xref: /linux/drivers/firmware/dmi_scan.c (revision 4949009eb8d40a441dcddcd96e101e77d31cf1b2)
1 #include <linux/types.h>
2 #include <linux/string.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/ctype.h>
6 #include <linux/dmi.h>
7 #include <linux/efi.h>
8 #include <linux/bootmem.h>
9 #include <linux/random.h>
10 #include <asm/dmi.h>
11 #include <asm/unaligned.h>
12 
13 /*
14  * DMI stands for "Desktop Management Interface".  It is part
15  * of and an antecedent to, SMBIOS, which stands for System
16  * Management BIOS.  See further: http://www.dmtf.org/standards
17  */
18 static const char dmi_empty_string[] = "        ";
19 
20 static u16 __initdata dmi_ver;
21 /*
22  * Catch too early calls to dmi_check_system():
23  */
24 static int dmi_initialized;
25 
26 /* DMI system identification string used during boot */
27 static char dmi_ids_string[128] __initdata;
28 
29 static struct dmi_memdev_info {
30 	const char *device;
31 	const char *bank;
32 	u16 handle;
33 } *dmi_memdev;
34 static int dmi_memdev_nr;
35 
36 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
37 {
38 	const u8 *bp = ((u8 *) dm) + dm->length;
39 
40 	if (s) {
41 		s--;
42 		while (s > 0 && *bp) {
43 			bp += strlen(bp) + 1;
44 			s--;
45 		}
46 
47 		if (*bp != 0) {
48 			size_t len = strlen(bp)+1;
49 			size_t cmp_len = len > 8 ? 8 : len;
50 
51 			if (!memcmp(bp, dmi_empty_string, cmp_len))
52 				return dmi_empty_string;
53 			return bp;
54 		}
55 	}
56 
57 	return "";
58 }
59 
60 static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
61 {
62 	const char *bp = dmi_string_nosave(dm, s);
63 	char *str;
64 	size_t len;
65 
66 	if (bp == dmi_empty_string)
67 		return dmi_empty_string;
68 
69 	len = strlen(bp) + 1;
70 	str = dmi_alloc(len);
71 	if (str != NULL)
72 		strcpy(str, bp);
73 
74 	return str;
75 }
76 
77 /*
78  *	We have to be cautious here. We have seen BIOSes with DMI pointers
79  *	pointing to completely the wrong place for example
80  */
81 static void dmi_table(u8 *buf, int len, int num,
82 		      void (*decode)(const struct dmi_header *, void *),
83 		      void *private_data)
84 {
85 	u8 *data = buf;
86 	int i = 0;
87 
88 	/*
89 	 *	Stop when we see all the items the table claimed to have
90 	 *	OR we run off the end of the table (also happens)
91 	 */
92 	while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) {
93 		const struct dmi_header *dm = (const struct dmi_header *)data;
94 
95 		/*
96 		 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
97 		 */
98 		if (dm->type == DMI_ENTRY_END_OF_TABLE)
99 			break;
100 
101 		/*
102 		 *  We want to know the total length (formatted area and
103 		 *  strings) before decoding to make sure we won't run off the
104 		 *  table in dmi_decode or dmi_string
105 		 */
106 		data += dm->length;
107 		while ((data - buf < len - 1) && (data[0] || data[1]))
108 			data++;
109 		if (data - buf < len - 1)
110 			decode(dm, private_data);
111 		data += 2;
112 		i++;
113 	}
114 }
115 
116 static phys_addr_t dmi_base;
117 static u16 dmi_len;
118 static u16 dmi_num;
119 
120 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
121 		void *))
122 {
123 	u8 *buf;
124 
125 	buf = dmi_early_remap(dmi_base, dmi_len);
126 	if (buf == NULL)
127 		return -1;
128 
129 	dmi_table(buf, dmi_len, dmi_num, decode, NULL);
130 
131 	add_device_randomness(buf, dmi_len);
132 
133 	dmi_early_unmap(buf, dmi_len);
134 	return 0;
135 }
136 
137 static int __init dmi_checksum(const u8 *buf, u8 len)
138 {
139 	u8 sum = 0;
140 	int a;
141 
142 	for (a = 0; a < len; a++)
143 		sum += buf[a];
144 
145 	return sum == 0;
146 }
147 
148 static const char *dmi_ident[DMI_STRING_MAX];
149 static LIST_HEAD(dmi_devices);
150 int dmi_available;
151 
152 /*
153  *	Save a DMI string
154  */
155 static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
156 		int string)
157 {
158 	const char *d = (const char *) dm;
159 	const char *p;
160 
161 	if (dmi_ident[slot])
162 		return;
163 
164 	p = dmi_string(dm, d[string]);
165 	if (p == NULL)
166 		return;
167 
168 	dmi_ident[slot] = p;
169 }
170 
171 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
172 		int index)
173 {
174 	const u8 *d = (u8 *) dm + index;
175 	char *s;
176 	int is_ff = 1, is_00 = 1, i;
177 
178 	if (dmi_ident[slot])
179 		return;
180 
181 	for (i = 0; i < 16 && (is_ff || is_00); i++) {
182 		if (d[i] != 0x00)
183 			is_00 = 0;
184 		if (d[i] != 0xFF)
185 			is_ff = 0;
186 	}
187 
188 	if (is_ff || is_00)
189 		return;
190 
191 	s = dmi_alloc(16*2+4+1);
192 	if (!s)
193 		return;
194 
195 	/*
196 	 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
197 	 * the UUID are supposed to be little-endian encoded.  The specification
198 	 * says that this is the defacto standard.
