xref: /linux/drivers/firmware/dmi_scan.c (revision 273b281fa22c293963ee3e6eec418f5dda2dbc83)
1 #include <linux/types.h>
2 #include <linux/string.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/dmi.h>
6 #include <linux/efi.h>
7 #include <linux/bootmem.h>
8 #include <linux/slab.h>
9 #include <asm/dmi.h>
10 
11 /*
12  * DMI stands for "Desktop Management Interface".  It is part
13  * of and an antecedent to, SMBIOS, which stands for System
14  * Management BIOS.  See further: http://www.dmtf.org/standards
15  */
16 static char dmi_empty_string[] = "        ";
17 
18 /*
19  * Catch too early calls to dmi_check_system():
20  */
21 static int dmi_initialized;
22 
23 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
24 {
25 	const u8 *bp = ((u8 *) dm) + dm->length;
26 
27 	if (s) {
28 		s--;
29 		while (s > 0 && *bp) {
30 			bp += strlen(bp) + 1;
31 			s--;
32 		}
33 
34 		if (*bp != 0) {
35 			size_t len = strlen(bp)+1;
36 			size_t cmp_len = len > 8 ? 8 : len;
37 
38 			if (!memcmp(bp, dmi_empty_string, cmp_len))
39 				return dmi_empty_string;
40 			return bp;
41 		}
42 	}
43 
44 	return "";
45 }
46 
47 static char * __init dmi_string(const struct dmi_header *dm, u8 s)
48 {
49 	const char *bp = dmi_string_nosave(dm, s);
50 	char *str;
51 	size_t len;
52 
53 	if (bp == dmi_empty_string)
54 		return dmi_empty_string;
55 
56 	len = strlen(bp) + 1;
57 	str = dmi_alloc(len);
58 	if (str != NULL)
59 		strcpy(str, bp);
60 	else
61 		printk(KERN_ERR "dmi_string: cannot allocate %Zu bytes.\n", len);
62 
63 	return str;
64 }
65 
66 /*
67  *	We have to be cautious here. We have seen BIOSes with DMI pointers
68  *	pointing to completely the wrong place for example
69  */
70 static void dmi_table(u8 *buf, int len, int num,
71 		      void (*decode)(const struct dmi_header *, void *),
72 		      void *private_data)
73 {
74 	u8 *data = buf;
75 	int i = 0;
76 
77 	/*
78 	 *	Stop when we see all the items the table claimed to have
79 	 *	OR we run off the end of the table (also happens)
80 	 */
81 	while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) {
82 		const struct dmi_header *dm = (const struct dmi_header *)data;
83 
84 		/*
85 		 *  We want to know the total length (formatted area and
86 		 *  strings) before decoding to make sure we won't run off the
87 		 *  table in dmi_decode or dmi_string
88 		 */
89 		data += dm->length;
90 		while ((data - buf < len - 1) && (data[0] || data[1]))
91 			data++;
92 		if (data - buf < len - 1)
93 			decode(dm, private_data);
94 		data += 2;
95 		i++;
96 	}
97 }
98 
99 static u32 dmi_base;
100 static u16 dmi_len;
101 static u16 dmi_num;
102 
103 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
104 		void *))
105 {
106 	u8 *buf;
107 
108 	buf = dmi_ioremap(dmi_base, dmi_len);
109 	if (buf == NULL)
110 		return -1;
111 
112 	dmi_table(buf, dmi_len, dmi_num, decode, NULL);
113 
114 	dmi_iounmap(buf, dmi_len);
115 	return 0;
116 }
117 
118 static int __init dmi_checksum(const u8 *buf)
119 {
120 	u8 sum = 0;
121 	int a;
122 
123 	for (a = 0; a < 15; a++)
124 		sum += buf[a];
125 
126 	return sum == 0;
127 }
128 
129 static char *dmi_ident[DMI_STRING_MAX];
130 static LIST_HEAD(dmi_devices);
131 int dmi_available;
132 
133 /*
134  *	Save a DMI string
135  */
136 static void __init dmi_save_ident(const struct dmi_header *dm, int slot, int string)
137 {
138 	const char *d = (const char*) dm;
139 	char *p;
140 
141 	if (dmi_ident[slot])
142 		return;
143 
144 	p = dmi_string(dm, d[string]);
145 	if (p == NULL)
146 		return;
147 
148 	dmi_ident[slot] = p;
149 }
150 
151 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, int index)
