xref: /linux/drivers/firmware/dmi_scan.c (revision b85d45947951d23cb22d90caecf4c1eb81342c96)
1 #include <linux/types.h>
2 #include <linux/string.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/ctype.h>
6 #include <linux/dmi.h>
7 #include <linux/efi.h>
8 #include <linux/bootmem.h>
9 #include <linux/random.h>
10 #include <asm/dmi.h>
11 #include <asm/unaligned.h>
12 
13 struct kobject *dmi_kobj;
14 EXPORT_SYMBOL_GPL(dmi_kobj);
15 
16 /*
17  * DMI stands for "Desktop Management Interface".  It is part
18  * of and an antecedent to, SMBIOS, which stands for System
19  * Management BIOS.  See further: http://www.dmtf.org/standards
20  */
21 static const char dmi_empty_string[] = "        ";
22 
23 static u32 dmi_ver __initdata;
24 static u32 dmi_len;
25 static u16 dmi_num;
26 static u8 smbios_entry_point[32];
27 static int smbios_entry_point_size;
28 
29 /*
30  * Catch too early calls to dmi_check_system():
31  */
32 static int dmi_initialized;
33 
34 /* DMI system identification string used during boot */
35 static char dmi_ids_string[128] __initdata;
36 
37 static struct dmi_memdev_info {
38 	const char *device;
39 	const char *bank;
40 	u16 handle;
41 } *dmi_memdev;
42 static int dmi_memdev_nr;
43 
44 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
45 {
46 	const u8 *bp = ((u8 *) dm) + dm->length;
47 
48 	if (s) {
49 		s--;
50 		while (s > 0 && *bp) {
51 			bp += strlen(bp) + 1;
52 			s--;
53 		}
54 
55 		if (*bp != 0) {
56 			size_t len = strlen(bp)+1;
57 			size_t cmp_len = len > 8 ? 8 : len;
58 
59 			if (!memcmp(bp, dmi_empty_string, cmp_len))
60 				return dmi_empty_string;
61 			return bp;
62 		}
63 	}
64 
65 	return "";
66 }
67 
68 static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
69 {
70 	const char *bp = dmi_string_nosave(dm, s);
71 	char *str;
72 	size_t len;
73 
74 	if (bp == dmi_empty_string)
75 		return dmi_empty_string;
76 
77 	len = strlen(bp) + 1;
78 	str = dmi_alloc(len);
79 	if (str != NULL)
80 		strcpy(str, bp);
81 
82 	return str;
83 }
84 
85 /*
86  *	We have to be cautious here. We have seen BIOSes with DMI pointers
87  *	pointing to completely the wrong place for example
88  */
89 static void dmi_decode_table(u8 *buf,
90 			     void (*decode)(const struct dmi_header *, void *),
91 			     void *private_data)
92 {
93 	u8 *data = buf;
94 	int i = 0;
95 
96 	/*
97 	 * Stop when we have seen all the items the table claimed to have
98 	 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS
99 	 * >= 3.0 only) OR we run off the end of the table (should never
100 	 * happen but sometimes does on bogus implementations.)
101 	 */
102 	while ((!dmi_num || i < dmi_num) &&
103 	       (data - buf + sizeof(struct dmi_header)) <= dmi_len) {
104 		const struct dmi_header *dm = (const struct dmi_header *)data;
105 
106 		/*
107 		 *  We want to know the total length (formatted area and
108 		 *  strings) before decoding to make sure we won't run off the
109 		 *  table in dmi_decode or dmi_string
110 		 */
111 		data += dm->length;
112 		while ((data - buf < dmi_len - 1) && (data[0] || data[1]))
113 			data++;
114 		if (data - buf < dmi_len - 1)
115 			decode(dm, private_data);
116 
117 		data += 2;
118 		i++;
119 
120 		/*
121 		 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
122 		 * For tables behind a 64-bit entry point, we have no item
123 		 * count and no exact table length, so stop on end-of-table
124 		 * marker. For tables behind a 32-bit entry point, we have
125 		 * seen OEM structures behind the end-of-table marker on
126 		 * some systems, so don't trust it.
