1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/types.h> 3 #include <linux/string.h> 4 #include <linux/init.h> 5 #include <linux/module.h> 6 #include <linux/ctype.h> 7 #include <linux/dmi.h> 8 #include <linux/efi.h> 9 #include <linux/memblock.h> 10 #include <linux/random.h> 11 #include <asm/dmi.h> 12 #include <asm/unaligned.h> 13 14 #ifndef SMBIOS_ENTRY_POINT_SCAN_START 15 #define SMBIOS_ENTRY_POINT_SCAN_START 0xF0000 16 #endif 17 18 struct kobject *dmi_kobj; 19 EXPORT_SYMBOL_GPL(dmi_kobj); 20 21 /* 22 * DMI stands for "Desktop Management Interface". It is part 23 * of and an antecedent to, SMBIOS, which stands for System 24 * Management BIOS. See further: http://www.dmtf.org/standards 25 */ 26 static const char dmi_empty_string[] = ""; 27 28 static u32 dmi_ver __initdata; 29 static u32 dmi_len; 30 static u16 dmi_num; 31 static u8 smbios_entry_point[32]; 32 static int smbios_entry_point_size; 33 34 /* DMI system identification string used during boot */ 35 static char dmi_ids_string[128] __initdata; 36 37 static struct dmi_memdev_info { 38 const char *device; 39 const char *bank; 40 u64 size; /* bytes */ 41 u16 handle; 42 u8 type; /* DDR2, DDR3, DDR4 etc */ 43 } *dmi_memdev; 44 static int dmi_memdev_nr; 45 46 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s) 47 { 48 const u8 *bp = ((u8 *) dm) + dm->length; 49 const u8 *nsp; 50 51 if (s) { 52 while (--s > 0 && *bp) 53 bp += strlen(bp) + 1; 54 55 /* Strings containing only spaces are considered empty */ 56 nsp = bp; 57 while (*nsp == ' ') 58 nsp++; 59 if (*nsp != '\0') 60 return bp; 61 } 62 63 return dmi_empty_string; 64 } 65 66 static const char * __init dmi_string(const struct dmi_header *dm, u8 s) 67 { 68 const char *bp = dmi_string_nosave(dm, s); 69 char *str; 70 size_t len; 71 72 if (bp == dmi_empty_string) 73 return dmi_empty_string; 74 75 len = strlen(bp) + 1; 76 str = dmi_alloc(len); 77 if (str != NULL) 78 strcpy(str, bp); 79 80 return str; 81 } 82 83 /* 84 * We have to be cautious here. We have seen BIOSes with DMI pointers 85 * pointing to completely the wrong place for example 86 */ 87 static void dmi_decode_table(u8 *buf, 88 void (*decode)(const struct dmi_header *, void *), 89 void *private_data) 90 { 91 u8 *data = buf; 92 int i = 0; 93 94 /* 95 * Stop when we have seen all the items the table claimed to have 96 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS 97 * >= 3.0 only) OR we run off the end of the table (should never 98 * happen but sometimes does on bogus implementations.) 99 */ 100 while ((!dmi_num || i < dmi_num) && 101 (data - buf + sizeof(struct dmi_header)) <= dmi_len) { 102 const struct dmi_header *dm = (const struct dmi_header *)data; 103 104 /* 105 * We want to know the total length (formatted area and 106 * strings) before decoding to make sure we won't run off the 107 * table in dmi_decode or dmi_string 108 */ 109 data += dm->length; 110 while ((data - buf < dmi_len - 1) && (data[0] || data[1])) 111 data++; 112 if (data - buf < dmi_len - 1) 113 decode(dm, private_data); 114 115 data += 2; 116 i++; 117 118 /* 119 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0] 120 * For tables behind a 64-bit entry point, we have no item 121 * count and no exact table length, so stop on end-of-table 122 * marker. For tables behind a 32-bit entry point, we have 123 * seen OEM structures behind the end-of-table marker on 124 * some systems, so don't trust it. 125 */ 126 if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE) 127 break; 128 } 129 130 /* Trim DMI table length if needed */ 131 if (dmi_len > data - buf) 132 dmi_len = data - buf; 133 } 134 135 static phys_addr_t dmi_base; 136 137 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *, 138 void *)) 139 { 140 u8 *buf; 141 u32 orig_dmi_len = dmi_len; 142 143 buf = dmi_early_remap(dmi_base, orig_dmi_len); 144 if (buf == NULL) 145 return -ENOMEM; 146 147 dmi_decode_table(buf, decode, NULL); 148 149 add_device_randomness(buf, dmi_len); 150 151 dmi_early_unmap(buf, orig_dmi_len); 152 return 0; 153 } 154 155 static