dmi.h>
6 #include <linux/efi.h>
7 #include <linux/bootmem.h>
8 #include <asm/dmi.h>
9 
10 /*
11  * DMI stands for "Desktop Management Interface".  It is part
12  * of and an antecedent to, SMBIOS, which stands for System
13  * Management BIOS.  See further: http://www.dmtf.org/standards
14  */
15 static char dmi_empty_string[] = "        ";
16 
17 /*
18  * Catch too early calls to dmi_check_system():
19  */
20 static int dmi_initialized;
21 
22 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
23 {
24 	const u8 *bp = ((u8 *) dm) + dm->length;
25 
26 	if (s) {
27 		s--;
28 		while (s > 0 && *bp) {
29 			bp += strlen(bp) + 1;
30 			s--;
31 		}
32 
33 		if (*bp != 0) {
34 			size_t len = strlen(bp)+1;
35 			size_t cmp_len = len > 8 ? 8 : len;
36 
37 			if (!memcmp(bp, dmi_empty_string, cmp_len))
38 				return dmi_empty_string;
39 			return bp;
40 		}
41 	}
42 
43 	return "";
44 }
45 
46 static char * __init dmi_string(const struct dmi_header *dm, u8 s)
47 {
48 	const char *bp = dmi_string_nosave(dm, s);
49 	char *str;
50 	size_t len;
51 
52 	if (bp == dmi_empty_string)
53 		return dmi_empty_string;
54 
55 	len = strlen(bp) + 1;
56 	str = dmi_alloc(len);
57 	if (str != NULL)
58 		strcpy(str, bp);
59 	else
60 		printk(KERN_ERR "dmi_string: cannot allocate %Zu bytes.\n", len);
61 
62 	return str;
63 }
64 
65 /*
66  *	We have to be cautious here. We have seen BIOSes with DMI pointers
67  *	pointing to completely the wrong place for example
68  */
69 static void dmi_table(u8 *buf, int len, int num,
70 		      void (*decode)(const struct dmi_header *, void *),
71 		      void *private_data)
72 {
73 	u8 *data = buf;
74 	int i = 0;
75 
76 	/*
77 	 *	Stop when we see all the items the table claimed to have
78 	 *	OR we run off the end of the table (also happens)
79 	 */
80 	while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) {
81 		const struct dmi_header *dm = (const struct dmi_header *)data;
82 
83 		/*
84 		 *  We want to know the total length (formatted area and
85 		 *  strings) before decoding to make sure we won't run off the
86 		 *  table in dmi_decode or dmi_string
87 		 */
88 		data += dm->length;
89 		while ((data - buf < len - 1) && (data[0] || data[1]))
90 			data++;
91 		if (data - buf < len - 1)
92 			decode(dm, private_data);
93 		data += 2;
94 		i++;
95 	}
96 }
97 
98 static u32 dmi_base;
99 static u16 dmi_len;
100 static u16 dmi_num;
101 
102 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
103 		void *))
104 {
105 	u8 *buf;
106 
107 	buf = dmi_ioremap(dmi_base, dmi_len);
108 	if (buf == NULL)
109 		return -1;
110 
111 	dmi_table(buf, dmi_len, dmi_num, decode, NULL);
112 
113 	dmi_iounmap(buf, dmi_len);
114 	return 0;
115 }
116 
117 static int __init dmi_checksum(const u8 *buf)
118 {
119 	u8 sum = 0;
120 	int a;
121 
122 	for (a = 0; a < 15; a++)
123 		sum += buf[a];
124 
125 	return sum == 0;
126 }
127 
128 static char *dmi_ident[DMI_STRING_MAX];
129 static LIST_HEAD(dmi_devices);
130 int dmi_available;
131 
132 /*
133  *	Save a DMI string
134  */
135 static void __init dmi_save_ident(const struct dmi_header *dm, int slot, int string)
136 {
137 	const char *d = (const char*) dm;
138 	char *p;
139 
140 	if (dmi_ident[slot])
141 		return;
142 
143 	p = dmi_string(dm, d[string]);
144 	if (p == NULL)
145 		return;
146 
147 	dmi_ident[slot] = p;
148 }
149 
150 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, int index)
151 {
152 	const u8 *d = (u8*) dm + index;
153 	char *s;
154 	int is_ff = 1, is_00 = 1, i;
155 
156 	if (dmi_ident[slot])
157 		return;
158 
159 	for (i = 0; i < 16 && (is_ff || is_00); i++) {
160 		if(d[i] != 0x00) is_ff = 0;
161 		if(d[i] != 0xFF) is_00 = 0;
162 	}
163 
164 	if (is_ff || is_00)
165 		return;
166 
167 	s = dmi_alloc(16*2+4+1);
168 	if (!s)
169 		return;
170 
171 	sprintf(s, "%pUB", d);
172 
173         dmi_ident[slot] = s;