127 		 */
128 		if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE)
129 			break;
130 	}
131 
132 	/* Trim DMI table length if needed */
133 	if (dmi_len > data - buf)
134 		dmi_len = data - buf;
135 }
136 
137 static phys_addr_t dmi_base;
138 
139 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
140 		void *))
141 {
142 	u8 *buf;
143 	u32 orig_dmi_len = dmi_len;
144 
145 	buf = dmi_early_remap(dmi_base, orig_dmi_len);
146 	if (buf == NULL)
147 		return -1;
148 
149 	dmi_decode_table(buf, decode, NULL);
150 
151 	add_device_randomness(buf, dmi_len);
152 
153 	dmi_early_unmap(buf, orig_dmi_len);
154 	return 0;
155 }
156 
157 static int __init dmi_checksum(const u8 *buf, u8 len)
158 {
159 	u8 sum = 0;
160 	int a;
161 
162 	for (a = 0; a < len; a++)
163 		sum += buf[a];
164 
165 	return sum == 0;
166 }
167 
168 static const char *dmi_ident[DMI_STRING_MAX];
169 static LIST_HEAD(dmi_devices);
170 int dmi_available;
171 
172 /*
173  *	Save a DMI string
174  */
175 static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
176 		int string)
177 {
178 	const char *d = (const char *) dm;
179 	const char *p;
180 
181 	if (dmi_ident[slot])
182 		return;
183 
184 	p = dmi_string(dm, d[string]);
185 	if (p == NULL)
186 		return;
187 
188 	dmi_ident[slot] = p;
189 }
190 
191 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
192 		int index)
193 {
194 	const u8 *d = (u8 *) dm + index;
195 	char *s;
196 	int is_ff = 1, is_00 = 1, i;
197 
198 	if (dmi_ident[slot])
199 		return;
200 
201 	for (i = 0; i < 16 && (is_ff || is_00); i++) {
202 		if (d[i] != 0x00)
203 			is_00 = 0;
204 		if (d[i] != 0xFF)
205 			is_ff = 0;
206 	}
207 
208 	if (is_ff || is_00)
209 		return;
210 
211 	s = dmi_alloc(16*2+4+1);
212 	if (!s)
213 		return;
214 
215 	/*
216 	 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
217 	 * the UUID are supposed to be little-endian encoded.  The specification
218 	 * says that this is the defacto standard.
219 	 */
220 	if (dmi_ver >= 0x020600)
221 		sprintf(s, "%pUL", d);
222 	else
223 		sprintf(s, "%pUB", d);
224 
225 	dmi_ident[slot] = s;
226 }
227 
228 static void __init dmi_save_type(const struct dmi_header *dm, int slot,
229 		int index)
230 {
231 	const u8 *d = (u8 *) dm + index;
232 	char *s;
233 
234 	if (dmi_ident[slot])
235 		return;
236 
237 	s = dmi_alloc(4);
238 	if (!s)
239 		return;
240 
241 	sprintf(s, "%u", *d & 0x7F);
242 	dmi_ident[slot] = s;
243 }
244 
245 static void __init dmi_save_one_device(int type, const char *name)
246 {
247 	struct dmi_device *dev;
248 
249 	/* No duplicate device */
250 	if (dmi_find_device(type, name, NULL))
251 		return;
252 
253 	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
254 	if (!dev)
255 		return;
256 
257 	dev->type = type;
258 	strcpy((char *)(dev + 1), name);
259 	dev->name = (char *)(dev + 1);
260 	dev->device_data = NULL;
261 	list_add(&dev->list, &dmi_devices);
262 }
263 
264 static void __init dmi_save_devices(const struct dmi_header *dm)
265 {
266 	int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
267 
268 	for (i = 0; i < count; i++) {
269 		const char *d = (char *)(dm + 1) + (i * 2);
270 
271 		/* Skip disabled device */
272 		if ((*d & 0x80) == 0)
273 			continue;
274 
275 		dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
