1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/types.h> 3 #include <linux/string.h> 4 #include <linux/init.h> 5 #include <linux/module.h> 6 #include <linux/ctype.h> 7 #include <linux/dmi.h> 8 #include <linux/efi.h> 9 #include <linux/memblock.h> 10 #include <linux/random.h> 11 #include <asm/dmi.h> 12 #include <asm/unaligned.h> 13 14 #ifndef SMBIOS_ENTRY_POINT_SCAN_START 15 #define SMBIOS_ENTRY_POINT_SCAN_START 0xF0000 16 #endif 17 18 struct kobject *dmi_kobj; 19 EXPORT_SYMBOL_GPL(dmi_kobj); 20 21 /* 22 * DMI stands for "Desktop Management Interface". It is part 23 * of and an antecedent to, SMBIOS, which stands for System 24 * Management BIOS. See further: https://www.dmtf.org/standards 25 */ 26 static const char dmi_empty_string[] = ""; 27 28 static u32 dmi_ver __initdata; 29 static u32 dmi_len; 30 static u16 dmi_num; 31 static u8 smbios_entry_point[32]; 32 static int smbios_entry_point_size; 33 34 /* DMI system identification string used during boot */ 35 static char dmi_ids_string[128] __initdata; 36 37 static struct dmi_memdev_info { 38 const char *device; 39 const char *bank; 40 u64 size; /* bytes */ 41 u16 handle; 42 u8 type; /* DDR2, DDR3, DDR4 etc */ 43 } *dmi_memdev; 44 static int dmi_memdev_nr; 45 46 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s) 47 { 48 const u8 *bp = ((u8 *) dm) + dm->length; 49 const u8 *nsp; 50 51 if (s) { 52 while (--s > 0 && *bp) 53 bp += strlen(bp) + 1; 54 55 /* Strings containing only spaces are considered empty */ 56 nsp = bp; 57 while (*nsp == ' ') 58 nsp++; 59 if (*nsp != '\0') 60 return bp; 61 } 62 63 return dmi_empty_string; 64 } 65 66 static const char * __init dmi_string(const struct dmi_header *dm, u8 s) 67 { 68 const char *bp = dmi_string_nosave(dm, s); 69 char *str; 70 size_t len; 71 72 if (bp == dmi_empty_string) 73 return dmi_empty_string; 74 75 len = strlen(bp) + 1; 76 str = dmi_alloc(len); 77 if (str != NULL) 78 strcpy(str, bp); 79 80 return str; 81 } 82 83 /* 84 * We have to be cautious here. We have seen BIOSes with DMI pointers 85 * pointing to completely the wrong place for example 86 */ 87 static void dmi_decode_table(u8 *buf, 88 void (*decode)(const struct dmi_header *, void *), 89 void *private_data) 90 { 91 u8 *data = buf; 92 int i = 0; 93 94 /* 95 * Stop when we have seen all the items the table claimed to have 96 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS 97 * >= 3.0 only) OR we run off the end of the table (should never 98 * happen but sometimes does on bogus implementations.) 99 */ 100 while ((!dmi_num || i < dmi_num) && 101 (data - buf + sizeof(struct dmi_header)) <= dmi_len) { 102 const struct dmi_header *dm = (const struct dmi_header *)data; 103 104 /* 105 * We want to know the total length (formatted area and 106 * strings) before decoding to make sure we won't run off the 107 * table in dmi_decode or dmi_string 108 */ 109 data += dm->length; 110 while ((data - buf < dmi_len - 1) && (data[0] || data[1])) 111 data++; 112 if (data - buf < dmi_len - 1) 113 decode(dm, private_data); 114 115 data += 2; 116 i++; 117 118 /* 119 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0] 120 * For tables behind a 64-bit entry point, we have no item 121 * count and no exact table length, so stop on end-of-table 122 * marker. For tables behind a 32-bit entry point, we have 123 * seen OEM structures behind the end-of-table marker on 124 * some systems, so don't trust it. 125 */ 126 if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE) 127 break; 128 } 129 130 /* Trim DMI table length if needed */ 131 if (dmi_len > data - buf) 132 dmi_len = data - buf; 133 } 134 135 static phys_addr_t dmi_base; 136 137 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *, 138 void *)) 139 { 140 u8 *buf; 141 u32 orig_dmi_len = dmi_len; 142 143 buf = dmi_early_remap(dmi_base, orig_dmi_len); 144 if (buf == NULL) 145 return -ENOMEM; 146 147 dmi_decode_table(buf, decode, NULL); 148 149 add_device_randomness(buf, dmi_len); 150 151 dmi_early_unmap(buf, orig_dmi_len); 152 return 0; 153 } 154 155 static int __init dmi_checksum(const u8 *buf, u8 len) 156 { 157 u8 sum = 0; 158 int a; 159 160 for (a = 0; a < len; a++) 161 