174 }
175 
176 static void __init dmi_save_type(const struct dmi_header *dm, int slot, int index)
177 {
178 	const u8 *d = (u8*) dm + index;
179 	char *s;
180 
181 	if (dmi_ident[slot])
182 		return;
183 
184 	s = dmi_alloc(4);
185 	if (!s)
186 		return;
187 
188 	sprintf(s, "%u", *d & 0x7F);
189 	dmi_ident[slot] = s;
190 }
191 
192 static void __init dmi_save_one_device(int type, const char *name)
193 {
194 	struct dmi_device *dev;
195 
196 	/* No duplicate device */
197 	if (dmi_find_device(type, name, NULL))
198 		return;
199 
200 	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
201 	if (!dev) {
202 		printk(KERN_ERR "dmi_save_one_device: out of memory.\n");
203 		return;
204 	}
205 
206 	dev->type = type;
207 	strcpy((char *)(dev + 1), name);
208 	dev->name = (char *)(dev + 1);
209 	dev->device_data = NULL;
210 	list_add(&dev->list, &dmi_devices);
211 }
212 
213 static void __init dmi_save_devices(const struct dmi_header *dm)
214 {
215 	int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
216 
217 	for (i = 0; i < count; i++) {
218 		const char *d = (char *)(dm + 1) + (i * 2);
219 
220 		/* Skip disabled device */
221 		if ((*d & 0x80) == 0)
222 			continue;
223 
224 		dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
225 	}
226 }
227 
228 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
229 {
230 	int i, count = *(u8 *)(dm + 1);
231 	struct dmi_device *dev;
232 
233 	for (i = 1; i <= count; i++) {
234 		char *devname = dmi_string(dm, i);
235 
236 		if (devname == dmi_empty_string)
237 			continue;
238 
239 		dev = dmi_alloc(sizeof(*dev));
240 		if (!dev) {
241 			printk(KERN_ERR
242 			   "dmi_save_oem_strings_devices: out of memory.\n");
243 			break;
244 		}
245 
246 		dev->type = DMI_DEV_TYPE_OEM_STRING;
247 		dev->name = devname;
248 		dev->device_data = NULL;
249 
250 		list_add(&dev->list, &dmi_devices);
251 	}
252 }
253 
254 static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
255 {
256 	struct dmi_device *dev;
257 	void * data;
258 
259 	data = dmi_alloc(dm->length);
260 	if (data == NULL) {
261 		printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
262 		return;
263 	}
264 
265 	memcpy(data, dm, dm->length);
266 
267 	dev = dmi_alloc(sizeof(*dev));
268 	if (!dev) {
269 		printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
270 		return;
271 	}
272 
273 	dev->type = DMI_DEV_TYPE_IPMI;
274 	dev->name = "IPMI controller";
275 	dev->device_data = data;
276 
277 	list_add_tail(&dev->list, &dmi_devices);
278 }
279 
280 static void __init dmi_save_dev_onboard(int instance, int segment, int bus,
281 					int devfn, const char *name)
282 {
283 	struct dmi_dev_onboard *onboard_dev;
284 
285 	onboard_dev = dmi_alloc(sizeof(*onboard_dev) + strlen(name) + 1);
286 	if (!onboard_dev) {
287 		printk(KERN_ERR "dmi_save_dev_onboard: out of memory.\n");
288 		return;
289 	}
290 	onboard_dev->instance = instance;
291 	onboard_dev->segment = segment;
292 	onboard_dev->bus = bus;
293 	onboard_dev->devfn = devfn;
294 
295 	strcpy((char *)&onboard_dev[1], name);
296 	onboard_dev->dev.type = DMI_DEV_TYPE_DEV_ONBOARD;
297 	onboard_dev->dev.name = (char *)&onboard_dev[1];
298 	onboard_dev->dev.device_data = onboard_dev;
299 
300 	list_add(&onboard_dev->dev.list, &dmi_devices);
301 }
302 
303 static void __init dmi_save_extended_devices(const struct dmi_header *dm)
304 {
305 	const u8 *d = (u8*) dm + 5;
306 
307 	/* Skip disabled device */
308 	if ((*d & 0x80) == 0)
309 		return;
310 
311 	dmi_save_dev_onboard(*(d+1), *(u16 *)(d+2), *(d+4), *(d+5),
312 			     dmi_string_nosave(dm, *(d-1)));
313 	dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1)));
314 }
315 
316 /*
317  *	Process a DMI table entry. Right now all we care about are the BIOS
318  *	and machine entries. For 2.5 we should pull the smbus controller info
319  *	out of here.
