1 #include <linux/types.h> 2 #include <linux/string.h> 3 #include <linux/init.h> 4 #include <linux/module.h> 5 #include <linux/dmi.h> 6 #include <linux/efi.h> 7 #include <linux/bootmem.h> 8 #include <linux/slab.h> 9 #include <asm/dmi.h> 10 11 static char * __init dmi_string(struct dmi_header *dm, u8 s) 12 { 13 u8 *bp = ((u8 *) dm) + dm->length; 14 char *str = ""; 15 16 if (s) { 17 s--; 18 while (s > 0 && *bp) { 19 bp += strlen(bp) + 1; 20 s--; 21 } 22 23 if (*bp != 0) { 24 str = dmi_alloc(strlen(bp) + 1); 25 if (str != NULL) 26 strcpy(str, bp); 27 else 28 printk(KERN_ERR "dmi_string: out of memory.\n"); 29 } 30 } 31 32 return str; 33 } 34 35 /* 36 * We have to be cautious here. We have seen BIOSes with DMI pointers 37 * pointing to completely the wrong place for example 38 */ 39 static int __init dmi_table(u32 base, int len, int num, 40 void (*decode)(struct dmi_header *)) 41 { 42 u8 *buf, *data; 43 int i = 0; 44 45 buf = dmi_ioremap(base, len); 46 if (buf == NULL) 47 return -1; 48 49 data = buf; 50 51 /* 52 * Stop when we see all the items the table claimed to have 53 * OR we run off the end of the table (also happens) 54 */ 55 while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) { 56 struct dmi_header *dm = (struct dmi_header *)data; 57 /* 58 * We want to know the total length (formated area and strings) 59 * before decoding to make sure we won't run off the table in 60 * dmi_decode or dmi_string 61 */ 62 data += dm->length; 63 while ((data - buf < len - 1) && (data[0] || data[1])) 64 data++; 65 if (data - buf < len - 1) 66 decode(dm); 67 data += 2; 68 i++; 69 } 70 dmi_iounmap(buf, len); 71 return 0; 72 } 73 74 static int __init dmi_checksum(u8 *buf) 75 { 76 u8 sum = 0; 77 int a; 78 79 for (a = 0; a < 15; a++) 80 sum += buf[a]; 81 82 return sum == 0; 83 } 84 85 static char *dmi_ident[DMI_STRING_MAX]; 86 static LIST_HEAD(dmi_devices); 87 int dmi_available; 88 89 /* 90 * Save a DMI string 91 */ 92 static void __init dmi_save_ident(struct dmi_header *dm, int slot, int string) 93 { 94 char *p, *d = (char*) dm; 95 96 if (dmi_ident[slot]) 97 return; 98 99 p = dmi_string(dm, d[string]); 100 if (p == NULL) 101 return; 102 103 dmi_ident[slot] = p; 104 } 105 106 static void __init dmi_save_uuid(struct dmi_header *dm, int slot, int index) 107 { 108 u8 *d = (u8*) dm + index; 109 char *s; 110 int is_ff = 1, is_00 = 1, i; 111 112 if (dmi_ident[slot]) 113 return; 114 115 for (i = 0; i < 16 && (is_ff || is_00); i++) { 116 if(d[i] != 0x00) is_ff = 0; 117 if(d[i] != 0xFF) is_00 = 0; 118 } 119 120 if (is_ff || is_00) 121 return; 122 123 s = dmi_alloc(16*2+4+1); 124 if (!s) 125 return; 126 127 sprintf(s, 128 "%02X%02X%02X%02X-%02X%02X-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X", 129 d[0], d[1], d[2], d[3], d[4], d[5], d[6], d[7], 130 d[8], d[9], d[10], d[11], d[12], d[13], d[14], d[15]); 131 132 dmi_ident[slot] = s; 133 } 134 135 static void __init dmi_save_type(struct dmi_header *dm, int slot, int index) 136 { 137 u8 *d = (u8*) dm + index; 138 char *s; 139 140 if (dmi_ident[slot]) 141 return; 142 143 s = dmi_alloc(4); 144 if (!s) 145 return; 146 147 sprintf(s, "%u", *d & 0x7F); 148 dmi_ident[slot] = s; 149 } 150 151 static void __init dmi_save_devices(struct dmi_header *dm) 152 { 153 int i, count = (dm->length - sizeof(struct dmi_header)) / 2; 154 struct dmi_device *dev; 155 156 for (i = 0; i < count; i++) { 157 char *d = (char *)(dm + 1) + (i * 2); 158 159 /* Skip disabled device */ 160 if ((*d & 0x80) == 0) 161 continue; 162 163 dev = dmi_alloc(sizeof(*dev)); 164 if (!dev) { 165 printk(KERN_ERR "dmi_save_devices: out of memory.\n"); 166 break; 167 } 168 169 dev->type = *d++ & 0x7f; 170 dev->name = dmi_string(dm, *d); 171 dev->device_data = NULL; 172 list_add(&dev->list, &dmi_devices); 173 } 174 } 175 176 static void __init dmi_save_oem_strings_devices(struct dmi_header *dm) 177 { 178 int i, count = *(u8 *)(dm + 1); 179 struct dmi_device *dev; 180 181 for (i = 1; i <= count; i++) { 182 dev = dmi_alloc(sizeof(*dev)); 183 if (!dev) { 184 printk(KERN_ERR 185 "dmi_save_oem_strings_devices: out of memory.