1 #include <linux/types.h> 2 #include <linux/string.h> 3 #include <linux/init.h> 4 #include <linux/module.h> 5 #include <linux/ctype.h> 6 #include <linux/dmi.h> 7 #include <linux/efi.h> 8 #include <linux/bootmem.h> 9 #include <linux/random.h> 10 #include <asm/dmi.h> 11 12 /* 13 * DMI stands for "Desktop Management Interface". It is part 14 * of and an antecedent to, SMBIOS, which stands for System 15 * Management BIOS. See further: http://www.dmtf.org/standards 16 */ 17 static char dmi_empty_string[] = " "; 18 19 /* 20 * Catch too early calls to dmi_check_system(): 21 */ 22 static int dmi_initialized; 23 24 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s) 25 { 26 const u8 *bp = ((u8 *) dm) + dm->length; 27 28 if (s) { 29 s--; 30 while (s > 0 && *bp) { 31 bp += strlen(bp) + 1; 32 s--; 33 } 34 35 if (*bp != 0) { 36 size_t len = strlen(bp)+1; 37 size_t cmp_len = len > 8 ? 8 : len; 38 39 if (!memcmp(bp, dmi_empty_string, cmp_len)) 40 return dmi_empty_string; 41 return bp; 42 } 43 } 44 45 return ""; 46 } 47 48 static char * __init dmi_string(const struct dmi_header *dm, u8 s) 49 { 50 const char *bp = dmi_string_nosave(dm, s); 51 char *str; 52 size_t len; 53 54 if (bp == dmi_empty_string) 55 return dmi_empty_string; 56 57 len = strlen(bp) + 1; 58 str = dmi_alloc(len); 59 if (str != NULL) 60 strcpy(str, bp); 61 else 62 printk(KERN_ERR "dmi_string: cannot allocate %Zu bytes.\n", len); 63 64 return str; 65 } 66 67 /* 68 * We have to be cautious here. We have seen BIOSes with DMI pointers 69 * pointing to completely the wrong place for example 70 */ 71 static void dmi_table(u8 *buf, int len, int num, 72 void (*decode)(const struct dmi_header *, void *), 73 void *private_data) 74 { 75 u8 *data = buf; 76 int i = 0; 77 78 /* 79 * Stop when we see all the items the table claimed to have 80 * OR we run off the end of the table (also happens) 81 */ 82 while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) { 83 const struct dmi_header *dm = (const struct dmi_header *)data; 84 85 /* 86 * We want to know the total length (formatted area and 87 * strings) before decoding to make sure we won't run off the 88 * table in dmi_decode or dmi_string 89 */ 90 data += dm->length; 91 while ((data - buf < len - 1) && (data[0] || data[1])) 92 data++; 93 if (data - buf < len - 1) 94 decode(dm, private_data); 95 data += 2; 96 i++; 97 } 98 } 99 100 static u32 dmi_base; 101 static u16 dmi_len; 102 static u16 dmi_num; 103 104 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *, 105 void *)) 106 { 107 u8 *buf; 108 109 buf = dmi_ioremap(dmi_base, dmi_len); 110 if (buf == NULL) 111 return -1; 112 113 dmi_table(buf, dmi_len, dmi_num, decode, NULL); 114 115 add_device_randomness(buf, dmi_len); 116 117 dmi_iounmap(buf, dmi_len); 118 return 0; 119 } 120 121 static int __init dmi_checksum(const u8 *buf) 122 { 123 u8 sum = 0; 124 int a; 125 126 for (a = 0; a < 15; a++) 127 sum += buf[a]; 128 129 return sum == 0; 130 } 131 132 static char *dmi_ident[DMI_STRING_MAX]; 133 static LIST_HEAD(dmi_devices); 134 int dmi_available; 135 136 /* 137 * Save a DMI string 138 */ 139 static void __init dmi_save_ident(const struct dmi_header *dm, int slot, int string) 140 { 141 const char *d = (const char*) dm; 142 char *p; 143 144 if (dmi_ident[slot]) 145 return; 146 147 p = dmi_string(dm, d[string]); 148 if (p == NULL) 149 return; 150 151 dmi_ident[slot] = p; 152 } 153 154 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, int index) 155 { 156 const u8 *d = (u8*) dm + index; 157 char *s; 158 int is_ff = 1, is_00 = 1, i; 159 160 if (dmi_ident[slot]) 161 return; 162 163 for (i = 0; i < 16 && (is_ff || is_00); i++) { 164 if(d[i] != 0x00) is_ff = 0; 165 if(d[i] != 0xFF) is_00 = 0; 166 } 167 168 if (is_ff || is_00) 169 return; 170 171 s = dmi_alloc(16*2+4+1); 172 if (!s) 173 return; 174 175 sprintf(s, "%pUB", d); 176 177 dmi_ident[slot] = s; 178 } 179 180 static void __init dmi_save_type(const struct dmi_header *dm, int slot, int index) 181 { 182 const u8 *d = (u8*) dm + index; 183 char *s; 184 185 if (dmi_ident[slot]) 186 return; 187 188 s = dmi_alloc(4); 189 if (!s) 190 return; 191 192 sprintf(s, "%u", *d & 0x7F); 193 dmi_ident[slot] = s; 194 } 195 196 static void __init dmi_save_one_device(int type, const char *name) 197 { 198 struct dmi_device *dev; 199 200 /* No duplicate device */ 201 if (dmi_find_device(type, name, NULL)) 202 return; 203 204 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1); 205 if (!dev) { 206 printk(KERN_ERR "dmi_save_one_device: out of memory.