320  */
321 static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
322 {
323 	switch(dm->type) {
324 	case 0:		/* BIOS Information */
325 		dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
326 		dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
327 		dmi_save_ident(dm, DMI_BIOS_DATE, 8);
328 		break;
329 	case 1:		/* System Information */
330 		dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
331 		dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
332 		dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
333 		dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
334 		dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
335 		break;
336 	case 2:		/* Base Board Information */
337 		dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
338 		dmi_save_ident(dm, DMI_BOARD_NAME, 5);
339 		dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
340 		dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
341 		dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
342 		break;
343 	case 3:		/* Chassis Information */
344 		dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
345 		dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
346 		dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
347 		dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
348 		dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
349 		break;
350 	case 10:	/* Onboard Devices Information */
351 		dmi_save_devices(dm);
352 		break;
353 	case 11:	/* OEM Strings */
354 		dmi_save_oem_strings_devices(dm);
355 		break;
356 	case 38:	/* IPMI Device Information */
357 		dmi_save_ipmi_device(dm);
358 		break;
359 	case 41:	/* Onboard Devices Extended Information */
360 		dmi_save_extended_devices(dm);
361 	}
362 }
363 
364 static int __init dmi_present(const char __iomem *p)
365 {
366 	u8 buf[15];
367 
368 	memcpy_fromio(buf, p, 15);
369 	if ((memcmp(buf, "_DMI_", 5) == 0) && dmi_checksum(buf)) {
370 		dmi_num = (buf[13] << 8) | buf[12];
371 		dmi_len = (buf[7] << 8) | buf[6];
372 		dmi_base = (buf[11] << 24) | (buf[10] << 16) |
373 			(buf[9] << 8) | buf[8];
374 
375 		/*
376 		 * DMI version 0.0 means that the real version is taken from
377 		 * the SMBIOS version, which we don't know at this point.
378 		 */
379 		if (buf[14] != 0)
380 			printk(KERN_INFO "DMI %d.%d present.\n",
381 			       buf[14] >> 4, buf[14] & 0xF);
382 		else
383 			printk(KERN_INFO "DMI present.\n");
384 		if (dmi_walk_early(dmi_decode) == 0)
385 			return 0;
386 	}
387 	return 1;
388 }
389 
390 void __init dmi_scan_machine(void)
391 {
392 	char __iomem *p, *q;
393 	int rc;
394 
395 	if (efi_enabled) {
396 		if (efi.smbios == EFI_INVALID_TABLE_ADDR)
397 			goto error;
398 
399 		/* This is called as a core_initcall() because it isn't
400 		 * needed during early boot.  This also means we can
401 		 * iounmap the space when we're done with it.
402 		 */
403 		p = dmi_ioremap(efi.smbios, 32);
404 		if (p == NULL)
405 			goto error;
406 
407 		rc = dmi_present(p + 0x10); /* offset of _DMI_ string */
408 		dmi_iounmap(p, 32);
409 		if (!rc) {
410 			dmi_available = 1;
411 			goto out;
412 		}
413 	}
414 	else {
415 		/*
416 		 * no iounmap() for that ioremap(); it would be a no-op, but
417 		 * it's so early in setup that sucker gets confused into doing
418 		 * what it shouldn't if we actually call it.