199 	 */
200 	if (dmi_ver >= 0x0206)
201 		sprintf(s, "%pUL", d);
202 	else
203 		sprintf(s, "%pUB", d);
204 
205 	dmi_ident[slot] = s;
206 }
207 
208 static void __init dmi_save_type(const struct dmi_header *dm, int slot,
209 		int index)
210 {
211 	const u8 *d = (u8 *) dm + index;
212 	char *s;
213 
214 	if (dmi_ident[slot])
215 		return;
216 
217 	s = dmi_alloc(4);
218 	if (!s)
219 		return;
220 
221 	sprintf(s, "%u", *d & 0x7F);
222 	dmi_ident[slot] = s;
223 }
224 
225 static void __init dmi_save_one_device(int type, const char *name)
226 {
227 	struct dmi_device *dev;
228 
229 	/* No duplicate device */
230 	if (dmi_find_device(type, name, NULL))
231 		return;
232 
233 	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
234 	if (!dev)
235 		return;
236 
237 	dev->type = type;
238 	strcpy((char *)(dev + 1), name);
239 	dev->name = (char *)(dev + 1);
240 	dev->device_data = NULL;
241 	list_add(&dev->list, &dmi_devices);
242 }
243 
244 static void __init dmi_save_devices(const struct dmi_header *dm)
245 {
246 	int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
247 
248 	for (i = 0; i < count; i++) {
249 		const char *d = (char *)(dm + 1) + (i * 2);
250 
251 		/* Skip disabled device */
252 		if ((*d & 0x80) == 0)
253 			continue;
254 
255 		dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
256 	}
257 }
258 
259 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
260 {
261 	int i, count = *(u8 *)(dm + 1);
262 	struct dmi_device *dev;
263 
264 	for (i = 1; i <= count; i++) {
265 		const char *devname = dmi_string(dm, i);
266 
267 		if (devname == dmi_empty_string)
268 			continue;
269 
270 		dev = dmi_alloc(sizeof(*dev));
271 		if (!dev)
272 			break;
273 
274 		dev->type = DMI_DEV_TYPE_OEM_STRING;
275 		dev->name = devname;
276 		dev->device_data = NULL;
277 
278 		list_add(&dev->list, &dmi_devices);
279 	}
280 }
281 
282 static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
283 {
284 	struct dmi_device *dev;
285 	void *data;
286 
287 	data = dmi_alloc(dm->length);
288 	if (data == NULL)
289 		return;
290 
291 	memcpy(data, dm, dm->length);
292 
293 	dev = dmi_alloc(sizeof(*dev));
294 	if (!dev)
295 		return;
296 
297 	dev->type = DMI_DEV_TYPE_IPMI;
298 	dev->name = "IPMI controller";
299 	dev->device_data = data;
300 
301 	list_add_tail(&dev->list, &dmi_devices);
302 }
303 
304 static void __init dmi_save_dev_onboard(int instance, int segment, int bus,
305 					int devfn, const char *name)
306 {
307 	struct dmi_dev_onboard *onboard_dev;
308 
309 	onboard_dev = dmi_alloc(sizeof(*onboard_dev) + strlen(name) + 1);
310 	if (!onboard_dev)
311 		return;
312 
313 	onboard_dev->instance = instance;
314 	onboard_dev->segment = segment;
315 	onboard_dev->bus = bus;
316 	onboard_dev->devfn = devfn;
317 
318 	strcpy((char *)&onboard_dev[1], name);
319 	onboard_dev->dev.type = DMI_DEV_TYPE_DEV_ONBOARD;
320 	onboard_dev->dev.name = (char *)&onboard_dev[1];
321 	onboard_dev->dev.device_data = onboard_dev;
322 
323 	list_add(&onboard_dev->dev.list, &dmi_devices);
324 }
325 
326 static void __init dmi_save_extended_devices(const struct dmi_header *dm)
327 {
328 	const u8 *d = (u8 *) dm + 5;
329 
330 	/* Skip disabled device */
331 	if ((*d & 0x80) == 0)
332 		return;
333 
334 	dmi_save_dev_onboard(*(d+1), *(u16 *)(d+2), *(d+4), *(d+5),
335 			     dmi_string_nosave(dm, *(d-1)));
336 	dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1)));
337 }
338 
339 static void __init count_mem_devices(const struct dmi_header *dm, void *v)
340 {
341 	if (dm->type != DMI_ENTRY_MEM_DEVICE)
342 		return;
343 	dmi_memdev_nr++;
344 }
345 
346 static void __init save_mem_devices(const struct dmi_header *dm, void *v)
347 {
348 	const char *d = (const char *)dm;
349 	static int nr;
350 
351 	if (dm->type != DMI_ENTRY_MEM_DEVICE)
352 		return;
353 	if (nr >= dmi_memdev_nr) {
354 		pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
355 		return;
356 	}