sum += buf[a]; 162 163 return sum == 0; 164 } 165 166 static const char *dmi_ident[DMI_STRING_MAX]; 167 static LIST_HEAD(dmi_devices); 168 int dmi_available; 169 EXPORT_SYMBOL_GPL(dmi_available); 170 171 /* 172 * Save a DMI string 173 */ 174 static void __init dmi_save_ident(const struct dmi_header *dm, int slot, 175 int string) 176 { 177 const char *d = (const char *) dm; 178 const char *p; 179 180 if (dmi_ident[slot] || dm->length <= string) 181 return; 182 183 p = dmi_string(dm, d[string]); 184 if (p == NULL) 185 return; 186 187 dmi_ident[slot] = p; 188 } 189 190 static void __init dmi_save_release(const struct dmi_header *dm, int slot, 191 int index) 192 { 193 const u8 *minor, *major; 194 char *s; 195 196 /* If the table doesn't have the field, let's return */ 197 if (dmi_ident[slot] || dm->length < index) 198 return; 199 200 minor = (u8 *) dm + index; 201 major = (u8 *) dm + index - 1; 202 203 /* As per the spec, if the system doesn't support this field, 204 * the value is FF 205 */ 206 if (*major == 0xFF && *minor == 0xFF) 207 return; 208 209 s = dmi_alloc(8); 210 if (!s) 211 return; 212 213 sprintf(s, "%u.%u", *major, *minor); 214 215 dmi_ident[slot] = s; 216 } 217 218 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, 219 int index) 220 { 221 const u8 *d; 222 char *s; 223 int is_ff = 1, is_00 = 1, i; 224 225 if (dmi_ident[slot] || dm->length < index + 16) 226 return; 227 228 d = (u8 *) dm + index; 229 for (i = 0; i < 16 && (is_ff || is_00); i++) { 230 if (d[i] != 0x00) 231 is_00 = 0; 232 if (d[i] != 0xFF) 233 is_ff = 0; 234 } 235 236 if (is_ff || is_00) 237 return; 238 239 s = dmi_alloc(16*2+4+1); 240 if (!s) 241 return; 242 243 /* 244 * As of version 2.6 of the SMBIOS specification, the first 3 fields of 245 * the UUID are supposed to be little-endian encoded. The specification 246 * says that this is the defacto standard. 247 */ 248 if (dmi_ver >= 0x020600) 249 sprintf(s, "%pUl", d); 250 else 251 sprintf(s, "%pUb", d); 252 253 dmi_ident[slot] = s; 254 } 255 256 static void __init dmi_save_type(const struct dmi_header *dm, int slot, 257 int index) 258 { 259 const u8 *d; 260 char *s; 261 262 if (dmi_ident[slot] || dm->length <= index) 263 return; 264 265 s = dmi_alloc(4); 266 if (!s) 267 return; 268 269 d = (u8 *) dm + index; 270 sprintf(s, "%u", *d & 0x7F); 271 dmi_ident[slot] = s; 272 } 273 274 static void __init dmi_save_one_device(int type, const char *name) 275 { 276 struct dmi_device *dev; 277 278 /* No duplicate device */ 279 if (dmi_find_device(type, name, NULL)) 280 return; 281 282 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1); 283 if (!dev) 284 return; 285 286 dev->type = type; 287 strcpy((char *)(dev + 1), name); 288 dev->name = (char *)(dev + 1); 289 dev->device_data = NULL; 290 list_add(&dev->list, &dmi_devices); 291 } 292 293 static void __init dmi_save_devices(const struct dmi_header *dm) 294 { 295 int i, count = (dm->length - sizeof(struct dmi_header)) / 2; 296 297 for (i = 0; i < count; i++) { 298 const char *d = (char *)(dm + 1) + (i * 2); 299 300 /* Skip disabled device */ 301 if ((*d & 0x80) == 0) 302 continue; 303 304 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1))); 305 } 306 } 307 308 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm) 309 { 310 int i, count; 311 struct dmi_device *dev; 312 313 if (dm->length < 0x05) 314 return; 315 316 count = *(u8 *)(dm + 1); 317 for (i = 1; i <= count; i++) { 318 const char *devname = dmi_string(dm, i); 319 320 if (devname == dmi_empty_string) 321 continue; 322 323 dev = dmi_alloc(sizeof(*dev)); 324 if (!dev) 325 break; 326 327 dev->type = DMI_DEV_TYPE_OEM_STRING; 328 dev->name = devname; 329 dev->device_data = NULL; 330 331 list_add(&dev->list, &dmi_devices); 332 } 333 } 334 335 static void __init dmi_save_ipmi_device(const struct dmi_header *dm) 336 { 337 struct dmi_device *dev; 338 void *data; 339 340 data = dmi_alloc(dm->length); 341 if (data == NULL) 342 return; 343 344 memcpy(data, dm, dm->length); 345 346 dev = dmi_alloc(sizeof(*dev)); 347 if (!dev) 348 return; 349 350 dev->type = DMI_DEV_TYPE_IPMI; 351 dev->name = "IPMI controller"; 352 dev->device_data = data; 353 354 