xref: /linux/drivers/firmware/dmi_scan.c (revision 8b4a40809e5330c9da5d20107d693d92d73b31dc)
1 #include <linux/types.h>
2 #include <linux/string.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/dmi.h>
6 #include <linux/efi.h>
7 #include <linux/bootmem.h>
8 #include <linux/slab.h>
9 #include <asm/dmi.h>
10 
11 static char * __init dmi_string(struct dmi_header *dm, u8 s)
12 {
13 	u8 *bp = ((u8 *) dm) + dm->length;
14 	char *str = "";
15 
16 	if (s) {
17 		s--;
18 		while (s > 0 && *bp) {
19 			bp += strlen(bp) + 1;
20 			s--;
21 		}
22 
23 		if (*bp != 0) {
24 			str = dmi_alloc(strlen(bp) + 1);
25 			if (str != NULL)
26 				strcpy(str, bp);
27 			else
28 				printk(KERN_ERR "dmi_string: out of memory.\n");
29 		}
30 	}
31 
32 	return str;
33 }
34 
35 /*
36  *	We have to be cautious here. We have seen BIOSes with DMI pointers
37  *	pointing to completely the wrong place for example
38  */
39 static int __init dmi_table(u32 base, int len, int num,
40 			    void (*decode)(struct dmi_header *))
41 {
42 	u8 *buf, *data;
43 	int i = 0;
44 
45 	buf = dmi_ioremap(base, len);
46 	if (buf == NULL)
47 		return -1;
48 
49 	data = buf;
50 
51 	/*
52 	 *	Stop when we see all the items the table claimed to have
53 	 *	OR we run off the end of the table (also happens)
54 	 */
55 	while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) {
56 		struct dmi_header *dm = (struct dmi_header *)data;
57 		/*
58 		 *  We want to know the total length (formated area and strings)
59 		 *  before decoding to make sure we won't run off the table in
60 		 *  dmi_decode or dmi_string
61 		 */
62 		data += dm->length;
63 		while ((data - buf < len - 1) && (data[0] || data[1]))
64 			data++;
65 		if (data - buf < len - 1)
66 			decode(dm);
67 		data += 2;
68 		i++;
69 	}
70 	dmi_iounmap(buf, len);
71 	return 0;
72 }
73 
74 static int __init dmi_checksum(u8 *buf)
75 {
76 	u8 sum = 0;
77 	int a;
78 
79 	for (a = 0; a < 15; a++)
80 		sum += buf[a];
81 
82 	return sum == 0;
83 }
84 
85 static char *dmi_ident[DMI_STRING_MAX];
86 static LIST_HEAD(dmi_devices);
87 int dmi_available;
88 
89 /*
90  *	Save a DMI string
91  */
92 static void __init dmi_save_ident(struct dmi_header *dm, int slot, int string)
93 {
94 	char *p, *d = (char*) dm;
95 
96 	if (dmi_ident[slot])
97 		return;
98 
99 	p = dmi_string(dm, d[string]);
100 	if (p == NULL)
101 		return;
102 
103 	dmi_ident[slot] = p;
104 }
105 
106 static void __init dmi_save_uuid(struct dmi_header *dm, int slot, int index)
107 {
108 	u8 *d = (u8*) dm + index;
109 	char *s;
110 	int is_ff = 1, is_00 = 1, i;
111 
112 	if (dmi_ident[slot])
113 		return;
114 
115 	for (i = 0; i < 16 && (is_ff || is_00); i++) {
116 		if(d[i] != 0x00) is_ff = 0;
117 		if(d[i] != 0xFF) is_00 = 0;
118 	}
119 
120 	if (is_ff || is_00)
121 		return;
122 
123 	s = dmi_alloc(16*2+4+1);
124 	if (!s)
125 		return;
126 
127 	sprintf(s,
128 		"%02X%02X%02X%02X-%02X%02X-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X",
129 		d[0], d[1], d[2], d[3], d[4], d[5], d[6], d[7],
130 		d[8], d[9], d[10], d[11], d[12], d[13], d[14], d[15]);
131 
132         dmi_ident[slot] = s;
133 }
134 
135 static void __init dmi_save_type(struct dmi_header *dm, int slot, int index)
136 {
137 	u8 *d = (u8*) dm + index;
138 	char *s;
139 
140 	if (dmi_ident[slot])
141 		return;
142 
143 	s = dmi_alloc(4);
144 	if (!s)
145 		return;
146 
147 	sprintf(s, "%u", *d & 0x7F);
148 	dmi_ident[slot] = s;
149 }
150 
151 static void __init dmi_save_devices(struct dmi_header *dm)
152 {
153 	int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
154 	struct dmi_device *dev;
155 
156 	for (i = 0; i < count; i++) {
157 		char *d = (char *)(dm + 1) + (i * 2);
158 
159 		/* Skip disabled device */
160 		if ((*d & 0x80) == 0)
161 			continue;
162 
163 		dev = dmi_alloc(sizeof(*dev));
164 		if (!dev) {
165 			printk(KERN_ERR "dmi_save_devices: out of memory.\n");
166 			break;
167 		}
168 
169 		dev->type = *d++ & 0x7f;
170 		dev->name = dmi_string(dm, *d);
171 		dev->device_data = NULL;
172 		list_add(&dev->list, &dmi_devices);
173 	}
174 }
175 
176 static void __init dmi_save_oem_strings_devices(struct dmi_header *dm)
177 {
178 	int i, count = *(u8 *)(dm + 1);
179 	struct dmi_device *dev;
180 
181 	for (i = 1; i <= count; i++) {
182 		dev = dmi_alloc(sizeof(*dev));
183 		if (!dev) {
