1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/types.h> 3 #include <linux/string.h> 4 #include <linux/init.h> 5 #include <linux/module.h> 6 #include <linux/ctype.h> 7 #include <linux/dmi.h> 8 #include <linux/efi.h> 9 #include <linux/memblock.h> 10 #include <linux/random.h> 11 #include <asm/dmi.h> 12 #include <asm/unaligned.h> 13 14 #ifndef SMBIOS_ENTRY_POINT_SCAN_START 15 #define SMBIOS_ENTRY_POINT_SCAN_START 0xF0000 16 #endif 17 18 struct kobject *dmi_kobj; 19 EXPORT_SYMBOL_GPL(dmi_kobj); 20 21 /* 22 * DMI stands for "Desktop Management Interface". It is part 23 * of and an antecedent to, SMBIOS, which stands for System 24 * Management BIOS. See further: https://www.dmtf.org/standards 25 */ 26 static const char dmi_empty_string[] = ""; 27 28 static u32 dmi_ver __initdata; 29 static u32 dmi_len; 30 static u16 dmi_num; 31 static u8 smbios_entry_point[32]; 32 static int smbios_entry_point_size; 33 34 /* DMI system identification string used during boot */ 35 static char dmi_ids_string[128] __initdata; 36 37 static struct dmi_memdev_info { 38 const char *device; 39 const char *bank; 40 u64 size; /* bytes */ 41 u16 handle; 42 u8 type; /* DDR2, DDR3, DDR4 etc */ 43 } *dmi_memdev; 44 static int dmi_memdev_nr; 45 static int dmi_memdev_populated_nr __initdata; 46 47 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s) 48 { 49 const u8 *bp = ((u8 *) dm) + dm->length; 50 const u8 *nsp; 51 52 if (s) { 53 while (--s > 0 && *bp) 54 bp += strlen(bp) + 1; 55 56 /* Strings containing only spaces are considered empty */ 57 nsp = bp; 58 while (*nsp == ' ') 59 nsp++; 60 if (*nsp != '\0') 61 return bp; 62 } 63 64 return dmi_empty_string; 65 } 66 67 static const char * __init dmi_string(const struct dmi_header *dm, u8 s) 68 { 69 const char *bp = dmi_string_nosave(dm, s); 70 char *str; 71 size_t len; 72 73 if (bp == dmi_empty_string) 74 return dmi_empty_string; 75 76 len = strlen(bp) + 1; 77 str = dmi_alloc(len); 78 if (str != NULL) 79 strcpy(str, bp); 80 81 return str; 82 } 83 84 /* 85 * We have to be cautious here. We have seen BIOSes with DMI pointers 86 * pointing to completely the wrong place for example 87 */ 88 static void dmi_decode_table(u8 *buf, 89 void (*decode)(const struct dmi_header *, void *), 90 void *private_data) 91 { 92 u8 *data = buf; 93 int i = 0; 94 95 /* 96 * Stop when we have seen all the items the table claimed to have 97 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS 98 * >= 3.0 only) OR we run off the end of the table (should never 99 * happen but sometimes does on bogus implementations.) 100 */ 101 while ((!dmi_num || i < dmi_num) && 102 (data - buf + sizeof(struct dmi_header)) <= dmi_len) { 103 const struct dmi_header *dm = (const struct dmi_header *)data; 104 105 /* 106 * If a short entry is found (less than 4 bytes), not only it 107 * is invalid, but we cannot reliably locate the next entry. 108 */ 109 if (dm->length < sizeof(struct dmi_header)) { 110 pr_warn(FW_BUG 111 "Corrupted DMI table, offset %zd (only %d entries processed)\n", 112 data - buf, i); 113 break; 114 } 115 116 /* 117 * We want to know the total length (formatted area and 118 * strings) before decoding to make sure we won't run off the 119 * table in dmi_decode or dmi_string 120 */ 121 data += dm->length; 122 while ((data - buf < dmi_len - 1) && (data[0] || data[1])) 123 data++; 124 if (data - buf < dmi_len - 1) 125 decode(dm, private_data); 126 127 data += 2; 128 i++; 129 130 /* 131 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0] 132 * For tables behind a 64-bit entry point, we have no item 133 * count and no exact table length, so stop on end-of-table 134 * marker. For tables behind a 32-bit entry point, we have 135 * seen OEM structures behind the end-of-table marker on 136 * some systems, so don't trust it. 137 */ 138 if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE) 139 break; 140 } 141 142 /* Trim DMI table length if needed */ 143 if (dmi_len > data - buf) 144 dmi_len = data - buf; 145 } 146 147 static phys_addr_t dmi_base; 148 149 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *, 150 void *)) 151 { 152 u8 *buf; 153 u32 orig_dmi_len = dmi_len; 154 155 buf = dmi_early_remap(dmi_base, orig_dmi_len); 156 if (buf == NULL) 157 