xref: /linux/drivers/firmware/dmi_scan.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/types.h>
3 #include <linux/string.h>
4 #include <linux/init.h>
5 #include <linux/module.h>
6 #include <linux/ctype.h>
7 #include <linux/dmi.h>
8 #include <linux/efi.h>
9 #include <linux/memblock.h>
10 #include <linux/random.h>
11 #include <asm/dmi.h>
12 #include <asm/unaligned.h>
13 
14 #ifndef SMBIOS_ENTRY_POINT_SCAN_START
15 #define SMBIOS_ENTRY_POINT_SCAN_START 0xF0000
16 #endif
17 
18 struct kobject *dmi_kobj;
19 EXPORT_SYMBOL_GPL(dmi_kobj);
20 
21 /*
22  * DMI stands for "Desktop Management Interface".  It is part
23  * of and an antecedent to, SMBIOS, which stands for System
24  * Management BIOS.  See further: https://www.dmtf.org/standards
25  */
26 static const char dmi_empty_string[] = "";
27 
28 static u32 dmi_ver __initdata;
29 static u32 dmi_len;
30 static u16 dmi_num;
31 static u8 smbios_entry_point[32];
32 static int smbios_entry_point_size;
33 
34 /* DMI system identification string used during boot */
35 static char dmi_ids_string[128] __initdata;
36 
37 static struct dmi_memdev_info {
38 	const char *device;
39 	const char *bank;
40 	u64 size;		/* bytes */
41 	u16 handle;
42 	u8 type;		/* DDR2, DDR3, DDR4 etc */
43 } *dmi_memdev;
44 static int dmi_memdev_nr;
45 static int dmi_memdev_populated_nr __initdata;
46 
47 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
48 {
49 	const u8 *bp = ((u8 *) dm) + dm->length;
50 	const u8 *nsp;
51 
52 	if (s) {
53 		while (--s > 0 && *bp)
54 			bp += strlen(bp) + 1;
55 
56 		/* Strings containing only spaces are considered empty */
57 		nsp = bp;
58 		while (*nsp == ' ')
59 			nsp++;
60 		if (*nsp != '\0')
61 			return bp;
62 	}
63 
64 	return dmi_empty_string;
65 }
66 
67 static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
68 {
69 	const char *bp = dmi_string_nosave(dm, s);
70 	char *str;
71 	size_t len;
72 
73 	if (bp == dmi_empty_string)
74 		return dmi_empty_string;
75 
76 	len = strlen(bp) + 1;
77 	str = dmi_alloc(len);
78 	if (str != NULL)
79 		strcpy(str, bp);
80 
81 	return str;
82 }
83 
84 /*
85  *	We have to be cautious here. We have seen BIOSes with DMI pointers
86  *	pointing to completely the wrong place for example
87  */
88 static void dmi_decode_table(u8 *buf,
89 			     void (*decode)(const struct dmi_header *, void *),
90 			     void *private_data)
91 {
92 	u8 *data = buf;
93 	int i = 0;
94 
95 	/*
96 	 * Stop when we have seen all the items the table claimed to have
97 	 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS
98 	 * >= 3.0 only) OR we run off the end of the table (should never
99 	 * happen but sometimes does on bogus implementations.)
100 	 */
101 	while ((!dmi_num || i < dmi_num) &&
102 	       (data - buf + sizeof(struct dmi_header)) <= dmi_len) {
103 		const struct dmi_header *dm = (const struct dmi_header *)data;
104 
105 		/*
106 		 * If a short entry is found (less than 4 bytes), not only it
107 		 * is invalid, but we cannot reliably locate the next entry.
108 		 */
109 		if (dm->length < sizeof(struct dmi_header)) {
110 			pr_warn(FW_BUG
111 				"Corrupted DMI table, offset %zd (only %d entries processed)\n",
112 				data - buf, i);
113 			break;
114 		}
115 
116 		/*
117 		 *  We want to know the total length (formatted area and
118 		 *  strings) before decoding to make sure we won't run off the
119 		 *  table in dmi_decode or dmi_string
120 		 */
121 		data += dm->length;
122 		while ((data - buf < dmi_len - 1) && (data[0] || data[1]))
123 			data++;
124 		if (data - buf < dmi_len - 1)
125 			decode(dm, private_data);
126 
127 		data += 2;
128 		i++;
129 
130 		/*
131 		 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
132 		 * For tables behind a 64-bit entry point, we have no item
133 		 * count and no exact table length, so stop on end-of-table
134 		 * marker. For tables behind a 32-bit entry point, we have
135 		 * seen OEM structures behind the end-of-table marker on
136 		 * some systems, so don't trust it.