357 	dmi_memdev[nr].handle = get_unaligned(&dm->handle);
358 	dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
359 	dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
360 	nr++;
361 }
362 
363 void __init dmi_memdev_walk(void)
364 {
365 	if (!dmi_available)
366 		return;
367 
368 	if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
369 		dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
370 		if (dmi_memdev)
371 			dmi_walk_early(save_mem_devices);
372 	}
373 }
374 
375 /*
376  *	Process a DMI table entry. Right now all we care about are the BIOS
377  *	and machine entries. For 2.5 we should pull the smbus controller info
378  *	out of here.
379  */
380 static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
381 {
382 	switch (dm->type) {
383 	case 0:		/* BIOS Information */
384 		dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
385 		dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
386 		dmi_save_ident(dm, DMI_BIOS_DATE, 8);
387 		break;
388 	case 1:		/* System Information */
389 		dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
390 		dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
391 		dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
392 		dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
393 		dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
394 		break;
395 	case 2:		/* Base Board Information */
396 		dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
397 		dmi_save_ident(dm, DMI_BOARD_NAME, 5);
398 		dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
399 		dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
400 		dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
401 		break;
402 	case 3:		/* Chassis Information */
403 		dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
404 		dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
405 		dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
406 		dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
407 		dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
408 		break;
409 	case 10:	/* Onboard Devices Information */
410 		dmi_save_devices(dm);
411 		break;
412 	case 11:	/* OEM Strings */
413 		dmi_save_oem_strings_devices(dm);
414 		break;
415 	case 38:	/* IPMI Device Information */
416 		dmi_save_ipmi_device(dm);
417 		break;
418 	case 41:	/* Onboard Devices Extended Information */
419 		dmi_save_extended_devices(dm);
420 	}
421 }
422 
423 static int __init print_filtered(char *buf, size_t len, const char *info)
424 {
425 	int c = 0;
426 	const char *p;
427 
428 	if (!info)
429 		return c;
430 
431 	for (p = info; *p; p++)
432 		if (isprint(*p))
433 			c += scnprintf(buf + c, len - c, "%c", *p);
434 		else
435 			c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
436 	return c;
437 }
438 
439 static void __init dmi_format_ids(char *buf, size_t len)
440 {
441 	int c = 0;
442 	const char *board;	/* Board Name is optional */
443 
444 	c += print_filtered(buf + c, len - c,
445 			    dmi_get_system_info(DMI_SYS_VENDOR));
446 	c += scnprintf(buf + c, len - c, " ");
447 	c += print_filtered(buf + c, len - c,
448 			    dmi_get_system_info(DMI_PRODUCT_NAME));
449 
450 	board = dmi_get_system_info(DMI_BOARD_NAME);
451 	if (board) {
452 		c += scnprintf(buf + c, len - c, "/");
453 		c += print_filtered(buf + c, len - c, board);
454 	}
455 	c += scnprintf(buf + c, len - c, ", BIOS ");
456 	c += print_filtered(buf + c, len - c,
457 			    dmi_get_system_info(DMI_BIOS_VERSION));
458 	c += scnprintf(buf + c, len - c, " ");
459 	c += print_filtered(buf + c, len - c,
460 			    dmi_get_system_info(DMI_BIOS_DATE));
461 }
462 
463 /*
464  * Check for DMI/SMBIOS headers in the system firmware image.  Any
465  * SMBIOS header must start 16 bytes before the DMI header, so take a
466  * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
467  * 0.  If the DMI header is present, set dmi_ver accordingly (SMBIOS
468  * takes precedence) and return 0.  Otherwise return 1.