list_add_tail(&dev->list, &dmi_devices); 355 } 356 357 static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus, 358 int devfn, const char *name, int type) 359 { 360 struct dmi_dev_onboard *dev; 361 362 /* Ignore invalid values */ 363 if (type == DMI_DEV_TYPE_DEV_SLOT && 364 segment == 0xFFFF && bus == 0xFF && devfn == 0xFF) 365 return; 366 367 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1); 368 if (!dev) 369 return; 370 371 dev->instance = instance; 372 dev->segment = segment; 373 dev->bus = bus; 374 dev->devfn = devfn; 375 376 strcpy((char *)&dev[1], name); 377 dev->dev.type = type; 378 dev->dev.name = (char *)&dev[1]; 379 dev->dev.device_data = dev; 380 381 list_add(&dev->dev.list, &dmi_devices); 382 } 383 384 static void __init dmi_save_extended_devices(const struct dmi_header *dm) 385 { 386 const char *name; 387 const u8 *d = (u8 *)dm; 388 389 if (dm->length < 0x0B) 390 return; 391 392 /* Skip disabled device */ 393 if ((d[0x5] & 0x80) == 0) 394 return; 395 396 name = dmi_string_nosave(dm, d[0x4]); 397 dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name, 398 DMI_DEV_TYPE_DEV_ONBOARD); 399 dmi_save_one_device(d[0x5] & 0x7f, name); 400 } 401 402 static void __init dmi_save_system_slot(const struct dmi_header *dm) 403 { 404 const u8 *d = (u8 *)dm; 405 406 /* Need SMBIOS 2.6+ structure */ 407 if (dm->length < 0x11) 408 return; 409 dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF], 410 d[0x10], dmi_string_nosave(dm, d[0x4]), 411 DMI_DEV_TYPE_DEV_SLOT); 412 } 413 414 static void __init count_mem_devices(const struct dmi_header *dm, void *v) 415 { 416 if (dm->type != DMI_ENTRY_MEM_DEVICE) 417 return; 418 dmi_memdev_nr++; 419 } 420 421 static void __init save_mem_devices(const struct dmi_header *dm, void *v) 422 { 423 const char *d = (const char *)dm; 424 static int nr; 425 u64 bytes; 426 u16 size; 427 428 if (dm->type != DMI_ENTRY_MEM_DEVICE || dm->length < 0x13) 429 return; 430 if (nr >= dmi_memdev_nr) { 431 pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n"); 432 return; 433 } 434 dmi_memdev[nr].handle = get_unaligned(&dm->handle); 435 dmi_memdev[nr].device = dmi_string(dm, d[0x10]); 436 dmi_memdev[nr].bank = dmi_string(dm, d[0x11]); 437 dmi_memdev[nr].type = d[0x12]; 438 439 size = get_unaligned((u16 *)&d[0xC]); 440 if (size == 0) 441 bytes = 0; 442 else if (size == 0xffff) 443 bytes = ~0ull; 444 else if (size & 0x8000) 445 bytes = (u64)(size & 0x7fff) << 10; 446 else if (size != 0x7fff || dm->length < 0x20) 447 bytes = (u64)size << 20; 448 else 449 bytes = (u64)get_unaligned((u32 *)&d[0x1C]) << 20; 450 451 dmi_memdev[nr].size = bytes; 452 nr++; 453 } 454 455 static void __init dmi_memdev_walk(void) 456 { 457 if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) { 458 dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr); 459 if (dmi_memdev) 460 dmi_walk_early(save_mem_devices); 461 } 462 } 463 464 /* 465 * Process a DMI table entry. Right now all we care about are the BIOS 466 * and machine entries. For 2.5 we should pull the smbus controller info 467 * out of here. 468 */ 469 static void __init dmi_decode(const struct dmi_header *dm, void *dummy) 470 { 471 switch (dm->type) { 472 case 0: /* BIOS Information */ 473 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4); 474 dmi_save_ident(dm, DMI_BIOS_VERSION, 5); 475 dmi_save_ident(dm, DMI_BIOS_DATE, 8); 476 dmi_save_release(dm, DMI_BIOS_RELEASE, 21); 477 dmi_save_release(dm, DMI_EC_FIRMWARE_RELEASE, 23); 478 break; 479 case 1: /* System Information */ 480 dmi_save_ident(dm, DMI_SYS_VENDOR, 4); 481 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5); 482 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6); 483 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7); 484 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8); 485 dmi_save_ident(dm, DMI_PRODUCT_SKU, 25); 486 dmi_save_ident(dm, DMI_PRODUCT_FAMILY, 26); 487 break; 488 case 2: /* Base Board Information */ 489 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4); 490 dmi_save_ident(dm, DMI_BOARD_NAME, 5); 491 dmi_save_ident(dm, DMI_BOARD_VERSION, 6); 492 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7); 493 