137 		 */
138 		if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE)
139 			break;
140 	}
141 
142 	/* Trim DMI table length if needed */
143 	if (dmi_len > data - buf)
144 		dmi_len = data - buf;
145 }
146 
147 static phys_addr_t dmi_base;
148 
149 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
150 		void *))
151 {
152 	u8 *buf;
153 	u32 orig_dmi_len = dmi_len;
154 
155 	buf = dmi_early_remap(dmi_base, orig_dmi_len);
156 	if (buf == NULL)
157 		return -ENOMEM;
158 
159 	dmi_decode_table(buf, decode, NULL);
160 
161 	add_device_randomness(buf, dmi_len);
162 
163 	dmi_early_unmap(buf, orig_dmi_len);
164 	return 0;
165 }
166 
167 static int __init dmi_checksum(const u8 *buf, u8 len)
168 {
169 	u8 sum = 0;
170 	int a;
171 
172 	for (a = 0; a < len; a++)
173 		sum += buf[a];
174 
175 	return sum == 0;
176 }
177 
178 static const char *dmi_ident[DMI_STRING_MAX];
179 static LIST_HEAD(dmi_devices);
180 int dmi_available;
181 EXPORT_SYMBOL_GPL(dmi_available);
182 
183 /*
184  *	Save a DMI string
185  */
186 static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
187 		int string)
188 {
189 	const char *d = (const char *) dm;
190 	const char *p;
191 
192 	if (dmi_ident[slot] || dm->length <= string)
193 		return;
194 
195 	p = dmi_string(dm, d[string]);
196 	if (p == NULL)
197 		return;
198 
199 	dmi_ident[slot] = p;
200 }
201 
202 static void __init dmi_save_release(const struct dmi_header *dm, int slot,
203 		int index)
204 {
205 	const u8 *minor, *major;
206 	char *s;
207 
208 	/* If the table doesn't have the field, let's return */
209 	if (dmi_ident[slot] || dm->length < index)
210 		return;
211 
212 	minor = (u8 *) dm + index;
213 	major = (u8 *) dm + index - 1;
214 
215 	/* As per the spec, if the system doesn't support this field,
216 	 * the value is FF
217 	 */
218 	if (*major == 0xFF && *minor == 0xFF)
219 		return;
220 
221 	s = dmi_alloc(8);
222 	if (!s)
223 		return;
224 
225 	sprintf(s, "%u.%u", *major, *minor);
226 
227 	dmi_ident[slot] = s;
228 }
229 
230 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
231 		int index)
232 {
233 	const u8 *d;
234 	char *s;
235 	int is_ff = 1, is_00 = 1, i;
236 
237 	if (dmi_ident[slot] || dm->length < index + 16)
238 		return;
239 
240 	d = (u8 *) dm + index;
241 	for (i = 0; i < 16 && (is_ff || is_00); i++) {
242 		if (d[i] != 0x00)
243 			is_00 = 0;
244 		if (d[i] != 0xFF)
245 			is_ff = 0;
246 	}
247 
248 	if (is_ff || is_00)
249 		return;
250 
251 	s = dmi_alloc(16*2+4+1);
252 	if (!s)
253 		return;
254 
255 	/*
256 	 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
257 	 * the UUID are supposed to be little-endian encoded.  The specification
258 	 * says that this is the defacto standard.
259 	 */
260 	if (dmi_ver >= 0x020600)
261 		sprintf(s, "%pUl", d);
262 	else
263 		sprintf(s, "%pUb", d);
264 
265 	dmi_ident[slot] = s;
266 }
267 
268 static void __init dmi_save_type(const struct dmi_header *dm, int slot,
269 		int index)
270 {
271 	const u8 *d;
272 	char *s;
273 
274 	if (dmi_ident[slot] || dm->length <= index)
275 		return;
276 
277 	s = dmi_alloc(4);
278 	if (!s)
279 		return;
280 
281 	d = (u8 *) dm + index;
282 	sprintf(s, "%u", *d & 0x7F);
283 	dmi_ident[slot] = s;
284 }
285 
286 static void __init dmi_save_one_device(int type, const char *name)
287 {
288 	struct dmi_device *dev;
289 
290 	/* No duplicate device */
291 	if (dmi_find_device(type, name, NULL))
292 		return;
293 
294 	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
295 	if (!dev)
296 		return;
297 
298 	dev->type = type;
299 	strcpy((char *)(dev + 1), name);
300 	dev->name = (char *)(dev + 1);
301 	dev->device_data = NULL;
302 	list_add(&dev->list, &dmi_devices);
303 }
304 
305 static void __init dmi_save_devices(const struct dmi_header *dm)
306 {
307 	int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
308 
309 	for (i = 0; i < count; i++) {
310 		const char *d = (char *)(dm + 1) + (i * 2);
311 
312 		/* Skip disabled device */
313 		if ((*d & 0x80) == 0)
314 			continue;
315 
316 		dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
317 	}
318 }
319 
320 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
321 {
322 	int i, count;
