1 #include <linux/types.h> 2 #include <linux/string.h> 3 #include <linux/init.h> 4 #include <linux/module.h> 5 #include <linux/ctype.h> 6 #include <linux/dmi.h> 7 #include <linux/efi.h> 8 #include <linux/bootmem.h> 9 #include <linux/random.h> 10 #include <asm/dmi.h> 11 #include <asm/unaligned.h> 12 13 /* 14 * DMI stands for "Desktop Management Interface". It is part 15 * of and an antecedent to, SMBIOS, which stands for System 16 * Management BIOS. See further: http://www.dmtf.org/standards 17 */ 18 static const char dmi_empty_string[] = " "; 19 20 static u16 __initdata dmi_ver; 21 /* 22 * Catch too early calls to dmi_check_system(): 23 */ 24 static int dmi_initialized; 25 26 /* DMI system identification string used during boot */ 27 static char dmi_ids_string[128] __initdata; 28 29 static struct dmi_memdev_info { 30 const char *device; 31 const char *bank; 32 u16 handle; 33 } *dmi_memdev; 34 static int dmi_memdev_nr; 35 36 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s) 37 { 38 const u8 *bp = ((u8 *) dm) + dm->length; 39 40 if (s) { 41 s--; 42 while (s > 0 && *bp) { 43 bp += strlen(bp) + 1; 44 s--; 45 } 46 47 if (*bp != 0) { 48 size_t len = strlen(bp)+1; 49 size_t cmp_len = len > 8 ? 8 : len; 50 51 if (!memcmp(bp, dmi_empty_string, cmp_len)) 52 return dmi_empty_string; 53 return bp; 54 } 55 } 56 57 return ""; 58 } 59 60 static const char * __init dmi_string(const struct dmi_header *dm, u8 s) 61 { 62 const char *bp = dmi_string_nosave(dm, s); 63 char *str; 64 size_t len; 65 66 if (bp == dmi_empty_string) 67 return dmi_empty_string; 68 69 len = strlen(bp) + 1; 70 str = dmi_alloc(len); 71 if (str != NULL) 72 strcpy(str, bp); 73 74 return str; 75 } 76 77 /* 78 * We have to be cautious here. We have seen BIOSes with DMI pointers 79 * pointing to completely the wrong place for example 80 */ 81 static void dmi_table(u8 *buf, int len, int num, 82 void (*decode)(const struct dmi_header *, void *), 83 void *private_data) 84 { 85 u8 *data = buf; 86 int i = 0; 87 88 /* 89 * Stop when we see all the items the table claimed to have 90 * OR we run off the end of the table (also happens) 91 */ 92 while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) { 93 const struct dmi_header *dm = (const struct dmi_header *)data; 94 95 /* 96 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0] 97 */ 98 if (dm->type == DMI_ENTRY_END_OF_TABLE) 99 break; 100 101 /* 102 * We want to know the total length (formatted area and 103 * strings) before decoding to make sure we won't run off the 104 * table in dmi_decode or dmi_string 105 */ 106 data += dm->length; 107 while ((data - buf < len - 1) && (data[0] || data[1])) 108 data++; 109 if (data - buf < len - 1) 110 decode(dm, private_data); 111 data += 2; 112 i++; 113 } 114 } 115 116 static phys_addr_t dmi_base; 117 static u16 dmi_len; 118 static u16 dmi_num; 119 120 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *, 121 void *)) 122 { 123 u8 *buf; 124 125 buf = dmi_early_remap(dmi_base, dmi_len); 126 if (buf == NULL) 127 return -1; 128 129 dmi_table(buf, dmi_len, dmi_num, decode, NULL); 130 131 add_device_randomness(buf, dmi_len); 132 133 dmi_early_unmap(buf, dmi_len); 134 return 0; 135 } 136 137 static int __init dmi_checksum(const u8 *buf, u8 len) 138 { 139 u8 sum = 0; 140 int a; 141 142 for (a = 0; a < len; a++) 143 sum += buf[a]; 144 145 return sum == 0; 146 } 147 148 static const char *dmi_ident[DMI_STRING_MAX]; 149 static LIST_HEAD(dmi_devices); 150 int dmi_available; 151 152 /* 153 * Save a DMI string 154 */ 155 static void __init dmi_save_ident(const struct dmi_header *dm, int slot, 156 int string) 157 { 158 const char *d = (const char *) dm; 159 const char *p; 160 161 if (dmi_ident[slot]) 