276 	}
277 }
278 
279 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
280 {
281 	int i, count = *(u8 *)(dm + 1);
282 	struct dmi_device *dev;
283 
284 	for (i = 1; i <= count; i++) {
285 		const char *devname = dmi_string(dm, i);
286 
287 		if (devname == dmi_empty_string)
288 			continue;
289 
290 		dev = dmi_alloc(sizeof(*dev));
291 		if (!dev)
292 			break;
293 
294 		dev->type = DMI_DEV_TYPE_OEM_STRING;
295 		dev->name = devname;
296 		dev->device_data = NULL;
297 
298 		list_add(&dev->list, &dmi_devices);
299 	}
300 }
301 
302 static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
303 {
304 	struct dmi_device *dev;
305 	void *data;
306 
307 	data = dmi_alloc(dm->length);
308 	if (data == NULL)
309 		return;
310 
311 	memcpy(data, dm, dm->length);
312 
313 	dev = dmi_alloc(sizeof(*dev));
314 	if (!dev)
315 		return;
316 
317 	dev->type = DMI_DEV_TYPE_IPMI;
318 	dev->name = "IPMI controller";
319 	dev->device_data = data;
320 
321 	list_add_tail(&dev->list, &dmi_devices);
322 }
323 
324 static void __init dmi_save_dev_onboard(int instance, int segment, int bus,
325 					int devfn, const char *name)
326 {
327 	struct dmi_dev_onboard *onboard_dev;
328 
329 	onboard_dev = dmi_alloc(sizeof(*onboard_dev) + strlen(name) + 1);
330 	if (!onboard_dev)
331 		return;
332 
333 	onboard_dev->instance = instance;
334 	onboard_dev->segment = segment;
335 	onboard_dev->bus = bus;
336 	onboard_dev->devfn = devfn;
337 
338 	strcpy((char *)&onboard_dev[1], name);
339 	onboard_dev->dev.type = DMI_DEV_TYPE_DEV_ONBOARD;
340 	onboard_dev->dev.name = (char *)&onboard_dev[1];
341 	onboard_dev->dev.device_data = onboard_dev;
342 
343 	list_add(&onboard_dev->dev.list, &dmi_devices);
344 }
345 
346 static void __init dmi_save_extended_devices(const struct dmi_header *dm)
347 {
348 	const u8 *d = (u8 *) dm + 5;
349 
350 	/* Skip disabled device */
351 	if ((*d & 0x80) == 0)
352 		return;
353 
354 	dmi_save_dev_onboard(*(d+1), *(u16 *)(d+2), *(d+4), *(d+5),
355 			     dmi_string_nosave(dm, *(d-1)));
356 	dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1)));
357 }
358 
359 static void __init count_mem_devices(const struct dmi_header *dm, void *v)
360 {
361 	if (dm->type != DMI_ENTRY_MEM_DEVICE)
362 		return;
363 	dmi_memdev_nr++;
364 }
365 
366 static void __init save_mem_devices(const struct dmi_header *dm, void *v)
367 {
368 	const char *d = (const char *)dm;
369 	static int nr;
370 
371 	if (dm->type != DMI_ENTRY_MEM_DEVICE)
372 		return;
373 	if (nr >= dmi_memdev_nr) {
374 		pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
375 		return;
376 	}
377 	dmi_memdev[nr].handle = get_unaligned(&dm->handle);
378 	dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
379 	dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
380 	nr++;
381 }
382 
383 void __init dmi_memdev_walk(void)
384 {
385 	if (!dmi_available)
386 		return;
387 
388 	if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
389 		dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
390 		if (dmi_memdev)
391 			dmi_walk_early(save_mem_devices);
392 	}
393 }
394 
395 /*
396  *	Process a DMI table entry. Right now all we care about are the BIOS
397  *	and machine entries. For 2.5 we should pull the smbus controller info
398  *	out of here.