184 			printk(KERN_ERR
185 			   "dmi_save_oem_strings_devices: out of memory.\n");
186 			break;
187 		}
188 
189 		dev->type = DMI_DEV_TYPE_OEM_STRING;
190 		dev->name = dmi_string(dm, i);
191 		dev->device_data = NULL;
192 
193 		list_add(&dev->list, &dmi_devices);
194 	}
195 }
196 
197 static void __init dmi_save_ipmi_device(struct dmi_header *dm)
198 {
199 	struct dmi_device *dev;
200 	void * data;
201 
202 	data = dmi_alloc(dm->length);
203 	if (data == NULL) {
204 		printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
205 		return;
206 	}
207 
208 	memcpy(data, dm, dm->length);
209 
210 	dev = dmi_alloc(sizeof(*dev));
211 	if (!dev) {
212 		printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
213 		return;
214 	}
215 
216 	dev->type = DMI_DEV_TYPE_IPMI;
217 	dev->name = "IPMI controller";
218 	dev->device_data = data;
219 
220 	list_add(&dev->list, &dmi_devices);
221 }
222 
223 /*
224  *	Process a DMI table entry. Right now all we care about are the BIOS
225  *	and machine entries. For 2.5 we should pull the smbus controller info
226  *	out of here.
227  */
228 static void __init dmi_decode(struct dmi_header *dm)
229 {
230 	switch(dm->type) {
231 	case 0:		/* BIOS Information */
232 		dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
233 		dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
234 		dmi_save_ident(dm, DMI_BIOS_DATE, 8);
235 		break;
236 	case 1:		/* System Information */
237 		dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
238 		dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
239 		dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
240 		dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
241 		dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
242 		break;
243 	case 2:		/* Base Board Information */
244 		dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
245 		dmi_save_ident(dm, DMI_BOARD_NAME, 5);
246 		dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
247 		dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
248 		dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
249 		break;
250 	case 3:		/* Chassis Information */
251 		dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
252 		dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
253 		dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
254 		dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
255 		dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
256 		break;
257 	case 10:	/* Onboard Devices Information */
258 		dmi_save_devices(dm);
259 		break;
260 	case 11:	/* OEM Strings */
261 		dmi_save_oem_strings_devices(dm);
262 		break;
263 	case 38:	/* IPMI Device Information */
264 		dmi_save_ipmi_device(dm);
265 	}
266 }
267 
268 static int __init dmi_present(char __iomem *p)
269 {
270 	u8 buf[15];
271 	memcpy_fromio(buf, p, 15);
272 	if ((memcmp(buf, "_DMI_", 5) == 0) && dmi_checksum(buf)) {
273 		u16 num = (buf[13] << 8) | buf[12];
274 		u16 len = (buf[7] << 8) | buf[6];
275 		u32 base = (buf[11] << 24) | (buf[10] << 16) |
276 			(buf[9] << 8) | buf[8];
277 
278 		/*
279 		 * DMI version 0.0 means that the real version is taken from
280 		 * the SMBIOS version, which we don't know at this point.
281 		 */
282 		if (buf[14] != 0)
283 			printk(KERN_INFO "DMI %d.%d present.\n",
284 			       buf[14] >> 4, buf[14] & 0xF);
285 		else
286 			printk(KERN_INFO "DMI present.\n");
287 		if (dmi_table(base,len, num, dmi_decode) == 0)
288 			return 0;
289 	}
290 	return 1;
291 }
292 
293 void __init dmi_scan_machine(void)
294 {
295 	char __iomem *p, *q;
296 	int rc;
297 
298 	if (efi_enabled) {
299 		if (efi.smbios == EFI_INVALID_TABLE_ADDR)
300 			goto out;
301 
302 		/* This is called as a core_initcall() because it isn't
303 		 * needed during early boot.  This also means we can
304 		 * iounmap the space when we're done with it.
305 		 */
306 		p = dmi_ioremap(efi.smbios, 32);
307 		if (p == NULL)
308 			goto out;
309 
310 		rc = dmi_present(p + 0x10); /* offset of _DMI_ string */
311 		dmi_iounmap(p, 32);
312 		if (!rc) {
313 			dmi_available = 1;
314 			return;
315 		}
316 	}
317 	else {
318 		/*
319 		 * no iounmap() for that ioremap(); it would be a no-op, but
320 		 * it's so early in setup that sucker gets confused into doing
321 		 * what it shouldn't if we actually call it.