162 return; 163 164 p = dmi_string(dm, d[string]); 165 if (p == NULL) 166 return; 167 168 dmi_ident[slot] = p; 169 } 170 171 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, 172 int index) 173 { 174 const u8 *d = (u8 *) dm + index; 175 char *s; 176 int is_ff = 1, is_00 = 1, i; 177 178 if (dmi_ident[slot]) 179 return; 180 181 for (i = 0; i < 16 && (is_ff || is_00); i++) { 182 if (d[i] != 0x00) 183 is_00 = 0; 184 if (d[i] != 0xFF) 185 is_ff = 0; 186 } 187 188 if (is_ff || is_00) 189 return; 190 191 s = dmi_alloc(16*2+4+1); 192 if (!s) 193 return; 194 195 /* 196 * As of version 2.6 of the SMBIOS specification, the first 3 fields of 197 * the UUID are supposed to be little-endian encoded. The specification 198 * says that this is the defacto standard. 199 */ 200 if (dmi_ver >= 0x0206) 201 sprintf(s, "%pUL", d); 202 else 203 sprintf(s, "%pUB", d); 204 205 dmi_ident[slot] = s; 206 } 207 208 static void __init dmi_save_type(const struct dmi_header *dm, int slot, 209 int index) 210 { 211 const u8 *d = (u8 *) dm + index; 212 char *s; 213 214 if (dmi_ident[slot]) 215 return; 216 217 s = dmi_alloc(4); 218 if (!s) 219 return; 220 221 sprintf(s, "%u", *d & 0x7F); 222 dmi_ident[slot] = s; 223 } 224 225 static void __init dmi_save_one_device(int type, const char *name) 226 { 227 struct dmi_device *dev; 228 229 /* No duplicate device */ 230 if (dmi_find_device(type, name, NULL)) 231 return; 232 233 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1); 234 if (!dev) 235 return; 236 237 dev->type = type; 238 strcpy((char *)(dev + 1), name); 239 dev->name = (char *)(dev + 1); 240 dev->device_data = NULL; 241 list_add(&dev->list, &dmi_devices); 242 } 243 244 static void __init dmi_save_devices(const struct dmi_header *dm) 245 { 246 int i, count = (dm->length - sizeof(struct dmi_header)) / 2; 247 248 for (i = 0; i < count; i++) { 249 const char *d = (char *)(dm + 1) + (i * 2); 250 251 /* Skip disabled device */ 252 if ((*d & 0x80) == 0) 253 continue; 254 255 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1))); 256 } 257 } 258 259 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm) 260 { 261 int i, count = *(u8 *)(dm + 1); 262 struct dmi_device *dev; 263 264 for (i = 1; i <= count; i++) { 265 const char *devname = dmi_string(dm, i); 266 267 if (devname == dmi_empty_string) 268 continue; 269 270 dev = dmi_alloc(sizeof(*dev)); 271 if (!dev) 272 break; 273 274 dev->type = DMI_DEV_TYPE_OEM_STRING; 275 dev->name = devname; 276 dev->device_data = NULL; 277 278 list_add(&dev->list, &dmi_devices); 279 } 280 } 281 282 static void __init dmi_save_ipmi_device(const struct dmi_header *dm) 283 { 284 struct dmi_device *dev; 285 void *data; 286 287 data = dmi_alloc(dm->length); 288 if (data == NULL) 289 return; 290 291 memcpy(data, dm, dm->length); 292 293 dev = dmi_alloc(sizeof(*dev)); 294 if (!dev) 295 return; 296 297 dev->type = DMI_DEV_TYPE_IPMI; 298 dev->name = "IPMI controller"; 299 dev->device_data = data; 300 301 list_add_tail(&dev->list, &dmi_devices); 302 } 303 304 static void __init dmi_save_dev_onboard(int instance, int segment, int bus, 305 int devfn, const char *name) 306 { 307 struct dmi_dev_onboard *onboard_dev; 308 309 onboard_dev = dmi_alloc(sizeof(*onboard_dev) + strlen(name) + 1); 310 if (!onboard_dev) 311 return; 312 313 onboard_dev->instance = instance; 314 onboard_dev->segment = segment; 315 onboard_dev->bus = bus; 316 onboard_dev->devfn = devfn; 317 318 strcpy((char *)&onboard_dev[1], name); 319 onboard_dev->dev.type = DMI_DEV_TYPE_DEV_ONBOARD; 320 onboard_dev->dev.name = (char *)&onboard_dev[1]; 321 onboard_dev->dev.device_data = onboard_dev; 322 323 list_add(&onboard_dev->dev.list, &dmi_devices); 324 } 325 326 