469  */
470 static int __init dmi_present(const u8 *buf)
471 {
472 	int smbios_ver;
473 
474 	if (memcmp(buf, "_SM_", 4) == 0 &&
475 	    buf[5] < 32 && dmi_checksum(buf, buf[5])) {
476 		smbios_ver = get_unaligned_be16(buf + 6);
477 
478 		/* Some BIOS report weird SMBIOS version, fix that up */
479 		switch (smbios_ver) {
480 		case 0x021F:
481 		case 0x0221:
482 			pr_debug("SMBIOS version fixup(2.%d->2.%d)\n",
483 				 smbios_ver & 0xFF, 3);
484 			smbios_ver = 0x0203;
485 			break;
486 		case 0x0233:
487 			pr_debug("SMBIOS version fixup(2.%d->2.%d)\n", 51, 6);
488 			smbios_ver = 0x0206;
489 			break;
490 		}
491 	} else {
492 		smbios_ver = 0;
493 	}
494 
495 	buf += 16;
496 
497 	if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
498 		dmi_num = get_unaligned_le16(buf + 12);
499 		dmi_len = get_unaligned_le16(buf + 6);
500 		dmi_base = get_unaligned_le32(buf + 8);
501 
502 		if (dmi_walk_early(dmi_decode) == 0) {
503 			if (smbios_ver) {
504 				dmi_ver = smbios_ver;
505 				pr_info("SMBIOS %d.%d present.\n",
506 				       dmi_ver >> 8, dmi_ver & 0xFF);
507 			} else {
508 				dmi_ver = (buf[14] & 0xF0) << 4 |
509 					   (buf[14] & 0x0F);
510 				pr_info("Legacy DMI %d.%d present.\n",
511 				       dmi_ver >> 8, dmi_ver & 0xFF);
512 			}
513 			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
514 			printk(KERN_DEBUG "DMI: %s\n", dmi_ids_string);
515 			return 0;
516 		}
517 	}
518 
519 	return 1;
520 }
521 
522 /*
523  * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
524  * 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
525  */
526 static int __init dmi_smbios3_present(const u8 *buf)
527 {
528 	if (memcmp(buf, "_SM3_", 5) == 0 &&
529 	    buf[6] < 32 && dmi_checksum(buf, buf[6])) {
530 		dmi_ver = get_unaligned_be16(buf + 7);
531 		dmi_len = get_unaligned_le32(buf + 12);
532 		dmi_base = get_unaligned_le64(buf + 16);
533 
534 		/*
535 		 * The 64-bit SMBIOS 3.0 entry point no longer has a field
536 		 * containing the number of structures present in the table.
537 		 * Instead, it defines the table size as a maximum size, and
538 		 * relies on the end-of-table structure type (#127) to be used
539 		 * to signal the end of the table.
540 		 * So let's define dmi_num as an upper bound as well: each
541 		 * structure has a 4 byte header, so dmi_len / 4 is an upper
542 		 * bound for the number of structures in the table.