323 	struct dmi_device *dev;
324 
325 	if (dm->length < 0x05)
326 		return;
327 
328 	count = *(u8 *)(dm + 1);
329 	for (i = 1; i <= count; i++) {
330 		const char *devname = dmi_string(dm, i);
331 
332 		if (devname == dmi_empty_string)
333 			continue;
334 
335 		dev = dmi_alloc(sizeof(*dev));
336 		if (!dev)
337 			break;
338 
339 		dev->type = DMI_DEV_TYPE_OEM_STRING;
340 		dev->name = devname;
341 		dev->device_data = NULL;
342 
343 		list_add(&dev->list, &dmi_devices);
344 	}
345 }
346 
347 static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
348 {
349 	struct dmi_device *dev;
350 	void *data;
351 
352 	data = dmi_alloc(dm->length);
353 	if (data == NULL)
354 		return;
355 
356 	memcpy(data, dm, dm->length);
357 
358 	dev = dmi_alloc(sizeof(*dev));
359 	if (!dev)
360 		return;
361 
362 	dev->type = DMI_DEV_TYPE_IPMI;
363 	dev->name = "IPMI controller";
364 	dev->device_data = data;
365 
366 	list_add_tail(&dev->list, &dmi_devices);
367 }
368 
369 static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus,
370 					int devfn, const char *name, int type)
371 {
372 	struct dmi_dev_onboard *dev;
373 
374 	/* Ignore invalid values */
375 	if (type == DMI_DEV_TYPE_DEV_SLOT &&
376 	    segment == 0xFFFF && bus == 0xFF && devfn == 0xFF)
377 		return;
378 
379 	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
380 	if (!dev)
381 		return;
382 
383 	dev->instance = instance;
384 	dev->segment = segment;
385 	dev->bus = bus;
386 	dev->devfn = devfn;
387 
388 	strcpy((char *)&dev[1], name);
389 	dev->dev.type = type;
390 	dev->dev.name = (char *)&dev[1];
391 	dev->dev.device_data = dev;
392 
393 	list_add(&dev->dev.list, &dmi_devices);
394 }
395 
396 static void __init dmi_save_extended_devices(const struct dmi_header *dm)
397 {
398 	const char *name;
399 	const u8 *d = (u8 *)dm;
400 
401 	if (dm->length < 0x0B)
402 		return;
403 
404 	/* Skip disabled device */
405 	if ((d[0x5] & 0x80) == 0)
406 		return;
407 
408 	name = dmi_string_nosave(dm, d[0x4]);
409 	dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name,
410 			     DMI_DEV_TYPE_DEV_ONBOARD);
411 	dmi_save_one_device(d[0x5] & 0x7f, name);
412 }
413 
414 static void __init dmi_save_system_slot(const struct dmi_header *dm)
415 {
416 	const u8 *d = (u8 *)dm;
417 
418 	/* Need SMBIOS 2.6+ structure */
419 	if (dm->length < 0x11)
420 		return;
421 	dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF],
422 			     d[0x10], dmi_string_nosave(dm, d[0x4]),
423 			     DMI_DEV_TYPE_DEV_SLOT);
424 }
425 
426 static void __init count_mem_devices(const struct dmi_header *dm, void *v)
427 {
428 	if (dm->type != DMI_ENTRY_MEM_DEVICE)
429 		return;
430 	dmi_memdev_nr++;
431 }
432 
433 static void __init save_mem_devices(const struct dmi_header *dm, void *v)
434 {
435 	const char *d = (const char *)dm;
436 	static int nr;
437 	u64 bytes;
438 	u16 size;
439 
440 	if (dm->type != DMI_ENTRY_MEM_DEVICE || dm->length < 0x13)
441 		return;
442 	if (nr >= dmi_memdev_nr) {
443 		pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
444 		return;
445 	}
446 	dmi_memdev[nr].handle = get_unaligned(&dm->handle);
447 	dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
448 	dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
449 	dmi_memdev[nr].type = d[0x12];
450 
451 	size = get_unaligned((u16 *)&d[0xC]);
452 	if (size == 0)
453 		bytes = 0;
454 	else if (size == 0xffff)
455 		bytes = ~0ull;
456 	else if (size & 0x8000)
457 		bytes = (u64)(size & 0x7fff) << 10;
458 	else if (size != 0x7fff || dm->length < 0x20)
459 		bytes = (u64)size << 20;
460 	else
461 		bytes = (u64)get_unaligned((u32 *)&d[0x1C]) << 20;
462 
463 	if (bytes)
464 		dmi_memdev_populated_nr++;
465 
466 	dmi_memdev[nr].size = bytes;
467 	nr++;
468 }
469 
470 static void __init dmi_memdev_walk(void)
471 {
472 	if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
473 		dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
474 		if (dmi_memdev)
475 			dmi_walk_early(save_mem_devices);
476 	}
477 }
478 
479 /*
480  *	Process a DMI table entry. Right now all we care about are the BIOS
481  *	and machine entries. For 2.5 we should pull the smbus controller info
482  *	out of here.