static void __init dmi_save_extended_devices(const struct dmi_header *dm) 327 { 328 const u8 *d = (u8 *) dm + 5; 329 330 /* Skip disabled device */ 331 if ((*d & 0x80) == 0) 332 return; 333 334 dmi_save_dev_onboard(*(d+1), *(u16 *)(d+2), *(d+4), *(d+5), 335 dmi_string_nosave(dm, *(d-1))); 336 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1))); 337 } 338 339 static void __init count_mem_devices(const struct dmi_header *dm, void *v) 340 { 341 if (dm->type != DMI_ENTRY_MEM_DEVICE) 342 return; 343 dmi_memdev_nr++; 344 } 345 346 static void __init save_mem_devices(const struct dmi_header *dm, void *v) 347 { 348 const char *d = (const char *)dm; 349 static int nr; 350 351 if (dm->type != DMI_ENTRY_MEM_DEVICE) 352 return; 353 if (nr >= dmi_memdev_nr) { 354 pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n"); 355 return; 356 } 357 dmi_memdev[nr].handle = get_unaligned(&dm->handle); 358 dmi_memdev[nr].device = dmi_string(dm, d[0x10]); 359 dmi_memdev[nr].bank = dmi_string(dm, d[0x11]); 360 nr++; 361 } 362 363 void __init dmi_memdev_walk(void) 364 { 365 if (!dmi_available) 366 return; 367 368 if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) { 369 dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr); 370 if (dmi_memdev) 371 dmi_walk_early(save_mem_devices); 372 } 373 } 374 375 /* 376 * Process a DMI table entry. Right now all we care about are the BIOS 377 * and machine entries. For 2.5 we should pull the smbus controller info 378 * out of here. 379 */ 380 static void __init dmi_decode(const struct dmi_header *dm, void *dummy) 381 { 382 switch (dm->type) { 383 case 0: /* BIOS Information */ 384 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4); 385 dmi_save_ident(dm, DMI_BIOS_VERSION, 5); 386 dmi_save_ident(dm, DMI_BIOS_DATE, 8); 387 break; 388 case 1: /* System Information */ 389 dmi_save_ident(dm, DMI_SYS_VENDOR, 4); 390 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5); 391 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6); 392 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7); 393 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8); 394 break; 395 case 2: /* Base Board Information */ 396 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4); 397 dmi_save_ident(dm, DMI_BOARD_NAME, 5); 398 dmi_save_ident(dm, DMI_BOARD_VERSION, 6); 399 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7); 400 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8); 401 break; 402 case 3: /* Chassis Information */ 403 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4); 404 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5); 405 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6); 406 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7); 407 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8); 408 break; 409 case 10: /* Onboard Devices Information */ 410 dmi_save_devices(dm); 411 break; 412 case 11: /* OEM Strings */ 413 dmi_save_oem_strings_devices(dm); 414 break; 415 case 38: /* IPMI Device Information */ 416 dmi_save_ipmi_device(dm); 417 break; 418 case 41: /* Onboard Devices Extended Information */ 419 dmi_save_extended_devices(dm); 420 } 421 } 422 423 static int __init print_filtered(char *buf, size_t len, const char *info) 424 { 425 int c = 0; 426 const char *p; 427 428 if (!info) 429 return c; 430 431 for (p = info; *p; p++) 432 if (isprint(*p)) 433 c += scnprintf(buf + c, len - c, "%c", *p); 434 else 435 c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff); 436 return c; 437 } 438 439 static void __init dmi_format_ids(char *buf, size_t len) 440 { 441 int c = 0; 442 const char *board; /* Board Name is optional */ 443 444 c += print_filtered(buf + c, len - c, 445 