1 #include <linux/types.h> 2 #include <linux/string.h> 3 #include <linux/init.h> 4 #include <linux/module.h> 5 #include <linux/dmi.h> 6 #include <linux/efi.h> 7 #include <linux/bootmem.h> 8 #include <linux/slab.h> 9 #include <asm/dmi.h> 10 11 static char dmi_empty_string[] = " "; 12 13 static char * __init dmi_string(const struct dmi_header *dm, u8 s) 14 { 15 const u8 *bp = ((u8 *) dm) + dm->length; 16 char *str = ""; 17 18 if (s) { 19 s--; 20 while (s > 0 && *bp) { 21 bp += strlen(bp) + 1; 22 s--; 23 } 24 25 if (*bp != 0) { 26 size_t len = strlen(bp)+1; 27 size_t cmp_len = len > 8 ? 8 : len; 28 29 if (!memcmp(bp, dmi_empty_string, cmp_len)) 30 return dmi_empty_string; 31 str = dmi_alloc(len); 32 if (str != NULL) 33 strcpy(str, bp); 34 else 35 printk(KERN_ERR "dmi_string: cannot allocate %Zu bytes.\n", len); 36 } 37 } 38 39 return str; 40 } 41 42 /* 43 * We have to be cautious here. We have seen BIOSes with DMI pointers 44 * pointing to completely the wrong place for example 45 */ 46 static int __init dmi_table(u32 base, int len, int num, 47 void (*decode)(const struct dmi_header *)) 48 { 49 u8 *buf, *data; 50 int i = 0; 51 52 buf = dmi_ioremap(base, len); 53 if (buf == NULL) 54 return -1; 55 56 data = buf; 57 58 /* 59 * Stop when we see all the items the table claimed to have 60 * OR we run off the end of the table (also happens) 61 */ 62 while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) { 63 const struct dmi_header *dm = (const struct dmi_header *)data; 64 65 /* 66 * We want to know the total length (formated area and strings) 67 * before decoding to make sure we won't run off the table in 68 * dmi_decode or dmi_string 69 */ 70 data += dm->length; 71 while ((data - buf < len - 1) && (data[0] || data[1])) 72 data++; 73 if (data - buf < len - 1) 74 decode(dm); 75 data += 2; 76 i++; 77 } 78 dmi_iounmap(buf, len); 79 return 0; 80 } 81 82 static int __init dmi_checksum(const u8 *buf) 83 { 84 u8 sum = 0; 85 int a; 86 87 for (a = 0; a < 15; a++) 88 sum += buf[a]; 89 90 return sum == 0; 91 } 92 93 static char *dmi_ident[DMI_STRING_MAX]; 94 static LIST_HEAD(dmi_devices); 95 int dmi_available; 96 97 /* 98 * Save a DMI string 99 */ 100 static void __init dmi_save_ident(const struct dmi_header *dm, int slot, int string) 101 { 102 const char *d = (const char*) dm; 103 char *p; 104 105 if (dmi_ident[slot]) 106 return; 107 108 p = dmi_string(dm, d[string]); 109 if (p == NULL) 110 return; 111 112 dmi_ident[slot] = p; 113 } 114 115 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, int index) 116 { 117 const u8 *d = (u8*) dm + index; 118 char *s; 119 int is_ff = 1, is_00 = 1, i; 120 121 if (dmi_ident[slot]) 122 return; 123 124 for (i = 0; i < 16 && (is_ff || is_00); i++) { 125 if(d[i] != 0x00) is_ff = 0; 126 if(d[i] != 0xFF) is_00 = 0; 127 } 128 129 if (is_ff || is_00) 130 return; 131 132 s = dmi_alloc(16*2+4+1); 133 if (!s) 134 return; 135 136 sprintf(s, 137 "%02X%02X%02X%02X-%02X%02X-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X", 138 d[0], d[1], d[2], d[3], d[4], d[5], d[6], d[7], 139 d[8], d[9], d[10], d[11], d[12], d[13], d[14], d[15]); 140 141 dmi_ident[slot] = s; 142 } 143 144 static void __init dmi_save_type(const struct dmi_header *dm, int slot, int index) 145 { 146 const u8 *d = (u8*) dm + index; 147 char *s; 148 149 if (dmi_ident[slot]) 150 return; 151 152 s = dmi_alloc(4); 153 if (!s) 154 return; 155 156 sprintf(s, "%u", *d & 0x7F); 157 dmi_ident[slot] = s; 158 } 159 160 static void __init dmi_save_devices(const struct dmi_header *dm) 161 { 162 int i, count = (dm->length - sizeof(struct dmi_header)) / 2; 163 struct dmi_device *dev; 164 165 for (i = 0; i < count; i++) { 166 const char *d = (char *)(dm + 1) + (i * 2); 167 168 /* Skip disabled device */ 169 if ((*d & 0x80) == 0) 170 continue; 171 172 dev = dmi_alloc(sizeof(*dev)); 173 if (!dev) { 174 printk(KERN_ERR "dmi_save_devices: out of memory.\n"); 175 break; 176 } 177 178 dev->type = *d++ & 0x7f; 179 dev->name = dmi_string(dm, *d); 180 dev->device_data = NULL; 181 list_add(&dev->list, &dmi_devices); 182 } 183 } 184 185 static struct dmi_device empty_oem_string_dev = { 186 .name = dmi_empty_string, 187 }; 188 189 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm) 190 { 191 int i, count = *(u8 *)(dm + 1); 192 struct dmi_device *dev; 193 194 for (i = 1; i <= count; i++) { 195 char *devname = dmi_string(dm, i); 196 197 if (!strcmp(devname, dmi_empty_string)) { 198 list_add(&empty_oem_string_dev.list, &dmi_devices); 199 continue; 200 } 201 202 dev = dmi_alloc(sizeof(*dev)); 203 if (!dev) { 204 printk(KERN_ERR 205 "dmi_save_oem_strings_devices: out of memory.