return -ENOMEM; 158 159 dmi_decode_table(buf, decode, NULL); 160 161 add_device_randomness(buf, dmi_len); 162 163 dmi_early_unmap(buf, orig_dmi_len); 164 return 0; 165 } 166 167 static int __init dmi_checksum(const u8 *buf, u8 len) 168 { 169 u8 sum = 0; 170 int a; 171 172 for (a = 0; a < len; a++) 173 sum += buf[a]; 174 175 return sum == 0; 176 } 177 178 static const char *dmi_ident[DMI_STRING_MAX]; 179 static LIST_HEAD(dmi_devices); 180 int dmi_available; 181 EXPORT_SYMBOL_GPL(dmi_available); 182 183 /* 184 * Save a DMI string 185 */ 186 static void __init dmi_save_ident(const struct dmi_header *dm, int slot, 187 int string) 188 { 189 const char *d = (const char *) dm; 190 const char *p; 191 192 if (dmi_ident[slot] || dm->length <= string) 193 return; 194 195 p = dmi_string(dm, d[string]); 196 if (p == NULL) 197 return; 198 199 dmi_ident[slot] = p; 200 } 201 202 static void __init dmi_save_release(const struct dmi_header *dm, int slot, 203 int index) 204 { 205 const u8 *minor, *major; 206 char *s; 207 208 /* If the table doesn't have the field, let's return */ 209 if (dmi_ident[slot] || dm->length < index) 210 return; 211 212 minor = (u8 *) dm + index; 213 major = (u8 *) dm + index - 1; 214 215 /* As per the spec, if the system doesn't support this field, 216 * the value is FF 217 */ 218 if (*major == 0xFF && *minor == 0xFF) 219 return; 220 221 s = dmi_alloc(8); 222 if (!s) 223 return; 224 225 sprintf(s, "%u.%u", *major, *minor); 226 227 dmi_ident[slot] = s; 228 } 229 230 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, 231 int index) 232 { 233 const u8 *d; 234 char *s; 235 int is_ff = 1, is_00 = 1, i; 236 237 if (dmi_ident[slot] || dm->length < index + 16) 238 return; 239 240 d = (u8 *) dm + index; 241 for (i = 0; i < 16 && (is_ff || is_00); i++) { 242 if (d[i] != 0x00) 243 is_00 = 0; 244 if (d[i] != 0xFF) 245 is_ff = 0; 246 } 247 248 if (is_ff || is_00) 249 return; 250 251 s = dmi_alloc(16*2+4+1); 252 if (!s) 253 return; 254 255 /* 256 * As of version 2.6 of the SMBIOS specification, the first 3 fields of 257 * the UUID are supposed to be little-endian encoded. The specification 258 * says that this is the defacto standard. 259 */ 260 if (dmi_ver >= 0x020600) 261 sprintf(s, "%pUl", d); 262 else 263 sprintf(s, "%pUb", d); 264 265 dmi_ident[slot] = s; 266 } 267 268 static void __init dmi_save_type(const struct dmi_header *dm, int slot, 269 int index) 270 { 271 const u8 *d; 272 char *s; 273 274 if (dmi_ident[slot] || dm->length <= index) 275 return; 276 277 s = dmi_alloc(4); 278 if (!s) 279 return; 280 281 d = (u8 *) dm + index; 282 sprintf(s, "%u", *d & 0x7F); 283 dmi_ident[slot] = s; 284 } 285 286 static void __init dmi_save_one_device(int type, const char *name) 287 { 288 struct dmi_device *dev; 289 290 /* No duplicate device */ 291 if (dmi_find_device(type, name, NULL)) 292 return; 293 294 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1); 295 if (!dev) 296 return; 297 298 dev->type = type; 299 strcpy((char *)(dev + 1), name); 300 dev->name = (char *)(dev + 1); 301 dev->device_data = NULL; 302 list_add(&dev->list, &dmi_devices); 303 } 304 305 static void __init dmi_save_devices(const struct dmi_header *dm) 306 { 307 int i, count = (dm->length - sizeof(struct dmi_header)) / 2; 308 309 for (i = 0; i < count; i++) { 310 const char *d = (char *)(dm + 1) + (i * 2); 311 312 /* Skip disabled device */ 313 if ((*d & 0x80) == 0) 314 continue; 315 316 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1))); 317 } 318 } 319 320 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm) 321 { 322 int i, count; 323 struct dmi_device *dev; 324 325 if (dm->length < 0x05) 326 return; 327 328 count = *(u8 *)(dm + 1); 329 for (i = 1; i <= count; i++) { 330 const char *devname = dmi_string(dm, i); 331 332 if (devname == dmi_empty_string) 333 continue; 334 335 dev = dmi_alloc(sizeof(*dev)); 336 if (!dev) 337 break; 338 339 dev->type = DMI_DEV_TYPE_OEM_STRING; 340 dev->name = devname; 341 dev->device_data = NULL; 342 343 list_add(&dev->list, &dmi_devices); 344 } 345 } 346 347 static void __init dmi_save_ipmi_device(const struct dmi_header *dm) 348 { 349 struct dmi_device *dev; 350 void *data; 351 352 data = dmi_alloc(dm->length); 353 if (data == NULL) 