152 {
153 	const u8 *d = (u8*) dm + index;
154 	char *s;
155 	int is_ff = 1, is_00 = 1, i;
156 
157 	if (dmi_ident[slot])
158 		return;
159 
160 	for (i = 0; i < 16 && (is_ff || is_00); i++) {
161 		if(d[i] != 0x00) is_ff = 0;
162 		if(d[i] != 0xFF) is_00 = 0;
163 	}
164 
165 	if (is_ff || is_00)
166 		return;
167 
168 	s = dmi_alloc(16*2+4+1);
169 	if (!s)
170 		return;
171 
172 	sprintf(s,
173 		"%02X%02X%02X%02X-%02X%02X-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X",
174 		d[0], d[1], d[2], d[3], d[4], d[5], d[6], d[7],
175 		d[8], d[9], d[10], d[11], d[12], d[13], d[14], d[15]);
176 
177         dmi_ident[slot] = s;
178 }
179 
180 static void __init dmi_save_type(const struct dmi_header *dm, int slot, int index)
181 {
182 	const u8 *d = (u8*) dm + index;
183 	char *s;
184 
185 	if (dmi_ident[slot])
186 		return;
187 
188 	s = dmi_alloc(4);
189 	if (!s)
190 		return;
191 
192 	sprintf(s, "%u", *d & 0x7F);
193 	dmi_ident[slot] = s;
194 }
195 
196 static void __init dmi_save_one_device(int type, const char *name)
197 {
198 	struct dmi_device *dev;
199 
200 	/* No duplicate device */
201 	if (dmi_find_device(type, name, NULL))
202 		return;
203 
204 	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
205 	if (!dev) {
206 		printk(KERN_ERR "dmi_save_one_device: out of memory.\n");
207 		return;
208 	}
209 
210 	dev->type = type;
211 	strcpy((char *)(dev + 1), name);
212 	dev->name = (char *)(dev + 1);
213 	dev->device_data = NULL;
214 	list_add(&dev->list, &dmi_devices);
215 }
216 
217 static void __init dmi_save_devices(const struct dmi_header *dm)
218 {
219 	int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
220 
221 	for (i = 0; i < count; i++) {
222 		const char *d = (char *)(dm + 1) + (i * 2);
223 
224 		/* Skip disabled device */
225 		if ((*d & 0x80) == 0)
226 			continue;
227 
228 		dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
229 	}
230 }
231 
232 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
233 {
234 	int i, count = *(u8 *)(dm + 1);
235 	struct dmi_device *dev;
236 
237 	for (i = 1; i <= count; i++) {
238 		char *devname = dmi_string(dm, i);
239 
240 		if (devname == dmi_empty_string)
241 			continue;
242 
243 		dev = dmi_alloc(sizeof(*dev));
244 		if (!dev) {
245 			printk(KERN_ERR
246 			   "dmi_save_oem_strings_devices: out of memory.\n");
247 			break;
248 		}
249 
250 		dev->type = DMI_DEV_TYPE_OEM_STRING;
251 		dev->name = devname;
252 		dev->device_data = NULL;
253 
254 		list_add(&dev->list, &dmi_devices);
255 	}
256 }
257 
258 static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
259 {
260 	struct dmi_device *dev;
261 	void * data;
262 
263 	data = dmi_alloc(dm->length);
264 	if (data == NULL) {
265 		printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
266 		return;
267 	}
268 
269 	memcpy(data, dm, dm->length);
270 
271 	dev = dmi_alloc(sizeof(*dev));
272 	if (!dev) {
273 		printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
274 		return;
275 	}
276 
277 	dev->type = DMI_DEV_TYPE_IPMI;
278 	dev->name = "IPMI controller";
279 	dev->device_data = data;
280 
281 	list_add_tail(&dev->list, &dmi_devices);
282 }
283 
284 static void __init dmi_save_extended_devices(const struct dmi_header *dm)
285 {
286 	const u8 *d = (u8*) dm + 5;
287 
288 	/* Skip disabled device */
289 	if ((*d & 0x80) == 0)
290 		return;
291 
292 	dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1)));
293 }
294 
295 /*
296  *	Process a DMI table entry. Right now all we care about are the BIOS
297  *	and machine entries. For 2.5 we should pull the smbus controller info
298  *	out of here.