322 		 */
323 		p = dmi_ioremap(0xF0000, 0x10000);
324 		if (p == NULL)
325 			goto out;
326 
327 		for (q = p; q < p + 0x10000; q += 16) {
328 			rc = dmi_present(q);
329 			if (!rc) {
330 				dmi_available = 1;
331 				return;
332 			}
333 		}
334 	}
335  out:	printk(KERN_INFO "DMI not present or invalid.\n");
336 }
337 
338 /**
339  *	dmi_check_system - check system DMI data
340  *	@list: array of dmi_system_id structures to match against
341  *		All non-null elements of the list must match
342  *		their slot's (field index's) data (i.e., each
343  *		list string must be a substring of the specified
344  *		DMI slot's string data) to be considered a
345  *		successful match.
346  *
347  *	Walk the blacklist table running matching functions until someone
348  *	returns non zero or we hit the end. Callback function is called for
349  *	each successful match. Returns the number of matches.
350  */
351 int dmi_check_system(struct dmi_system_id *list)
352 {
353 	int i, count = 0;
354 	struct dmi_system_id *d = list;
355 
356 	while (d->ident) {
357 		for (i = 0; i < ARRAY_SIZE(d->matches); i++) {
358 			int s = d->matches[i].slot;
359 			if (s == DMI_NONE)
360 				continue;
361 			if (dmi_ident[s] && strstr(dmi_ident[s], d->matches[i].substr))
362 				continue;
363 			/* No match */
364 			goto fail;
365 		}
366 		count++;
367 		if (d->callback && d->callback(d))
368 			break;
369 fail:		d++;
370 	}
371 
372 	return count;
373 }
374 EXPORT_SYMBOL(dmi_check_system);
375 
376 /**
377  *	dmi_get_system_info - return DMI data value
378  *	@field: data index (see enum dmi_field)
379  *
380  *	Returns one DMI data value, can be used to perform
381  *	complex DMI data checks.
382  */
383 char *dmi_get_system_info(int field)
384 {
385 	return dmi_ident[field];
386 }
387 EXPORT_SYMBOL(dmi_get_system_info);
388 
389 
390 /**
391  *	dmi_name_in_vendors - Check if string is anywhere in the DMI vendor information.
392  *	@str: 	Case sensitive Name
393  */
394 int dmi_name_in_vendors(char *str)
395 {
396 	static int fields[] = { DMI_BIOS_VENDOR, DMI_BIOS_VERSION, DMI_SYS_VENDOR,
397 				DMI_PRODUCT_NAME, DMI_PRODUCT_VERSION, DMI_BOARD_VENDOR,
398 				DMI_BOARD_NAME, DMI_BOARD_VERSION, DMI_NONE };
399 	int i;
400 	for (i = 0; fields[i] != DMI_NONE; i++) {
401 		int f = fields[i];
402 		if (dmi_ident[f] && strstr(dmi_ident[f], str))
403 			return 1;
404 	}
405 	return 0;
406 }
407 EXPORT_SYMBOL(dmi_name_in_vendors);
408 
409 /**
410  *	dmi_find_device - find onboard device by type/name
411  *	@type: device type or %DMI_DEV_TYPE_ANY to match all device types
412  *	@name: device name string or %NULL to match all
413  *	@from: previous device found in search, or %NULL for new search.
414  *
415  *	Iterates through the list of known onboard devices. If a device is
416  *	found with a matching @vendor and @device, a pointer to its device
417  *	structure is returned.  Otherwise, %NULL is returned.
418  *	A new search is initiated by passing %NULL as the @from argument.
419  *	If @from is not %NULL, searches continue from next device.
420  */
421 struct dmi_device * dmi_find_device(int type, const char *name,
422 				    struct dmi_device *from)
423 {
424 	struct list_head *d, *head = from ? &from->list : &dmi_devices;
425 
426 	for(d = head->next; d != &dmi_devices; d = d->next) {
427 		struct dmi_device *dev = list_entry(d, struct dmi_device, list);
428 
429 		if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
430 		    ((name == NULL) || (strcmp(dev->name, name) == 0)))
431 			return dev;
432 	}
433 
434 	return NULL;
435 }
436 EXPORT_SYMBOL(dmi_find_device);
437 
438 /**
439  *	dmi_get_year - Return year of a DMI date
440  *	@field:	data index (like dmi_get_system_info)
441  *
442  *	Returns -1 when the field doesn't exist. 0 when it is broken.
443  */
444 int dmi_get_year(int field)
445 {
446 	int year;
447 	char *s = dmi_get_system_info(field);
448 
449 	if (!s)
450 		return -1;
451 	if (*s == '\0')
452 		return 0;
453 	s = strrchr(s, '/');
454 	if (!s)
455 		return 0;
456 
457 	s += 1;
458 	year = simple_strtoul(s, NULL, 0);
459 	if (year && year < 100) {	/* 2-digit year */
460 		year += 1900;
461 		if (year < 1996)	/* no dates < spec 1.0 */
462 			year += 100;
463 	}
464 
465 	return year;
466 }
467 
468