354 return; 355 356 memcpy(data, dm, dm->length); 357 358 dev = dmi_alloc(sizeof(*dev)); 359 if (!dev) 360 return; 361 362 dev->type = DMI_DEV_TYPE_IPMI; 363 dev->name = "IPMI controller"; 364 dev->device_data = data; 365 366 list_add_tail(&dev->list, &dmi_devices); 367 } 368 369 static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus, 370 int devfn, const char *name, int type) 371 { 372 struct dmi_dev_onboard *dev; 373 374 /* Ignore invalid values */ 375 if (type == DMI_DEV_TYPE_DEV_SLOT && 376 segment == 0xFFFF && bus == 0xFF && devfn == 0xFF) 377 return; 378 379 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1); 380 if (!dev) 381 return; 382 383 dev->instance = instance; 384 dev->segment = segment; 385 dev->bus = bus; 386 dev->devfn = devfn; 387 388 strcpy((char *)&dev[1], name); 389 dev->dev.type = type; 390 dev->dev.name = (char *)&dev[1]; 391 dev->dev.device_data = dev; 392 393 list_add(&dev->dev.list, &dmi_devices); 394 } 395 396 static void __init dmi_save_extended_devices(const struct dmi_header *dm) 397 { 398 const char *name; 399 const u8 *d = (u8 *)dm; 400 401 if (dm->length < 0x0B) 402 return; 403 404 /* Skip disabled device */ 405 if ((d[0x5] & 0x80) == 0) 406 return; 407 408 name = dmi_string_nosave(dm, d[0x4]); 409 dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name, 410 DMI_DEV_TYPE_DEV_ONBOARD); 411 dmi_save_one_device(d[0x5] & 0x7f, name); 412 } 413 414 static void __init dmi_save_system_slot(const struct dmi_header *dm) 415 { 416 const u8 *d = (u8 *)dm; 417 418 /* Need SMBIOS 2.6+ structure */ 419 if (dm->length < 0x11) 420 return; 421 dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF], 422 d[0x10], dmi_string_nosave(dm, d[0x4]), 423 DMI_DEV_TYPE_DEV_SLOT); 424 } 425 426 static void __init count_mem_devices(const struct dmi_header *dm, void *v) 427 { 428 if (dm->type != DMI_ENTRY_MEM_DEVICE) 429 return; 430 dmi_memdev_nr++; 431 } 432 433 static void __init save_mem_devices(const struct dmi_header *dm, void *v) 434 { 435 const char *d = (const char *)dm; 436 static int nr; 437 u64 bytes; 438 u16 size; 439 440 if (dm->type != DMI_ENTRY_MEM_DEVICE || dm->length < 0x13) 441 return; 442 if (nr >= dmi_memdev_nr) { 443 pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n"); 444 return; 445 } 446 dmi_memdev[nr].handle = get_unaligned(&dm->handle); 447 dmi_memdev[nr].device = dmi_string(dm, d[0x10]); 448 dmi_memdev[nr].bank = dmi_string(dm, d[0x11]); 449 dmi_memdev[nr].type = d[0x12]; 450 451 size = get_unaligned((u16 *)&d[0xC]); 452 if (size == 0) 453 bytes = 0; 454 else if (size == 0xffff) 455 bytes = ~0ull; 456 else if (size & 0x8000) 457 bytes = (u64)(size & 0x7fff) << 10; 458 else if (size != 0x7fff || dm->length < 0x20) 459 bytes = (u64)size << 20; 460 else 461 bytes = (u64)get_unaligned((u32 *)&d[0x1C]) << 20; 462 463 if (bytes) 464 dmi_memdev_populated_nr++; 465 466 dmi_memdev[nr].size = bytes; 467 nr++; 468 } 469 470 static void __init dmi_memdev_walk(void) 471 { 472 if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) { 473 dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr); 474 if (dmi_memdev) 475 dmi_walk_early(save_mem_devices); 476 } 477 } 478 479 /* 480 * Process a DMI table entry. Right now all we care about are the BIOS 481 * and machine entries. For 2.5 we should pull the smbus controller info 482 * out of here. 483 */ 484 static void __init dmi_decode(const struct dmi_header *dm, void *dummy) 485 { 486 switch (dm->type) { 487 case 0: /* BIOS Information */ 488 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4); 489 dmi_save_ident(dm, DMI_BIOS_VERSION, 5); 490 dmi_save_ident(dm, DMI_BIOS_DATE, 8); 491 dmi_save_release(dm, DMI_BIOS_RELEASE, 21); 492 dmi_save_release(dm, DMI_EC_FIRMWARE_RELEASE, 23); 493 break; 494 case 1: /* System Information */ 495 dmi_save_ident(dm, DMI_SYS_VENDOR, 4); 496 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5); 497 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6); 498 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7); 499 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8); 500 dmi_save_ident(dm, DMI_PRODUCT_SKU, 25); 501 dmi_save_ident(dm, DMI_PRODUCT_FAMILY, 26); 502 break; 503 case 2: /* Base Board Information */ 