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8); 494 break; 495 case 3: /* Chassis Information */ 496 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4); 497 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5); 498 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6); 499 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7); 500 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8); 501 break; 502 case 9: /* System Slots */ 503 dmi_save_system_slot(dm); 504 break; 505 case 10: /* Onboard Devices Information */ 506 dmi_save_devices(dm); 507 break; 508 case 11: /* OEM Strings */ 509 dmi_save_oem_strings_devices(dm); 510 break; 511 case 38: /* IPMI Device Information */ 512 dmi_save_ipmi_device(dm); 513 break; 514 case 41: /* Onboard Devices Extended Information */ 515 dmi_save_extended_devices(dm); 516 } 517 } 518 519 static int __init print_filtered(char *buf, size_t len, const char *info) 520 { 521 int c = 0; 522 const char *p; 523 524 if (!info) 525 return c; 526 527 for (p = info; *p; p++) 528 if (isprint(*p)) 529 c += scnprintf(buf + c, len - c, "%c", *p); 530 else 531 c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff); 532 return c; 533 } 534 535 static void __init dmi_format_ids(char *buf, size_t len) 536 { 537 int c = 0; 538 const char *board; /* Board Name is optional */ 539 540 c += print_filtered(buf + c, len - c, 541 dmi_get_system_info(DMI_SYS_VENDOR)); 542 c += scnprintf(buf + c, len - c, " "); 543 c += print_filtered(buf + c, len - c, 544 dmi_get_system_info(DMI_PRODUCT_NAME)); 545 546 board = dmi_get_system_info(DMI_BOARD_NAME); 547 if (board) { 548 c += scnprintf(buf + c, len - c, "/"); 549 c += print_filtered(buf + c, len - c, board); 550 } 551 c += scnprintf(buf + c, len - c, ", BIOS "); 552 c += print_filtered(buf + c, len - c, 553 dmi_get_system_info(DMI_BIOS_VERSION)); 554 c += scnprintf(buf + c, len - c, " "); 555 c += print_filtered(buf + c, len - c, 556 dmi_get_system_info(DMI_BIOS_DATE)); 557 } 558 559 /* 560 * Check for DMI/SMBIOS headers in the system firmware image. Any 561 * SMBIOS header must start 16 bytes before the DMI header, so take a 562 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset 563 * 0. If the DMI header is present, set dmi_ver accordingly (SMBIOS 564 * takes precedence) and return 0. Otherwise return 1. 565 */ 566 static int __init dmi_present(const u8 *buf) 567 { 568 u32 smbios_ver; 569 570 /* 571 * The size of this structure is 31 bytes, but we also accept value 572 * 30 due to a mistake in SMBIOS specification version 2.1. 573 */ 574 if (memcmp(buf, "_SM_", 4) == 0 && 575 buf[5] >= 30 && buf[5] <= 32 && 576 dmi_checksum(buf, buf[5])) { 577 smbios_ver = get_unaligned_be16(buf + 6); 578 smbios_entry_point_size = buf[5]; 579 memcpy(smbios_entry_point, buf, smbios_entry_point_size); 580 581 /* Some BIOS report weird SMBIOS version, fix that up */ 582 switch (smbios_ver) { 583 case 0x021F: 584 case 0x0221: 585 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 586 smbios_ver & 0xFF, 3); 587 smbios_ver = 0x0203; 588 break; 589 case 0x0233: 590 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6); 591 smbios_ver = 0x0206; 592 break; 593 } 594 } else { 595 smbios_ver = 0; 596 } 597 598 buf += 16; 599 600 if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) { 601 if (smbios_ver) 602 dmi_ver = smbios_ver; 603 else 604 dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F); 605 dmi_ver <<= 8; 606 dmi_num = get_unaligned_le16(buf + 12); 607 dmi_len = get_unaligned_le16(buf + 6); 608 dmi_base = get_unaligned_le32(buf + 8); 609 610 if (dmi_walk_early(dmi_decode) == 0) { 611 if (smbios_ver) { 612 pr_info("SMBIOS %d.%d present.\n", 613 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF); 614 } else { 615 smbios_entry_point_size = 15; 616 memcpy(smbios_entry_point, buf, 617 smbios_entry_point_size); 618 pr_info("Legacy DMI %d.%d present.