483  */
484 static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
485 {
486 	switch (dm->type) {
487 	case 0:		/* BIOS Information */
488 		dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
489 		dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
490 		dmi_save_ident(dm, DMI_BIOS_DATE, 8);
491 		dmi_save_release(dm, DMI_BIOS_RELEASE, 21);
492 		dmi_save_release(dm, DMI_EC_FIRMWARE_RELEASE, 23);
493 		break;
494 	case 1:		/* System Information */
495 		dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
496 		dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
497 		dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
498 		dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
499 		dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
500 		dmi_save_ident(dm, DMI_PRODUCT_SKU, 25);
501 		dmi_save_ident(dm, DMI_PRODUCT_FAMILY, 26);
502 		break;
503 	case 2:		/* Base Board Information */
504 		dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
505 		dmi_save_ident(dm, DMI_BOARD_NAME, 5);
506 		dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
507 		dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
508 		dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
509 		break;
510 	case 3:		/* Chassis Information */
511 		dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
512 		dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
513 		dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
514 		dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
515 		dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
516 		break;
517 	case 9:		/* System Slots */
518 		dmi_save_system_slot(dm);
519 		break;
520 	case 10:	/* Onboard Devices Information */
521 		dmi_save_devices(dm);
522 		break;
523 	case 11:	/* OEM Strings */
524 		dmi_save_oem_strings_devices(dm);
525 		break;
526 	case 38:	/* IPMI Device Information */
527 		dmi_save_ipmi_device(dm);
528 		break;
529 	case 41:	/* Onboard Devices Extended Information */
530 		dmi_save_extended_devices(dm);
531 	}
532 }
533 
534 static int __init print_filtered(char *buf, size_t len, const char *info)
535 {
536 	int c = 0;
537 	const char *p;
538 
539 	if (!info)
540 		return c;
541 
542 	for (p = info; *p; p++)
543 		if (isprint(*p))
544 			c += scnprintf(buf + c, len - c, "%c", *p);
545 		else
546 			c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
547 	return c;
548 }
549 
550 static void __init dmi_format_ids(char *buf, size_t len)
551 {
552 	int c = 0;
553 	const char *board;	/* Board Name is optional */
554 
555 	c += print_filtered(buf + c, len - c,
556 			    dmi_get_system_info(DMI_SYS_VENDOR));
557 	c += scnprintf(buf + c, len - c, " ");
558 	c += print_filtered(buf + c, len - c,
559 			    dmi_get_system_info(DMI_PRODUCT_NAME));
560 
561 	board = dmi_get_system_info(DMI_BOARD_NAME);
562 	if (board) {
563 		c += scnprintf(buf + c, len - c, "/");
564 		c += print_filtered(buf + c, len - c, board);
565 	}
566 	c += scnprintf(buf + c, len - c, ", BIOS ");
567 	c += print_filtered(buf + c, len - c,
568 			    dmi_get_system_info(DMI_BIOS_VERSION));
569 	c += scnprintf(buf + c, len - c, " ");
570 	c += print_filtered(buf + c, len - c,
571 			    dmi_get_system_info(DMI_BIOS_DATE));
572 }
573 
574 /*
575  * Check for DMI/SMBIOS headers in the system firmware image.  Any
576  * SMBIOS header must start 16 bytes before the DMI header, so take a
577  * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
578  * 0.  If the DMI header is present, set dmi_ver accordingly (SMBIOS
579  * takes precedence) and return 0.  Otherwise return 1.
580  */
581 static int __init dmi_present(const u8 *buf)
582 {
583 	u32 smbios_ver;
584 
585 	/*
586 	 * The size of this structure is 31 bytes, but we also accept value
587 	 * 30 due to a mistake in SMBIOS specification version 2.1.
588 	 */
589 	if (memcmp(buf, "_SM_", 4) == 0 &&
590 	    buf[5] >= 30 && buf[5] <= 32 &&
591 	    dmi_checksum(buf, buf[5])) {
592 		smbios_ver = get_unaligned_be16(buf + 6);
593 		smbios_entry_point_size = buf[5];
594 		memcpy(smbios_entry_point, buf, smbios_entry_point_size);
595 
596 		/* Some BIOS report weird SMBIOS version, fix that up */
597 		switch (smbios_ver) {
598 		case 0x021F:
599 		case 0x0221:
600 			pr_debug("SMBIOS version fixup (2.%d->2.%d)\n",
601 				 smbios_ver & 0xFF, 3);
602 			smbios_ver = 0x0203;
603 			break;
604 		case 0x0233:
605 			pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6);
606 			smbios_ver = 0x0206;
607 			break;
608 		}
609 	} else {
610 		smbios_ver = 0;
611 	}
612 
613 	buf += 16;
614 
615 	if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
616 		if (smbios_ver)
617 			dmi_ver = smbios_ver;
618 		else
619 			dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F);
620 		dmi_ver <<= 8;
621 		dmi_num = get_unaligned_le16(buf + 12);
622 		dmi_len = get_unaligned_le16(buf + 6);
623 		dmi_base = get_unaligned_le32(buf + 8);
624 