299  */
300 static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
301 {
302 	switch(dm->type) {
303 	case 0:		/* BIOS Information */
304 		dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
305 		dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
306 		dmi_save_ident(dm, DMI_BIOS_DATE, 8);
307 		break;
308 	case 1:		/* System Information */
309 		dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
310 		dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
311 		dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
312 		dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
313 		dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
314 		break;
315 	case 2:		/* Base Board Information */
316 		dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
317 		dmi_save_ident(dm, DMI_BOARD_NAME, 5);
318 		dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
319 		dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
320 		dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
321 		break;
322 	case 3:		/* Chassis Information */
323 		dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
324 		dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
325 		dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
326 		dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
327 		dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
328 		break;
329 	case 10:	/* Onboard Devices Information */
330 		dmi_save_devices(dm);
331 		break;
332 	case 11:	/* OEM Strings */
333 		dmi_save_oem_strings_devices(dm);
334 		break;
335 	case 38:	/* IPMI Device Information */
336 		dmi_save_ipmi_device(dm);
337 		break;
338 	case 41:	/* Onboard Devices Extended Information */
339 		dmi_save_extended_devices(dm);
340 	}
341 }
342 
343 static int __init dmi_present(const char __iomem *p)
344 {
345 	u8 buf[15];
346 
347 	memcpy_fromio(buf, p, 15);
348 	if ((memcmp(buf, "_DMI_", 5) == 0) && dmi_checksum(buf)) {
349 		dmi_num = (buf[13] << 8) | buf[12];
350 		dmi_len = (buf[7] << 8) | buf[6];
351 		dmi_base = (buf[11] << 24) | (buf[10] << 16) |
352 			(buf[9] << 8) | buf[8];
353 
354 		/*
355 		 * DMI version 0.0 means that the real version is taken from
356 		 * the SMBIOS version, which we don't know at this point.
357 		 */
358 		if (buf[14] != 0)
359 			printk(KERN_INFO "DMI %d.%d present.\n",
360 			       buf[14] >> 4, buf[14] & 0xF);
361 		else
362 			printk(KERN_INFO "DMI present.\n");
363 		if (dmi_walk_early(dmi_decode) == 0)
364 			return 0;
365 	}
366 	return 1;
367 }
368 
369 void __init dmi_scan_machine(void)
370 {
371 	char __iomem *p, *q;
372 	int rc;
373 
374 	if (efi_enabled) {
375 		if (efi.smbios == EFI_INVALID_TABLE_ADDR)
376 			goto error;
377 
378 		/* This is called as a core_initcall() because it isn't
379 		 * needed during early boot.  This also means we can
380 		 * iounmap the space when we're done with it.
381 		 */
382 		p = dmi_ioremap(efi.smbios, 32);
383 		if (p == NULL)
384 			goto error;
385 
386 		rc = dmi_present(p + 0x10); /* offset of _DMI_ string */
387 		dmi_iounmap(p, 32);
388 		if (!rc) {
389 			dmi_available = 1;
390 			goto out;
391 		}
392 	}
393 	else {
394 		/*
395 		 * no iounmap() for that ioremap(); it would be a no-op, but
396 		 * it's so early in setup that sucker gets confused into doing
397 		 * what it shouldn't if we actually call it.
398 		 */
399 		p = dmi_ioremap(0xF0000, 0x10000);
400 		if (p == NULL)
401 			goto error;
402 
403 		for (q = p; q < p + 0x10000; q += 16) {
404 			rc = dmi_present(q);
405 			if (!rc) {
406 				dmi_available = 1;
407 				dmi_iounmap(p, 0x10000);
408 				goto out;
409 			}
410 		}
411 		dmi_iounmap(p, 0x10000);
412 	}
413  error:
414 	printk(KERN_INFO "DMI not present or invalid.\n");
415  out:
416 	dmi_initialized = 1;
417 }
418 
419 /**
420  *	dmi_matches - check if dmi_system_id structure matches system DMI data
421  *	@dmi: pointer to the dmi_system_id structure to check
422  */
423 static bool dmi_matches(const struct dmi_system_id *dmi)
424 {
425 	int i;
426 
427 	WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n");
428 
429 	for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
430 		int s = dmi->matches[i].slot;
431 		if (s == DMI_NONE)
432 			break;
433 		if (dmi_ident[s]
434 		    && strstr(dmi_ident[s], dmi->matches[i].substr))
435 			continue;
436 		/* No match */
437 		return false;
438 	}
439 	return true;
440 }
441 
442 /**
443  *	dmi_is_end_of_table - check for end-of-table marker
444  *	@dmi: pointer to the dmi_system_id structure to check
445  */
446 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
447 {
448 	return dmi->matches[0].slot == DMI_NONE;
449 }
450 
451 /**
452  *	dmi_check_system - check system DMI data
453  *	@list: array of dmi_system_id structures to match against
454  *		All non-null elements of the list must match
455  *		their slot's (field index's) data (i.e., each
456  *		list string must be a substring of the specified
457  *		DMI slot's string data) to be considered a
458  *		successful match.