399  */
400 static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
401 {
402 	switch (dm->type) {
403 	case 0:		/* BIOS Information */
404 		dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
405 		dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
406 		dmi_save_ident(dm, DMI_BIOS_DATE, 8);
407 		break;
408 	case 1:		/* System Information */
409 		dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
410 		dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
411 		dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
412 		dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
413 		dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
414 		break;
415 	case 2:		/* Base Board Information */
416 		dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
417 		dmi_save_ident(dm, DMI_BOARD_NAME, 5);
418 		dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
419 		dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
420 		dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
421 		break;
422 	case 3:		/* Chassis Information */
423 		dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
424 		dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
425 		dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
426 		dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
427 		dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
428 		break;
429 	case 10:	/* Onboard Devices Information */
430 		dmi_save_devices(dm);
431 		break;
432 	case 11:	/* OEM Strings */
433 		dmi_save_oem_strings_devices(dm);
434 		break;
435 	case 38:	/* IPMI Device Information */
436 		dmi_save_ipmi_device(dm);
437 		break;
438 	case 41:	/* Onboard Devices Extended Information */
439 		dmi_save_extended_devices(dm);
440 	}
441 }
442 
443 static int __init print_filtered(char *buf, size_t len, const char *info)
444 {
445 	int c = 0;
446 	const char *p;
447 
448 	if (!info)
449 		return c;
450 
451 	for (p = info; *p; p++)
452 		if (isprint(*p))
453 			c += scnprintf(buf + c, len - c, "%c", *p);
454 		else
455 			c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
456 	return c;
457 }
458 
459 static void __init dmi_format_ids(char *buf, size_t len)
460 {
461 	int c = 0;
462 	const char *board;	/* Board Name is optional */
463 
464 	c += print_filtered(buf + c, len - c,
465 			    dmi_get_system_info(DMI_SYS_VENDOR));
466 	c += scnprintf(buf + c, len - c, " ");
467 	c += print_filtered(buf + c, len - c,
468 			    dmi_get_system_info(DMI_PRODUCT_NAME));
469 
470 	board = dmi_get_system_info(DMI_BOARD_NAME);
471 	if (board) {
472 		c += scnprintf(buf + c, len - c, "/");
473 		c += print_filtered(buf + c, len - c, board);
474 	}
475 	c += scnprintf(buf + c, len - c, ", BIOS ");
476 	c += print_filtered(buf + c, len - c,
477 			    dmi_get_system_info(DMI_BIOS_VERSION));
478 	c += scnprintf(buf + c, len - c, " ");
479 	c += print_filtered(buf + c, len - c,
480 			    dmi_get_system_info(DMI_BIOS_DATE));
481 }
482 
483 /*
484  * Check for DMI/SMBIOS headers in the system firmware image.  Any
485  * SMBIOS header must start 16 bytes before the DMI header, so take a
486  * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
487  * 0.  If the DMI header is present, set dmi_ver accordingly (SMBIOS
488  * takes precedence) and return 0.  Otherwise return 1.
489  */
490 static int __init dmi_present(const u8 *buf)
491 {
492 	u32 smbios_ver;
493 
494 	if (memcmp(buf, "_SM_", 4) == 0 &&
495 	    buf[5] < 32 && dmi_checksum(buf, buf[5])) {
496 		smbios_ver = get_unaligned_be16(buf + 6);
497 		smbios_entry_point_size = buf[5];
498 		memcpy(smbios_entry_point, buf, smbios_entry_point_size);
499 
500 		/* Some BIOS report weird SMBIOS version, fix that up */
501 		switch (smbios_ver) {
502 		case 0x021F:
503 		case 0x0221:
504 			pr_debug("SMBIOS version fixup (2.%d->2.%d)\n",
505 				 smbios_ver & 0xFF, 3);
506 			smbios_ver = 0x0203;
507 			break;
508 		case 0x0233:
509 			pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6);
510 			smbios_ver = 0x0206;