dmi_get_system_info(DMI_SYS_VENDOR)); 446 c += scnprintf(buf + c, len - c, " "); 447 c += print_filtered(buf + c, len - c, 448 dmi_get_system_info(DMI_PRODUCT_NAME)); 449 450 board = dmi_get_system_info(DMI_BOARD_NAME); 451 if (board) { 452 c += scnprintf(buf + c, len - c, "/"); 453 c += print_filtered(buf + c, len - c, board); 454 } 455 c += scnprintf(buf + c, len - c, ", BIOS "); 456 c += print_filtered(buf + c, len - c, 457 dmi_get_system_info(DMI_BIOS_VERSION)); 458 c += scnprintf(buf + c, len - c, " "); 459 c += print_filtered(buf + c, len - c, 460 dmi_get_system_info(DMI_BIOS_DATE)); 461 } 462 463 /* 464 * Check for DMI/SMBIOS headers in the system firmware image. Any 465 * SMBIOS header must start 16 bytes before the DMI header, so take a 466 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset 467 * 0. If the DMI header is present, set dmi_ver accordingly (SMBIOS 468 * takes precedence) and return 0. Otherwise return 1. 469 */ 470 static int __init dmi_present(const u8 *buf) 471 { 472 int smbios_ver; 473 474 if (memcmp(buf, "_SM_", 4) == 0 && 475 buf[5] < 32 && dmi_checksum(buf, buf[5])) { 476 smbios_ver = get_unaligned_be16(buf + 6); 477 478 /* Some BIOS report weird SMBIOS version, fix that up */ 479 switch (smbios_ver) { 480 case 0x021F: 481 case 0x0221: 482 pr_debug("SMBIOS version fixup(2.%d->2.%d)\n", 483 smbios_ver & 0xFF, 3); 484 smbios_ver = 0x0203; 485 break; 486 case 0x0233: 487 pr_debug("SMBIOS version fixup(2.%d->2.%d)\n", 51, 6); 488 smbios_ver = 0x0206; 489 break; 490 } 491 } else { 492 smbios_ver = 0; 493 } 494 495 buf += 16; 496 497 if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) { 498 dmi_num = get_unaligned_le16(buf + 12); 499 dmi_len = get_unaligned_le16(buf + 6); 500 dmi_base = get_unaligned_le32(buf + 8); 501 502 if (dmi_walk_early(dmi_decode) == 0) { 503 if (smbios_ver) { 504 dmi_ver = smbios_ver; 505 pr_info("SMBIOS %d.%d present.\n", 506 dmi_ver >> 8, dmi_ver & 0xFF); 507 } else { 508 dmi_ver = (buf[14] & 0xF0) << 4 | 509 (buf[14] & 0x0F); 510 pr_info("Legacy DMI %d.%d present.\n", 511 dmi_ver >> 8, dmi_ver & 0xFF); 512 } 513 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string)); 514 printk(KERN_DEBUG "DMI: %s\n", dmi_ids_string); 515 return 0; 516 } 517 } 518 519 return 1; 520 } 521 522 /* 523 * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy 524 * 32-bit entry point, there is no embedded DMI header (_DMI_) in here. 525 */ 526 static int __init dmi_smbios3_present(const u8 *buf) 527 { 528 if (memcmp(buf, "_SM3_", 5) == 0 && 529 buf[6] < 32 && dmi_checksum(buf, buf[6])) { 530 dmi_ver = get_unaligned_be16(buf + 7); 531 dmi_len = get_unaligned_le32(buf + 12); 532 dmi_base = get_unaligned_le64(buf + 16); 533 534 /* 535 * The 64-bit SMBIOS 3.0 entry point no longer has a field 536 * containing the number of structures present in the table. 537 * Instead, it defines the table size as a maximum size, and 538 * relies on the end-of-table structure type (#127) to be used 539 * to signal the end of the table. 540 * So let's define dmi_num as an upper bound as well: each 541 * structure has a 4 byte header, so dmi_len / 4 is an upper 542 * bound for the number of structures in the table. 543 */ 544 dmi_num = dmi_len / 4; 545 546 if (dmi_walk_early(dmi_decode) == 0) { 547 pr_info("SMBIOS %d.%d present.