543 		 */
544 		dmi_num = dmi_len / 4;
545 
546 		if (dmi_walk_early(dmi_decode) == 0) {
547 			pr_info("SMBIOS %d.%d present.\n",
548 				dmi_ver >> 8, dmi_ver & 0xFF);
549 			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
550 			pr_debug("DMI: %s\n", dmi_ids_string);
551 			return 0;
552 		}
553 	}
554 	return 1;
555 }
556 
557 void __init dmi_scan_machine(void)
558 {
559 	char __iomem *p, *q;
560 	char buf[32];
561 
562 	if (efi_enabled(EFI_CONFIG_TABLES)) {
563 		/*
564 		 * According to the DMTF SMBIOS reference spec v3.0.0, it is
565 		 * allowed to define both the 64-bit entry point (smbios3) and
566 		 * the 32-bit entry point (smbios), in which case they should
567 		 * either both point to the same SMBIOS structure table, or the
568 		 * table pointed to by the 64-bit entry point should contain a
569 		 * superset of the table contents pointed to by the 32-bit entry
570 		 * point (section 5.2)
571 		 * This implies that the 64-bit entry point should have
572 		 * precedence if it is defined and supported by the OS. If we
573 		 * have the 64-bit entry point, but fail to decode it, fall
574 		 * back to the legacy one (if available)
575 		 */
576 		if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) {
577 			p = dmi_early_remap(efi.smbios3, 32);
578 			if (p == NULL)
579 				goto error;
580 			memcpy_fromio(buf, p, 32);
581 			dmi_early_unmap(p, 32);
582 
583 			if (!dmi_smbios3_present(buf)) {
584 				dmi_available = 1;
585 				goto out;
586 			}
587 		}
588 		if (efi.smbios == EFI_INVALID_TABLE_ADDR)
589 			goto error;
590 
591 		/* This is called as a core_initcall() because it isn't
592 		 * needed during early boot.  This also means we can
593 		 * iounmap the space when we're done with it.
594 		 */
595 		p = dmi_early_remap(efi.smbios, 32);
596 		if (p == NULL)
597 			goto error;
598 		memcpy_fromio(buf, p, 32);
599 		dmi_early_unmap(p, 32);
600 
601 		if (!dmi_present(buf)) {
602 			dmi_available = 1;
603 			goto out;
604 		}
605 	} else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
606 		p = dmi_early_remap(0xF0000, 0x10000);
607 		if (p == NULL)
608 			goto error;
609 
610 		/*
611 		 * Iterate over all possible DMI header addresses q.
612 		 * Maintain the 32 bytes around q in buf.  On the
613 		 * first iteration, substitute zero for the
614 		 * out-of-range bytes so there is no chance of falsely
615 		 * detecting an SMBIOS header.
616 		 */
617 		memset(buf, 0, 16);
618 		for (q = p; q < p + 0x10000; q += 16) {
619 			memcpy_fromio(buf + 16, q, 16);
620 			if (!dmi_smbios3_present(buf) || !dmi_present(buf)) {
621 				dmi_available = 1;
622 				dmi_early_unmap(p, 0x10000);
623 				goto out;
624 			}
625 			memcpy(buf, buf + 16, 16);
626 		}
627 		dmi_early_unmap(p, 0x10000);
628 	}
629  error:
630 	pr_info("DMI not present or invalid.\n");
631  out:
632 	dmi_initialized = 1;
633 }
634 
635 /**
636  * dmi_set_dump_stack_arch_desc - set arch description for dump_stack()
637  *
638  * Invoke dump_stack_set_arch_desc() with DMI system information so that
639  * DMI identifiers are printed out on task dumps.  Arch boot code should
640  * call this function after dmi_scan_machine() if it wants to print out DMI
641  * identifiers on task dumps.
642  */
643 void __init dmi_set_dump_stack_arch_desc(void)
644 {
645 	dump_stack_set_arch_desc("%s", dmi_ids_string);
646 }
647 
648 /**
649  *	dmi_matches - check if dmi_system_id structure matches system DMI data
650  *	@dmi: pointer to the dmi_system_id structure to check
651  */
652 static bool dmi_matches(const struct dmi_system_id *dmi)
653 {
654 	int i;
655 
656 	WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n");
657 
658 	for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
659 		int s = dmi->matches[i].slot;
660 		if (s == DMI_NONE)
661 			break;
662 		if (dmi_ident[s]) {
663 			if (!dmi->matches[i].exact_match &&
664 			    strstr(dmi_ident[s], dmi->matches[i].substr))
665 				continue;
666 			else if (dmi->matches[i].exact_match &&
667 				 !strcmp(dmi_ident[s], dmi->matches[i].substr))
668 				continue;
669 		}
670 
671 		/* No match */
672 		return false;
673 	}
674 	return true;
675 }
676 
677 /**
678  *	dmi_is_end_of_table - check for end-of-table marker
679  *	@dmi: pointer to the dmi_system_id structure to check
680  */
681 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
682 {
683 	return dmi->matches[0].slot == DMI_NONE;
684 }
685 
686 /**
687  *	dmi_check_system - check system DMI data
688  *	@list: array of dmi_system_id structures to match against
689  *		All non-null elements of the list must match
690  *		their slot's (field index's) data (i.e., each
691  *		list string must be a substring of the specified
692  *		DMI slot's string data) to be considered a
693  *		successful match.