\n"); 207 return; 208 } 209 210 dev->type = type; 211 strcpy((char *)(dev + 1), name); 212 dev->name = (char *)(dev + 1); 213 dev->device_data = NULL; 214 list_add(&dev->list, &dmi_devices); 215 } 216 217 static void __init dmi_save_devices(const struct dmi_header *dm) 218 { 219 int i, count = (dm->length - sizeof(struct dmi_header)) / 2; 220 221 for (i = 0; i < count; i++) { 222 const char *d = (char *)(dm + 1) + (i * 2); 223 224 /* Skip disabled device */ 225 if ((*d & 0x80) == 0) 226 continue; 227 228 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1))); 229 } 230 } 231 232 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm) 233 { 234 int i, count = *(u8 *)(dm + 1); 235 struct dmi_device *dev; 236 237 for (i = 1; i <= count; i++) { 238 char *devname = dmi_string(dm, i); 239 240 if (devname == dmi_empty_string) 241 continue; 242 243 dev = dmi_alloc(sizeof(*dev)); 244 if (!dev) { 245 printk(KERN_ERR 246 "dmi_save_oem_strings_devices: out of memory.\n"); 247 break; 248 } 249 250 dev->type = DMI_DEV_TYPE_OEM_STRING; 251 dev->name = devname; 252 dev->device_data = NULL; 253 254 list_add(&dev->list, &dmi_devices); 255 } 256 } 257 258 static void __init dmi_save_ipmi_device(const struct dmi_header *dm) 259 { 260 struct dmi_device *dev; 261 void * data; 262 263 data = dmi_alloc(dm->length); 264 if (data == NULL) { 265 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n"); 266 return; 267 } 268 269 memcpy(data, dm, dm->length); 270 271 dev = dmi_alloc(sizeof(*dev)); 272 if (!dev) { 273 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n"); 274 return; 275 } 276 277 dev->type = DMI_DEV_TYPE_IPMI; 278 dev->name = "IPMI controller"; 279 dev->device_data = data; 280 281 list_add_tail(&dev->list, &dmi_devices); 282 } 283 284 static void __init dmi_save_dev_onboard(int instance, int segment, int bus, 285 int devfn, const char *name) 286 { 287 struct dmi_dev_onboard *onboard_dev; 288 289 onboard_dev = dmi_alloc(sizeof(*onboard_dev) + strlen(name) + 1); 290 if (!onboard_dev) { 291 printk(KERN_ERR "dmi_save_dev_onboard: out of memory.\n"); 292 return; 293 } 294 onboard_dev->instance = instance; 295 onboard_dev->segment = segment; 296 onboard_dev->bus = bus; 297 onboard_dev->devfn = devfn; 298 299 strcpy((char *)&onboard_dev[1], name); 300 onboard_dev->dev.type = DMI_DEV_TYPE_DEV_ONBOARD; 301 onboard_dev->dev.name = (char *)&onboard_dev[1]; 302 onboard_dev->dev.device_data = onboard_dev; 303 304 list_add(&onboard_dev->dev.list, &dmi_devices); 305 } 306 307 static void __init dmi_save_extended_devices(const struct dmi_header *dm) 308 { 309 const u8 *d = (u8*) dm + 5; 310 311 /* Skip disabled device */ 312 if ((*d & 0x80) == 0) 313 return; 314 315 dmi_save_dev_onboard(*(d+1), *(u16 *)(d+2), *(d+4), *(d+5), 316 dmi_string_nosave(dm, *(d-1))); 317 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1))); 318 } 319 320 /* 321 * Process a DMI table entry. Right now all we care about are the BIOS 322 * and machine entries. For 2.5 we should pull the smbus controller info 323 * out of here. 324 */ 325 static void __init dmi_decode(const struct dmi_header *dm, void *dummy) 326 { 327 switch(dm->type) { 328 case 0: /* BIOS Information */ 329 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4); 330 dmi_save_ident(dm, DMI_BIOS_VERSION, 5); 331 dmi_save_ident(dm, DMI_BIOS_DATE, 8); 332 break; 333 case 1: /* System Information */ 334 dmi_save_ident(dm, DMI_SYS_VENDOR, 4); 335 