int __init dmi_checksum(const u8 *buf, u8 len) 156 { 157 u8 sum = 0; 158 int a; 159 160 for (a = 0; a < len; a++) 161 sum += buf[a]; 162 163 return sum == 0; 164 } 165 166 static const char *dmi_ident[DMI_STRING_MAX]; 167 static LIST_HEAD(dmi_devices); 168 int dmi_available; 169 170 /* 171 * Save a DMI string 172 */ 173 static void __init dmi_save_ident(const struct dmi_header *dm, int slot, 174 int string) 175 { 176 const char *d = (const char *) dm; 177 const char *p; 178 179 if (dmi_ident[slot] || dm->length <= string) 180 return; 181 182 p = dmi_string(dm, d[string]); 183 if (p == NULL) 184 return; 185 186 dmi_ident[slot] = p; 187 } 188 189 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, 190 int index) 191 { 192 const u8 *d; 193 char *s; 194 int is_ff = 1, is_00 = 1, i; 195 196 if (dmi_ident[slot] || dm->length < index + 16) 197 return; 198 199 d = (u8 *) dm + index; 200 for (i = 0; i < 16 && (is_ff || is_00); i++) { 201 if (d[i] != 0x00) 202 is_00 = 0; 203 if (d[i] != 0xFF) 204 is_ff = 0; 205 } 206 207 if (is_ff || is_00) 208 return; 209 210 s = dmi_alloc(16*2+4+1); 211 if (!s) 212 return; 213 214 /* 215 * As of version 2.6 of the SMBIOS specification, the first 3 fields of 216 * the UUID are supposed to be little-endian encoded. The specification 217 * says that this is the defacto standard. 218 */ 219 if (dmi_ver >= 0x020600) 220 sprintf(s, "%pUl", d); 221 else 222 sprintf(s, "%pUb", d); 223 224 dmi_ident[slot] = s; 225 } 226 227 static void __init dmi_save_type(const struct dmi_header *dm, int slot, 228 int index) 229 { 230 const u8 *d; 231 char *s; 232 233 if (dmi_ident[slot] || dm->length <= index) 234 return; 235 236 s = dmi_alloc(4); 237 if (!s) 238 return; 239 240 d = (u8 *) dm + index; 241 sprintf(s, "%u", *d & 0x7F); 242 dmi_ident[slot] = s; 243 } 244 245 static void __init dmi_save_one_device(int type, const char *name) 246 { 247 struct dmi_device *dev; 248 249 /* No duplicate device */ 250 if (dmi_find_device(type, name, NULL)) 251 return; 252 253 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1); 254 if (!dev) 255 return; 256 257 dev->type = type; 258 strcpy((char *)(dev + 1), name); 259 dev->name = (char *)(dev + 1); 260 dev->device_data = NULL; 261 list_add(&dev->list, &dmi_devices); 262 } 263 264 static void __init dmi_save_devices(const struct dmi_header *dm) 265 { 266 int i, count = (dm->length - sizeof(struct dmi_header)) / 2; 267 268 for (i = 0; i < count; i++) { 269 const char *d = (char *)(dm + 1) + (i * 2); 270 271 /* Skip disabled device */ 272 if ((*d & 0x80) == 0) 273 continue; 274 275 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1))); 276 } 277 } 278 279 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm) 280 { 281 int i, count; 282 struct dmi_device *dev; 283 284 if (dm->length < 0x05) 285 return; 286 287 count = *(u8 *)(dm + 1); 288 for (i = 1; i <= count; i++) { 289 const char *devname = dmi_string(dm, i); 290 291 if (devname == dmi_empty_string) 292 continue; 293 294 dev = dmi_alloc(sizeof(*dev)); 295 if (!dev) 296 break; 297 298 dev->type = DMI_DEV_TYPE_OEM_STRING; 299 dev->name = devname; 300 dev->device_data = NULL; 301 302 list_add(&dev->list, &dmi_devices); 303 } 304 } 305 306 static void __init dmi_save_ipmi_device(const struct dmi_header *dm) 307 { 308 struct dmi_device *dev; 309 void *data; 310 311 data = dmi_alloc(dm->length); 312 if (data == NULL) 313 return; 314 315 memcpy(data, dm, dm->length); 316 317 dev = dmi_alloc(sizeof(*dev)); 318 if (!dev) 319 return; 320 321 dev->type = DMI_DEV_TYPE_IPMI; 322 dev->name = "IPMI controller"; 323 dev->device_data = data; 324 325 list_add_tail(&dev->list, &dmi_devices); 326 } 327 328 static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus, 329 int devfn, const char *name, int type) 330 { 331 struct dmi_dev_onboard *dev; 332 333 /* Ignore invalid values */ 334 if (type == DMI_DEV_TYPE_DEV_SLOT && 335 segment == 0xFFFF && bus == 0xFF && devfn == 0xFF) 336 return; 337 338 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1); 339 if (!dev) 