xref: /linux/drivers/firmware/dmi_scan.c (revision 93d546399c2b7d66a54d5fbd5eee17de19246bf6)
1 #include <linux/types.h>
2 #include <linux/string.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/dmi.h>
6 #include <linux/efi.h>
7 #include <linux/bootmem.h>
8 #include <linux/slab.h>
9 #include <asm/dmi.h>
10 
11 /*
12  * DMI stands for "Desktop Management Interface".  It is part
13  * of and an antecedent to, SMBIOS, which stands for System
14  * Management BIOS.  See further: http://www.dmtf.org/standards
15  */
16 static char dmi_empty_string[] = "        ";
17 
18 /*
19  * Catch too early calls to dmi_check_system():
20  */
21 static int dmi_initialized;
22 
23 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
24 {
25 	const u8 *bp = ((u8 *) dm) + dm->length;
26 
27 	if (s) {
28 		s--;
29 		while (s > 0 && *bp) {
30 			bp += strlen(bp) + 1;
31 			s--;
32 		}
33 
34 		if (*bp != 0) {
35 			size_t len = strlen(bp)+1;
36 			size_t cmp_len = len > 8 ? 8 : len;
37 
38 			if (!memcmp(bp, dmi_empty_string, cmp_len))
39 				return dmi_empty_string;
40 			return bp;
41 		}
42 	}
43 
44 	return "";
45 }
46 
47 static char * __init dmi_string(const struct dmi_header *dm, u8 s)
48 {
49 	const char *bp = dmi_string_nosave(dm, s);
50 	char *str;
51 	size_t len;
52 
53 	if (bp == dmi_empty_string)
54 		return dmi_empty_string;
55 
56 	len = strlen(bp) + 1;
57 	str = dmi_alloc(len);
58 	if (str != NULL)
59 		strcpy(str, bp);
60 	else
61 		printk(KERN_ERR "dmi_string: cannot allocate %Zu bytes.\n", len);
62 
63 	return str;
64 }
65 
66 /*
67  *	We have to be cautious here. We have seen BIOSes with DMI pointers
68  *	pointing to completely the wrong place for example
69  */
70 static void dmi_table(u8 *buf, int len, int num,
71 		      void (*decode)(const struct dmi_header *))
72 {
73 	u8 *data = buf;
74 	int i = 0;
75 
76 	/*
77 	 *	Stop when we see all the items the table claimed to have
78 	 *	OR we run off the end of the table (also happens)
79 	 */
80 	while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) {
81 		const struct dmi_header *dm = (const struct dmi_header *)data;
82 
83 		/*
84 		 *  We want to know the total length (formatted area and
85 		 *  strings) before decoding to make sure we won't run off the
86 		 *  table in dmi_decode or dmi_string
87 		 */
88 		data += dm->length;
89 		while ((data - buf < len - 1) && (data[0] || data[1]))
90 			data++;
91 		if (data - buf < len - 1)
92 			decode(dm);
93 		data += 2;
94 		i++;
95 	}
96 }
97 
98 static u32 dmi_base;
99 static u16 dmi_len;
100 static u16 dmi_num;
101 
102 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *))
103 {
104 	u8 *buf;
105 
106 	buf = dmi_ioremap(dmi_base, dmi_len);
107 	if (buf == NULL)
108 		return -1;
109 
110 	dmi_table(buf, dmi_len, dmi_num, decode);
111 
112 	dmi_iounmap(buf, dmi_len);
113 	return 0;
114 }
115 
116 static int __init dmi_checksum(const u8 *buf)
117 {
118 	u8 sum = 0;
119 	int a;
120 
121 	for (a = 0; a < 15; a++)
122 		sum += buf[a];
123 
124 	return sum == 0;
125 }
126 
127 static char *dmi_ident[DMI_STRING_MAX];
128 static LIST_HEAD(dmi_devices);
129 int dmi_available;
130 
131 /*
132  *	Save a DMI string
133  */
134 static void __init dmi_save_ident(const struct dmi_header *dm, int slot, int string)
135 {
136 	const char *d = (const char*) dm;
137 	char *p;
138 
139 	if (dmi_ident[slot])
140 		return;
141 
142 	p = dmi_string(dm, d[string]);
143 	if (p == NULL)
144 		return;
145 
146 	dmi_ident[slot] = p;
147 }
148 
149 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, int index)
150 {