\n"); 186 break; 187 } 188 189 dev->type = DMI_DEV_TYPE_OEM_STRING; 190 dev->name = dmi_string(dm, i); 191 dev->device_data = NULL; 192 193 list_add(&dev->list, &dmi_devices); 194 } 195 } 196 197 static void __init dmi_save_ipmi_device(struct dmi_header *dm) 198 { 199 struct dmi_device *dev; 200 void * data; 201 202 data = dmi_alloc(dm->length); 203 if (data == NULL) { 204 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n"); 205 return; 206 } 207 208 memcpy(data, dm, dm->length); 209 210 dev = dmi_alloc(sizeof(*dev)); 211 if (!dev) { 212 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n"); 213 return; 214 } 215 216 dev->type = DMI_DEV_TYPE_IPMI; 217 dev->name = "IPMI controller"; 218 dev->device_data = data; 219 220 list_add(&dev->list, &dmi_devices); 221 } 222 223 /* 224 * Process a DMI table entry. Right now all we care about are the BIOS 225 * and machine entries. For 2.5 we should pull the smbus controller info 226 * out of here. 227 */ 228 static void __init dmi_decode(struct dmi_header *dm) 229 { 230 switch(dm->type) { 231 case 0: /* BIOS Information */ 232 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4); 233 dmi_save_ident(dm, DMI_BIOS_VERSION, 5); 234 dmi_save_ident(dm, DMI_BIOS_DATE, 8); 235 break; 236 case 1: /* System Information */ 237 dmi_save_ident(dm, DMI_SYS_VENDOR, 4); 238 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5); 239 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6); 240 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7); 241 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8); 242 break; 243 case 2: /* Base Board Information */ 244 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4); 245 dmi_save_ident(dm, DMI_BOARD_NAME, 5); 246 dmi_save_ident(dm, DMI_BOARD_VERSION, 6); 247 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7); 248 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8); 249 break; 250 case 3: /* Chassis Information */ 251 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4); 252 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5); 253 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6); 254 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7); 255 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8); 256 break; 257 case 10: /* Onboard Devices Information */ 258 dmi_save_devices(dm); 259 break; 260 case 11: /* OEM Strings */ 261 dmi_save_oem_strings_devices(dm); 262 break; 263 case 38: /* IPMI Device Information */ 264 dmi_save_ipmi_device(dm); 265 } 266 } 267 268 static int __init dmi_present(char __iomem *p) 269 { 270 u8 buf[15]; 271 memcpy_fromio(buf, p, 15); 272 if ((memcmp(buf, "_DMI_", 5) == 0) && dmi_checksum(buf)) { 273 u16 num = (buf[13] << 8) | buf[12]; 274 u16 len = (buf[7] << 8) | buf[6]; 275 u32 base = (buf[11] << 24) | (buf[10] << 16) | 276 (buf[9] << 8) | buf[8]; 277 278 /* 279 * DMI version 0.0 means that the real version is taken from 280 * the SMBIOS version, which we don't know at this point. 281 */ 282 if (buf[14] != 0) 283 printk(KERN_INFO "DMI %d.%d present.\n", 284 buf[14] >> 4, buf[14] & 0xF); 285 else 286 printk(KERN_INFO "DMI present.\n"); 287 if (dmi_table(base,len, num, dmi_decode) == 0) 288 return 0; 289 } 290 return 1; 291 } 292 293 void __init dmi_scan_machine(void) 294 { 295 char __iomem *p, *q; 296 int rc; 297 298 if (efi_enabled) { 299 if (efi.smbios == EFI_INVALID_TABLE_ADDR) 300 goto out; 301 302 /* This is called as a core_initcall() because it isn't 303 * needed during early boot. This also means we can 304 * iounmap the space when we're done with it. 305 */ 306 p = dmi_ioremap(efi.smbios, 32); 307 if (p == NULL) 308 goto out; 309 310 rc = dmi_present(p + 0x10); /* offset of _DMI_ string */ 311 dmi_iounmap(p, 32); 312 if (!rc) { 313 dmi_available = 1; 314 return; 315 } 316 } 317 else { 318 /* 319 * no iounmap() for that ioremap(); it would be a no-op, but 320 * it's so early in setup that sucker gets confused into doing 321 * what it shouldn't if we actually call it. 322 */ 323 p = dmi_ioremap(0xF0000, 0x10000); 324 if (p == NULL) 325 goto out; 326 327 for (q = p; q < p + 0x10000; q += 16) { 328 rc = dmi_present(q); 329 if (!rc) { 330 dmi_available = 1; 331 return; 332 } 333 } 334 } 335 out: printk(KERN_INFO "DMI not present or invalid.