419 		 */
420 		p = dmi_ioremap(0xF0000, 0x10000);
421 		if (p == NULL)
422 			goto error;
423 
424 		for (q = p; q < p + 0x10000; q += 16) {
425 			rc = dmi_present(q);
426 			if (!rc) {
427 				dmi_available = 1;
428 				dmi_iounmap(p, 0x10000);
429 				goto out;
430 			}
431 		}
432 		dmi_iounmap(p, 0x10000);
433 	}
434  error:
435 	printk(KERN_INFO "DMI not present or invalid.\n");
436  out:
437 	dmi_initialized = 1;
438 }
439 
440 /**
441  *	dmi_matches - check if dmi_system_id structure matches system DMI data
442  *	@dmi: pointer to the dmi_system_id structure to check
443  */
444 static bool dmi_matches(const struct dmi_system_id *dmi)
445 {
446 	int i;
447 
448 	WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n");
449 
450 	for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
451 		int s = dmi->matches[i].slot;
452 		if (s == DMI_NONE)
453 			break;
454 		if (dmi_ident[s]
455 		    && strstr(dmi_ident[s], dmi->matches[i].substr))
456 			continue;
457 		/* No match */
458 		return false;
459 	}
460 	return true;
461 }
462 
463 /**
464  *	dmi_is_end_of_table - check for end-of-table marker
465  *	@dmi: pointer to the dmi_system_id structure to check
466  */
467 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
468 {
469 	return dmi->matches[0].slot == DMI_NONE;
470 }
471 
472 /**
473  *	dmi_check_system - check system DMI data
474  *	@list: array of dmi_system_id structures to match against
475  *		All non-null elements of the list must match
476  *		their slot's (field index's) data (i.e., each
477  *		list string must be a substring of the specified
478  *		DMI slot's string data) to be considered a
479  *		successful match.
480  *
481  *	Walk the blacklist table running matching functions until someone
482  *	returns non zero or we hit the end. Callback function is called for
483  *	each successful match. Returns the number of matches.
484  */
485 int dmi_check_system(const struct dmi_system_id *list)
486 {
487 	int count = 0;
488 	const struct dmi_system_id *d;
489 
490 	for (d = list; !dmi_is_end_of_table(d); d++)
491 		if (dmi_matches(d)) {
492 			count++;
493 			if (d->callback && d->callback(d))
494 				break;
495 		}
496 
497 	return count;
498 }
499 EXPORT_SYMBOL(dmi_check_system);
500 
501 /**
502  *	dmi_first_match - find dmi_system_id structure matching system DMI data
503  *	@list: array of dmi_system_id structures to match against
504  *		All non-null elements of the list must match
505  *		their slot's (field index's) data (i.e., each
506  *		list string must be a substring of the specified
507  *		DMI slot's string data) to be considered a
508  *		successful match.
509  *
510  *	Walk the blacklist table until the first match is found.  Return the
511  *	pointer to the matching entry or NULL if there's no match.
512  */
513 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
514 {
515 	const struct dmi_system_id *d;
516 
517 	for (d = list; !dmi_is_end_of_table(d); d++)
518 		if (dmi_matches(d))
519 			return d;
520 
521 	return NULL;
522 }
523 EXPORT_SYMBOL(dmi_first_match);
524 
525 /**
526  *	dmi_get_system_info - return DMI data value
527  *	@field: data index (see enum dmi_field)
528  *
529  *	Returns one DMI data value, can be used to perform
530  *	complex DMI data checks.
531  */
532 const char *dmi_get_system_info(int field)
533 {
534 	return dmi_ident[field];
535 }
536 EXPORT_SYMBOL(dmi_get_system_info);
537 
538 /**
539  * dmi_name_in_serial - Check if string is in the DMI product serial information
540  * @str: string to check for
541  */
542 int dmi_name_in_serial(const char *str)
543 {
544 	int f = DMI_PRODUCT_SERIAL;
545 	if (dmi_ident[f] && strstr(dmi_ident[f], str))
546 		return 1;
547 	return 0;
548 }
549 
550 /**
551  *	dmi_name_in_vendors - Check if string is anywhere in the DMI vendor information.
552  *	@str: 	Case sensitive Name
553  */
554 int dmi_name_in_vendors(const char *str)
555 {
556 	static int fields[] = { DMI_BIOS_VENDOR, DMI_BIOS_VERSION, DMI_SYS_VENDOR,
557 				DMI_PRODUCT_NAME, DMI_PRODUCT_VERSION, DMI_BOARD_VENDOR,
558 				DMI_BOARD_NAME, DMI_BOARD_VERSION, DMI_NONE };
559 	int i;
560 	for (i = 0; fields[i] != DMI_NONE; i++) {
561 		int f = fields[i];
562 		if (dmi_ident[f] && strstr(dmi_ident[f], str))
563 			return 1;
564 	}
565 	return 0;
566 }
567 EXPORT_SYMBOL(dmi_name_in_vendors);
568 
569 /**
570  *	dmi_find_device - find onboard device by type/name
571  *	@type: device type or %DMI_DEV_TYPE_ANY to match all device types
572  *	@name: device name string or %NULL to match all
573  *	@from: previous device found in search, or %NULL for new search.
574  *
575  *	Iterates through the list of known onboard devices. If a device is
576  *	found with a matching @vendor and @device, a pointer to its device
577  *	structure is returned.  Otherwise, %NULL is returned.