694  *
695  *	Walk the blacklist table running matching functions until someone
696  *	returns non zero or we hit the end. Callback function is called for
697  *	each successful match. Returns the number of matches.
698  */
699 int dmi_check_system(const struct dmi_system_id *list)
700 {
701 	int count = 0;
702 	const struct dmi_system_id *d;
703 
704 	for (d = list; !dmi_is_end_of_table(d); d++)
705 		if (dmi_matches(d)) {
706 			count++;
707 			if (d->callback && d->callback(d))
708 				break;
709 		}
710 
711 	return count;
712 }
713 EXPORT_SYMBOL(dmi_check_system);
714 
715 /**
716  *	dmi_first_match - find dmi_system_id structure matching system DMI data
717  *	@list: array of dmi_system_id structures to match against
718  *		All non-null elements of the list must match
719  *		their slot's (field index's) data (i.e., each
720  *		list string must be a substring of the specified
721  *		DMI slot's string data) to be considered a
722  *		successful match.
723  *
724  *	Walk the blacklist table until the first match is found.  Return the
725  *	pointer to the matching entry or NULL if there's no match.
726  */
727 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
728 {
729 	const struct dmi_system_id *d;
730 
731 	for (d = list; !dmi_is_end_of_table(d); d++)
732 		if (dmi_matches(d))
733 			return d;
734 
735 	return NULL;
736 }
737 EXPORT_SYMBOL(dmi_first_match);
738 
739 /**
740  *	dmi_get_system_info - return DMI data value
741  *	@field: data index (see enum dmi_field)
742  *
743  *	Returns one DMI data value, can be used to perform
744  *	complex DMI data checks.
745  */
746 const char *dmi_get_system_info(int field)
747 {
748 	return dmi_ident[field];
749 }
750 EXPORT_SYMBOL(dmi_get_system_info);
751 
752 /**
753  * dmi_name_in_serial - Check if string is in the DMI product serial information
754  * @str: string to check for
755  */
756 int dmi_name_in_serial(const char *str)
757 {
758 	int f = DMI_PRODUCT_SERIAL;
759 	if (dmi_ident[f] && strstr(dmi_ident[f], str))
760 		return 1;
761 	return 0;
762 }
763 
764 /**
765  *	dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
766  *	@str: Case sensitive Name
767  */
768 int dmi_name_in_vendors(const char *str)
769 {
770 	static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
771 	int i;
772 	for (i = 0; fields[i] != DMI_NONE; i++) {
773 		int f = fields[i];
774 		if (dmi_ident[f] && strstr(dmi_ident[f], str))
775 			return 1;
776 	}
777 	return 0;
778 }
779 EXPORT_SYMBOL(dmi_name_in_vendors);
780 
781 /**
782  *	dmi_find_device - find onboard device by type/name
783  *	@type: device type or %DMI_DEV_TYPE_ANY to match all device types
784  *	@name: device name string or %NULL to match all
785  *	@from: previous device found in search, or %NULL for new search.
786  *
787  *	Iterates through the list of known onboard devices. If a device is
788  *	found with a matching @vendor and @device, a pointer to its device
789  *	structure is returned.  Otherwise, %NULL is returned.
790  *	A new search is initiated by passing %NULL as the @from argument.
791  *	If @from is not %NULL, searches continue from next device.
792  */
793 const struct dmi_device *dmi_find_device(int type, const char *name,
794 				    const struct dmi_device *from)
795 {
796 	const struct list_head *head = from ? &from->list : &dmi_devices;
797 	struct list_head *d;
798 
799 	for (d = head->next; d != &dmi_devices; d = d->next) {
800 		const struct dmi_device *dev =
801 			list_entry(d, struct dmi_device, list);
802 
803 		if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
804 		    ((name == NULL) || (strcmp(dev->name, name) == 0)))
805 			return dev;
806 	}
807 
808 	return NULL;
809 }
810 EXPORT_SYMBOL(dmi_find_device);
811 
812 /**
813  *	dmi_get_date - parse a DMI date
814  *	@field:	data index (see enum dmi_field)
815  *	@yearp: optional out parameter for the year
816  *	@monthp: optional out parameter for the month
817  *	@dayp: optional out parameter for the day
818  *
819  *	The date field is assumed to be in the form resembling
820  *	[mm[/dd]]/yy[yy] and the result is stored in the out
821  *	parameters any or all of which can be omitted.