511 			break;
512 		}
513 	} else {
514 		smbios_ver = 0;
515 	}
516 
517 	buf += 16;
518 
519 	if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
520 		if (smbios_ver)
521 			dmi_ver = smbios_ver;
522 		else
523 			dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F);
524 		dmi_num = get_unaligned_le16(buf + 12);
525 		dmi_len = get_unaligned_le16(buf + 6);
526 		dmi_base = get_unaligned_le32(buf + 8);
527 
528 		if (dmi_walk_early(dmi_decode) == 0) {
529 			if (smbios_ver) {
530 				pr_info("SMBIOS %d.%d present.\n",
531 				       dmi_ver >> 8, dmi_ver & 0xFF);
532 			} else {
533 				smbios_entry_point_size = 15;
534 				memcpy(smbios_entry_point, buf,
535 				       smbios_entry_point_size);
536 				pr_info("Legacy DMI %d.%d present.\n",
537 				       dmi_ver >> 8, dmi_ver & 0xFF);
538 			}
539 			dmi_ver <<= 8;
540 			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
541 			printk(KERN_DEBUG "DMI: %s\n", dmi_ids_string);
542 			return 0;
543 		}
544 	}
545 
546 	return 1;
547 }
548 
549 /*
550  * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
551  * 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
552  */
553 static int __init dmi_smbios3_present(const u8 *buf)
554 {
555 	if (memcmp(buf, "_SM3_", 5) == 0 &&
556 	    buf[6] < 32 && dmi_checksum(buf, buf[6])) {
557 		dmi_ver = get_unaligned_be32(buf + 6) & 0xFFFFFF;
558 		dmi_num = 0;			/* No longer specified */
559 		dmi_len = get_unaligned_le32(buf + 12);
560 		dmi_base = get_unaligned_le64(buf + 16);
561 		smbios_entry_point_size = buf[6];
562 		memcpy(smbios_entry_point, buf, smbios_entry_point_size);
563 
564 		if (dmi_walk_early(dmi_decode) == 0) {
565 			pr_info("SMBIOS %d.%d.%d present.\n",
566 				dmi_ver >> 16, (dmi_ver >> 8) & 0xFF,
567 				dmi_ver & 0xFF);
568 			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
569 			pr_debug("DMI: %s\n", dmi_ids_string);
570 			return 0;
571 		}
572 	}
573 	return 1;
574 }
575 
576 void __init dmi_scan_machine(void)
577 {
578 	char __iomem *p, *q;
579 	char buf[32];
580 
581 	if (efi_enabled(EFI_CONFIG_TABLES)) {
582 		/*
583 		 * According to the DMTF SMBIOS reference spec v3.0.0, it is
584 		 * allowed to define both the 64-bit entry point (smbios3) and
585 		 * the 32-bit entry point (smbios), in which case they should
586 		 * either both point to the same SMBIOS structure table, or the
587 		 * table pointed to by the 64-bit entry point should contain a
588 		 * superset of the table contents pointed to by the 32-bit entry
589 		 * point (section 5.2)
590 		 * This implies that the 64-bit entry point should have
591 		 * precedence if it is defined and supported by the OS. If we
592 		 * have the 64-bit entry point, but fail to decode it, fall
593 		 * back to the legacy one (if available)
594 		 */
595 		if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) {
596 			p = dmi_early_remap(efi.smbios3, 32);
597 			if (p == NULL)
598 				goto error;
599 			memcpy_fromio(buf, p, 32);
600 			dmi_early_unmap(p, 32);
601 
602 			if (!dmi_smbios3_present(buf)) {
603 				dmi_available = 1;
604 				goto out;
605 			}
606 		}
607 		if (efi.smbios == EFI_INVALID_TABLE_ADDR)
608 			goto error;
609 
610 		/* This is called as a core_initcall() because it isn't
611 		 * needed during early boot.  This also means we can
612 		 * iounmap the space when we're done with it.
613 		 */
614 		p = dmi_early_remap(efi.smbios, 32);
615 		if (p == NULL)
616 			goto error;
617 		memcpy_fromio(buf, p, 32);
618 		dmi_early_unmap(p, 32);
619 
620 		if (!dmi_present(buf)) {
621 			dmi_available = 1;
622 			goto out;
623 		}
624 	} else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
625 		p = dmi_early_remap(0xF0000, 0x10000);
626 		if (p == NULL)
627 			goto error;
628 
629 		/*
630 		 * Iterate over all possible DMI header addresses q.
631 		 * Maintain the 32 bytes around q in buf.  On the
632 		 * first iteration, substitute zero for the
633 		 * out-of-range bytes so there is no chance of falsely
634 		 * detecting an SMBIOS header.