504 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4); 505 dmi_save_ident(dm, DMI_BOARD_NAME, 5); 506 dmi_save_ident(dm, DMI_BOARD_VERSION, 6); 507 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7); 508 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8); 509 break; 510 case 3: /* Chassis Information */ 511 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4); 512 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5); 513 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6); 514 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7); 515 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8); 516 break; 517 case 9: /* System Slots */ 518 dmi_save_system_slot(dm); 519 break; 520 case 10: /* Onboard Devices Information */ 521 dmi_save_devices(dm); 522 break; 523 case 11: /* OEM Strings */ 524 dmi_save_oem_strings_devices(dm); 525 break; 526 case 38: /* IPMI Device Information */ 527 dmi_save_ipmi_device(dm); 528 break; 529 case 41: /* Onboard Devices Extended Information */ 530 dmi_save_extended_devices(dm); 531 } 532 } 533 534 static int __init print_filtered(char *buf, size_t len, const char *info) 535 { 536 int c = 0; 537 const char *p; 538 539 if (!info) 540 return c; 541 542 for (p = info; *p; p++) 543 if (isprint(*p)) 544 c += scnprintf(buf + c, len - c, "%c", *p); 545 else 546 c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff); 547 return c; 548 } 549 550 static void __init dmi_format_ids(char *buf, size_t len) 551 { 552 int c = 0; 553 const char *board; /* Board Name is optional */ 554 555 c += print_filtered(buf + c, len - c, 556 dmi_get_system_info(DMI_SYS_VENDOR)); 557 c += scnprintf(buf + c, len - c, " "); 558 c += print_filtered(buf + c, len - c, 559 dmi_get_system_info(DMI_PRODUCT_NAME)); 560 561 board = dmi_get_system_info(DMI_BOARD_NAME); 562 if (board) { 563 c += scnprintf(buf + c, len - c, "/"); 564 c += print_filtered(buf + c, len - c, board); 565 } 566 c += scnprintf(buf + c, len - c, ", BIOS "); 567 c += print_filtered(buf + c, len - c, 568 dmi_get_system_info(DMI_BIOS_VERSION)); 569 c += scnprintf(buf + c, len - c, " "); 570 c += print_filtered(buf + c, len - c, 571 dmi_get_system_info(DMI_BIOS_DATE)); 572 } 573 574 /* 575 * Check for DMI/SMBIOS headers in the system firmware image. Any 576 * SMBIOS header must start 16 bytes before the DMI header, so take a 577 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset 578 * 0. If the DMI header is present, set dmi_ver accordingly (SMBIOS 579 * takes precedence) and return 0. Otherwise return 1. 580 */ 581 static int __init dmi_present(const u8 *buf) 582 { 583 u32 smbios_ver; 584 585 /* 586 * The size of this structure is 31 bytes, but we also accept value 587 * 30 due to a mistake in SMBIOS specification version 2.1. 588 */ 589 if (memcmp(buf, "_SM_", 4) == 0 && 590 buf[5] >= 30 && buf[5] <= 32 && 591 dmi_checksum(buf, buf[5])) { 592 smbios_ver = get_unaligned_be16(buf + 6); 593 smbios_entry_point_size = buf[5]; 594 memcpy(smbios_entry_point, buf, smbios_entry_point_size); 595 596 /* Some BIOS report weird SMBIOS version, fix that up */ 597 switch (smbios_ver) { 598 case 0x021F: 599 case 0x0221: 600 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 601 smbios_ver & 0xFF, 3); 602 smbios_ver = 0x0203; 603 break; 604 case 0x0233: 605 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6); 606 smbios_ver = 0x0206; 607 break; 608 } 609 } else { 610 smbios_ver = 0; 611 } 612 613 buf += 16; 614 615 if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) { 616 if (smbios_ver) 617 dmi_ver = smbios_ver; 618 else 619 dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F); 620 dmi_ver <<= 8; 621 dmi_num = get_unaligned_le16(buf + 12); 622 dmi_len = get_unaligned_le16(buf + 6); 623 dmi_base = get_unaligned_le32(buf + 8); 624 625 if (dmi_walk_early(dmi_decode) == 0) { 626 if (smbios_ver) { 627 pr_info("SMBIOS %d.%d present.\n", 628 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF); 629 } else { 630 smbios_entry_point_size = 15; 631 memcpy(smbios_entry_point, buf, 632 smbios_entry_point_size); 633 pr_info("Legacy DMI %d.%d present.