340 return; 341 342 dev->instance = instance; 343 dev->segment = segment; 344 dev->bus = bus; 345 dev->devfn = devfn; 346 347 strcpy((char *)&dev[1], name); 348 dev->dev.type = type; 349 dev->dev.name = (char *)&dev[1]; 350 dev->dev.device_data = dev; 351 352 list_add(&dev->dev.list, &dmi_devices); 353 } 354 355 static void __init dmi_save_extended_devices(const struct dmi_header *dm) 356 { 357 const char *name; 358 const u8 *d = (u8 *)dm; 359 360 if (dm->length < 0x0B) 361 return; 362 363 /* Skip disabled device */ 364 if ((d[0x5] & 0x80) == 0) 365 return; 366 367 name = dmi_string_nosave(dm, d[0x4]); 368 dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name, 369 DMI_DEV_TYPE_DEV_ONBOARD); 370 dmi_save_one_device(d[0x5] & 0x7f, name); 371 } 372 373 static void __init dmi_save_system_slot(const struct dmi_header *dm) 374 { 375 const u8 *d = (u8 *)dm; 376 377 /* Need SMBIOS 2.6+ structure */ 378 if (dm->length < 0x11) 379 return; 380 dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF], 381 d[0x10], dmi_string_nosave(dm, d[0x4]), 382 DMI_DEV_TYPE_DEV_SLOT); 383 } 384 385 static void __init count_mem_devices(const struct dmi_header *dm, void *v) 386 { 387 if (dm->type != DMI_ENTRY_MEM_DEVICE) 388 return; 389 dmi_memdev_nr++; 390 } 391 392 static void __init save_mem_devices(const struct dmi_header *dm, void *v) 393 { 394 const char *d = (const char *)dm; 395 static int nr; 396 u64 bytes; 397 u16 size; 398 399 if (dm->type != DMI_ENTRY_MEM_DEVICE || dm->length < 0x13) 400 return; 401 if (nr >= dmi_memdev_nr) { 402 pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n"); 403 return; 404 } 405 dmi_memdev[nr].handle = get_unaligned(&dm->handle); 406 dmi_memdev[nr].device = dmi_string(dm, d[0x10]); 407 dmi_memdev[nr].bank = dmi_string(dm, d[0x11]); 408 dmi_memdev[nr].type = d[0x12]; 409 410 size = get_unaligned((u16 *)&d[0xC]); 411 if (size == 0) 412 bytes = 0; 413 else if (size == 0xffff) 414 bytes = ~0ull; 415 else if (size & 0x8000) 416 bytes = (u64)(size & 0x7fff) << 10; 417 else if (size != 0x7fff || dm->length < 0x20) 418 bytes = (u64)size << 20; 419 else 420 bytes = (u64)get_unaligned((u32 *)&d[0x1C]) << 20; 421 422 dmi_memdev[nr].size = bytes; 423 nr++; 424 } 425 426 static void __init dmi_memdev_walk(void) 427 { 428 if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) { 429 dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr); 430 if (dmi_memdev) 431 dmi_walk_early(save_mem_devices); 432 } 433 } 434 435 /* 436 * Process a DMI table entry. Right now all we care about are the BIOS 437 * and machine entries. For 2.5 we should pull the smbus controller info 438 * out of here. 439 */ 440 static void __init dmi_decode(const struct dmi_header *dm, void *dummy) 441 { 442 switch (dm->type) { 443 case 0: /* BIOS Information */ 444 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4); 445 dmi_save_ident(dm, DMI_BIOS_VERSION, 5); 446 dmi_save_ident(dm, DMI_BIOS_DATE, 8); 447 break; 448 case 1: /* System Information */ 449 dmi_save_ident(dm, DMI_SYS_VENDOR, 4); 450 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5); 451 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6); 452 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7); 453 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8); 454 dmi_save_ident(dm, DMI_PRODUCT_SKU, 25); 455 dmi_save_ident(dm, DMI_PRODUCT_FAMILY, 26); 456 break; 457 case 2: /* Base Board Information */ 458 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4); 459 dmi_save_ident(dm, DMI_BOARD_NAME, 5); 460 dmi_save_ident(dm, DMI_BOARD_VERSION, 6); 461 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7); 462 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8); 463 break; 464 case 3: /* Chassis Information */ 465 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4); 466 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5); 467 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6); 468 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7); 469 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8); 