151 	const u8 *d = (u8*) dm + index;
152 	char *s;
153 	int is_ff = 1, is_00 = 1, i;
154 
155 	if (dmi_ident[slot])
156 		return;
157 
158 	for (i = 0; i < 16 && (is_ff || is_00); i++) {
159 		if(d[i] != 0x00) is_ff = 0;
160 		if(d[i] != 0xFF) is_00 = 0;
161 	}
162 
163 	if (is_ff || is_00)
164 		return;
165 
166 	s = dmi_alloc(16*2+4+1);
167 	if (!s)
168 		return;
169 
170 	sprintf(s,
171 		"%02X%02X%02X%02X-%02X%02X-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X",
172 		d[0], d[1], d[2], d[3], d[4], d[5], d[6], d[7],
173 		d[8], d[9], d[10], d[11], d[12], d[13], d[14], d[15]);
174 
175         dmi_ident[slot] = s;
176 }
177 
178 static void __init dmi_save_type(const struct dmi_header *dm, int slot, int index)
179 {
180 	const u8 *d = (u8*) dm + index;
181 	char *s;
182 
183 	if (dmi_ident[slot])
184 		return;
185 
186 	s = dmi_alloc(4);
187 	if (!s)
188 		return;
189 
190 	sprintf(s, "%u", *d & 0x7F);
191 	dmi_ident[slot] = s;
192 }
193 
194 static void __init dmi_save_one_device(int type, const char *name)
195 {
196 	struct dmi_device *dev;
197 
198 	/* No duplicate device */
199 	if (dmi_find_device(type, name, NULL))
200 		return;
201 
202 	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
203 	if (!dev) {
204 		printk(KERN_ERR "dmi_save_one_device: out of memory.\n");
205 		return;
206 	}
207 
208 	dev->type = type;
209 	strcpy((char *)(dev + 1), name);
210 	dev->name = (char *)(dev + 1);
211 	dev->device_data = NULL;
212 	list_add(&dev->list, &dmi_devices);
213 }
214 
215 static void __init dmi_save_devices(const struct dmi_header *dm)
216 {
217 	int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
218 
219 	for (i = 0; i < count; i++) {
220 		const char *d = (char *)(dm + 1) + (i * 2);
221 
222 		/* Skip disabled device */
223 		if ((*d & 0x80) == 0)
224 			continue;
225 
226 		dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
227 	}
228 }
229 
230 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
231 {
232 	int i, count = *(u8 *)(dm + 1);
233 	struct dmi_device *dev;
234 
235 	for (i = 1; i <= count; i++) {
236 		char *devname = dmi_string(dm, i);
237 
238 		if (devname == dmi_empty_string)
239 			continue;
240 
241 		dev = dmi_alloc(sizeof(*dev));
242 		if (!dev) {
243 			printk(KERN_ERR
244 			   "dmi_save_oem_strings_devices: out of memory.\n");
245 			break;
246 		}
247 
248 		dev->type = DMI_DEV_TYPE_OEM_STRING;
249 		dev->name = devname;
250 		dev->device_data = NULL;
251 
252 		list_add(&dev->list, &dmi_devices);
253 	}
254 }
255 
256 static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
257 {
258 	struct dmi_device *dev;
259 	void * data;
260 
261 	data = dmi_alloc(dm->length);
262 	if (data == NULL) {
263 		printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
264 		return;
265 	}
266 
267 	memcpy(data, dm, dm->length);
268 
269 	dev = dmi_alloc(sizeof(*dev));
270 	if (!dev) {
271 		printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
272 		return;
273 	}
274 
275 	dev->type = DMI_DEV_TYPE_IPMI;
276 	dev->name = "IPMI controller";
277 	dev->device_data = data;
278 
279 	list_add_tail(&dev->list, &dmi_devices);
280 }
281 
282 static void __init dmi_save_extended_devices(const struct dmi_header *dm)
283 {
284 	const u8 *d = (u8*) dm + 5;
285 
286 	/* Skip disabled device */
287 	if ((*d & 0x80) == 0)
288 		return;
289 
290 	dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1)));
291 }
292 
293 /*
294  *	Process a DMI table entry. Right now all we care about are the BIOS
295  *	and machine entries. For 2.5 we should pull the smbus controller info
296  *	out of here.