\n", 634 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF); 635 } 636 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string)); 637 pr_info("DMI: %s\n", dmi_ids_string); 638 return 0; 639 } 640 } 641 642 return 1; 643 } 644 645 /* 646 * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy 647 * 32-bit entry point, there is no embedded DMI header (_DMI_) in here. 648 */ 649 static int __init dmi_smbios3_present(const u8 *buf) 650 { 651 if (memcmp(buf, "_SM3_", 5) == 0 && 652 buf[6] >= 24 && buf[6] <= 32 && 653 dmi_checksum(buf, buf[6])) { 654 dmi_ver = get_unaligned_be24(buf + 7); 655 dmi_num = 0; /* No longer specified */ 656 dmi_len = get_unaligned_le32(buf + 12); 657 dmi_base = get_unaligned_le64(buf + 16); 658 smbios_entry_point_size = buf[6]; 659 memcpy(smbios_entry_point, buf, smbios_entry_point_size); 660 661 if (dmi_walk_early(dmi_decode) == 0) { 662 pr_info("SMBIOS %d.%d.%d present.\n", 663 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF, 664 dmi_ver & 0xFF); 665 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string)); 666 pr_info("DMI: %s\n", dmi_ids_string); 667 return 0; 668 } 669 } 670 return 1; 671 } 672 673 static void __init dmi_scan_machine(void) 674 { 675 char __iomem *p, *q; 676 char buf[32]; 677 678 if (efi_enabled(EFI_CONFIG_TABLES)) { 679 /* 680 * According to the DMTF SMBIOS reference spec v3.0.0, it is 681 * allowed to define both the 64-bit entry point (smbios3) and 682 * the 32-bit entry point (smbios), in which case they should 683 * either both point to the same SMBIOS structure table, or the 684 * table pointed to by the 64-bit entry point should contain a 685 * superset of the table contents pointed to by the 32-bit entry 686 * point (section 5.2) 687 * This implies that the 64-bit entry point should have 688 * precedence if it is defined and supported by the OS. If we 689 * have the 64-bit entry point, but fail to decode it, fall 690 * back to the legacy one (if available) 691 */ 692 if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) { 693 p = dmi_early_remap(efi.smbios3, 32); 694 if (p == NULL) 695 goto error; 696 memcpy_fromio(buf, p, 32); 697 dmi_early_unmap(p, 32); 698 699 if (!dmi_smbios3_present(buf)) { 700 dmi_available = 1; 701 return; 702 } 703 } 704 if (efi.smbios == EFI_INVALID_TABLE_ADDR) 705 goto error; 706 707 /* This is called as a core_initcall() because it isn't 708 * needed during early boot. This also means we can 709 * iounmap the space when we're done with it. 710 */ 711 p = dmi_early_remap(efi.smbios, 32); 712 if (p == NULL) 713 goto error; 714 memcpy_fromio(buf, p, 32); 715 dmi_early_unmap(p, 32); 716 717 if (!dmi_present(buf)) { 718 dmi_available = 1; 719 return; 720 } 721 } else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) { 722 p = dmi_early_remap(SMBIOS_ENTRY_POINT_SCAN_START, 0x10000); 723 if (p == NULL) 724 goto error; 725 726 /* 727 * Same logic as above, look for a 64-bit entry point 728 * first, and if not found, fall back to 32-bit entry point. 729 */ 730 memcpy_fromio(buf, p, 16); 731 for (q = p + 16; q < p + 0x10000; q += 16) { 732 memcpy_fromio(buf + 16, q, 16); 733 if (!dmi_smbios3_present(buf)) { 734 dmi_available = 1; 735 dmi_early_unmap(p, 0x10000); 736 return; 737 } 738 memcpy(buf, buf + 16, 16); 739 } 740 741 /* 742 * Iterate over all possible DMI header addresses q. 743 * Maintain the 32 bytes around q in buf. On the 744 * first iteration, substitute zero for the 745 * out-of-range bytes so there is no chance of falsely 746 * detecting an SMBIOS header. 747 */ 748 memset(buf, 0, 16); 749 for (q = p; q < p + 0x10000; q += 16) { 750 memcpy_fromio(buf + 16, q, 16); 751 if (!dmi_present(buf)) { 752 dmi_available = 1; 753 dmi_early_unmap(p, 0x10000); 754 return; 755 } 756 memcpy(buf, buf + 16, 16); 757 } 758 dmi_early_unmap(p, 0x10000); 759 } 760 error: 761 pr_info("DMI not present or invalid.\n"); 762 } 763 764 static ssize_t raw_table_read(struct file *file, struct kobject *kobj, 765 struct bin_attribute *attr, char *buf, 766 loff_t pos, size_t count) 767 { 768 memcpy(buf, attr->private + pos, count); 769 return count; 770 } 771 772 static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0); 773 static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0); 774 775 static int __init dmi_init(void) 776 { 777 struct kobject *tables_kobj; 778 u8 *dmi_table; 779 int ret = -ENOMEM; 780 781 if (!dmi_available) 782 return 0; 783 784 /* 785 * Set up dmi directory at /sys/firmware/dmi. This entry should stay 786 * even after farther error, as it can be used by other modules like 787 * dmi-sysfs. 