625 		if (dmi_walk_early(dmi_decode) == 0) {
626 			if (smbios_ver) {
627 				pr_info("SMBIOS %d.%d present.\n",
628 					dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
629 			} else {
630 				smbios_entry_point_size = 15;
631 				memcpy(smbios_entry_point, buf,
632 				       smbios_entry_point_size);
633 				pr_info("Legacy DMI %d.%d present.\n",
634 					dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
635 			}
636 			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
637 			pr_info("DMI: %s\n", dmi_ids_string);
638 			return 0;
639 		}
640 	}
641 
642 	return 1;
643 }
644 
645 /*
646  * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
647  * 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
648  */
649 static int __init dmi_smbios3_present(const u8 *buf)
650 {
651 	if (memcmp(buf, "_SM3_", 5) == 0 &&
652 	    buf[6] >= 24 && buf[6] <= 32 &&
653 	    dmi_checksum(buf, buf[6])) {
654 		dmi_ver = get_unaligned_be24(buf + 7);
655 		dmi_num = 0;			/* No longer specified */
656 		dmi_len = get_unaligned_le32(buf + 12);
657 		dmi_base = get_unaligned_le64(buf + 16);
658 		smbios_entry_point_size = buf[6];
659 		memcpy(smbios_entry_point, buf, smbios_entry_point_size);
660 
661 		if (dmi_walk_early(dmi_decode) == 0) {
662 			pr_info("SMBIOS %d.%d.%d present.\n",
663 				dmi_ver >> 16, (dmi_ver >> 8) & 0xFF,
664 				dmi_ver & 0xFF);
665 			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
666 			pr_info("DMI: %s\n", dmi_ids_string);
667 			return 0;
668 		}
669 	}
670 	return 1;
671 }
672 
673 static void __init dmi_scan_machine(void)
674 {
675 	char __iomem *p, *q;
676 	char buf[32];
677 
678 	if (efi_enabled(EFI_CONFIG_TABLES)) {
679 		/*
680 		 * According to the DMTF SMBIOS reference spec v3.0.0, it is
681 		 * allowed to define both the 64-bit entry point (smbios3) and
682 		 * the 32-bit entry point (smbios), in which case they should
683 		 * either both point to the same SMBIOS structure table, or the
684 		 * table pointed to by the 64-bit entry point should contain a
685 		 * superset of the table contents pointed to by the 32-bit entry
686 		 * point (section 5.2)
687 		 * This implies that the 64-bit entry point should have
688 		 * precedence if it is defined and supported by the OS. If we
689 		 * have the 64-bit entry point, but fail to decode it, fall
690 		 * back to the legacy one (if available)
691 		 */
692 		if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) {
693 			p = dmi_early_remap(efi.smbios3, 32);
694 			if (p == NULL)
695 				goto error;
696 			memcpy_fromio(buf, p, 32);
697 			dmi_early_unmap(p, 32);
698 
699 			if (!dmi_smbios3_present(buf)) {
700 				dmi_available = 1;
701 				return;
702 			}
703 		}
704 		if (efi.smbios == EFI_INVALID_TABLE_ADDR)
705 			goto error;
706 
707 		/* This is called as a core_initcall() because it isn't
708 		 * needed during early boot.  This also means we can
709 		 * iounmap the space when we're done with it.
710 		 */
711 		p = dmi_early_remap(efi.smbios, 32);
712 		if (p == NULL)
713 			goto error;
714 		memcpy_fromio(buf, p, 32);
715 		dmi_early_unmap(p, 32);
716 
717 		if (!dmi_present(buf)) {
718 			dmi_available = 1;
719 			return;
720 		}
721 	} else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
722 		p = dmi_early_remap(SMBIOS_ENTRY_POINT_SCAN_START, 0x10000);
723 		if (p == NULL)
724 			goto error;
725 
726 		/*
727 		 * Same logic as above, look for a 64-bit entry point
728 		 * first, and if not found, fall back to 32-bit entry point.
729 		 */
730 		memcpy_fromio(buf, p, 16);
731 		for (q = p + 16; q < p + 0x10000; q += 16) {
732 			memcpy_fromio(buf + 16, q, 16);
733 			if (!dmi_smbios3_present(buf)) {
734 				dmi_available = 1;
735 				dmi_early_unmap(p, 0x10000);
736 				return;
737 			}
738 			memcpy(buf, buf + 16, 16);
739 		}
740 
741 		/*
742 		 * Iterate over all possible DMI header addresses q.
743 		 * Maintain the 32 bytes around q in buf.  On the
744 		 * first iteration, substitute zero for the
745 		 * out-of-range bytes so there is no chance of falsely
746 		 * detecting an SMBIOS header.
747 		 */
748 		memset(buf, 0, 16);
749 		for (q = p; q < p + 0x10000; q += 16) {
750 			memcpy_fromio(buf + 16, q, 16);
751 			if (!dmi_present(buf)) {
752 				dmi_available = 1;
753 				dmi_early_unmap(p, 0x10000);
754 				return;
755 			}
756 			memcpy(buf, buf + 16, 16);
757 		}
758 		dmi_early_unmap(p, 0x10000);
759 	}
760  error:
761 	pr_info("DMI not present or invalid.\n");
762 }
763 
764 static BIN_ATTR_SIMPLE_ADMIN_RO(smbios_entry_point);
765 static BIN_ATTR_SIMPLE_ADMIN_RO(DMI);
766 
767 static int __init dmi_init(void)
768 {
769 	struct kobject *tables_kobj;
770 	u8 *dmi_table;
771 	int ret = -ENOMEM;
772 
773 	if (!dmi_available)
774 		return 0;
775 
776 	/*
777 	 * Set up dmi directory at /sys/firmware/dmi. This entry should stay
778 	 * even after farther error, as it can be used by other modules like
779 	 * dmi-sysfs.