297  */
298 static void __init dmi_decode(const struct dmi_header *dm)
299 {
300 	switch(dm->type) {
301 	case 0:		/* BIOS Information */
302 		dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
303 		dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
304 		dmi_save_ident(dm, DMI_BIOS_DATE, 8);
305 		break;
306 	case 1:		/* System Information */
307 		dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
308 		dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
309 		dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
310 		dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
311 		dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
312 		break;
313 	case 2:		/* Base Board Information */
314 		dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
315 		dmi_save_ident(dm, DMI_BOARD_NAME, 5);
316 		dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
317 		dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
318 		dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
319 		break;
320 	case 3:		/* Chassis Information */
321 		dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
322 		dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
323 		dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
324 		dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
325 		dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
326 		break;
327 	case 10:	/* Onboard Devices Information */
328 		dmi_save_devices(dm);
329 		break;
330 	case 11:	/* OEM Strings */
331 		dmi_save_oem_strings_devices(dm);
332 		break;
333 	case 38:	/* IPMI Device Information */
334 		dmi_save_ipmi_device(dm);
335 		break;
336 	case 41:	/* Onboard Devices Extended Information */
337 		dmi_save_extended_devices(dm);
338 	}
339 }
340 
341 static int __init dmi_present(const char __iomem *p)
342 {
343 	u8 buf[15];
344 
345 	memcpy_fromio(buf, p, 15);
346 	if ((memcmp(buf, "_DMI_", 5) == 0) && dmi_checksum(buf)) {
347 		dmi_num = (buf[13] << 8) | buf[12];
348 		dmi_len = (buf[7] << 8) | buf[6];
349 		dmi_base = (buf[11] << 24) | (buf[10] << 16) |
350 			(buf[9] << 8) | buf[8];
351 
352 		/*
353 		 * DMI version 0.0 means that the real version is taken from
354 		 * the SMBIOS version, which we don't know at this point.
355 		 */
356 		if (buf[14] != 0)
357 			printk(KERN_INFO "DMI %d.%d present.\n",
358 			       buf[14] >> 4, buf[14] & 0xF);
359 		else
360 			printk(KERN_INFO "DMI present.\n");
361 		if (dmi_walk_early(dmi_decode) == 0)
362 			return 0;
363 	}
364 	return 1;
365 }
366 
367 void __init dmi_scan_machine(void)
368 {
369 	char __iomem *p, *q;
370 	int rc;
371 
372 	if (efi_enabled) {
373 		if (efi.smbios == EFI_INVALID_TABLE_ADDR)
374 			goto error;
375 
376 		/* This is called as a core_initcall() because it isn't
377 		 * needed during early boot.  This also means we can
378 		 * iounmap the space when we're done with it.
379 		 */
380 		p = dmi_ioremap(efi.smbios, 32);
381 		if (p == NULL)
382 			goto error;
383 
384 		rc = dmi_present(p + 0x10); /* offset of _DMI_ string */
385 		dmi_iounmap(p, 32);
386 		if (!rc) {
387 			dmi_available = 1;
388 			goto out;
389 		}
390 	}
391 	else {
392 		/*
393 		 * no iounmap() for that ioremap(); it would be a no-op, but
394 		 * it's so early in setup that sucker gets confused into doing
395 		 * what it shouldn't if we actually call it.
396 		 */
397 		p = dmi_ioremap(0xF0000, 0x10000);
398 		if (p == NULL)
399 			goto error;
400 
401 		for (q = p; q < p + 0x10000; q += 16) {
402 			rc = dmi_present(q);
403 			if (!rc) {
404 				dmi_available = 1;
405 				dmi_iounmap(p, 0x10000);
406 				goto out;
407 			}
408 		}
409 		dmi_iounmap(p, 0x10000);
410 	}
411  error:
412 	printk(KERN_INFO "DMI not present or invalid.\n");
413  out:
414 	dmi_initialized = 1;
415 }
416 
417 /**
418  *	dmi_check_system - check system DMI data
419  *	@list: array of dmi_system_id structures to match against
420  *		All non-null elements of the list must match
421  *		their slot's (field index's) data (i.e., each
422  *		list string must be a substring of the specified
423  *		DMI slot's string data) to be considered a
424  *		successful match.
425  *
426  *	Walk the blacklist table running matching functions until someone
427  *	returns non zero or we hit the end. Callback function is called for
428  *	each successful match. Returns the number of matches.