\n"); 206 break; 207 } 208 209 dev->type = DMI_DEV_TYPE_OEM_STRING; 210 dev->name = devname; 211 dev->device_data = NULL; 212 213 list_add(&dev->list, &dmi_devices); 214 } 215 } 216 217 static void __init dmi_save_ipmi_device(const struct dmi_header *dm) 218 { 219 struct dmi_device *dev; 220 void * data; 221 222 data = dmi_alloc(dm->length); 223 if (data == NULL) { 224 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n"); 225 return; 226 } 227 228 memcpy(data, dm, dm->length); 229 230 dev = dmi_alloc(sizeof(*dev)); 231 if (!dev) { 232 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n"); 233 return; 234 } 235 236 dev->type = DMI_DEV_TYPE_IPMI; 237 dev->name = "IPMI controller"; 238 dev->device_data = data; 239 240 list_add(&dev->list, &dmi_devices); 241 } 242 243 /* 244 * Process a DMI table entry. Right now all we care about are the BIOS 245 * and machine entries. For 2.5 we should pull the smbus controller info 246 * out of here. 247 */ 248 static void __init dmi_decode(const struct dmi_header *dm) 249 { 250 switch(dm->type) { 251 case 0: /* BIOS Information */ 252 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4); 253 dmi_save_ident(dm, DMI_BIOS_VERSION, 5); 254 dmi_save_ident(dm, DMI_BIOS_DATE, 8); 255 break; 256 case 1: /* System Information */ 257 dmi_save_ident(dm, DMI_SYS_VENDOR, 4); 258 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5); 259 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6); 260 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7); 261 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8); 262 break; 263 case 2: /* Base Board Information */ 264 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4); 265 dmi_save_ident(dm, DMI_BOARD_NAME, 5); 266 dmi_save_ident(dm, DMI_BOARD_VERSION, 6); 267 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7); 268 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8); 269 break; 270 case 3: /* Chassis Information */ 271 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4); 272 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5); 273 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6); 274 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7); 275 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8); 276 break; 277 case 10: /* Onboard Devices Information */ 278 dmi_save_devices(dm); 279 break; 280 case 11: /* OEM Strings */ 281 dmi_save_oem_strings_devices(dm); 282 break; 283 case 38: /* IPMI Device Information */ 284 dmi_save_ipmi_device(dm); 285 } 286 } 287 288 static int __init dmi_present(const char __iomem *p) 289 { 290 u8 buf[15]; 291 292 memcpy_fromio(buf, p, 15); 293 if ((memcmp(buf, "_DMI_", 5) == 0) && dmi_checksum(buf)) { 294 u16 num = (buf[13] << 8) | buf[12]; 295 u16 len = (buf[7] << 8) | buf[6]; 296 u32 base = (buf[11] << 24) | (buf[10] << 16) | 297 (buf[9] << 8) | buf[8]; 298 299 /* 300 * DMI version 0.0 means that the real version is taken from 301 * the SMBIOS version, which we don't know at this point. 302 */ 303 if (buf[14] != 0) 304 printk(KERN_INFO "DMI %d.%d present.\n", 305 buf[14] >> 4, buf[14] & 0xF); 306 else 307 printk(KERN_INFO "DMI present.\n"); 308 if (dmi_table(base,len, num, dmi_decode) == 0) 309 return 0; 310 } 311 return 1; 312 } 313 314 void __init dmi_scan_machine(void) 315 { 316 char __iomem *p, *q; 317 int rc; 318 319 if (efi_enabled) { 320 if (efi.smbios == EFI_INVALID_TABLE_ADDR) 321 goto out; 322 323 /* This is called as a core_initcall() because it isn't 324 * needed during early boot. This also means we can 325 * iounmap the space when we're done with it. 326 */ 327 p = dmi_ioremap(efi.smbios, 32); 328 if (p == NULL) 329 goto out; 330 331 rc = dmi_present(p + 0x10); /* offset of _DMI_ string */ 332 dmi_iounmap(p, 32); 333 if (!rc) { 334 dmi_available = 1; 335 return; 336 } 337 } 338 else { 339 /* 340 * no iounmap() for that ioremap(); it would be a no-op, but 341 * it's so early in setup that sucker gets confused into doing 342 * what it shouldn't if we actually call it. 343 */ 344 p = dmi_ioremap(0xF0000, 0x10000); 345 if (p == NULL) 346 goto out; 347 348 for (q = p; q < p + 0x10000; q += 16) { 349 rc = dmi_present(q); 350 if (!rc) { 351 dmi_available = 1; 352 dmi_iounmap(p, 0x10000); 353 return; 354 } 355 } 356 dmi_iounmap(p, 0x10000); 357 } 358 out: printk(KERN_INFO "DMI not present or invalid.