780 	 */
781 	dmi_kobj = kobject_create_and_add("dmi", firmware_kobj);
782 	if (!dmi_kobj)
783 		goto err;
784 
785 	tables_kobj = kobject_create_and_add("tables", dmi_kobj);
786 	if (!tables_kobj)
787 		goto err;
788 
789 	dmi_table = dmi_remap(dmi_base, dmi_len);
790 	if (!dmi_table)
791 		goto err_tables;
792 
793 	bin_attr_smbios_entry_point.size = smbios_entry_point_size;
794 	bin_attr_smbios_entry_point.private = smbios_entry_point;
795 	ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point);
796 	if (ret)
797 		goto err_unmap;
798 
799 	bin_attr_DMI.size = dmi_len;
800 	bin_attr_DMI.private = dmi_table;
801 	ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI);
802 	if (!ret)
803 		return 0;
804 
805 	sysfs_remove_bin_file(tables_kobj,
806 			      &bin_attr_smbios_entry_point);
807  err_unmap:
808 	dmi_unmap(dmi_table);
809  err_tables:
810 	kobject_del(tables_kobj);
811 	kobject_put(tables_kobj);
812  err:
813 	pr_err("dmi: Firmware registration failed.\n");
814 
815 	return ret;
816 }
817 subsys_initcall(dmi_init);
818 
819 /**
820  *	dmi_setup - scan and setup DMI system information
821  *
822  *	Scan the DMI system information. This setups DMI identifiers
823  *	(dmi_system_id) for printing it out on task dumps and prepares
824  *	DIMM entry information (dmi_memdev_info) from the SMBIOS table
825  *	for using this when reporting memory errors.
826  */
827 void __init dmi_setup(void)
828 {
829 	dmi_scan_machine();
830 	if (!dmi_available)
831 		return;
832 
833 	dmi_memdev_walk();
834 	pr_info("DMI: Memory slots populated: %d/%d\n",
835 		dmi_memdev_populated_nr, dmi_memdev_nr);
836 	dump_stack_set_arch_desc("%s", dmi_ids_string);
837 }
838 
839 /**
840  *	dmi_matches - check if dmi_system_id structure matches system DMI data
841  *	@dmi: pointer to the dmi_system_id structure to check
842  */
843 static bool dmi_matches(const struct dmi_system_id *dmi)
844 {
845 	int i;
846 
847 	for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
848 		int s = dmi->matches[i].slot;
849 		if (s == DMI_NONE)
850 			break;
851 		if (s == DMI_OEM_STRING) {
852 			/* DMI_OEM_STRING must be exact match */
853 			const struct dmi_device *valid;
854 
855 			valid = dmi_find_device(DMI_DEV_TYPE_OEM_STRING,
856 						dmi->matches[i].substr, NULL);
857 			if (valid)
858 				continue;
859 		} else if (dmi_ident[s]) {
860 			if (dmi->matches[i].exact_match) {
861 				if (!strcmp(dmi_ident[s],
862 					    dmi->matches[i].substr))
863 					continue;
864 			} else {
865 				if (strstr(dmi_ident[s],
866 					   dmi->matches[i].substr))
867 					continue;
868 			}
869 		}
870 
871 		/* No match */
872 		return false;
873 	}
874 	return true;
875 }
876 
877 /**
878  *	dmi_is_end_of_table - check for end-of-table marker
879  *	@dmi: pointer to the dmi_system_id structure to check
880  */
881 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
882 {
883 	return dmi->matches[0].slot == DMI_NONE;
884 }
885 
886 /**
887  *	dmi_check_system - check system DMI data
888  *	@list: array of dmi_system_id structures to match against
889  *		All non-null elements of the list must match
890  *		their slot's (field index's) data (i.e., each
891  *		list string must be a substring of the specified
892  *		DMI slot's string data) to be considered a
893  *		successful match.
894  *
895  *	Walk the blacklist table running matching functions until someone
896  *	returns non zero or we hit the end. Callback function is called for
897  *	each successful match. Returns the number of matches.
898  *
899  *	dmi_setup must be called before this function is called.
900  */
901 int dmi_check_system(const struct dmi_system_id *list)
902 {
903 	int count = 0;
904 	const struct dmi_system_id *d;
905 
906 	for (d = list; !dmi_is_end_of_table(d); d++)
907 		if (dmi_matches(d)) {
908 			count++;
909 			if (d->callback && d->callback(d))
910 				break;
911 		}
912 
913 	return count;
914 }
915 EXPORT_SYMBOL(dmi_check_system);
916 
917 /**
918  *	dmi_first_match - find dmi_system_id structure matching system DMI data
919  *	@list: array of dmi_system_id structures to match against
920  *		All non-null elements of the list must match
921  *		their slot's (field index's) data (i.e., each
922  *		list string must be a substring of the specified
923  *		DMI slot's string data) to be considered a
924  *		successful match.
925  *
926  *	Walk the blacklist table until the first match is found.  Return the
927  *	pointer to the matching entry or NULL if there's no match.