\n", 619 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF); 620 } 621 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string)); 622 pr_info("DMI: %s\n", dmi_ids_string); 623 return 0; 624 } 625 } 626 627 return 1; 628 } 629 630 /* 631 * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy 632 * 32-bit entry point, there is no embedded DMI header (_DMI_) in here. 633 */ 634 static int __init dmi_smbios3_present(const u8 *buf) 635 { 636 if (memcmp(buf, "_SM3_", 5) == 0 && 637 buf[6] >= 24 && buf[6] <= 32 && 638 dmi_checksum(buf, buf[6])) { 639 dmi_ver = get_unaligned_be24(buf + 7); 640 dmi_num = 0; /* No longer specified */ 641 dmi_len = get_unaligned_le32(buf + 12); 642 dmi_base = get_unaligned_le64(buf + 16); 643 smbios_entry_point_size = buf[6]; 644 memcpy(smbios_entry_point, buf, smbios_entry_point_size); 645 646 if (dmi_walk_early(dmi_decode) == 0) { 647 pr_info("SMBIOS %d.%d.%d present.\n", 648 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF, 649 dmi_ver & 0xFF); 650 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string)); 651 pr_info("DMI: %s\n", dmi_ids_string); 652 return 0; 653 } 654 } 655 return 1; 656 } 657 658 static void __init dmi_scan_machine(void) 659 { 660 char __iomem *p, *q; 661 char buf[32]; 662 663 if (efi_enabled(EFI_CONFIG_TABLES)) { 664 /* 665 * According to the DMTF SMBIOS reference spec v3.0.0, it is 666 * allowed to define both the 64-bit entry point (smbios3) and 667 * the 32-bit entry point (smbios), in which case they should 668 * either both point to the same SMBIOS structure table, or the 669 * table pointed to by the 64-bit entry point should contain a 670 * superset of the table contents pointed to by the 32-bit entry 671 * point (section 5.2) 672 * This implies that the 64-bit entry point should have 673 * precedence if it is defined and supported by the OS. If we 674 * have the 64-bit entry point, but fail to decode it, fall 675 * back to the legacy one (if available) 676 */ 677 if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) { 678 p = dmi_early_remap(efi.smbios3, 32); 679 if (p == NULL) 680 goto error; 681 memcpy_fromio(buf, p, 32); 682 dmi_early_unmap(p, 32); 683 684 if (!dmi_smbios3_present(buf)) { 685 dmi_available = 1; 686 return; 687 } 688 } 689 if (efi.smbios == EFI_INVALID_TABLE_ADDR) 690 goto error; 691 692 /* This is called as a core_initcall() because it isn't 693 * needed during early boot. This also means we can 694 * iounmap the space when we're done with it. 695 */ 696 p = dmi_early_remap(efi.smbios, 32); 697 if (p == NULL) 698 goto error; 699 memcpy_fromio(buf, p, 32); 700 dmi_early_unmap(p, 32); 701 702 if (!dmi_present(buf)) { 703 dmi_available = 1; 704 return; 705 } 706 } else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) { 707 p = dmi_early_remap(SMBIOS_ENTRY_POINT_SCAN_START, 0x10000); 708 if (p == NULL) 709 goto error; 710 711 /* 712 * Same logic as above, look for a 64-bit entry point 713 * first, and if not found, fall back to 32-bit entry point. 714 */ 715 memcpy_fromio(buf, p, 16); 716 for (q = p + 16; q < p + 0x10000; q += 16) { 717 memcpy_fromio(buf + 16, q, 16); 718 if (!dmi_smbios3_present(buf)) { 719 dmi_available = 1; 720 dmi_early_unmap(p, 0x10000); 721 return; 722 } 723 memcpy(buf, buf + 16, 16); 724 } 725 726 /* 727 * Iterate over all possible DMI header addresses q. 728 * Maintain the 32 bytes around q in buf. On the 729 * first iteration, substitute zero for the 730 * out-of-range bytes so there is no chance of falsely 731 * detecting an SMBIOS header. 732 */ 733 memset(buf, 0, 16); 734 for (q = p; q < p + 0x10000; q += 16) { 735 memcpy_fromio(buf + 16, q, 16); 736 if (!dmi_present(buf)) { 737 dmi_available = 1; 738 dmi_early_unmap(p, 0x10000); 739 return; 740 } 741 memcpy(buf, buf + 16, 16); 742 } 743 dmi_early_unmap(p, 0x10000); 744 } 745 error: 746 pr_info("DMI not present or invalid.\n"); 747 } 748 749 static ssize_t raw_table_read(struct file *file, struct kobject *kobj, 750 struct bin_attribute *attr, char *buf, 751 loff_t pos, size_t count) 752 { 753 memcpy(buf, attr->private + pos, count); 754 return count; 755 } 756 757 static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0); 758 static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0); 759 760 static int __init dmi_init(void) 761 { 762 struct kobject *tables_kobj; 763 u8 *dmi_table; 764 int ret = -ENOMEM; 765 766 if (!dmi_available) 767 return 0; 768 769 /* 770 * Set up dmi directory at /sys/firmware/dmi. This entry should stay 771 * even after farther error, as it can be used by other modules like 772 * dmi-sysfs. 