470 break; 471 case 9: /* System Slots */ 472 dmi_save_system_slot(dm); 473 break; 474 case 10: /* Onboard Devices Information */ 475 dmi_save_devices(dm); 476 break; 477 case 11: /* OEM Strings */ 478 dmi_save_oem_strings_devices(dm); 479 break; 480 case 38: /* IPMI Device Information */ 481 dmi_save_ipmi_device(dm); 482 break; 483 case 41: /* Onboard Devices Extended Information */ 484 dmi_save_extended_devices(dm); 485 } 486 } 487 488 static int __init print_filtered(char *buf, size_t len, const char *info) 489 { 490 int c = 0; 491 const char *p; 492 493 if (!info) 494 return c; 495 496 for (p = info; *p; p++) 497 if (isprint(*p)) 498 c += scnprintf(buf + c, len - c, "%c", *p); 499 else 500 c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff); 501 return c; 502 } 503 504 static void __init dmi_format_ids(char *buf, size_t len) 505 { 506 int c = 0; 507 const char *board; /* Board Name is optional */ 508 509 c += print_filtered(buf + c, len - c, 510 dmi_get_system_info(DMI_SYS_VENDOR)); 511 c += scnprintf(buf + c, len - c, " "); 512 c += print_filtered(buf + c, len - c, 513 dmi_get_system_info(DMI_PRODUCT_NAME)); 514 515 board = dmi_get_system_info(DMI_BOARD_NAME); 516 if (board) { 517 c += scnprintf(buf + c, len - c, "/"); 518 c += print_filtered(buf + c, len - c, board); 519 } 520 c += scnprintf(buf + c, len - c, ", BIOS "); 521 c += print_filtered(buf + c, len - c, 522 dmi_get_system_info(DMI_BIOS_VERSION)); 523 c += scnprintf(buf + c, len - c, " "); 524 c += print_filtered(buf + c, len - c, 525 dmi_get_system_info(DMI_BIOS_DATE)); 526 } 527 528 /* 529 * Check for DMI/SMBIOS headers in the system firmware image. Any 530 * SMBIOS header must start 16 bytes before the DMI header, so take a 531 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset 532 * 0. If the DMI header is present, set dmi_ver accordingly (SMBIOS 533 * takes precedence) and return 0. Otherwise return 1. 534 */ 535 static int __init dmi_present(const u8 *buf) 536 { 537 u32 smbios_ver; 538 539 if (memcmp(buf, "_SM_", 4) == 0 && 540 buf[5] < 32 && dmi_checksum(buf, buf[5])) { 541 smbios_ver = get_unaligned_be16(buf + 6); 542 smbios_entry_point_size = buf[5]; 543 memcpy(smbios_entry_point, buf, smbios_entry_point_size); 544 545 /* Some BIOS report weird SMBIOS version, fix that up */ 546 switch (smbios_ver) { 547 case 0x021F: 548 case 0x0221: 549 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 550 smbios_ver & 0xFF, 3); 551 smbios_ver = 0x0203; 552 break; 553 case 0x0233: 554 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6); 555 smbios_ver = 0x0206; 556 break; 557 } 558 } else { 559 smbios_ver = 0; 560 } 561 562 buf += 16; 563 564 if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) { 565 if (smbios_ver) 566 dmi_ver = smbios_ver; 567 else 568 dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F); 569 dmi_ver <<= 8; 570 dmi_num = get_unaligned_le16(buf + 12); 571 dmi_len = get_unaligned_le16(buf + 6); 572 dmi_base = get_unaligned_le32(buf + 8); 573 574 if (dmi_walk_early(dmi_decode) == 0) { 575 if (smbios_ver) { 576 pr_info("SMBIOS %d.%d present.\n", 577 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF); 578 } else { 579 smbios_entry_point_size = 15; 580 memcpy(smbios_entry_point, buf, 581 smbios_entry_point_size); 582 pr_info("Legacy DMI %d.%d present.\n", 583 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF); 584 } 585 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string)); 586 pr_info("DMI: %s\n", dmi_ids_string); 587 return 0; 588 } 589 } 590 591 return 1; 592 } 593 594 /* 595 * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy 596 * 32-bit entry point, there is no embedded DMI header (_DMI_) in here. 597 */ 598 static int __init dmi_smbios3_present(const u8 *buf) 599 { 600 if (memcmp(buf, "_SM3_", 5) == 0 && 601 buf[6] < 32 && dmi_checksum(buf, buf[6])) { 602 dmi_ver = get_unaligned_be32(buf + 6) & 0xFFFFFF; 603 dmi_num = 0; /* No longer specified */ 604 dmi_len = get_unaligned_le32(buf + 12); 605 dmi_base = get_unaligned_le64(buf + 16); 606 smbios_entry_point_size = buf[6]; 607 memcpy(smbios_entry_point, buf, smbios_entry_point_size); 608 609 if (dmi_walk_early(dmi_decode) == 0) { 610 pr_info("SMBIOS %d.