788 */ 789 dmi_kobj = kobject_create_and_add("dmi", firmware_kobj); 790 if (!dmi_kobj) 791 goto err; 792 793 tables_kobj = kobject_create_and_add("tables", dmi_kobj); 794 if (!tables_kobj) 795 goto err; 796 797 dmi_table = dmi_remap(dmi_base, dmi_len); 798 if (!dmi_table) 799 goto err_tables; 800 801 bin_attr_smbios_entry_point.size = smbios_entry_point_size; 802 bin_attr_smbios_entry_point.private = smbios_entry_point; 803 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point); 804 if (ret) 805 goto err_unmap; 806 807 bin_attr_DMI.size = dmi_len; 808 bin_attr_DMI.private = dmi_table; 809 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI); 810 if (!ret) 811 return 0; 812 813 sysfs_remove_bin_file(tables_kobj, 814 &bin_attr_smbios_entry_point); 815 err_unmap: 816 dmi_unmap(dmi_table); 817 err_tables: 818 kobject_del(tables_kobj); 819 kobject_put(tables_kobj); 820 err: 821 pr_err("dmi: Firmware registration failed.\n"); 822 823 return ret; 824 } 825 subsys_initcall(dmi_init); 826 827 /** 828 * dmi_setup - scan and setup DMI system information 829 * 830 * Scan the DMI system information. This setups DMI identifiers 831 * (dmi_system_id) for printing it out on task dumps and prepares 832 * DIMM entry information (dmi_memdev_info) from the SMBIOS table 833 * for using this when reporting memory errors. 834 */ 835 void __init dmi_setup(void) 836 { 837 dmi_scan_machine(); 838 if (!dmi_available) 839 return; 840 841 dmi_memdev_walk(); 842 pr_info("DMI: Memory slots populated: %d/%d\n", 843 dmi_memdev_populated_nr, dmi_memdev_nr); 844 dump_stack_set_arch_desc("%s", dmi_ids_string); 845 } 846 847 /** 848 * dmi_matches - check if dmi_system_id structure matches system DMI data 849 * @dmi: pointer to the dmi_system_id structure to check 850 */ 851 static bool dmi_matches(const struct dmi_system_id *dmi) 852 { 853 int i; 854 855 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) { 856 int s = dmi->matches[i].slot; 857 if (s == DMI_NONE) 858 break; 859 if (s == DMI_OEM_STRING) { 860 /* DMI_OEM_STRING must be exact match */ 861 const struct dmi_device *valid; 862 863 valid = dmi_find_device(DMI_DEV_TYPE_OEM_STRING, 864 dmi->matches[i].substr, NULL); 865 if (valid) 866 continue; 867 } else if (dmi_ident[s]) { 868 if (dmi->matches[i].exact_match) { 869 if (!strcmp(dmi_ident[s], 870 dmi->matches[i].substr)) 871 continue; 872 } else { 873 if (strstr(dmi_ident[s], 874 dmi->matches[i].substr)) 875 continue; 876 } 877 } 878 879 /* No match */ 880 return false; 881 } 882 return true; 883 } 884 885 /** 886 * dmi_is_end_of_table - check for end-of-table marker 887 * @dmi: pointer to the dmi_system_id structure to check 888 */ 889 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi) 890 { 891 return dmi->matches[0].slot == DMI_NONE; 892 } 893 894 /** 895 * dmi_check_system - check system DMI data 896 * @list: array of dmi_system_id structures to match against 897 * All non-null elements of the list must match 898 * their slot's (field index's) data (i.e., each 899 * list string must be a substring of the specified 900 * DMI slot's string data) to be considered a 901 * successful match. 902 * 903 * Walk the blacklist table running matching functions until someone 904 * returns non zero or we hit the end. Callback function is called for 905 * each successful match. Returns the number of matches. 906 * 907 * dmi_setup must be called before this function is called. 908 */ 909 int dmi_check_system(const struct dmi_system_id *list) 910 { 911 int count = 0; 912 const struct dmi_system_id *d; 913 914 for (d = list; !dmi_is_end_of_table(d); d++) 915 if (dmi_matches(d)) { 916 count++; 917 if (d->callback && d->callback(d)) 918 break; 919 } 920 921 return count; 922 } 923 EXPORT_SYMBOL(dmi_check_system); 924 925 /** 926 * dmi_first_match - find dmi_system_id structure matching system DMI data 927 * @list: array of dmi_system_id structures to match against 928 * All non-null elements of the list must match 929 * their slot's (field index's) data (i.e., each 930 * list string must be a substring of the specified 931 * DMI slot's string data) to be considered a 932 * successful match. 