928  *
929  *	dmi_setup must be called before this function is called.
930  */
931 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
932 {
933 	const struct dmi_system_id *d;
934 
935 	for (d = list; !dmi_is_end_of_table(d); d++)
936 		if (dmi_matches(d))
937 			return d;
938 
939 	return NULL;
940 }
941 EXPORT_SYMBOL(dmi_first_match);
942 
943 /**
944  *	dmi_get_system_info - return DMI data value
945  *	@field: data index (see enum dmi_field)
946  *
947  *	Returns one DMI data value, can be used to perform
948  *	complex DMI data checks.
949  */
950 const char *dmi_get_system_info(int field)
951 {
952 	return dmi_ident[field];
953 }
954 EXPORT_SYMBOL(dmi_get_system_info);
955 
956 /**
957  * dmi_name_in_serial - Check if string is in the DMI product serial information
958  * @str: string to check for
959  */
960 int dmi_name_in_serial(const char *str)
961 {
962 	int f = DMI_PRODUCT_SERIAL;
963 	if (dmi_ident[f] && strstr(dmi_ident[f], str))
964 		return 1;
965 	return 0;
966 }
967 
968 /**
969  *	dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
970  *	@str: Case sensitive Name
971  */
972 int dmi_name_in_vendors(const char *str)
973 {
974 	static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
975 	int i;
976 	for (i = 0; fields[i] != DMI_NONE; i++) {
977 		int f = fields[i];
978 		if (dmi_ident[f] && strstr(dmi_ident[f], str))
979 			return 1;
980 	}
981 	return 0;
982 }
983 EXPORT_SYMBOL(dmi_name_in_vendors);
984 
985 /**
986  *	dmi_find_device - find onboard device by type/name
987  *	@type: device type or %DMI_DEV_TYPE_ANY to match all device types
988  *	@name: device name string or %NULL to match all
989  *	@from: previous device found in search, or %NULL for new search.
990  *
991  *	Iterates through the list of known onboard devices. If a device is
992  *	found with a matching @type and @name, a pointer to its device
993  *	structure is returned.  Otherwise, %NULL is returned.
994  *	A new search is initiated by passing %NULL as the @from argument.
995  *	If @from is not %NULL, searches continue from next device.
996  */
997 const struct dmi_device *dmi_find_device(int type, const char *name,
998 				    const struct dmi_device *from)
999 {
1000 	const struct list_head *head = from ? &from->list : &dmi_devices;
1001 	struct list_head *d;
1002 
1003 	for (d = head->next; d != &dmi_devices; d = d->next) {
1004 		const struct dmi_device *dev =
1005 			list_entry(d, struct dmi_device, list);
1006 
1007 		if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
1008 		    ((name == NULL) || (strcmp(dev->name, name) == 0)))
1009 			return dev;
1010 	}
1011 
1012 	return NULL;
1013 }
1014 EXPORT_SYMBOL(dmi_find_device);
1015 
1016 /**
1017  *	dmi_get_date - parse a DMI date
1018  *	@field:	data index (see enum dmi_field)
1019  *	@yearp: optional out parameter for the year
1020  *	@monthp: optional out parameter for the month
1021  *	@dayp: optional out parameter for the day
1022  *
1023  *	The date field is assumed to be in the form resembling
1024  *	[mm[/dd]]/yy[yy] and the result is stored in the out
1025  *	parameters any or all of which can be omitted.
1026  *
1027  *	If the field doesn't exist, all out parameters are set to zero
1028  *	and false is returned.  Otherwise, true is returned with any
1029  *	invalid part of date set to zero.
1030  *
1031  *	On return, year, month and day are guaranteed to be in the
1032  *	range of [0,9999], [0,12] and [0,31] respectively.
1033  */
1034 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
1035 {
1036 	int year = 0, month = 0, day = 0;
1037 	bool exists;
1038 	const char *s, *y;
1039 	char *e;
1040 
1041 	s = dmi_get_system_info(field);
1042 	exists = s;
1043 	if (!exists)
1044 		goto out;
1045 
1046 	/*
1047 	 * Determine year first.  We assume the date string resembles
1048 	 * mm/dd/yy[yy] but the original code extracted only the year
1049 	 * from the end.  Keep the behavior in the spirit of no
1050 	 * surprises.
1051 	 */
1052 	y = strrchr(s, '/');
1053 	if (!y)
1054 		goto out;
1055 
1056 	y++;
1057 	year = simple_strtoul(y, &e, 10);
1058 	if (y != e && year < 100) {	/* 2-digit year */
1059 		year += 1900;
1060 		if (year < 1996)	/* no dates < spec 1.0 */
1061 			year += 100;
1062 	}
1063 	if (year > 9999)		/* year should fit in %04d */
1064 		year = 0;
1065 
1066 	/* parse the mm and dd */
1067 	month = simple_strtoul(s, &e, 10);
1068 	if (s == e || *e != '/' || !month || month > 12) {
1069 		month = 0;
1070 		goto out;
1071 	}
1072 
1073 	s = e + 1;
1074 	day = simple_strtoul(s, &e, 10);
1075 	if (s == y || s == e || *e != '/' || day > 31)
1076 		day = 0;
1077 out:
1078 	if (yearp)
1079 		*yearp = year;
1080 	if (monthp)
1081 		*monthp = month;
1082 	if (dayp)
1083 		*dayp = day;
1084 	return exists;
1085 }
1086 EXPORT_SYMBOL(dmi_get_date);
1087 
1088 /**
1089  *	dmi_get_bios_year - get a year out of DMI_BIOS_DATE field
1090  *
1091  *	Returns year on success, -ENXIO if DMI is not selected,
1092  *	or a different negative error code if DMI field is not present
1093  *	or not parseable.