635 		 */
636 		memset(buf, 0, 16);
637 		for (q = p; q < p + 0x10000; q += 16) {
638 			memcpy_fromio(buf + 16, q, 16);
639 			if (!dmi_smbios3_present(buf) || !dmi_present(buf)) {
640 				dmi_available = 1;
641 				dmi_early_unmap(p, 0x10000);
642 				goto out;
643 			}
644 			memcpy(buf, buf + 16, 16);
645 		}
646 		dmi_early_unmap(p, 0x10000);
647 	}
648  error:
649 	pr_info("DMI not present or invalid.\n");
650  out:
651 	dmi_initialized = 1;
652 }
653 
654 static ssize_t raw_table_read(struct file *file, struct kobject *kobj,
655 			      struct bin_attribute *attr, char *buf,
656 			      loff_t pos, size_t count)
657 {
658 	memcpy(buf, attr->private + pos, count);
659 	return count;
660 }
661 
662 static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0);
663 static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0);
664 
665 static int __init dmi_init(void)
666 {
667 	struct kobject *tables_kobj;
668 	u8 *dmi_table;
669 	int ret = -ENOMEM;
670 
671 	if (!dmi_available) {
672 		ret = -ENODATA;
673 		goto err;
674 	}
675 
676 	/*
677 	 * Set up dmi directory at /sys/firmware/dmi. This entry should stay
678 	 * even after farther error, as it can be used by other modules like
679 	 * dmi-sysfs.
680 	 */
681 	dmi_kobj = kobject_create_and_add("dmi", firmware_kobj);
682 	if (!dmi_kobj)
683 		goto err;
684 
685 	tables_kobj = kobject_create_and_add("tables", dmi_kobj);
686 	if (!tables_kobj)
687 		goto err;
688 
689 	dmi_table = dmi_remap(dmi_base, dmi_len);
690 	if (!dmi_table)
691 		goto err_tables;
692 
693 	bin_attr_smbios_entry_point.size = smbios_entry_point_size;
694 	bin_attr_smbios_entry_point.private = smbios_entry_point;
695 	ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point);
696 	if (ret)
697 		goto err_unmap;
698 
699 	bin_attr_DMI.size = dmi_len;
700 	bin_attr_DMI.private = dmi_table;
701 	ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI);
702 	if (!ret)
703 		return 0;
704 
705 	sysfs_remove_bin_file(tables_kobj,
706 			      &bin_attr_smbios_entry_point);
707  err_unmap:
708 	dmi_unmap(dmi_table);
709  err_tables:
710 	kobject_del(tables_kobj);
711 	kobject_put(tables_kobj);
712  err:
713 	pr_err("dmi: Firmware registration failed.\n");
714 
715 	return ret;
716 }
717 subsys_initcall(dmi_init);
718 
719 /**
720  * dmi_set_dump_stack_arch_desc - set arch description for dump_stack()
721  *
722  * Invoke dump_stack_set_arch_desc() with DMI system information so that
723  * DMI identifiers are printed out on task dumps.  Arch boot code should
724  * call this function after dmi_scan_machine() if it wants to print out DMI
725  * identifiers on task dumps.
726  */
727 void __init dmi_set_dump_stack_arch_desc(void)
728 {
729 	dump_stack_set_arch_desc("%s", dmi_ids_string);
730 }
731 
732 /**
733  *	dmi_matches - check if dmi_system_id structure matches system DMI data
734  *	@dmi: pointer to the dmi_system_id structure to check
735  */
736 static bool dmi_matches(const struct dmi_system_id *dmi)
737 {
738 	int i;
739 
740 	WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n");
741 
742 	for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
743 		int s = dmi->matches[i].slot;
744 		if (s == DMI_NONE)
745 			break;
746 		if (dmi_ident[s]) {
747 			if (!dmi->matches[i].exact_match &&
748 			    strstr(dmi_ident[s], dmi->matches[i].substr))
749 				continue;
750 			else if (dmi->matches[i].exact_match &&
751 				 !strcmp(dmi_ident[s], dmi->matches[i].substr))
752 				continue;
753 		}
754 
755 		/* No match */
756 		return false;
757 	}
758 	return true;
759 }
760 
761 /**
762  *	dmi_is_end_of_table - check for end-of-table marker
763  *	@dmi: pointer to the dmi_system_id structure to check
764  */
765 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
766 {
767 	return dmi->matches[0].slot == DMI_NONE;
768 }
769 
770 /**
771  *	dmi_check_system - check system DMI data
772  *	@list: array of dmi_system_id structures to match against
773  *		All non-null elements of the list must match
774  *		their slot's (field index's) data (i.e., each
775  *		list string must be a substring of the specified
776  *		DMI slot's string data) to be considered a
777  *		successful match.