\n", 548 dmi_ver >> 8, dmi_ver & 0xFF); 549 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string)); 550 pr_debug("DMI: %s\n", dmi_ids_string); 551 return 0; 552 } 553 } 554 return 1; 555 } 556 557 void __init dmi_scan_machine(void) 558 { 559 char __iomem *p, *q; 560 char buf[32]; 561 562 if (efi_enabled(EFI_CONFIG_TABLES)) { 563 /* 564 * According to the DMTF SMBIOS reference spec v3.0.0, it is 565 * allowed to define both the 64-bit entry point (smbios3) and 566 * the 32-bit entry point (smbios), in which case they should 567 * either both point to the same SMBIOS structure table, or the 568 * table pointed to by the 64-bit entry point should contain a 569 * superset of the table contents pointed to by the 32-bit entry 570 * point (section 5.2) 571 * This implies that the 64-bit entry point should have 572 * precedence if it is defined and supported by the OS. If we 573 * have the 64-bit entry point, but fail to decode it, fall 574 * back to the legacy one (if available) 575 */ 576 if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) { 577 p = dmi_early_remap(efi.smbios3, 32); 578 if (p == NULL) 579 goto error; 580 memcpy_fromio(buf, p, 32); 581 dmi_early_unmap(p, 32); 582 583 if (!dmi_smbios3_present(buf)) { 584 dmi_available = 1; 585 goto out; 586 } 587 } 588 if (efi.smbios == EFI_INVALID_TABLE_ADDR) 589 goto error; 590 591 /* This is called as a core_initcall() because it isn't 592 * needed during early boot. This also means we can 593 * iounmap the space when we're done with it. 594 */ 595 p = dmi_early_remap(efi.smbios, 32); 596 if (p == NULL) 597 goto error; 598 memcpy_fromio(buf, p, 32); 599 dmi_early_unmap(p, 32); 600 601 if (!dmi_present(buf)) { 602 dmi_available = 1; 603 goto out; 604 } 605 } else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) { 606 p = dmi_early_remap(0xF0000, 0x10000); 607 if (p == NULL) 608 goto error; 609 610 /* 611 * Iterate over all possible DMI header addresses q. 612 * Maintain the 32 bytes around q in buf. On the 613 * first iteration, substitute zero for the 614 * out-of-range bytes so there is no chance of falsely 615 * detecting an SMBIOS header. 616 */ 617 memset(buf, 0, 16); 618 for (q = p; q < p + 0x10000; q += 16) { 619 memcpy_fromio(buf + 16, q, 16); 620 if (!dmi_smbios3_present(buf) || !dmi_present(buf)) { 621 dmi_available = 1; 622 dmi_early_unmap(p, 0x10000); 623 goto out; 624 } 625 memcpy(buf, buf + 16, 16); 626 } 627 dmi_early_unmap(p, 0x10000); 628 } 629 error: 630 pr_info("DMI not present or invalid.\n"); 631 out: 632 dmi_initialized = 1; 633 } 634 635 /** 636 * dmi_set_dump_stack_arch_desc - set arch description for dump_stack() 637 * 638 * Invoke dump_stack_set_arch_desc() with DMI system information so that 639 * DMI identifiers are printed out on task dumps. Arch boot code should 640 * call this function after dmi_scan_machine() if it wants to print out DMI 641 * identifiers on task dumps. 642 */ 643 void __init dmi_set_dump_stack_arch_desc(void) 644 { 645 dump_stack_set_arch_desc("%s", dmi_ids_string); 646 } 647 648 /** 649 * dmi_matches - check if dmi_system_id structure matches system DMI data 650 * @dmi: pointer to the dmi_system_id structure to check 651 */ 652 static bool dmi_matches(const struct dmi_system_id *dmi) 653 { 654 int i; 655 656 WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n"); 657 658 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) { 659 int s = dmi->matches[i].slot; 660 if (s == DMI_NONE) 661 break; 662 if (dmi_ident[s]) { 663 if (!dmi->matches[i].exact_match && 664 strstr(dmi_ident[s], dmi->matches[i].substr)) 665 continue; 666 else if (dmi->matches[i].exact_match && 667 !strcmp(dmi_ident[s], dmi->matches[i].substr)) 668 continue; 669 } 670 671 /* No match */ 672 return false; 673 } 674 return true; 675 } 676 677 /** 678 * dmi_is_end_of_table - check for end-of-table marker 679 * @dmi: pointer to the dmi_system_id structure to check 680 */ 681 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi) 682 { 683 return dmi->matches[0].slot == DMI_NONE; 684 } 685 686 /** 687 * dmi_check_system - check system DMI data 688 * @list: array of dmi_system_id structures to match against 689 * All non-null elements of the list must match 690 * their slot's (field index's) data (i.e., each 691 * list string must be a substring of the specified 692 * DMI slot's string data) to be considered a 693 * successful match. 