1 #include <linux/types.h> 2 #include <linux/string.h> 3 #include <linux/init.h> 4 #include <linux/module.h> 5 #include <linux/dmi.h> 6 #include <linux/efi.h> 7 #include <linux/bootmem.h> 8 #include <linux/slab.h> 9 #include <asm/dmi.h> 10 11 static char * __init dmi_string(struct dmi_header *dm, u8 s) 12 { 13 u8 *bp = ((u8 *) dm) + dm->length; 14 char *str = ""; 15 16 if (s) { 17 s--; 18 while (s > 0 && *bp) { 19 bp += strlen(bp) + 1; 20 s--; 21 } 22 23 if (*bp != 0) { 24 str = dmi_alloc(strlen(bp) + 1); 25 if (str != NULL) 26 strcpy(str, bp); 27 else 28 printk(KERN_ERR "dmi_string: out of memory.\n"); 29 } 30 } 31 32 return str; 33 } 34 35 /* 36 * We have to be cautious here. We have seen BIOSes with DMI pointers 37 * pointing to completely the wrong place for example 38 */ 39 static int __init dmi_table(u32 base, int len, int num, 40 void (*decode)(struct dmi_header *)) 41 { 42 u8 *buf, *data; 43 int i = 0; 44 45 buf = dmi_ioremap(base, len); 46 if (buf == NULL) 47 return -1; 48 49 data = buf; 50 51 /* 52 * Stop when we see all the items the table claimed to have 53 * OR we run off the end of the table (also happens) 54 */ 55 while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) { 56 struct dmi_header *dm = (struct dmi_header *)data; 57 /* 58 * We want to know the total length (formated area and strings) 59 * before decoding to make sure we won't run off the table in 60 * dmi_decode or dmi_string 61 */ 62 data += dm->length; 63 while ((data - buf < len - 1) && (data[0] || data[1])) 64 data++; 65 if (data - buf < len - 1) 66 decode(dm); 67 data += 2; 68 i++; 69 } 70 dmi_iounmap(buf, len); 71 return 0; 72 } 73 74 static int __init dmi_checksum(u8 *buf) 75 { 76 u8 sum = 0; 77 int a; 78 79 for (a = 0; a < 15; a++) 80 sum += buf[a]; 81 82 return sum == 0; 83 } 84 85 static char *dmi_ident[DMI_STRING_MAX]; 86 static LIST_HEAD(dmi_devices); 87 88 /* 89 * Save a DMI string 90 */ 91 static void __init dmi_save_ident(struct dmi_header *dm, int slot, int string) 92 { 93 char *p, *d = (char*) dm; 94 95 if (dmi_ident[slot]) 96 return; 97 98 p = dmi_string(dm, d[string]); 99 if (p == NULL) 100 return; 101 102 dmi_ident[slot] = p; 103 } 104 105 static void __init dmi_save_devices(struct dmi_header *dm) 106 { 107 int i, count = (dm->length - sizeof(struct dmi_header)) / 2; 108 struct dmi_device *dev; 109 110 for (i = 0; i < count; i++) { 111 char *d = (char *)(dm + 1) + (i * 2); 112 113 /* Skip disabled device */ 114 if ((*d & 0x80) == 0) 115 continue; 116 117 dev = dmi_alloc(sizeof(*dev)); 118 if (!dev) { 119 printk(KERN_ERR "dmi_save_devices: out of memory.\n"); 120 break; 121 } 122 123 dev->type = *d++ & 0x7f; 124 dev->name = dmi_string(dm, *d); 125 dev->device_data = NULL; 126 127 list_add(&dev->list, &dmi_devices); 128 } 129 } 130 131 static void __init dmi_save_ipmi_device(struct dmi_header *dm) 132 { 133 struct dmi_device *dev; 134 void * data; 135 136 data = dmi_alloc(dm->length); 137 if (data == NULL) { 138 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n"); 139 return; 140 } 141 142 memcpy(data, dm, dm->length); 143 144 dev = dmi_alloc(sizeof(*dev)); 145 if (!dev) { 146 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n"); 147 return; 148 } 149 150 dev->type = DMI_DEV_TYPE_IPMI; 151 dev->name = "IPMI controller"; 152 dev->device_data = data; 153 154 list_add(&dev->list, &dmi_devices); 155 } 156 157 /* 158 * Process a DMI table entry. Right now all we care about are the BIOS 159 * and machine entries. For 2.5 we should pull the smbus controller info 160 * out of here. 161 */ 162 static void __init dmi_decode(struct dmi_header *dm) 163 { 164 switch(dm->type) { 165 case 0: /* BIOS Information */ 166 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4); 167 dmi_save_ident(dm, DMI_BIOS_VERSION, 5); 168 dmi_save_ident(dm, DMI_BIOS_DATE, 8); 169 break; 170 case 1: /* System Information */ 171 dmi_save_ident(dm, DMI_SYS_VENDOR, 4); 172 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5); 173 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6); 174 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7); 175 break; 176 case 2: /* Base Board Information */ 177 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4); 178 dmi_save_ident(dm, DMI_BOARD_NAME, 5); 179 dmi_save_ident(dm, DMI_BOARD_VERSION, 6); 180 break; 181 case 10: /* Onboard Devices Information */ 182 dmi_save_devices(dm); 183 break; 184 case 38: /* IPMI Device Information */ 185 dmi_save_ipmi_device(dm); 186 } 187 } 188 189 static int __init dmi_present(char __iomem *p) 190 { 191 u8 buf[15]; 192 memcpy_fromio(buf, p, 15); 193 if ((memcmp(buf, "_DMI_", 5) == 0) && dmi_checksum(buf)) { 194 u16 num = (buf[13] << 8) | buf[12]; 195 u16 len = (buf[7] << 8) | buf[6]; 196 u32 base = (buf[11] << 24) | (buf[10] << 16) | 197 (buf[9] << 8) | buf[8]; 198 199 /* 200 * DMI version 0.0 means that the real version is taken from 201 * the SMBIOS version, which we don't know at this point. 