\n"); 359 } 360 361 /** 362 * dmi_check_system - check system DMI data 363 * @list: array of dmi_system_id structures to match against 364 * All non-null elements of the list must match 365 * their slot's (field index's) data (i.e., each 366 * list string must be a substring of the specified 367 * DMI slot's string data) to be considered a 368 * successful match. 369 * 370 * Walk the blacklist table running matching functions until someone 371 * returns non zero or we hit the end. Callback function is called for 372 * each successful match. Returns the number of matches. 373 */ 374 int dmi_check_system(const struct dmi_system_id *list) 375 { 376 int i, count = 0; 377 const struct dmi_system_id *d = list; 378 379 while (d->ident) { 380 for (i = 0; i < ARRAY_SIZE(d->matches); i++) { 381 int s = d->matches[i].slot; 382 if (s == DMI_NONE) 383 continue; 384 if (dmi_ident[s] && strstr(dmi_ident[s], d->matches[i].substr)) 385 continue; 386 /* No match */ 387 goto fail; 388 } 389 count++; 390 if (d->callback && d->callback(d)) 391 break; 392 fail: d++; 393 } 394 395 return count; 396 } 397 EXPORT_SYMBOL(dmi_check_system); 398 399 /** 400 * dmi_get_system_info - return DMI data value 401 * @field: data index (see enum dmi_field) 402 * 403 * Returns one DMI data value, can be used to perform 404 * complex DMI data checks. 405 */ 406 const char *dmi_get_system_info(int field) 407 { 408 return dmi_ident[field]; 409 } 410 EXPORT_SYMBOL(dmi_get_system_info); 411 412 413 /** 414 * dmi_name_in_vendors - Check if string is anywhere in the DMI vendor information. 415 * @str: Case sensitive Name 416 */ 417 int dmi_name_in_vendors(const char *str) 418 { 419 static int fields[] = { DMI_BIOS_VENDOR, DMI_BIOS_VERSION, DMI_SYS_VENDOR, 420 DMI_PRODUCT_NAME, DMI_PRODUCT_VERSION, DMI_BOARD_VENDOR, 421 DMI_BOARD_NAME, DMI_BOARD_VERSION, DMI_NONE }; 422 int i; 423 for (i = 0; fields[i] != DMI_NONE; i++) { 424 int f = fields[i]; 425 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 426 return 1; 427 } 428 return 0; 429 } 430 EXPORT_SYMBOL(dmi_name_in_vendors); 431 432 /** 433 * dmi_find_device - find onboard device by type/name 434 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types 435 * @name: device name string or %NULL to match all 436 * @from: previous device found in search, or %NULL for new search. 437 * 438 * Iterates through the list of known onboard devices. If a device is 439 * found with a matching @vendor and @device, a pointer to its device 440 * structure is returned. Otherwise, %NULL is returned. 441 * A new search is initiated by passing %NULL as the @from argument. 442 * If @from is not %NULL, searches continue from next device. 443 */ 444 const struct dmi_device * dmi_find_device(int type, const char *name, 445 const struct dmi_device *from) 446 { 447 const struct list_head *head = from ? &from->list : &dmi_devices; 448 struct list_head *d; 449 450 for(d = head->next; d != &dmi_devices; d = d->next) { 451 const struct dmi_device *dev = 452 list_entry(d, struct dmi_device, list); 453 454 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) && 455 ((name == NULL) || (strcmp(dev->name, name) == 0))) 456 return dev; 457 } 458 459 return NULL; 460 } 461 EXPORT_SYMBOL(dmi_find_device); 462 463 /** 464 * dmi_get_year - Return year of a DMI date 465 * @field: data index (like dmi_get_system_info) 466 * 467 * Returns -1 when the field doesn't exist. 0 when it is broken. 468 */ 469 int dmi_get_year(int field) 470 { 471 int year; 472 const char *s = dmi_get_system_info(field); 473 474 if (!s) 475 return -1; 476 if (*s == '\0') 477 return 0; 478 s = strrchr(s, '/'); 479 if (!s) 480 return 0; 481 482 s += 1; 483 year = simple_strtoul(s, NULL, 0); 484 if (year && year < 100) { /* 2-digit year */ 485 year += 1900; 486 if (year < 1996) /* no dates < spec 1.0 */ 487 year += 100; 488 } 489 490 return year; 491 } 492 493 /** 494 * dmi_get_slot - return dmi_ident[slot] 495 * @slot: index into dmi_ident[] 496 */ 497 char *dmi_get_slot(int slot) 498 { 499 return(dmi_ident[slot]); 500 } 501