459  *
460  *	Walk the blacklist table running matching functions until someone
461  *	returns non zero or we hit the end. Callback function is called for
462  *	each successful match. Returns the number of matches.
463  */
464 int dmi_check_system(const struct dmi_system_id *list)
465 {
466 	int count = 0;
467 	const struct dmi_system_id *d;
468 
469 	for (d = list; !dmi_is_end_of_table(d); d++)
470 		if (dmi_matches(d)) {
471 			count++;
472 			if (d->callback && d->callback(d))
473 				break;
474 		}
475 
476 	return count;
477 }
478 EXPORT_SYMBOL(dmi_check_system);
479 
480 /**
481  *	dmi_first_match - find dmi_system_id structure matching system DMI data
482  *	@list: array of dmi_system_id structures to match against
483  *		All non-null elements of the list must match
484  *		their slot's (field index's) data (i.e., each
485  *		list string must be a substring of the specified
486  *		DMI slot's string data) to be considered a
487  *		successful match.
488  *
489  *	Walk the blacklist table until the first match is found.  Return the
490  *	pointer to the matching entry or NULL if there's no match.
491  */
492 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
493 {
494 	const struct dmi_system_id *d;
495 
496 	for (d = list; !dmi_is_end_of_table(d); d++)
497 		if (dmi_matches(d))
498 			return d;
499 
500 	return NULL;
501 }
502 EXPORT_SYMBOL(dmi_first_match);
503 
504 /**
505  *	dmi_get_system_info - return DMI data value
506  *	@field: data index (see enum dmi_field)
507  *
508  *	Returns one DMI data value, can be used to perform
509  *	complex DMI data checks.
510  */
511 const char *dmi_get_system_info(int field)
512 {
513 	return dmi_ident[field];
514 }
515 EXPORT_SYMBOL(dmi_get_system_info);
516 
517 /**
518  * dmi_name_in_serial - Check if string is in the DMI product serial information
519  * @str: string to check for
520  */
521 int dmi_name_in_serial(const char *str)
522 {
523 	int f = DMI_PRODUCT_SERIAL;
524 	if (dmi_ident[f] && strstr(dmi_ident[f], str))
525 		return 1;
526 	return 0;
527 }
528 
529 /**
530  *	dmi_name_in_vendors - Check if string is anywhere in the DMI vendor information.
531  *	@str: 	Case sensitive Name
532  */
533 int dmi_name_in_vendors(const char *str)
534 {
535 	static int fields[] = { DMI_BIOS_VENDOR, DMI_BIOS_VERSION, DMI_SYS_VENDOR,
536 				DMI_PRODUCT_NAME, DMI_PRODUCT_VERSION, DMI_BOARD_VENDOR,
537 				DMI_BOARD_NAME, DMI_BOARD_VERSION, DMI_NONE };
538 	int i;
539 	for (i = 0; fields[i] != DMI_NONE; i++) {
540 		int f = fields[i];
541 		if (dmi_ident[f] && strstr(dmi_ident[f], str))
542 			return 1;
543 	}
544 	return 0;
545 }
546 EXPORT_SYMBOL(dmi_name_in_vendors);
547 
548 /**
549  *	dmi_find_device - find onboard device by type/name
550  *	@type: device type or %DMI_DEV_TYPE_ANY to match all device types
551  *	@name: device name string or %NULL to match all
552  *	@from: previous device found in search, or %NULL for new search.
553  *
554  *	Iterates through the list of known onboard devices. If a device is
555  *	found with a matching @vendor and @device, a pointer to its device
556  *	structure is returned.  Otherwise, %NULL is returned.
557  *	A new search is initiated by passing %NULL as the @from argument.
558  *	If @from is not %NULL, searches continue from next device.