773 */ 774 dmi_kobj = kobject_create_and_add("dmi", firmware_kobj); 775 if (!dmi_kobj) 776 goto err; 777 778 tables_kobj = kobject_create_and_add("tables", dmi_kobj); 779 if (!tables_kobj) 780 goto err; 781 782 dmi_table = dmi_remap(dmi_base, dmi_len); 783 if (!dmi_table) 784 goto err_tables; 785 786 bin_attr_smbios_entry_point.size = smbios_entry_point_size; 787 bin_attr_smbios_entry_point.private = smbios_entry_point; 788 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point); 789 if (ret) 790 goto err_unmap; 791 792 bin_attr_DMI.size = dmi_len; 793 bin_attr_DMI.private = dmi_table; 794 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI); 795 if (!ret) 796 return 0; 797 798 sysfs_remove_bin_file(tables_kobj, 799 &bin_attr_smbios_entry_point); 800 err_unmap: 801 dmi_unmap(dmi_table); 802 err_tables: 803 kobject_del(tables_kobj); 804 kobject_put(tables_kobj); 805 err: 806 pr_err("dmi: Firmware registration failed.\n"); 807 808 return ret; 809 } 810 subsys_initcall(dmi_init); 811 812 /** 813 * dmi_setup - scan and setup DMI system information 814 * 815 * Scan the DMI system information. This setups DMI identifiers 816 * (dmi_system_id) for printing it out on task dumps and prepares 817 * DIMM entry information (dmi_memdev_info) from the SMBIOS table 818 * for using this when reporting memory errors. 819 */ 820 void __init dmi_setup(void) 821 { 822 dmi_scan_machine(); 823 if (!dmi_available) 824 return; 825 826 dmi_memdev_walk(); 827 dump_stack_set_arch_desc("%s", dmi_ids_string); 828 } 829 830 /** 831 * dmi_matches - check if dmi_system_id structure matches system DMI data 832 * @dmi: pointer to the dmi_system_id structure to check 833 */ 834 static bool dmi_matches(const struct dmi_system_id *dmi) 835 { 836 int i; 837 838 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) { 839 int s = dmi->matches[i].slot; 840 if (s == DMI_NONE) 841 break; 842 if (s == DMI_OEM_STRING) { 843 /* DMI_OEM_STRING must be exact match */ 844 const struct dmi_device *valid; 845 846 valid = dmi_find_device(DMI_DEV_TYPE_OEM_STRING, 847 dmi->matches[i].substr, NULL); 848 if (valid) 849 continue; 850 } else if (dmi_ident[s]) { 851 if (dmi->matches[i].exact_match) { 852 if (!strcmp(dmi_ident[s], 853 dmi->matches[i].substr)) 854 continue; 855 } else { 856 if (strstr(dmi_ident[s], 857 dmi->matches[i].substr)) 858 continue; 859 } 860 } 861 862 /* No match */ 863 return false; 864 } 865 return true; 866 } 867 868 /** 869 * dmi_is_end_of_table - check for end-of-table marker 870 * @dmi: pointer to the dmi_system_id structure to check 871 */ 872 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi) 873 { 874 return dmi->matches[0].slot == DMI_NONE; 875 } 876 877 /** 878 * dmi_check_system - check system DMI data 879 * @list: array of dmi_system_id structures to match against 880 * All non-null elements of the list must match 881 * their slot's (field index's) data (i.e., each 882 * list string must be a substring of the specified 883 * DMI slot's string data) to be considered a 884 * successful match. 885 * 886 * Walk the blacklist table running matching functions until someone 887 * returns non zero or we hit the end. Callback function is called for 888 * each successful match. Returns the number of matches. 889 * 890 * dmi_setup must be called before this function is called. 891 */ 892 int dmi_check_system(const struct dmi_system_id *list) 893 { 894 int count = 0; 895 const struct dmi_system_id *d; 896 897 for (d = list; !dmi_is_end_of_table(d); d++) 898 if (dmi_matches(d)) { 899 count++; 900 if (d->callback && d->callback(d)) 901 break; 902 } 903 904 return count; 905 } 906 EXPORT_SYMBOL(dmi_check_system); 907 908 /** 909 * dmi_first_match - find dmi_system_id structure matching system DMI data 910 * @list: array of dmi_system_id structures to match against 911 * All non-null elements of the list must match 912 * their slot's (field index's) data (i.e., each 913 * list string must be a substring of the specified 914 * DMI slot's string data) to be considered a 915 * successful match. 