778  *
779  *	Walk the blacklist table running matching functions until someone
780  *	returns non zero or we hit the end. Callback function is called for
781  *	each successful match. Returns the number of matches.
782  */
783 int dmi_check_system(const struct dmi_system_id *list)
784 {
785 	int count = 0;
786 	const struct dmi_system_id *d;
787 
788 	for (d = list; !dmi_is_end_of_table(d); d++)
789 		if (dmi_matches(d)) {
790 			count++;
791 			if (d->callback && d->callback(d))
792 				break;
793 		}
794 
795 	return count;
796 }
797 EXPORT_SYMBOL(dmi_check_system);
798 
799 /**
800  *	dmi_first_match - find dmi_system_id structure matching system DMI data
801  *	@list: array of dmi_system_id structures to match against
802  *		All non-null elements of the list must match
803  *		their slot's (field index's) data (i.e., each
804  *		list string must be a substring of the specified
805  *		DMI slot's string data) to be considered a
806  *		successful match.
807  *
808  *	Walk the blacklist table until the first match is found.  Return the
809  *	pointer to the matching entry or NULL if there's no match.
810  */
811 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
812 {
813 	const struct dmi_system_id *d;
814 
815 	for (d = list; !dmi_is_end_of_table(d); d++)
816 		if (dmi_matches(d))
817 			return d;
818 
819 	return NULL;
820 }
821 EXPORT_SYMBOL(dmi_first_match);
822 
823 /**
824  *	dmi_get_system_info - return DMI data value
825  *	@field: data index (see enum dmi_field)
826  *
827  *	Returns one DMI data value, can be used to perform
828  *	complex DMI data checks.
829  */
830 const char *dmi_get_system_info(int field)
831 {
832 	return dmi_ident[field];
833 }
834 EXPORT_SYMBOL(dmi_get_system_info);
835 
836 /**
837  * dmi_name_in_serial - Check if string is in the DMI product serial information
838  * @str: string to check for
839  */
840 int dmi_name_in_serial(const char *str)
841 {
842 	int f = DMI_PRODUCT_SERIAL;
843 	if (dmi_ident[f] && strstr(dmi_ident[f], str))
844 		return 1;
845 	return 0;
846 }
847 
848 /**
849  *	dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
850  *	@str: Case sensitive Name
851  */
852 int dmi_name_in_vendors(const char *str)
853 {
854 	static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
855 	int i;
856 	for (i = 0; fields[i] != DMI_NONE; i++) {
857 		int f = fields[i];
858 		if (dmi_ident[f] && strstr(dmi_ident[f], str))
859 			return 1;
860 	}
861 	return 0;
862 }
863 EXPORT_SYMBOL(dmi_name_in_vendors);
864 
865 /**
866  *	dmi_find_device - find onboard device by type/name
867  *	@type: device type or %DMI_DEV_TYPE_ANY to match all device types
868  *	@name: device name string or %NULL to match all
869  *	@from: previous device found in search, or %NULL for new search.
870  *
871  *	Iterates through the list of known onboard devices. If a device is
872  *	found with a matching @vendor and @device, a pointer to its device
873  *	structure is returned.  Otherwise, %NULL is returned.
874  *	A new search is initiated by passing %NULL as the @from argument.
875  *	If @from is not %NULL, searches continue from next device.
876  */
877 const struct dmi_device *dmi_find_device(int type, const char *name,
878 				    const struct dmi_device *from)
879 {
880 	const struct list_head *head = from ? &from->list : &dmi_devices;
881 	struct list_head *d;
882 
883 	for (d = head->next; d != &dmi_devices; d = d->next) {
884 		const struct dmi_device *dev =
885 			list_entry(d, struct dmi_device, list);
886 
887 		if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
888 		    ((name == NULL) || (strcmp(dev->name, name) == 0)))
889 			return dev;
890 	}
891 
892 	return NULL;
893 }
894 EXPORT_SYMBOL(dmi_find_device);
895 
896 /**
897  *	dmi_get_date - parse a DMI date
898  *	@field:	data index (see enum dmi_field)
899  *	@yearp: optional out parameter for the year
900  *	@monthp: optional out parameter for the month
901  *	@dayp: optional out parameter for the day
902  *
903  *	The date field is assumed to be in the form resembling
904  *	[mm[/dd]]/yy[yy] and the result is stored in the out
905  *	parameters any or all of which can be omitted.