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5); 336 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6); 337 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7); 338 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8); 339 break; 340 case 2: /* Base Board Information */ 341 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4); 342 dmi_save_ident(dm, DMI_BOARD_NAME, 5); 343 dmi_save_ident(dm, DMI_BOARD_VERSION, 6); 344 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7); 345 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8); 346 break; 347 case 3: /* Chassis Information */ 348 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4); 349 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5); 350 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6); 351 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7); 352 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8); 353 break; 354 case 10: /* Onboard Devices Information */ 355 dmi_save_devices(dm); 356 break; 357 case 11: /* OEM Strings */ 358 dmi_save_oem_strings_devices(dm); 359 break; 360 case 38: /* IPMI Device Information */ 361 dmi_save_ipmi_device(dm); 362 break; 363 case 41: /* Onboard Devices Extended Information */ 364 dmi_save_extended_devices(dm); 365 } 366 } 367 368 static void __init print_filtered(const char *info) 369 { 370 const char *p; 371 372 if (!info) 373 return; 374 375 for (p = info; *p; p++) 376 if (isprint(*p)) 377 printk(KERN_CONT "%c", *p); 378 else 379 printk(KERN_CONT "\\x%02x", *p & 0xff); 380 } 381 382 static void __init dmi_dump_ids(void) 383 { 384 const char *board; /* Board Name is optional */ 385 386 printk(KERN_DEBUG "DMI: "); 387 print_filtered(dmi_get_system_info(DMI_SYS_VENDOR)); 388 printk(KERN_CONT " "); 389 print_filtered(dmi_get_system_info(DMI_PRODUCT_NAME)); 390 board = dmi_get_system_info(DMI_BOARD_NAME); 391 if (board) { 392 printk(KERN_CONT "/"); 393 print_filtered(board); 394 } 395 printk(KERN_CONT ", BIOS "); 396 print_filtered(dmi_get_system_info(DMI_BIOS_VERSION)); 397 printk(KERN_CONT " "); 398 print_filtered(dmi_get_system_info(DMI_BIOS_DATE)); 399 printk(KERN_CONT "\n"); 400 } 401 402 static int __init dmi_present(const char __iomem *p) 403 { 404 u8 buf[15]; 405 406 memcpy_fromio(buf, p, 15); 407 if ((memcmp(buf, "_DMI_", 5) == 0) && dmi_checksum(buf)) { 408 dmi_num = (buf[13] << 8) | buf[12]; 409 dmi_len = (buf[7] << 8) | buf[6]; 410 dmi_base = (buf[11] << 24) | (buf[10] << 16) | 411 (buf[9] << 8) | buf[8]; 412 413 /* 414 * DMI version 0.0 means that the real version is taken from 415 * the SMBIOS version, which we don't know at this point. 416 */ 417 if (buf[14] != 0) 418 printk(KERN_INFO "DMI %d.%d present.\n", 419 buf[14] >> 4, buf[14] & 0xF); 420 else 421 printk(KERN_INFO "DMI present.\n"); 422 if (dmi_walk_early(dmi_decode) == 0) { 423 dmi_dump_ids(); 424 return 0; 425 } 426 } 427 return 1; 428 } 429 430 void __init dmi_scan_machine(void) 431 { 432 char __iomem *p, *q; 433 int rc; 434 435 if (efi_enabled) { 436 if (efi.smbios == EFI_INVALID_TABLE_ADDR) 437 goto error; 438 439 /* This is called as a core_initcall() because it isn't 440 * needed during early boot. This also means we can 441 * iounmap the space when we're done with it. 442 */ 443 p = dmi_ioremap(efi.smbios, 32); 444 if (p == NULL) 445 goto error; 446 447 rc = dmi_present(p + 0x10); /* offset of _DMI_ string */ 448 dmi_iounmap(p, 32); 449 if (!rc) { 450 dmi_available = 1; 451 goto out; 452 } 453 } 454 else { 455 /* 456 * no iounmap() for that ioremap(); it would be a no-op, but 457 * it's so early in setup that sucker gets confused into doing 458 * what it shouldn't if we actually call it. 459 */ 460 p = dmi_ioremap(0xF0000, 0x10000); 461 if (p == NULL) 462 goto error; 463 464 for (q = p; q < p + 0x10000; q += 16) { 465 rc = dmi_present(q); 466 if (!rc) { 467 dmi_available = 1; 468 dmi_iounmap(p, 0x10000); 469 goto out; 470 } 471 } 472 dmi_iounmap(p, 0x10000); 473 } 474 error: 475 printk(KERN_INFO "DMI not present or invalid.