429  */
430 int dmi_check_system(const struct dmi_system_id *list)
431 {
432 	int i, count = 0;
433 	const struct dmi_system_id *d = list;
434 
435 	WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n");
436 
437 	while (d->ident) {
438 		for (i = 0; i < ARRAY_SIZE(d->matches); i++) {
439 			int s = d->matches[i].slot;
440 			if (s == DMI_NONE)
441 				continue;
442 			if (dmi_ident[s] && strstr(dmi_ident[s], d->matches[i].substr))
443 				continue;
444 			/* No match */
445 			goto fail;
446 		}
447 		count++;
448 		if (d->callback && d->callback(d))
449 			break;
450 fail:		d++;
451 	}
452 
453 	return count;
454 }
455 EXPORT_SYMBOL(dmi_check_system);
456 
457 /**
458  *	dmi_get_system_info - return DMI data value
459  *	@field: data index (see enum dmi_field)
460  *
461  *	Returns one DMI data value, can be used to perform
462  *	complex DMI data checks.
463  */
464 const char *dmi_get_system_info(int field)
465 {
466 	return dmi_ident[field];
467 }
468 EXPORT_SYMBOL(dmi_get_system_info);
469 
470 
471 /**
472  *	dmi_name_in_vendors - Check if string is anywhere in the DMI vendor information.
473  *	@str: 	Case sensitive Name
474  */
475 int dmi_name_in_vendors(const char *str)
476 {
477 	static int fields[] = { DMI_BIOS_VENDOR, DMI_BIOS_VERSION, DMI_SYS_VENDOR,
478 				DMI_PRODUCT_NAME, DMI_PRODUCT_VERSION, DMI_BOARD_VENDOR,
479 				DMI_BOARD_NAME, DMI_BOARD_VERSION, DMI_NONE };
480 	int i;
481 	for (i = 0; fields[i] != DMI_NONE; i++) {
482 		int f = fields[i];
483 		if (dmi_ident[f] && strstr(dmi_ident[f], str))
484 			return 1;
485 	}
486 	return 0;
487 }
488 EXPORT_SYMBOL(dmi_name_in_vendors);
489 
490 /**
491  *	dmi_find_device - find onboard device by type/name
492  *	@type: device type or %DMI_DEV_TYPE_ANY to match all device types
493  *	@name: device name string or %NULL to match all
494  *	@from: previous device found in search, or %NULL for new search.
495  *
496  *	Iterates through the list of known onboard devices. If a device is
497  *	found with a matching @vendor and @device, a pointer to its device
498  *	structure is returned.  Otherwise, %NULL is returned.
499  *	A new search is initiated by passing %NULL as the @from argument.
500  *	If @from is not %NULL, searches continue from next device.
501  */
502 const struct dmi_device * dmi_find_device(int type, const char *name,
503 				    const struct dmi_device *from)
504 {
505 	const struct list_head *head = from ? &from->list : &dmi_devices;
506 	struct list_head *d;
507 
508 	for(d = head->next; d != &dmi_devices; d = d->next) {
509 		const struct dmi_device *dev =
510 			list_entry(d, struct dmi_device, list);
511 
512 		if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
513 		    ((name == NULL) || (strcmp(dev->name, name) == 0)))
514 			return dev;
515 	}
516 
517 	return NULL;
518 }
519 EXPORT_SYMBOL(dmi_find_device);
520 
521 /**
522  *	dmi_get_year - Return year of a DMI date
523  *	@field:	data index (like dmi_get_system_info)
524  *
525  *	Returns -1 when the field doesn't exist. 0 when it is broken.
526  */
527 int dmi_get_year(int field)
528 {
529 	int year;
530 	const char *s = dmi_get_system_info(field);
531 
532 	if (!s)
533 		return -1;
534 	if (*s == '\0')
535 		return 0;
536 	s = strrchr(s, '/');
537 	if (!s)
538 		return 0;
539 
540 	s += 1;
541 	year = simple_strtoul(s, NULL, 0);
542 	if (year && year < 100) {	/* 2-digit year */
543 		year += 1900;
544 		if (year < 1996)	/* no dates < spec 1.0 */
545 			year += 100;
546 	}
547 
548 	return year;
549 }
550 
551 /**
552  *	dmi_walk - Walk the DMI table and get called back for every record
553  *	@decode: Callback function
554  *
555  *	Returns -1 when the DMI table can't be reached, 0 on success.
556  */
557 int dmi_walk(void (*decode)(const struct dmi_header *))
558 {
559 	u8 *buf;
560 
561 	if (!dmi_available)
562 		return -1;
563 
564 	buf = ioremap(dmi_base, dmi_len);
565 	if (buf == NULL)
566 		return -1;
567 
568 	dmi_table(buf, dmi_len, dmi_num, decode);
569 
570 	iounmap(buf);
571 	return 0;
572 }
573 EXPORT_SYMBOL_GPL(dmi_walk);
574