916 * 917 * Walk the blacklist table until the first match is found. Return the 918 * pointer to the matching entry or NULL if there's no match. 919 * 920 * dmi_setup must be called before this function is called. 921 */ 922 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list) 923 { 924 const struct dmi_system_id *d; 925 926 for (d = list; !dmi_is_end_of_table(d); d++) 927 if (dmi_matches(d)) 928 return d; 929 930 return NULL; 931 } 932 EXPORT_SYMBOL(dmi_first_match); 933 934 /** 935 * dmi_get_system_info - return DMI data value 936 * @field: data index (see enum dmi_field) 937 * 938 * Returns one DMI data value, can be used to perform 939 * complex DMI data checks. 940 */ 941 const char *dmi_get_system_info(int field) 942 { 943 return dmi_ident[field]; 944 } 945 EXPORT_SYMBOL(dmi_get_system_info); 946 947 /** 948 * dmi_name_in_serial - Check if string is in the DMI product serial information 949 * @str: string to check for 950 */ 951 int dmi_name_in_serial(const char *str) 952 { 953 int f = DMI_PRODUCT_SERIAL; 954 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 955 return 1; 956 return 0; 957 } 958 959 /** 960 * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name 961 * @str: Case sensitive Name 962 */ 963 int dmi_name_in_vendors(const char *str) 964 { 965 static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE }; 966 int i; 967 for (i = 0; fields[i] != DMI_NONE; i++) { 968 int f = fields[i]; 969 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 970 return 1; 971 } 972 return 0; 973 } 974 EXPORT_SYMBOL(dmi_name_in_vendors); 975 976 /** 977 * dmi_find_device - find onboard device by type/name 978 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types 979 * @name: device name string or %NULL to match all 980 * @from: previous device found in search, or %NULL for new search. 981 * 982 * Iterates through the list of known onboard devices. If a device is 983 * found with a matching @type and @name, a pointer to its device 984 * structure is returned. Otherwise, %NULL is returned. 985 * A new search is initiated by passing %NULL as the @from argument. 986 * If @from is not %NULL, searches continue from next device. 987 */ 988 const struct dmi_device *dmi_find_device(int type, const char *name, 989 const struct dmi_device *from) 990 { 991 const struct list_head *head = from ? &from->list : &dmi_devices; 992 struct list_head *d; 993 994 for (d = head->next; d != &dmi_devices; d = d->next) { 995 const struct dmi_device *dev = 996 list_entry(d, struct dmi_device, list); 997 998 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) && 999 ((name == NULL) || (strcmp(dev->name, name) == 0))) 1000 return dev; 1001 } 1002 1003 return NULL; 1004 } 1005 EXPORT_SYMBOL(dmi_find_device); 1006 1007 /** 1008 * dmi_get_date - parse a DMI date 1009 * @field: data index (see enum dmi_field) 1010 * @yearp: optional out parameter for the year 1011 * @monthp: optional out parameter for the month 1012 * @dayp: optional out parameter for the day 1013 * 1014 * The date field is assumed to be in the form resembling 1015 * [mm[/dd]]/yy[yy] and the result is stored in the out 1016 * parameters any or all of which can be omitted. 1017 * 1018 * If the field doesn't exist, all out parameters are set to zero 1019 * and false is returned. Otherwise, true is returned with any 1020 * invalid part of date set to zero. 1021 * 1022 * On return, year, month and day are guaranteed to be in the 1023 * range of [0,9999], [0,12] and [0,31] respectively. 1024 */ 1025 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp) 1026 { 1027 int year = 0, month = 0, day = 0; 1028 bool exists; 1029 const char *s, *y; 1030 char *e; 1031 1032 s = dmi_get_system_info(field); 1033 exists = s; 1034 if (!exists) 1035 goto out; 1036 1037 /* 1038 * Determine year first. We assume the date string resembles 1039 * mm/dd/yy[yy] but the original code extracted only the year 1040 * from the end. Keep the behavior in the spirit of no 1041 * surprises. 