578  *	A new search is initiated by passing %NULL as the @from argument.
579  *	If @from is not %NULL, searches continue from next device.
580  */
581 const struct dmi_device * dmi_find_device(int type, const char *name,
582 				    const struct dmi_device *from)
583 {
584 	const struct list_head *head = from ? &from->list : &dmi_devices;
585 	struct list_head *d;
586 
587 	for(d = head->next; d != &dmi_devices; d = d->next) {
588 		const struct dmi_device *dev =
589 			list_entry(d, struct dmi_device, list);
590 
591 		if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
592 		    ((name == NULL) || (strcmp(dev->name, name) == 0)))
593 			return dev;
594 	}
595 
596 	return NULL;
597 }
598 EXPORT_SYMBOL(dmi_find_device);
599 
600 /**
601  *	dmi_get_date - parse a DMI date
602  *	@field:	data index (see enum dmi_field)
603  *	@yearp: optional out parameter for the year
604  *	@monthp: optional out parameter for the month
605  *	@dayp: optional out parameter for the day
606  *
607  *	The date field is assumed to be in the form resembling
608  *	[mm[/dd]]/yy[yy] and the result is stored in the out
609  *	parameters any or all of which can be omitted.
610  *
611  *	If the field doesn't exist, all out parameters are set to zero
612  *	and false is returned.  Otherwise, true is returned with any
613  *	invalid part of date set to zero.
614  *
615  *	On return, year, month and day are guaranteed to be in the
616  *	range of [0,9999], [0,12] and [0,31] respectively.
617  */
618 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
619 {
620 	int year = 0, month = 0, day = 0;
621 	bool exists;
622 	const char *s, *y;
623 	char *e;
624 
625 	s = dmi_get_system_info(field);
626 	exists = s;
627 	if (!exists)
628 		goto out;
629 
630 	/*
631 	 * Determine year first.  We assume the date string resembles
632 	 * mm/dd/yy[yy] but the original code extracted only the year
633 	 * from the end.  Keep the behavior in the spirit of no
634 	 * surprises.
635 	 */
636 	y = strrchr(s, '/');
637 	if (!y)
638 		goto out;
639 
640 	y++;
641 	year = simple_strtoul(y, &e, 10);
642 	if (y != e && year < 100) {	/* 2-digit year */
643 		year += 1900;
644 		if (year < 1996)	/* no dates < spec 1.0 */
645 			year += 100;
646 	}
647 	if (year > 9999)		/* year should fit in %04d */
648 		year = 0;
649 
650 	/* parse the mm and dd */
651 	month = simple_strtoul(s, &e, 10);
652 	if (s == e || *e != '/' || !month || month > 12) {
653 		month = 0;
654 		goto out;
655 	}
656 
657 	s = e + 1;
658 	day = simple_strtoul(s, &e, 10);
659 	if (s == y || s == e || *e != '/' || day > 31)
660 		day = 0;
661 out:
662 	if (yearp)
663 		*yearp = year;
664 	if (monthp)
665 		*monthp = month;
666 	if (dayp)
667 		*dayp = day;
668 	return exists;
669 }
670 EXPORT_SYMBOL(dmi_get_date);
671 
672 /**
673  *	dmi_walk - Walk the DMI table and get called back for every record
674  *	@decode: Callback function
675  *	@private_data: Private data to be passed to the callback function
676  *
677  *	Returns -1 when the DMI table can't be reached, 0 on success.
678  */
679 int dmi_walk(void (*decode)(const struct dmi_header *, void *),
680 	     void *private_data)
681 {
682 	u8 *buf;
683 
684 	if (!dmi_available)
685 		return -1;
686 
687 	buf = ioremap(dmi_base, dmi_len);
688 	if (buf == NULL)
689 		return -1;
690 
691 	dmi_table(buf, dmi_len, dmi_num, decode, private_data);
692 
693 	iounmap(buf);
694 	return 0;
695 }
696 EXPORT_SYMBOL_GPL(dmi_walk);
697 
698 /**
699  * dmi_match - compare a string to the dmi field (if exists)
700  * @f: DMI field identifier
701  * @str: string to compare the DMI field to
702  *
703  * Returns true if the requested field equals to the str (including NULL).
704  */
705 bool dmi_match(enum dmi_field f, const char *str)
706 {
707 	const char *info = dmi_get_system_info(f);
708 
709 	if (info == NULL || str == NULL)
710 		return info == str;
711 
712 	return !strcmp(info, str);
713 }
714 EXPORT_SYMBOL_GPL(dmi_match);
715