%d.%d present.\n", 611 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF, 612 dmi_ver & 0xFF); 613 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string)); 614 pr_info("DMI: %s\n", dmi_ids_string); 615 return 0; 616 } 617 } 618 return 1; 619 } 620 621 static void __init dmi_scan_machine(void) 622 { 623 char __iomem *p, *q; 624 char buf[32]; 625 626 if (efi_enabled(EFI_CONFIG_TABLES)) { 627 /* 628 * According to the DMTF SMBIOS reference spec v3.0.0, it is 629 * allowed to define both the 64-bit entry point (smbios3) and 630 * the 32-bit entry point (smbios), in which case they should 631 * either both point to the same SMBIOS structure table, or the 632 * table pointed to by the 64-bit entry point should contain a 633 * superset of the table contents pointed to by the 32-bit entry 634 * point (section 5.2) 635 * This implies that the 64-bit entry point should have 636 * precedence if it is defined and supported by the OS. If we 637 * have the 64-bit entry point, but fail to decode it, fall 638 * back to the legacy one (if available) 639 */ 640 if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) { 641 p = dmi_early_remap(efi.smbios3, 32); 642 if (p == NULL) 643 goto error; 644 memcpy_fromio(buf, p, 32); 645 dmi_early_unmap(p, 32); 646 647 if (!dmi_smbios3_present(buf)) { 648 dmi_available = 1; 649 return; 650 } 651 } 652 if (efi.smbios == EFI_INVALID_TABLE_ADDR) 653 goto error; 654 655 /* This is called as a core_initcall() because it isn't 656 * needed during early boot. This also means we can 657 * iounmap the space when we're done with it. 658 */ 659 p = dmi_early_remap(efi.smbios, 32); 660 if (p == NULL) 661 goto error; 662 memcpy_fromio(buf, p, 32); 663 dmi_early_unmap(p, 32); 664 665 if (!dmi_present(buf)) { 666 dmi_available = 1; 667 return; 668 } 669 } else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) { 670 p = dmi_early_remap(SMBIOS_ENTRY_POINT_SCAN_START, 0x10000); 671 if (p == NULL) 672 goto error; 673 674 /* 675 * Same logic as above, look for a 64-bit entry point 676 * first, and if not found, fall back to 32-bit entry point. 677 */ 678 memcpy_fromio(buf, p, 16); 679 for (q = p + 16; q < p + 0x10000; q += 16) { 680 memcpy_fromio(buf + 16, q, 16); 681 if (!dmi_smbios3_present(buf)) { 682 dmi_available = 1; 683 dmi_early_unmap(p, 0x10000); 684 return; 685 } 686 memcpy(buf, buf + 16, 16); 687 } 688 689 /* 690 * Iterate over all possible DMI header addresses q. 691 * Maintain the 32 bytes around q in buf. On the 692 * first iteration, substitute zero for the 693 * out-of-range bytes so there is no chance of falsely 694 * detecting an SMBIOS header. 695 */ 696 memset(buf, 0, 16); 697 for (q = p; q < p + 0x10000; q += 16) { 698 memcpy_fromio(buf + 16, q, 16); 699 if (!dmi_present(buf)) { 700 dmi_available = 1; 701 dmi_early_unmap(p, 0x10000); 702 return; 703 } 704 memcpy(buf, buf + 16, 16); 705 } 706 dmi_early_unmap(p, 0x10000); 707 } 708 error: 709 pr_info("DMI not present or invalid.\n"); 710 } 711 712 static ssize_t raw_table_read(struct file *file, struct kobject *kobj, 713 struct bin_attribute *attr, char *buf, 714 loff_t pos, size_t count) 715 { 716 memcpy(buf, attr->private + pos, count); 717 return count; 718 } 719 720 static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0); 721 static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0); 722 723 static int __init dmi_init(void) 724 { 725 struct kobject *tables_kobj; 726 u8 *dmi_table; 727 int ret = -ENOMEM; 728 729 if (!dmi_available) 730 return 0; 731 732 /* 733 * Set up dmi directory at /sys/firmware/dmi. This entry should stay 734 * even after farther error, as it can be used by other modules like 735 * dmi-sysfs. 