906  *
907  *	If the field doesn't exist, all out parameters are set to zero
908  *	and false is returned.  Otherwise, true is returned with any
909  *	invalid part of date set to zero.
910  *
911  *	On return, year, month and day are guaranteed to be in the
912  *	range of [0,9999], [0,12] and [0,31] respectively.
913  */
914 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
915 {
916 	int year = 0, month = 0, day = 0;
917 	bool exists;
918 	const char *s, *y;
919 	char *e;
920 
921 	s = dmi_get_system_info(field);
922 	exists = s;
923 	if (!exists)
924 		goto out;
925 
926 	/*
927 	 * Determine year first.  We assume the date string resembles
928 	 * mm/dd/yy[yy] but the original code extracted only the year
929 	 * from the end.  Keep the behavior in the spirit of no
930 	 * surprises.
931 	 */
932 	y = strrchr(s, '/');
933 	if (!y)
934 		goto out;
935 
936 	y++;
937 	year = simple_strtoul(y, &e, 10);
938 	if (y != e && year < 100) {	/* 2-digit year */
939 		year += 1900;
940 		if (year < 1996)	/* no dates < spec 1.0 */
941 			year += 100;
942 	}
943 	if (year > 9999)		/* year should fit in %04d */
944 		year = 0;
945 
946 	/* parse the mm and dd */
947 	month = simple_strtoul(s, &e, 10);
948 	if (s == e || *e != '/' || !month || month > 12) {
949 		month = 0;
950 		goto out;
951 	}
952 
953 	s = e + 1;
954 	day = simple_strtoul(s, &e, 10);
955 	if (s == y || s == e || *e != '/' || day > 31)
956 		day = 0;
957 out:
958 	if (yearp)
959 		*yearp = year;
960 	if (monthp)
961 		*monthp = month;
962 	if (dayp)
963 		*dayp = day;
964 	return exists;
965 }
966 EXPORT_SYMBOL(dmi_get_date);
967 
968 /**
969  *	dmi_walk - Walk the DMI table and get called back for every record
970  *	@decode: Callback function
971  *	@private_data: Private data to be passed to the callback function
972  *
973  *	Returns -1 when the DMI table can't be reached, 0 on success.
974  */
975 int dmi_walk(void (*decode)(const struct dmi_header *, void *),
976 	     void *private_data)
977 {
978 	u8 *buf;
979 
980 	if (!dmi_available)
981 		return -1;
982 
983 	buf = dmi_remap(dmi_base, dmi_len);
984 	if (buf == NULL)
985 		return -1;
986 
987 	dmi_decode_table(buf, decode, private_data);
988 
989 	dmi_unmap(buf);
990 	return 0;
991 }
992 EXPORT_SYMBOL_GPL(dmi_walk);
993 
994 /**
995  * dmi_match - compare a string to the dmi field (if exists)
996  * @f: DMI field identifier
997  * @str: string to compare the DMI field to
998  *
999  * Returns true if the requested field equals to the str (including NULL).
1000  */
1001 bool dmi_match(enum dmi_field f, const char *str)
1002 {
1003 	const char *info = dmi_get_system_info(f);
1004 
1005 	if (info == NULL || str == NULL)
1006 		return info == str;
1007 
1008 	return !strcmp(info, str);
1009 }
1010 EXPORT_SYMBOL_GPL(dmi_match);
1011 
1012 void dmi_memdev_name(u16 handle, const char **bank, const char **device)
1013 {
1014 	int n;
1015 
1016 	if (dmi_memdev == NULL)
1017 		return;
1018 
1019 	for (n = 0; n < dmi_memdev_nr; n++) {
1020 		if (handle == dmi_memdev[n].handle) {
1021 			*bank = dmi_memdev[n].bank;
1022 			*device = dmi_memdev[n].device;
1023 			break;
1024 		}
1025 	}
1026 }
1027 EXPORT_SYMBOL_GPL(dmi_memdev_name);
1028