1042 */ 1043 y = strrchr(s, '/'); 1044 if (!y) 1045 goto out; 1046 1047 y++; 1048 year = simple_strtoul(y, &e, 10); 1049 if (y != e && year < 100) { /* 2-digit year */ 1050 year += 1900; 1051 if (year < 1996) /* no dates < spec 1.0 */ 1052 year += 100; 1053 } 1054 if (year > 9999) /* year should fit in %04d */ 1055 year = 0; 1056 1057 /* parse the mm and dd */ 1058 month = simple_strtoul(s, &e, 10); 1059 if (s == e || *e != '/' || !month || month > 12) { 1060 month = 0; 1061 goto out; 1062 } 1063 1064 s = e + 1; 1065 day = simple_strtoul(s, &e, 10); 1066 if (s == y || s == e || *e != '/' || day > 31) 1067 day = 0; 1068 out: 1069 if (yearp) 1070 *yearp = year; 1071 if (monthp) 1072 *monthp = month; 1073 if (dayp) 1074 *dayp = day; 1075 return exists; 1076 } 1077 EXPORT_SYMBOL(dmi_get_date); 1078 1079 /** 1080 * dmi_get_bios_year - get a year out of DMI_BIOS_DATE field 1081 * 1082 * Returns year on success, -ENXIO if DMI is not selected, 1083 * or a different negative error code if DMI field is not present 1084 * or not parseable. 1085 */ 1086 int dmi_get_bios_year(void) 1087 { 1088 bool exists; 1089 int year; 1090 1091 exists = dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL); 1092 if (!exists) 1093 return -ENODATA; 1094 1095 return year ? year : -ERANGE; 1096 } 1097 EXPORT_SYMBOL(dmi_get_bios_year); 1098 1099 /** 1100 * dmi_walk - Walk the DMI table and get called back for every record 1101 * @decode: Callback function 1102 * @private_data: Private data to be passed to the callback function 1103 * 1104 * Returns 0 on success, -ENXIO if DMI is not selected or not present, 1105 * or a different negative error code if DMI walking fails. 1106 */ 1107 int dmi_walk(void (*decode)(const struct dmi_header *, void *), 1108 void *private_data) 1109 { 1110 u8 *buf; 1111 1112 if (!dmi_available) 1113 return -ENXIO; 1114 1115 buf = dmi_remap(dmi_base, dmi_len); 1116 if (buf == NULL) 1117 return -ENOMEM; 1118 1119 dmi_decode_table(buf, decode, private_data); 1120 1121 dmi_unmap(buf); 1122 return 0; 1123 } 1124 EXPORT_SYMBOL_GPL(dmi_walk); 1125 1126 /** 1127 * dmi_match - compare a string to the dmi field (if exists) 1128 * @f: DMI field identifier 1129 * @str: string to compare the DMI field to 1130 * 1131 * Returns true if the requested field equals to the str (including NULL). 1132 */ 1133 bool dmi_match(enum dmi_field f, const char *str) 1134 { 1135 const char *info = dmi_get_system_info(f); 1136 1137 if (info == NULL || str == NULL) 1138 return info == str; 1139 1140 return !strcmp(info, str); 1141 } 1142 EXPORT_SYMBOL_GPL(dmi_match); 1143 1144 void dmi_memdev_name(u16 handle, const char **bank, const char **device) 1145 { 1146 int n; 1147 1148 if (dmi_memdev == NULL) 1149 return; 1150 1151 for (n = 0; n < dmi_memdev_nr; n++) { 1152 if (handle == dmi_memdev[n].handle) { 1153 *bank = dmi_memdev[n].bank; 1154 *device = dmi_memdev[n].device; 1155 break; 1156 } 1157 } 1158 } 1159 EXPORT_SYMBOL_GPL(dmi_memdev_name); 1160 1161 u64 dmi_memdev_size(u16 handle) 1162 { 1163 int n; 1164 1165 if (dmi_memdev) { 1166 for (n = 0; n < dmi_memdev_nr; n++) { 1167 if (handle == dmi_memdev[n].handle) 1168 return dmi_memdev[n].size; 1169 } 1170 } 1171 return ~0ull; 1172 } 1173 EXPORT_SYMBOL_GPL(dmi_memdev_size); 1174 1175 /** 1176 * dmi_memdev_type - get the memory type 1177 * @handle: DMI structure handle 1178 * 1179 * Return the DMI memory type of the module in the slot associated with the 1180 * given DMI handle, or 0x0 if no such DMI handle exists. 1181 */ 1182 u8 dmi_memdev_type(u16 handle) 1183 { 1184 int n; 1185 1186 if (dmi_memdev) { 1187 for (n = 0; n < dmi_memdev_nr; n++) { 1188 if (handle == dmi_memdev[n].handle) 1189 return dmi_memdev[n].type; 1190 } 1191 } 1192 return 0x0; /* Not a valid value */ 1193 } 1194 EXPORT_SYMBOL_GPL(dmi_memdev_type); 1195 1196 /** 1197 * dmi_memdev_handle - get the DMI handle of a memory slot 1198 * @slot: slot number 1199 * 1200 * Return the DMI handle associated with a given memory slot, or %0xFFFF 1201 * if there is no such slot. 1202 */ 1203 u16 dmi_memdev_handle(int slot) 1204 { 1205 if (dmi_memdev && slot >= 0 && slot < dmi_memdev_nr) 1206 return dmi_memdev[slot].handle; 1207 1208 return 0xffff; /* Not a valid value */ 1209 } 1210 EXPORT_SYMBOL_GPL(dmi_memdev_handle); 1211