736 */ 737 dmi_kobj = kobject_create_and_add("dmi", firmware_kobj); 738 if (!dmi_kobj) 739 goto err; 740 741 tables_kobj = kobject_create_and_add("tables", dmi_kobj); 742 if (!tables_kobj) 743 goto err; 744 745 dmi_table = dmi_remap(dmi_base, dmi_len); 746 if (!dmi_table) 747 goto err_tables; 748 749 bin_attr_smbios_entry_point.size = smbios_entry_point_size; 750 bin_attr_smbios_entry_point.private = smbios_entry_point; 751 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point); 752 if (ret) 753 goto err_unmap; 754 755 bin_attr_DMI.size = dmi_len; 756 bin_attr_DMI.private = dmi_table; 757 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI); 758 if (!ret) 759 return 0; 760 761 sysfs_remove_bin_file(tables_kobj, 762 &bin_attr_smbios_entry_point); 763 err_unmap: 764 dmi_unmap(dmi_table); 765 err_tables: 766 kobject_del(tables_kobj); 767 kobject_put(tables_kobj); 768 err: 769 pr_err("dmi: Firmware registration failed.\n"); 770 771 return ret; 772 } 773 subsys_initcall(dmi_init); 774 775 /** 776 * dmi_setup - scan and setup DMI system information 777 * 778 * Scan the DMI system information. This setups DMI identifiers 779 * (dmi_system_id) for printing it out on task dumps and prepares 780 * DIMM entry information (dmi_memdev_info) from the SMBIOS table 781 * for using this when reporting memory errors. 782 */ 783 void __init dmi_setup(void) 784 { 785 dmi_scan_machine(); 786 if (!dmi_available) 787 return; 788 789 dmi_memdev_walk(); 790 dump_stack_set_arch_desc("%s", dmi_ids_string); 791 } 792 793 /** 794 * dmi_matches - check if dmi_system_id structure matches system DMI data 795 * @dmi: pointer to the dmi_system_id structure to check 796 */ 797 static bool dmi_matches(const struct dmi_system_id *dmi) 798 { 799 int i; 800 801 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) { 802 int s = dmi->matches[i].slot; 803 if (s == DMI_NONE) 804 break; 805 if (s == DMI_OEM_STRING) { 806 /* DMI_OEM_STRING must be exact match */ 807 const struct dmi_device *valid; 808 809 valid = dmi_find_device(DMI_DEV_TYPE_OEM_STRING, 810 dmi->matches[i].substr, NULL); 811 if (valid) 812 continue; 813 } else if (dmi_ident[s]) { 814 if (dmi->matches[i].exact_match) { 815 if (!strcmp(dmi_ident[s], 816 dmi->matches[i].substr)) 817 continue; 818 } else { 819 if (strstr(dmi_ident[s], 820 dmi->matches[i].substr)) 821 continue; 822 } 823 } 824 825 /* No match */ 826 return false; 827 } 828 return true; 829 } 830 831 /** 832 * dmi_is_end_of_table - check for end-of-table marker 833 * @dmi: pointer to the dmi_system_id structure to check 834 */ 835 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi) 836 { 837 return dmi->matches[0].slot == DMI_NONE; 838 } 839 840 /** 841 * dmi_check_system - check system DMI data 842 * @list: array of dmi_system_id structures to match against 843 * All non-null elements of the list must match 844 * their slot's (field index's) data (i.e., each 845 * list string must be a substring of the specified 846 * DMI slot's string data) to be considered a 847 * successful match. 848 * 849 * Walk the blacklist table running matching functions until someone 850 * returns non zero or we hit the end. Callback function is called for 851 * each successful match. Returns the number of matches. 852 * 853 * dmi_setup must be called before this function is called. 854 */ 855 int dmi_check_system(const struct dmi_system_id *list) 856 { 857 int count = 0; 858 const struct dmi_system_id *d; 859 860 for (d = list; !dmi_is_end_of_table(d); d++) 861 if (dmi_matches(d)) { 862 count++; 863 if (d->callback && d->callback(d)) 864 break; 865 } 866 867 return count; 868 } 869 EXPORT_SYMBOL(dmi_check_system); 870 871 /** 872 * dmi_first_match - find dmi_system_id structure matching system DMI data 873 * @list: array of dmi_system_id structures to match against 874 * All non-null elements of the list must match 875 * their slot's (field index's) data (i.e., each 876 * list string must be a substring of the specified 877 * DMI slot's string data) to be considered a 878 * successful match. 879 * 880 * Walk the blacklist table until the first match is found. Return the 881 * pointer to the matching entry or NULL if there's no match. 