559  */
560 const struct dmi_device * dmi_find_device(int type, const char *name,
561 				    const struct dmi_device *from)
562 {
563 	const struct list_head *head = from ? &from->list : &dmi_devices;
564 	struct list_head *d;
565 
566 	for(d = head->next; d != &dmi_devices; d = d->next) {
567 		const struct dmi_device *dev =
568 			list_entry(d, struct dmi_device, list);
569 
570 		if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
571 		    ((name == NULL) || (strcmp(dev->name, name) == 0)))
572 			return dev;
573 	}
574 
575 	return NULL;
576 }
577 EXPORT_SYMBOL(dmi_find_device);
578 
579 /**
580  *	dmi_get_date - parse a DMI date
581  *	@field:	data index (see enum dmi_field)
582  *	@yearp: optional out parameter for the year
583  *	@monthp: optional out parameter for the month
584  *	@dayp: optional out parameter for the day
585  *
586  *	The date field is assumed to be in the form resembling
587  *	[mm[/dd]]/yy[yy] and the result is stored in the out
588  *	parameters any or all of which can be omitted.
589  *
590  *	If the field doesn't exist, all out parameters are set to zero
591  *	and false is returned.  Otherwise, true is returned with any
592  *	invalid part of date set to zero.
593  *
594  *	On return, year, month and day are guaranteed to be in the
595  *	range of [0,9999], [0,12] and [0,31] respectively.
596  */
597 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
598 {
599 	int year = 0, month = 0, day = 0;
600 	bool exists;
601 	const char *s, *y;
602 	char *e;
603 
604 	s = dmi_get_system_info(field);
605 	exists = s;
606 	if (!exists)
607 		goto out;
608 
609 	/*
610 	 * Determine year first.  We assume the date string resembles
611 	 * mm/dd/yy[yy] but the original code extracted only the year
612 	 * from the end.  Keep the behavior in the spirit of no
613 	 * surprises.
614 	 */
615 	y = strrchr(s, '/');
616 	if (!y)
617 		goto out;
618 
619 	y++;
620 	year = simple_strtoul(y, &e, 10);
621 	if (y != e && year < 100) {	/* 2-digit year */
622 		year += 1900;
623 		if (year < 1996)	/* no dates < spec 1.0 */
624 			year += 100;
625 	}
626 	if (year > 9999)		/* year should fit in %04d */
627 		year = 0;
628 
629 	/* parse the mm and dd */
630 	month = simple_strtoul(s, &e, 10);
631 	if (s == e || *e != '/' || !month || month > 12) {
632 		month = 0;
633 		goto out;
634 	}
635 
636 	s = e + 1;
637 	day = simple_strtoul(s, &e, 10);
638 	if (s == y || s == e || *e != '/' || day > 31)
639 		day = 0;
640 out:
641 	if (yearp)
642 		*yearp = year;
643 	if (monthp)
644 		*monthp = month;
645 	if (dayp)
646 		*dayp = day;
647 	return exists;
648 }
649 EXPORT_SYMBOL(dmi_get_date);
650 
651 /**
652  *	dmi_walk - Walk the DMI table and get called back for every record
653  *	@decode: Callback function
654  *	@private_data: Private data to be passed to the callback function
655  *
656  *	Returns -1 when the DMI table can't be reached, 0 on success.
657  */
658 int dmi_walk(void (*decode)(const struct dmi_header *, void *),
659 	     void *private_data)
660 {
661 	u8 *buf;
662 
663 	if (!dmi_available)
664 		return -1;
665 
666 	buf = ioremap(dmi_base, dmi_len);
667 	if (buf == NULL)
668 		return -1;
669 
670 	dmi_table(buf, dmi_len, dmi_num, decode, private_data);
671 
672 	iounmap(buf);
673 	return 0;
674 }
675 EXPORT_SYMBOL_GPL(dmi_walk);
676 
677 /**
678  * dmi_match - compare a string to the dmi field (if exists)
679  * @f: DMI field identifier
680  * @str: string to compare the DMI field to
681  *
682  * Returns true if the requested field equals to the str (including NULL).
683  */
684 bool dmi_match(enum dmi_field f, const char *str)
685 {
686 	const char *info = dmi_get_system_info(f);
687 
688 	if (info == NULL || str == NULL)
689 		return info == str;
690 
691 	return !strcmp(info, str);
692 }
693 EXPORT_SYMBOL_GPL(dmi_match);
694