\n"); 476 out: 477 dmi_initialized = 1; 478 } 479 480 /** 481 * dmi_matches - check if dmi_system_id structure matches system DMI data 482 * @dmi: pointer to the dmi_system_id structure to check 483 */ 484 static bool dmi_matches(const struct dmi_system_id *dmi) 485 { 486 int i; 487 488 WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n"); 489 490 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) { 491 int s = dmi->matches[i].slot; 492 if (s == DMI_NONE) 493 break; 494 if (dmi_ident[s] 495 && strstr(dmi_ident[s], dmi->matches[i].substr)) 496 continue; 497 /* No match */ 498 return false; 499 } 500 return true; 501 } 502 503 /** 504 * dmi_is_end_of_table - check for end-of-table marker 505 * @dmi: pointer to the dmi_system_id structure to check 506 */ 507 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi) 508 { 509 return dmi->matches[0].slot == DMI_NONE; 510 } 511 512 /** 513 * dmi_check_system - check system DMI data 514 * @list: array of dmi_system_id structures to match against 515 * All non-null elements of the list must match 516 * their slot's (field index's) data (i.e., each 517 * list string must be a substring of the specified 518 * DMI slot's string data) to be considered a 519 * successful match. 520 * 521 * Walk the blacklist table running matching functions until someone 522 * returns non zero or we hit the end. Callback function is called for 523 * each successful match. Returns the number of matches. 524 */ 525 int dmi_check_system(const struct dmi_system_id *list) 526 { 527 int count = 0; 528 const struct dmi_system_id *d; 529 530 for (d = list; !dmi_is_end_of_table(d); d++) 531 if (dmi_matches(d)) { 532 count++; 533 if (d->callback && d->callback(d)) 534 break; 535 } 536 537 return count; 538 } 539 EXPORT_SYMBOL(dmi_check_system); 540 541 /** 542 * dmi_first_match - find dmi_system_id structure matching system DMI data 543 * @list: array of dmi_system_id structures to match against 544 * All non-null elements of the list must match 545 * their slot's (field index's) data (i.e., each 546 * list string must be a substring of the specified 547 * DMI slot's string data) to be considered a 548 * successful match. 549 * 550 * Walk the blacklist table until the first match is found. Return the 551 * pointer to the matching entry or NULL if there's no match. 552 */ 553 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list) 554 { 555 const struct dmi_system_id *d; 556 557 for (d = list; !dmi_is_end_of_table(d); d++) 558 if (dmi_matches(d)) 559 return d; 560 561 return NULL; 562 } 563 EXPORT_SYMBOL(dmi_first_match); 564 565 /** 566 * dmi_get_system_info - return DMI data value 567 * @field: data index (see enum dmi_field) 568 * 569 * Returns one DMI data value, can be used to perform 570 * complex DMI data checks. 571 */ 572 const char *dmi_get_system_info(int field) 573 { 574 return dmi_ident[field]; 575 } 576 EXPORT_SYMBOL(dmi_get_system_info); 577 578 /** 579 * dmi_name_in_serial - Check if string is in the DMI product serial information 580 * @str: string to check for 581 */ 582 int dmi_name_in_serial(const char *str) 583 { 584 int f = DMI_PRODUCT_SERIAL; 585 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 586 return 1; 587 return 0; 588 } 589 590 /** 591 * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name 592 * @str: Case sensitive Name 593 */ 594 int dmi_name_in_vendors(const char *str) 595 { 596 static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE }; 597 int i; 598 for (i = 0; fields[i] != DMI_NONE; i++) { 599 int f = fields[i]; 600 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 601 return 1; 602 } 603 return 0; 604 } 605 EXPORT_SYMBOL(dmi_name_in_vendors); 606 607 /** 608 * dmi_find_device - find onboard device by type/name 609 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types 610 * @name: device name string or %NULL to match all 611 * @from: previous device found in search, or %NULL for new search. 