882 * 883 * dmi_setup must be called before this function is called. 884 */ 885 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list) 886 { 887 const struct dmi_system_id *d; 888 889 for (d = list; !dmi_is_end_of_table(d); d++) 890 if (dmi_matches(d)) 891 return d; 892 893 return NULL; 894 } 895 EXPORT_SYMBOL(dmi_first_match); 896 897 /** 898 * dmi_get_system_info - return DMI data value 899 * @field: data index (see enum dmi_field) 900 * 901 * Returns one DMI data value, can be used to perform 902 * complex DMI data checks. 903 */ 904 const char *dmi_get_system_info(int field) 905 { 906 return dmi_ident[field]; 907 } 908 EXPORT_SYMBOL(dmi_get_system_info); 909 910 /** 911 * dmi_name_in_serial - Check if string is in the DMI product serial information 912 * @str: string to check for 913 */ 914 int dmi_name_in_serial(const char *str) 915 { 916 int f = DMI_PRODUCT_SERIAL; 917 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 918 return 1; 919 return 0; 920 } 921 922 /** 923 * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name 924 * @str: Case sensitive Name 925 */ 926 int dmi_name_in_vendors(const char *str) 927 { 928 static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE }; 929 int i; 930 for (i = 0; fields[i] != DMI_NONE; i++) { 931 int f = fields[i]; 932 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 933 return 1; 934 } 935 return 0; 936 } 937 EXPORT_SYMBOL(dmi_name_in_vendors); 938 939 /** 940 * dmi_find_device - find onboard device by type/name 941 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types 942 * @name: device name string or %NULL to match all 943 * @from: previous device found in search, or %NULL for new search. 944 * 945 * Iterates through the list of known onboard devices. If a device is 946 * found with a matching @type and @name, a pointer to its device 947 * structure is returned. Otherwise, %NULL is returned. 948 * A new search is initiated by passing %NULL as the @from argument. 949 * If @from is not %NULL, searches continue from next device. 950 */ 951 const struct dmi_device *dmi_find_device(int type, const char *name, 952 const struct dmi_device *from) 953 { 954 const struct list_head *head = from ? &from->list : &dmi_devices; 955 struct list_head *d; 956 957 for (d = head->next; d != &dmi_devices; d = d->next) { 958 const struct dmi_device *dev = 959 list_entry(d, struct dmi_device, list); 960 961 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) && 962 ((name == NULL) || (strcmp(dev->name, name) == 0))) 963 return dev; 964 } 965 966 return NULL; 967 } 968 EXPORT_SYMBOL(dmi_find_device); 969 970 /** 971 * dmi_get_date - parse a DMI date 972 * @field: data index (see enum dmi_field) 973 * @yearp: optional out parameter for the year 974 * @monthp: optional out parameter for the month 975 * @dayp: optional out parameter for the day 976 * 977 * The date field is assumed to be in the form resembling 978 * [mm[/dd]]/yy[yy] and the result is stored in the out 979 * parameters any or all of which can be omitted. 980 * 981 * If the field doesn't exist, all out parameters are set to zero 982 * and false is returned. Otherwise, true is returned with any 983 * invalid part of date set to zero. 984 * 985 * On return, year, month and day are guaranteed to be in the 986 * range of [0,9999], [0,12] and [0,31] respectively. 987 */ 988 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp) 989 { 990 int year = 0, month = 0, day = 0; 991 bool exists; 992 const char *s, *y; 993 char *e; 994 995 s = dmi_get_system_info(field); 996 exists = s; 997 if (!exists) 998 goto out; 999 1000 /* 1001 * Determine year first. We assume the date string resembles 1002 * mm/dd/yy[yy] but the original code extracted only the year 1003 * from the end. Keep the behavior in the spirit of no 1004 * surprises. 