933 * 934 * Walk the blacklist table until the first match is found. Return the 935 * pointer to the matching entry or NULL if there's no match. 936 * 937 * dmi_setup must be called before this function is called. 938 */ 939 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list) 940 { 941 const struct dmi_system_id *d; 942 943 for (d = list; !dmi_is_end_of_table(d); d++) 944 if (dmi_matches(d)) 945 return d; 946 947 return NULL; 948 } 949 EXPORT_SYMBOL(dmi_first_match); 950 951 /** 952 * dmi_get_system_info - return DMI data value 953 * @field: data index (see enum dmi_field) 954 * 955 * Returns one DMI data value, can be used to perform 956 * complex DMI data checks. 957 */ 958 const char *dmi_get_system_info(int field) 959 { 960 return dmi_ident[field]; 961 } 962 EXPORT_SYMBOL(dmi_get_system_info); 963 964 /** 965 * dmi_name_in_serial - Check if string is in the DMI product serial information 966 * @str: string to check for 967 */ 968 int dmi_name_in_serial(const char *str) 969 { 970 int f = DMI_PRODUCT_SERIAL; 971 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 972 return 1; 973 return 0; 974 } 975 976 /** 977 * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name 978 * @str: Case sensitive Name 979 */ 980 int dmi_name_in_vendors(const char *str) 981 { 982 static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE }; 983 int i; 984 for (i = 0; fields[i] != DMI_NONE; i++) { 985 int f = fields[i]; 986 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 987 return 1; 988 } 989 return 0; 990 } 991 EXPORT_SYMBOL(dmi_name_in_vendors); 992 993 /** 994 * dmi_find_device - find onboard device by type/name 995 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types 996 * @name: device name string or %NULL to match all 997 * @from: previous device found in search, or %NULL for new search. 998 * 999 * Iterates through the list of known onboard devices. If a device is 1000 * found with a matching @type and @name, a pointer to its device 1001 * structure is returned. Otherwise, %NULL is returned. 1002 * A new search is initiated by passing %NULL as the @from argument. 1003 * If @from is not %NULL, searches continue from next device. 1004 */ 1005 const struct dmi_device *dmi_find_device(int type, const char *name, 1006 const struct dmi_device *from) 1007 { 1008 const struct list_head *head = from ? &from->list : &dmi_devices; 1009 struct list_head *d; 1010 1011 for (d = head->next; d != &dmi_devices; d = d->next) { 1012 const struct dmi_device *dev = 1013 list_entry(d, struct dmi_device, list); 1014 1015 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) && 1016 ((name == NULL) || (strcmp(dev->name, name) == 0))) 1017 return dev; 1018 } 1019 1020 return NULL; 1021 } 1022 EXPORT_SYMBOL(dmi_find_device); 1023 1024 /** 1025 * dmi_get_date - parse a DMI date 1026 * @field: data index (see enum dmi_field) 1027 * @yearp: optional out parameter for the year 1028 * @monthp: optional out parameter for the month 1029 * @dayp: optional out parameter for the day 1030 * 1031 * The date field is assumed to be in the form resembling 1032 * [mm[/dd]]/yy[yy] and the result is stored in the out 1033 * parameters any or all of which can be omitted. 1034 * 1035 * If the field doesn't exist, all out parameters are set to zero 1036 * and false is returned. Otherwise, true is returned with any 1037 * invalid part of date set to zero. 1038 * 1039 * On return, year, month and day are guaranteed to be in the 1040 * range of [0,9999], [0,12] and [0,31] respectively. 1041 */ 1042 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp) 1043 { 1044 int year = 0, month = 0, day = 0; 1045 bool exists; 1046 const char *s, *y; 1047 char *e; 1048 1049 s = dmi_get_system_info(field); 1050 exists = s; 1051 if (!exists) 1052 goto out; 1053 1054 /* 1055 * Determine year first. We assume the date string resembles 1056 * mm/dd/yy[yy] but the original code extracted only the year 1057 * from the end. Keep the behavior in the spirit of no 1058 * surprises. 