612 * 613 * Iterates through the list of known onboard devices. If a device is 614 * found with a matching @vendor and @device, a pointer to its device 615 * structure is returned. Otherwise, %NULL is returned. 616 * A new search is initiated by passing %NULL as the @from argument. 617 * If @from is not %NULL, searches continue from next device. 618 */ 619 const struct dmi_device * dmi_find_device(int type, const char *name, 620 const struct dmi_device *from) 621 { 622 const struct list_head *head = from ? &from->list : &dmi_devices; 623 struct list_head *d; 624 625 for(d = head->next; d != &dmi_devices; d = d->next) { 626 const struct dmi_device *dev = 627 list_entry(d, struct dmi_device, list); 628 629 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) && 630 ((name == NULL) || (strcmp(dev->name, name) == 0))) 631 return dev; 632 } 633 634 return NULL; 635 } 636 EXPORT_SYMBOL(dmi_find_device); 637 638 /** 639 * dmi_get_date - parse a DMI date 640 * @field: data index (see enum dmi_field) 641 * @yearp: optional out parameter for the year 642 * @monthp: optional out parameter for the month 643 * @dayp: optional out parameter for the day 644 * 645 * The date field is assumed to be in the form resembling 646 * [mm[/dd]]/yy[yy] and the result is stored in the out 647 * parameters any or all of which can be omitted. 648 * 649 * If the field doesn't exist, all out parameters are set to zero 650 * and false is returned. Otherwise, true is returned with any 651 * invalid part of date set to zero. 652 * 653 * On return, year, month and day are guaranteed to be in the 654 * range of [0,9999], [0,12] and [0,31] respectively. 655 */ 656 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp) 657 { 658 int year = 0, month = 0, day = 0; 659 bool exists; 660 const char *s, *y; 661 char *e; 662 663 s = dmi_get_system_info(field); 664 exists = s; 665 if (!exists) 666 goto out; 667 668 /* 669 * Determine year first. We assume the date string resembles 670 * mm/dd/yy[yy] but the original code extracted only the year 671 * from the end. Keep the behavior in the spirit of no 672 * surprises. 673 */ 674 y = strrchr(s, '/'); 675 if (!y) 676 goto out; 677 678 y++; 679 year = simple_strtoul(y, &e, 10); 680 if (y != e && year < 100) { /* 2-digit year */ 681 year += 1900; 682 if (year < 1996) /* no dates < spec 1.0 */ 683 year += 100; 684 } 685 if (year > 9999) /* year should fit in %04d */ 686 year = 0; 687 688 /* parse the mm and dd */ 689 month = simple_strtoul(s, &e, 10); 690 if (s == e || *e != '/' || !month || month > 12) { 691 month = 0; 692 goto out; 693 } 694 695 s = e + 1; 696 day = simple_strtoul(s, &e, 10); 697 if (s == y || s == e || *e != '/' || day > 31) 698 day = 0; 699 out: 700 if (yearp) 701 *yearp = year; 702 if (monthp) 703 *monthp = month; 704 if (dayp) 705 *dayp = day; 706 return exists; 707 } 708 EXPORT_SYMBOL(dmi_get_date); 709 710 /** 711 * dmi_walk - Walk the DMI table and get called back for every record 712 * @decode: Callback function 713 * @private_data: Private data to be passed to the callback function 714 * 715 * Returns -1 when the DMI table can't be reached, 0 on success. 716 */ 717 int dmi_walk(void (*decode)(const struct dmi_header *, void *), 718 void *private_data) 719 { 720 u8 *buf; 721 722 if (!dmi_available) 723 return -1; 724 725 buf = ioremap(dmi_base, dmi_len); 726 if (buf == NULL) 727 return -1; 728 729 dmi_table(buf, dmi_len, dmi_num, decode, private_data); 730 731 iounmap(buf); 732 return 0; 733 } 734 EXPORT_SYMBOL_GPL(dmi_walk); 735 736 /** 737 * dmi_match - compare a string to the dmi field (if exists) 738 * @f: DMI field identifier 739 * @str: string to compare the DMI field to 740 * 741 * Returns true if the requested field equals to the str (including NULL). 742 */ 743 bool dmi_match(enum dmi_field f, const char *str) 744 { 745 const char *info = dmi_get_system_info(f); 746 747 if (info == NULL || str == NULL) 748 return info == str; 749 750 return !strcmp(info, str); 751 } 752 EXPORT_SYMBOL_GPL(dmi_match); 753