1005 */ 1006 y = strrchr(s, '/'); 1007 if (!y) 1008 goto out; 1009 1010 y++; 1011 year = simple_strtoul(y, &e, 10); 1012 if (y != e && year < 100) { /* 2-digit year */ 1013 year += 1900; 1014 if (year < 1996) /* no dates < spec 1.0 */ 1015 year += 100; 1016 } 1017 if (year > 9999) /* year should fit in %04d */ 1018 year = 0; 1019 1020 /* parse the mm and dd */ 1021 month = simple_strtoul(s, &e, 10); 1022 if (s == e || *e != '/' || !month || month > 12) { 1023 month = 0; 1024 goto out; 1025 } 1026 1027 s = e + 1; 1028 day = simple_strtoul(s, &e, 10); 1029 if (s == y || s == e || *e != '/' || day > 31) 1030 day = 0; 1031 out: 1032 if (yearp) 1033 *yearp = year; 1034 if (monthp) 1035 *monthp = month; 1036 if (dayp) 1037 *dayp = day; 1038 return exists; 1039 } 1040 EXPORT_SYMBOL(dmi_get_date); 1041 1042 /** 1043 * dmi_get_bios_year - get a year out of DMI_BIOS_DATE field 1044 * 1045 * Returns year on success, -ENXIO if DMI is not selected, 1046 * or a different negative error code if DMI field is not present 1047 * or not parseable. 1048 */ 1049 int dmi_get_bios_year(void) 1050 { 1051 bool exists; 1052 int year; 1053 1054 exists = dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL); 1055 if (!exists) 1056 return -ENODATA; 1057 1058 return year ? year : -ERANGE; 1059 } 1060 EXPORT_SYMBOL(dmi_get_bios_year); 1061 1062 /** 1063 * dmi_walk - Walk the DMI table and get called back for every record 1064 * @decode: Callback function 1065 * @private_data: Private data to be passed to the callback function 1066 * 1067 * Returns 0 on success, -ENXIO if DMI is not selected or not present, 1068 * or a different negative error code if DMI walking fails. 1069 */ 1070 int dmi_walk(void (*decode)(const struct dmi_header *, void *), 1071 void *private_data) 1072 { 1073 u8 *buf; 1074 1075 if (!dmi_available) 1076 return -ENXIO; 1077 1078 buf = dmi_remap(dmi_base, dmi_len); 1079 if (buf == NULL) 1080 return -ENOMEM; 1081 1082 dmi_decode_table(buf, decode, private_data); 1083 1084 dmi_unmap(buf); 1085 return 0; 1086 } 1087 EXPORT_SYMBOL_GPL(dmi_walk); 1088 1089 /** 1090 * dmi_match - compare a string to the dmi field (if exists) 1091 * @f: DMI field identifier 1092 * @str: string to compare the DMI field to 1093 * 1094 * Returns true if the requested field equals to the str (including NULL). 1095 */ 1096 bool dmi_match(enum dmi_field f, const char *str) 1097 { 1098 const char *info = dmi_get_system_info(f); 1099 1100 if (info == NULL || str == NULL) 1101 return info == str; 1102 1103 return !strcmp(info, str); 1104 } 1105 EXPORT_SYMBOL_GPL(dmi_match); 1106 1107 void dmi_memdev_name(u16 handle, const char **bank, const char **device) 1108 { 1109 int n; 1110 1111 if (dmi_memdev == NULL) 1112 return; 1113 1114 for (n = 0; n < dmi_memdev_nr; n++) { 1115 if (handle == dmi_memdev[n].handle) { 1116 *bank = dmi_memdev[n].bank; 1117 *device = dmi_memdev[n].device; 1118 break; 1119 } 1120 } 1121 } 1122 EXPORT_SYMBOL_GPL(dmi_memdev_name); 1123 1124 u64 dmi_memdev_size(u16 handle) 1125 { 1126 int n; 1127 1128 if (dmi_memdev) { 1129 for (n = 0; n < dmi_memdev_nr; n++) { 1130 if (handle == dmi_memdev[n].handle) 1131 return dmi_memdev[n].size; 1132 } 1133 } 1134 return ~0ull; 1135 } 1136 EXPORT_SYMBOL_GPL(dmi_memdev_size); 1137 1138 /** 1139 * dmi_memdev_type - get the memory type 1140 * @handle: DMI structure handle 1141 * 1142 * Return the DMI memory type of the module in the slot associated with the 1143 * given DMI handle, or 0x0 if no such DMI handle exists. 1144 */ 1145 u8 dmi_memdev_type(u16 handle) 1146 { 1147 int n; 1148 1149 if (dmi_memdev) { 1150 for (n = 0; n < dmi_memdev_nr; n++) { 1151 if (handle == dmi_memdev[n].handle) 1152 return dmi_memdev[n].type; 1153 } 1154 } 1155 return 0x0; /* Not a valid value */ 1156 } 1157 EXPORT_SYMBOL_GPL(dmi_memdev_type); 1158 1159 /** 1160 * dmi_memdev_handle - get the DMI handle of a memory slot 1161 * @slot: slot number 1162 * 1163 * Return the DMI handle associated with a given memory slot, or %0xFFFF 1164 * if there is no such slot. 1165 */ 1166 u16 dmi_memdev_handle(int slot) 1167 { 1168 if (dmi_memdev && slot >= 0 && slot < dmi_memdev_nr) 1169 return dmi_memdev[slot].handle; 1170 1171 return 0xffff; /* Not a valid value */ 1172 } 1173 EXPORT_SYMBOL_GPL(dmi_memdev_handle); 1174