822  *
823  *	If the field doesn't exist, all out parameters are set to zero
824  *	and false is returned.  Otherwise, true is returned with any
825  *	invalid part of date set to zero.
826  *
827  *	On return, year, month and day are guaranteed to be in the
828  *	range of [0,9999], [0,12] and [0,31] respectively.
829  */
830 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
831 {
832 	int year = 0, month = 0, day = 0;
833 	bool exists;
834 	const char *s, *y;
835 	char *e;
836 
837 	s = dmi_get_system_info(field);
838 	exists = s;
839 	if (!exists)
840 		goto out;
841 
842 	/*
843 	 * Determine year first.  We assume the date string resembles
844 	 * mm/dd/yy[yy] but the original code extracted only the year
845 	 * from the end.  Keep the behavior in the spirit of no
846 	 * surprises.
847 	 */
848 	y = strrchr(s, '/');
849 	if (!y)
850 		goto out;
851 
852 	y++;
853 	year = simple_strtoul(y, &e, 10);
854 	if (y != e && year < 100) {	/* 2-digit year */
855 		year += 1900;
856 		if (year < 1996)	/* no dates < spec 1.0 */
857 			year += 100;
858 	}
859 	if (year > 9999)		/* year should fit in %04d */
860 		year = 0;
861 
862 	/* parse the mm and dd */
863 	month = simple_strtoul(s, &e, 10);
864 	if (s == e || *e != '/' || !month || month > 12) {
865 		month = 0;
866 		goto out;
867 	}
868 
869 	s = e + 1;
870 	day = simple_strtoul(s, &e, 10);
871 	if (s == y || s == e || *e != '/' || day > 31)
872 		day = 0;
873 out:
874 	if (yearp)
875 		*yearp = year;
876 	if (monthp)
877 		*monthp = month;
878 	if (dayp)
879 		*dayp = day;
880 	return exists;
881 }
882 EXPORT_SYMBOL(dmi_get_date);
883 
884 /**
885  *	dmi_walk - Walk the DMI table and get called back for every record
886  *	@decode: Callback function
887  *	@private_data: Private data to be passed to the callback function
888  *
889  *	Returns -1 when the DMI table can't be reached, 0 on success.
890  */
891 int dmi_walk(void (*decode)(const struct dmi_header *, void *),
892 	     void *private_data)
893 {
894 	u8 *buf;
895 
896 	if (!dmi_available)
897 		return -1;
898 
899 	buf = dmi_remap(dmi_base, dmi_len);
900 	if (buf == NULL)
901 		return -1;
902 
903 	dmi_table(buf, dmi_len, dmi_num, decode, private_data);
904 
905 	dmi_unmap(buf);
906 	return 0;
907 }
908 EXPORT_SYMBOL_GPL(dmi_walk);
909 
910 /**
911  * dmi_match - compare a string to the dmi field (if exists)
912  * @f: DMI field identifier
913  * @str: string to compare the DMI field to
914  *
915  * Returns true if the requested field equals to the str (including NULL).
916  */
917 bool dmi_match(enum dmi_field f, const char *str)
918 {
919 	const char *info = dmi_get_system_info(f);
920 
921 	if (info == NULL || str == NULL)
922 		return info == str;
923 
924 	return !strcmp(info, str);
925 }
926 EXPORT_SYMBOL_GPL(dmi_match);
927 
928 void dmi_memdev_name(u16 handle, const char **bank, const char **device)
929 {
930 	int n;
931 
932 	if (dmi_memdev == NULL)
933 		return;
934 
935 	for (n = 0; n < dmi_memdev_nr; n++) {
936 		if (handle == dmi_memdev[n].handle) {
937 			*bank = dmi_memdev[n].bank;
938 			*device = dmi_memdev[n].device;
939 			break;
940 		}
941 	}
942 }
943 EXPORT_SYMBOL_GPL(dmi_memdev_name);
944