694 * 695 * Walk the blacklist table running matching functions until someone 696 * returns non zero or we hit the end. Callback function is called for 697 * each successful match. Returns the number of matches. 698 */ 699 int dmi_check_system(const struct dmi_system_id *list) 700 { 701 int count = 0; 702 const struct dmi_system_id *d; 703 704 for (d = list; !dmi_is_end_of_table(d); d++) 705 if (dmi_matches(d)) { 706 count++; 707 if (d->callback && d->callback(d)) 708 break; 709 } 710 711 return count; 712 } 713 EXPORT_SYMBOL(dmi_check_system); 714 715 /** 716 * dmi_first_match - find dmi_system_id structure matching system DMI data 717 * @list: array of dmi_system_id structures to match against 718 * All non-null elements of the list must match 719 * their slot's (field index's) data (i.e., each 720 * list string must be a substring of the specified 721 * DMI slot's string data) to be considered a 722 * successful match. 723 * 724 * Walk the blacklist table until the first match is found. Return the 725 * pointer to the matching entry or NULL if there's no match. 726 */ 727 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list) 728 { 729 const struct dmi_system_id *d; 730 731 for (d = list; !dmi_is_end_of_table(d); d++) 732 if (dmi_matches(d)) 733 return d; 734 735 return NULL; 736 } 737 EXPORT_SYMBOL(dmi_first_match); 738 739 /** 740 * dmi_get_system_info - return DMI data value 741 * @field: data index (see enum dmi_field) 742 * 743 * Returns one DMI data value, can be used to perform 744 * complex DMI data checks. 745 */ 746 const char *dmi_get_system_info(int field) 747 { 748 return dmi_ident[field]; 749 } 750 EXPORT_SYMBOL(dmi_get_system_info); 751 752 /** 753 * dmi_name_in_serial - Check if string is in the DMI product serial information 754 * @str: string to check for 755 */ 756 int dmi_name_in_serial(const char *str) 757 { 758 int f = DMI_PRODUCT_SERIAL; 759 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 760 return 1; 761 return 0; 762 } 763 764 /** 765 * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name 766 * @str: Case sensitive Name 767 */ 768 int dmi_name_in_vendors(const char *str) 769 { 770 static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE }; 771 int i; 772 for (i = 0; fields[i] != DMI_NONE; i++) { 773 int f = fields[i]; 774 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 775 return 1; 776 } 777 return 0; 778 } 779 EXPORT_SYMBOL(dmi_name_in_vendors); 780 781 /** 782 * dmi_find_device - find onboard device by type/name 783 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types 784 * @name: device name string or %NULL to match all 785 * @from: previous device found in search, or %NULL for new search. 786 * 787 * Iterates through the list of known onboard devices. If a device is 788 * found with a matching @vendor and @device, a pointer to its device 789 * structure is returned. Otherwise, %NULL is returned. 790 * A new search is initiated by passing %NULL as the @from argument. 791 * If @from is not %NULL, searches continue from next device. 