1094  */
1095 int dmi_get_bios_year(void)
1096 {
1097 	bool exists;
1098 	int year;
1099 
1100 	exists = dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL);
1101 	if (!exists)
1102 		return -ENODATA;
1103 
1104 	return year ? year : -ERANGE;
1105 }
1106 EXPORT_SYMBOL(dmi_get_bios_year);
1107 
1108 /**
1109  *	dmi_walk - Walk the DMI table and get called back for every record
1110  *	@decode: Callback function
1111  *	@private_data: Private data to be passed to the callback function
1112  *
1113  *	Returns 0 on success, -ENXIO if DMI is not selected or not present,
1114  *	or a different negative error code if DMI walking fails.
1115  */
1116 int dmi_walk(void (*decode)(const struct dmi_header *, void *),
1117 	     void *private_data)
1118 {
1119 	u8 *buf;
1120 
1121 	if (!dmi_available)
1122 		return -ENXIO;
1123 
1124 	buf = dmi_remap(dmi_base, dmi_len);
1125 	if (buf == NULL)
1126 		return -ENOMEM;
1127 
1128 	dmi_decode_table(buf, decode, private_data);
1129 
1130 	dmi_unmap(buf);
1131 	return 0;
1132 }
1133 EXPORT_SYMBOL_GPL(dmi_walk);
1134 
1135 /**
1136  * dmi_match - compare a string to the dmi field (if exists)
1137  * @f: DMI field identifier
1138  * @str: string to compare the DMI field to
1139  *
1140  * Returns true if the requested field equals to the str (including NULL).
1141  */
1142 bool dmi_match(enum dmi_field f, const char *str)
1143 {
1144 	const char *info = dmi_get_system_info(f);
1145 
1146 	if (info == NULL || str == NULL)
1147 		return info == str;
1148 
1149 	return !strcmp(info, str);
1150 }
1151 EXPORT_SYMBOL_GPL(dmi_match);
1152 
1153 void dmi_memdev_name(u16 handle, const char **bank, const char **device)
1154 {
1155 	int n;
1156 
1157 	if (dmi_memdev == NULL)
1158 		return;
1159 
1160 	for (n = 0; n < dmi_memdev_nr; n++) {
1161 		if (handle == dmi_memdev[n].handle) {
1162 			*bank = dmi_memdev[n].bank;
1163 			*device = dmi_memdev[n].device;
1164 			break;
1165 		}
1166 	}
1167 }
1168 EXPORT_SYMBOL_GPL(dmi_memdev_name);
1169 
1170 u64 dmi_memdev_size(u16 handle)
1171 {
1172 	int n;
1173 
1174 	if (dmi_memdev) {
1175 		for (n = 0; n < dmi_memdev_nr; n++) {
1176 			if (handle == dmi_memdev[n].handle)
1177 				return dmi_memdev[n].size;
1178 		}
1179 	}
1180 	return ~0ull;
1181 }
1182 EXPORT_SYMBOL_GPL(dmi_memdev_size);
1183 
1184 /**
1185  * dmi_memdev_type - get the memory type
1186  * @handle: DMI structure handle
1187  *
1188  * Return the DMI memory type of the module in the slot associated with the
1189  * given DMI handle, or 0x0 if no such DMI handle exists.
1190  */
1191 u8 dmi_memdev_type(u16 handle)
1192 {
1193 	int n;
1194 
1195 	if (dmi_memdev) {
1196 		for (n = 0; n < dmi_memdev_nr; n++) {
1197 			if (handle == dmi_memdev[n].handle)
1198 				return dmi_memdev[n].type;
1199 		}
1200 	}
1201 	return 0x0;	/* Not a valid value */
1202 }
1203 EXPORT_SYMBOL_GPL(dmi_memdev_type);
1204 
1205 /**
1206  *	dmi_memdev_handle - get the DMI handle of a memory slot
1207  *	@slot: slot number
1208  *
1209  *	Return the DMI handle associated with a given memory slot, or %0xFFFF
1210  *      if there is no such slot.
1211  */
1212 u16 dmi_memdev_handle(int slot)
1213 {
1214 	if (dmi_memdev && slot >= 0 && slot < dmi_memdev_nr)
1215 		return dmi_memdev[slot].handle;
1216 
1217 	return 0xffff;	/* Not a valid value */
1218 }
1219 EXPORT_SYMBOL_GPL(dmi_memdev_handle);
1220