202 */ 203 if (buf[14] != 0) 204 printk(KERN_INFO "DMI %d.%d present.\n", 205 buf[14] >> 4, buf[14] & 0xF); 206 else 207 printk(KERN_INFO "DMI present.\n"); 208 if (dmi_table(base,len, num, dmi_decode) == 0) 209 return 0; 210 } 211 return 1; 212 } 213 214 void __init dmi_scan_machine(void) 215 { 216 char __iomem *p, *q; 217 int rc; 218 219 if (efi_enabled) { 220 if (efi.smbios == EFI_INVALID_TABLE_ADDR) 221 goto out; 222 223 /* This is called as a core_initcall() because it isn't 224 * needed during early boot. This also means we can 225 * iounmap the space when we're done with it. 226 */ 227 p = dmi_ioremap(efi.smbios, 32); 228 if (p == NULL) 229 goto out; 230 231 rc = dmi_present(p + 0x10); /* offset of _DMI_ string */ 232 dmi_iounmap(p, 32); 233 if (!rc) 234 return; 235 } 236 else { 237 /* 238 * no iounmap() for that ioremap(); it would be a no-op, but 239 * it's so early in setup that sucker gets confused into doing 240 * what it shouldn't if we actually call it. 241 */ 242 p = dmi_ioremap(0xF0000, 0x10000); 243 if (p == NULL) 244 goto out; 245 246 for (q = p; q < p + 0x10000; q += 16) { 247 rc = dmi_present(q); 248 if (!rc) 249 return; 250 } 251 } 252 out: printk(KERN_INFO "DMI not present or invalid.\n"); 253 } 254 255 /** 256 * dmi_check_system - check system DMI data 257 * @list: array of dmi_system_id structures to match against 258 * All non-null elements of the list must match 259 * their slot's (field index's) data (i.e., each 260 * list string must be a substring of the specified 261 * DMI slot's string data) to be considered a 262 * successful match. 263 * 264 * Walk the blacklist table running matching functions until someone 265 * returns non zero or we hit the end. Callback function is called for 266 * each successful match. Returns the number of matches. 267 */ 268 int dmi_check_system(struct dmi_system_id *list) 269 { 270 int i, count = 0; 271 struct dmi_system_id *d = list; 272 273 while (d->ident) { 274 for (i = 0; i < ARRAY_SIZE(d->matches); i++) { 275 int s = d->matches[i].slot; 276 if (s == DMI_NONE) 277 continue; 278 if (dmi_ident[s] && strstr(dmi_ident[s], d->matches[i].substr)) 279 continue; 280 /* No match */ 281 goto fail; 282 } 283 count++; 284 if (d->callback && d->callback(d)) 285 break; 286 fail: d++; 287 } 288 289 return count; 290 } 291 EXPORT_SYMBOL(dmi_check_system); 292 293 /** 294 * dmi_get_system_info - return DMI data value 295 * @field: data index (see enum dmi_field) 296 * 297 * Returns one DMI data value, can be used to perform 298 * complex DMI data checks. 299 */ 300 char *dmi_get_system_info(int field) 301 { 302 return dmi_ident[field]; 303 } 304 EXPORT_SYMBOL(dmi_get_system_info); 305 306 /** 307 * dmi_find_device - find onboard device by type/name 308 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types 309 * @name: device name string or %NULL to match all 310 * @from: previous device found in search, or %NULL for new search. 311 * 312 * Iterates through the list of known onboard devices. If a device is 313 * found with a matching @vendor and @device, a pointer to its device 314 * structure is returned. Otherwise, %NULL is returned. 315 * A new search is initiated by passing %NULL as the @from argument. 316 * If @from is not %NULL, searches continue from next device. 317 */ 318 struct dmi_device * dmi_find_device(int type, const char *name, 319 struct dmi_device *from) 320 { 321 struct list_head *d, *head = from ? &from->list : &dmi_devices; 322 323 for(d = head->next; d != &dmi_devices; d = d->next) { 324 struct dmi_device *dev = list_entry(d, struct dmi_device, list); 325 326 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) && 327 ((name == NULL) || (strcmp(dev->name, name) == 0))) 328 return dev; 329 } 330 331 return NULL; 332 } 333 EXPORT_SYMBOL(dmi_find_device); 334 335 /** 336 * dmi_get_year - Return year of a DMI date 337 * @field: data index (like dmi_get_system_info) 338 * 339 * Returns -1 when the field doesn't exist. 0 when it is broken. 340 */ 341 int dmi_get_year(int field) 342 { 343 int year; 344 char *s = dmi_get_system_info(field); 345 346 if (!s) 347 return -1; 348 if (*s == '\0') 349 return 0; 350 s = strrchr(s, '/'); 351 if (!s) 352 return 0; 353 354 s += 1; 355 year = simple_strtoul(s, NULL, 0); 356 if (year && year < 100) { /* 2-digit year */ 357 year += 1900; 358 if (year < 1996) /* no dates < spec 1.0 */ 359 year += 100; 360 } 361 362 return year; 363 } 364