792 */ 793 const struct dmi_device *dmi_find_device(int type, const char *name, 794 const struct dmi_device *from) 795 { 796 const struct list_head *head = from ? &from->list : &dmi_devices; 797 struct list_head *d; 798 799 for (d = head->next; d != &dmi_devices; d = d->next) { 800 const struct dmi_device *dev = 801 list_entry(d, struct dmi_device, list); 802 803 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) && 804 ((name == NULL) || (strcmp(dev->name, name) == 0))) 805 return dev; 806 } 807 808 return NULL; 809 } 810 EXPORT_SYMBOL(dmi_find_device); 811 812 /** 813 * dmi_get_date - parse a DMI date 814 * @field: data index (see enum dmi_field) 815 * @yearp: optional out parameter for the year 816 * @monthp: optional out parameter for the month 817 * @dayp: optional out parameter for the day 818 * 819 * The date field is assumed to be in the form resembling 820 * [mm[/dd]]/yy[yy] and the result is stored in the out 821 * parameters any or all of which can be omitted. 822 * 823 * If the field doesn't exist, all out parameters are set to zero 824 * and false is returned. Otherwise, true is returned with any 825 * invalid part of date set to zero. 826 * 827 * On return, year, month and day are guaranteed to be in the 828 * range of [0,9999], [0,12] and [0,31] respectively. 829 */ 830 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp) 831 { 832 int year = 0, month = 0, day = 0; 833 bool exists; 834 const char *s, *y; 835 char *e; 836 837 s = dmi_get_system_info(field); 838 exists = s; 839 if (!exists) 840 goto out; 841 842 /* 843 * Determine year first. We assume the date string resembles 844 * mm/dd/yy[yy] but the original code extracted only the year 845 * from the end. Keep the behavior in the spirit of no 846 * surprises. 847 */ 848 y = strrchr(s, '/'); 849 if (!y) 850 goto out; 851 852 y++; 853 year = simple_strtoul(y, &e, 10); 854 if (y != e && year < 100) { /* 2-digit year */ 855 year += 1900; 856 if (year < 1996) /* no dates < spec 1.0 */ 857 year += 100; 858 } 859 if (year > 9999) /* year should fit in %04d */ 860 year = 0; 861 862 /* parse the mm and dd */ 863 month = simple_strtoul(s, &e, 10); 864 if (s == e || *e != '/' || !month || month > 12) { 865 month = 0; 866 goto out; 867 } 868 869 s = e + 1; 870 day = simple_strtoul(s, &e, 10); 871 if (s == y || s == e || *e != '/' || day > 31) 872 day = 0; 873 out: 874 if (yearp) 875 *yearp = year; 876 if (monthp) 877 *monthp = month; 878 if (dayp) 879 *dayp = day; 880 return exists; 881 } 882 EXPORT_SYMBOL(dmi_get_date); 883 884 /** 885 * dmi_walk - Walk the DMI table and get called back for every record 886 * @decode: Callback function 887 * @private_data: Private data to be passed to the callback function 888 * 889 * Returns -1 when the DMI table can't be reached, 0 on success. 890 */ 891 int dmi_walk(void (*decode)(const struct dmi_header *, void *), 892 void *private_data) 893 { 894 u8 *buf; 895 896 if (!dmi_available) 897 return -1; 898 899 buf = dmi_remap(dmi_base, dmi_len); 900 if (buf == NULL) 901 return -1; 902 903 dmi_table(buf, dmi_len, dmi_num, decode, private_data); 904 905 dmi_unmap(buf); 906 return 0; 907 } 908 EXPORT_SYMBOL_GPL(dmi_walk); 909 910 /** 911 * dmi_match - compare a string to the dmi field (if exists) 912 * @f: DMI field identifier 913 * @str: string to compare the DMI field to 914 * 915 * Returns true if the requested field equals to the str (including NULL). 916 */ 917 bool dmi_match(enum dmi_field f, const char *str) 918 { 919 const char *info = dmi_get_system_info(f); 920 921 if (info == NULL || str == NULL) 922 return info == str; 923 924 return !strcmp(info, str); 925 } 926 EXPORT_SYMBOL_GPL(dmi_match); 927 928 void dmi_memdev_name(u16 handle, const char **bank, const char **device) 929 { 930 int n; 931 932 if (dmi_memdev == NULL) 933 return; 934 935 for (n = 0; n < dmi_memdev_nr; n++) { 936 if (handle == dmi_memdev[n].handle) { 937 *bank = dmi_memdev[n].bank; 938 *device = dmi_memdev[n].device; 939 break; 940 } 941 } 942 } 943 EXPORT_SYMBOL_GPL(dmi_memdev_name); 944