\n"); 336 } 337 338 /** 339 * dmi_check_system - check system DMI data 340 * @list: array of dmi_system_id structures to match against 341 * All non-null elements of the list must match 342 * their slot's (field index's) data (i.e., each 343 * list string must be a substring of the specified 344 * DMI slot's string data) to be considered a 345 * successful match. 346 * 347 * Walk the blacklist table running matching functions until someone 348 * returns non zero or we hit the end. Callback function is called for 349 * each successful match. Returns the number of matches. 350 */ 351 int dmi_check_system(struct dmi_system_id *list) 352 { 353 int i, count = 0; 354 struct dmi_system_id *d = list; 355 356 while (d->ident) { 357 for (i = 0; i < ARRAY_SIZE(d->matches); i++) { 358 int s = d->matches[i].slot; 359 if (s == DMI_NONE) 360 continue; 361 if (dmi_ident[s] && strstr(dmi_ident[s], d->matches[i].substr)) 362 continue; 363 /* No match */ 364 goto fail; 365 } 366 count++; 367 if (d->callback && d->callback(d)) 368 break; 369 fail: d++; 370 } 371 372 return count; 373 } 374 EXPORT_SYMBOL(dmi_check_system); 375 376 /** 377 * dmi_get_system_info - return DMI data value 378 * @field: data index (see enum dmi_field) 379 * 380 * Returns one DMI data value, can be used to perform 381 * complex DMI data checks. 382 */ 383 char *dmi_get_system_info(int field) 384 { 385 return dmi_ident[field]; 386 } 387 EXPORT_SYMBOL(dmi_get_system_info); 388 389 390 /** 391 * dmi_name_in_vendors - Check if string is anywhere in the DMI vendor information. 392 * @str: Case sensitive Name 393 */ 394 int dmi_name_in_vendors(char *str) 395 { 396 static int fields[] = { DMI_BIOS_VENDOR, DMI_BIOS_VERSION, DMI_SYS_VENDOR, 397 DMI_PRODUCT_NAME, DMI_PRODUCT_VERSION, DMI_BOARD_VENDOR, 398 DMI_BOARD_NAME, DMI_BOARD_VERSION, DMI_NONE }; 399 int i; 400 for (i = 0; fields[i] != DMI_NONE; i++) { 401 int f = fields[i]; 402 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 403 return 1; 404 } 405 return 0; 406 } 407 EXPORT_SYMBOL(dmi_name_in_vendors); 408 409 /** 410 * dmi_find_device - find onboard device by type/name 411 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types 412 * @name: device name string or %NULL to match all 413 * @from: previous device found in search, or %NULL for new search. 414 * 415 * Iterates through the list of known onboard devices. If a device is 416 * found with a matching @vendor and @device, a pointer to its device 417 * structure is returned. Otherwise, %NULL is returned. 418 * A new search is initiated by passing %NULL as the @from argument. 419 * If @from is not %NULL, searches continue from next device. 420 */ 421 struct dmi_device * dmi_find_device(int type, const char *name, 422 struct dmi_device *from) 423 { 424 struct list_head *d, *head = from ? &from->list : &dmi_devices; 425 426 for(d = head->next; d != &dmi_devices; d = d->next) { 427 struct dmi_device *dev = list_entry(d, struct dmi_device, list); 428 429 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) && 430 ((name == NULL) || (strcmp(dev->name, name) == 0))) 431 return dev; 432 } 433 434 return NULL; 435 } 436 EXPORT_SYMBOL(dmi_find_device); 437 438 /** 439 * dmi_get_year - Return year of a DMI date 440 * @field: data index (like dmi_get_system_info) 441 * 442 * Returns -1 when the field doesn't exist. 0 when it is broken. 443 */ 444 int dmi_get_year(int field) 445 { 446 int year; 447 char *s = dmi_get_system_info(field); 448 449 if (!s) 450 return -1; 451 if (*s == '\0') 452 return 0; 453 s = strrchr(s, '/'); 454 if (!s) 455 return 0; 456 457 s += 1; 458 year = simple_strtoul(s, NULL, 0); 459 if (year && year < 100) { /* 2-digit year */ 460 year += 1900; 461 if (year < 1996) /* no dates < spec 1.0 */ 462 year += 100; 463 } 464 465 return year; 466 } 467 468