1059 */ 1060 y = strrchr(s, '/'); 1061 if (!y) 1062 goto out; 1063 1064 y++; 1065 year = simple_strtoul(y, &e, 10); 1066 if (y != e && year < 100) { /* 2-digit year */ 1067 year += 1900; 1068 if (year < 1996) /* no dates < spec 1.0 */ 1069 year += 100; 1070 } 1071 if (year > 9999) /* year should fit in %04d */ 1072 year = 0; 1073 1074 /* parse the mm and dd */ 1075 month = simple_strtoul(s, &e, 10); 1076 if (s == e || *e != '/' || !month || month > 12) { 1077 month = 0; 1078 goto out; 1079 } 1080 1081 s = e + 1; 1082 day = simple_strtoul(s, &e, 10); 1083 if (s == y || s == e || *e != '/' || day > 31) 1084 day = 0; 1085 out: 1086 if (yearp) 1087 *yearp = year; 1088 if (monthp) 1089 *monthp = month; 1090 if (dayp) 1091 *dayp = day; 1092 return exists; 1093 } 1094 EXPORT_SYMBOL(dmi_get_date); 1095 1096 /** 1097 * dmi_get_bios_year - get a year out of DMI_BIOS_DATE field 1098 * 1099 * Returns year on success, -ENXIO if DMI is not selected, 1100 * or a different negative error code if DMI field is not present 1101 * or not parseable. 1102 */ 1103 int dmi_get_bios_year(void) 1104 { 1105 bool exists; 1106 int year; 1107 1108 exists = dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL); 1109 if (!exists) 1110 return -ENODATA; 1111 1112 return year ? year : -ERANGE; 1113 } 1114 EXPORT_SYMBOL(dmi_get_bios_year); 1115 1116 /** 1117 * dmi_walk - Walk the DMI table and get called back for every record 1118 * @decode: Callback function 1119 * @private_data: Private data to be passed to the callback function 1120 * 1121 * Returns 0 on success, -ENXIO if DMI is not selected or not present, 1122 * or a different negative error code if DMI walking fails. 1123 */ 1124 int dmi_walk(void (*decode)(const struct dmi_header *, void *), 1125 void *private_data) 1126 { 1127 u8 *buf; 1128 1129 if (!dmi_available) 1130 return -ENXIO; 1131 1132 buf = dmi_remap(dmi_base, dmi_len); 1133 if (buf == NULL) 1134 return -ENOMEM; 1135 1136 dmi_decode_table(buf, decode, private_data); 1137 1138 dmi_unmap(buf); 1139 return 0; 1140 } 1141 EXPORT_SYMBOL_GPL(dmi_walk); 1142 1143 /** 1144 * dmi_match - compare a string to the dmi field (if exists) 1145 * @f: DMI field identifier 1146 * @str: string to compare the DMI field to 1147 * 1148 * Returns true if the requested field equals to the str (including NULL). 1149 */ 1150 bool dmi_match(enum dmi_field f, const char *str) 1151 { 1152 const char *info = dmi_get_system_info(f); 1153 1154 if (info == NULL || str == NULL) 1155 return info == str; 1156 1157 return !strcmp(info, str); 1158 } 1159 EXPORT_SYMBOL_GPL(dmi_match); 1160 1161 void dmi_memdev_name(u16 handle, const char **bank, const char **device) 1162 { 1163 int n; 1164 1165 if (dmi_memdev == NULL) 1166 return; 1167 1168 for (n = 0; n < dmi_memdev_nr; n++) { 1169 if (handle == dmi_memdev[n].handle) { 1170 *bank = dmi_memdev[n].bank; 1171 *device = dmi_memdev[n].device; 1172 break; 1173 } 1174 } 1175 } 1176 EXPORT_SYMBOL_GPL(dmi_memdev_name); 1177 1178 u64 dmi_memdev_size(u16 handle) 1179 { 1180 int n; 1181 1182 if (dmi_memdev) { 1183 for (n = 0; n < dmi_memdev_nr; n++) { 1184 if (handle == dmi_memdev[n].handle) 1185 return dmi_memdev[n].size; 1186 } 1187 } 1188 return ~0ull; 1189 } 1190 EXPORT_SYMBOL_GPL(dmi_memdev_size); 1191 1192 /** 1193 * dmi_memdev_type - get the memory type 1194 * @handle: DMI structure handle 1195 * 1196 * Return the DMI memory type of the module in the slot associated with the 1197 * given DMI handle, or 0x0 if no such DMI handle exists. 1198 */ 1199 u8 dmi_memdev_type(u16 handle) 1200 { 1201 int n; 1202 1203 if (dmi_memdev) { 1204 for (n = 0; n < dmi_memdev_nr; n++) { 1205 if (handle == dmi_memdev[n].handle) 1206 return dmi_memdev[n].type; 1207 } 1208 } 1209 return 0x0; /* Not a valid value */ 1210 } 1211 EXPORT_SYMBOL_GPL(dmi_memdev_type); 1212 1213 /** 1214 * dmi_memdev_handle - get the DMI handle of a memory slot 1215 * @slot: slot number 1216 * 1217 * Return the DMI handle associated with a given memory slot, or %0xFFFF 1218 * if there is no such slot. 1219 */ 1220 u16 dmi_memdev_handle(int slot) 1221 { 1222 if (dmi_memdev && slot >= 0 && slot < dmi_memdev_nr) 1223 return dmi_memdev[slot].handle; 1224 1225 return 0xffff; /* Not a valid value */ 1226 } 1227 EXPORT_SYMBOL_GPL(dmi_memdev_handle); 1228