xref: /linux/drivers/firmware/cirrus/cs_dsp.c (revision ff9fbcafbaf13346c742c0d672a22f5ac20b9d92)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * cs_dsp.c  --  Cirrus Logic DSP firmware support
4  *
5  * Based on sound/soc/codecs/wm_adsp.c
6  *
7  * Copyright 2012 Wolfson Microelectronics plc
8  * Copyright (C) 2015-2021 Cirrus Logic, Inc. and
9  *                         Cirrus Logic International Semiconductor Ltd.
10  */
11 
12 #include <linux/ctype.h>
13 #include <linux/debugfs.h>
14 #include <linux/delay.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/seq_file.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 
21 #include <linux/firmware/cirrus/cs_dsp.h>
22 #include <linux/firmware/cirrus/wmfw.h>
23 
24 #define cs_dsp_err(_dsp, fmt, ...) \
25 	dev_err(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
26 #define cs_dsp_warn(_dsp, fmt, ...) \
27 	dev_warn(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
28 #define cs_dsp_info(_dsp, fmt, ...) \
29 	dev_info(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
30 #define cs_dsp_dbg(_dsp, fmt, ...) \
31 	dev_dbg(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
32 
33 #define ADSP1_CONTROL_1                   0x00
34 #define ADSP1_CONTROL_2                   0x02
35 #define ADSP1_CONTROL_3                   0x03
36 #define ADSP1_CONTROL_4                   0x04
37 #define ADSP1_CONTROL_5                   0x06
38 #define ADSP1_CONTROL_6                   0x07
39 #define ADSP1_CONTROL_7                   0x08
40 #define ADSP1_CONTROL_8                   0x09
41 #define ADSP1_CONTROL_9                   0x0A
42 #define ADSP1_CONTROL_10                  0x0B
43 #define ADSP1_CONTROL_11                  0x0C
44 #define ADSP1_CONTROL_12                  0x0D
45 #define ADSP1_CONTROL_13                  0x0F
46 #define ADSP1_CONTROL_14                  0x10
47 #define ADSP1_CONTROL_15                  0x11
48 #define ADSP1_CONTROL_16                  0x12
49 #define ADSP1_CONTROL_17                  0x13
50 #define ADSP1_CONTROL_18                  0x14
51 #define ADSP1_CONTROL_19                  0x16
52 #define ADSP1_CONTROL_20                  0x17
53 #define ADSP1_CONTROL_21                  0x18
54 #define ADSP1_CONTROL_22                  0x1A
55 #define ADSP1_CONTROL_23                  0x1B
56 #define ADSP1_CONTROL_24                  0x1C
57 #define ADSP1_CONTROL_25                  0x1E
58 #define ADSP1_CONTROL_26                  0x20
59 #define ADSP1_CONTROL_27                  0x21
60 #define ADSP1_CONTROL_28                  0x22
61 #define ADSP1_CONTROL_29                  0x23
62 #define ADSP1_CONTROL_30                  0x24
63 #define ADSP1_CONTROL_31                  0x26
64 
65 /*
66  * ADSP1 Control 19
67  */
68 #define ADSP1_WDMA_BUFFER_LENGTH_MASK     0x00FF  /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
69 #define ADSP1_WDMA_BUFFER_LENGTH_SHIFT         0  /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
70 #define ADSP1_WDMA_BUFFER_LENGTH_WIDTH         8  /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
71 
72 /*
73  * ADSP1 Control 30
74  */
75 #define ADSP1_DBG_CLK_ENA                 0x0008  /* DSP1_DBG_CLK_ENA */
76 #define ADSP1_DBG_CLK_ENA_MASK            0x0008  /* DSP1_DBG_CLK_ENA */
77 #define ADSP1_DBG_CLK_ENA_SHIFT                3  /* DSP1_DBG_CLK_ENA */
78 #define ADSP1_DBG_CLK_ENA_WIDTH                1  /* DSP1_DBG_CLK_ENA */
79 #define ADSP1_SYS_ENA                     0x0004  /* DSP1_SYS_ENA */
80 #define ADSP1_SYS_ENA_MASK                0x0004  /* DSP1_SYS_ENA */
81 #define ADSP1_SYS_ENA_SHIFT                    2  /* DSP1_SYS_ENA */
82 #define ADSP1_SYS_ENA_WIDTH                    1  /* DSP1_SYS_ENA */
83 #define ADSP1_CORE_ENA                    0x0002  /* DSP1_CORE_ENA */
84 #define ADSP1_CORE_ENA_MASK               0x0002  /* DSP1_CORE_ENA */
85 #define ADSP1_CORE_ENA_SHIFT                   1  /* DSP1_CORE_ENA */
86 #define ADSP1_CORE_ENA_WIDTH                   1  /* DSP1_CORE_ENA */
87 #define ADSP1_START                       0x0001  /* DSP1_START */
88 #define ADSP1_START_MASK                  0x0001  /* DSP1_START */
89 #define ADSP1_START_SHIFT                      0  /* DSP1_START */
90 #define ADSP1_START_WIDTH                      1  /* DSP1_START */
91 
92 /*
93  * ADSP1 Control 31
94  */
95 #define ADSP1_CLK_SEL_MASK                0x0007  /* CLK_SEL_ENA */
96 #define ADSP1_CLK_SEL_SHIFT                    0  /* CLK_SEL_ENA */
97 #define ADSP1_CLK_SEL_WIDTH                    3  /* CLK_SEL_ENA */
98 
99 #define ADSP2_CONTROL                     0x0
100 #define ADSP2_CLOCKING                    0x1
101 #define ADSP2V2_CLOCKING                  0x2
102 #define ADSP2_STATUS1                     0x4
103 #define ADSP2_WDMA_CONFIG_1               0x30
104 #define ADSP2_WDMA_CONFIG_2               0x31
105 #define ADSP2V2_WDMA_CONFIG_2             0x32
106 #define ADSP2_RDMA_CONFIG_1               0x34
107 
108 #define ADSP2_SCRATCH0                    0x40
109 #define ADSP2_SCRATCH1                    0x41
110 #define ADSP2_SCRATCH2                    0x42
111 #define ADSP2_SCRATCH3                    0x43
112 
113 #define ADSP2V2_SCRATCH0_1                0x40
114 #define ADSP2V2_SCRATCH2_3                0x42
115 
116 /*
117  * ADSP2 Control
118  */
119 #define ADSP2_MEM_ENA                     0x0010  /* DSP1_MEM_ENA */
120 #define ADSP2_MEM_ENA_MASK                0x0010  /* DSP1_MEM_ENA */
121 #define ADSP2_MEM_ENA_SHIFT                    4  /* DSP1_MEM_ENA */
122 #define ADSP2_MEM_ENA_WIDTH                    1  /* DSP1_MEM_ENA */
123 #define ADSP2_SYS_ENA                     0x0004  /* DSP1_SYS_ENA */
124 #define ADSP2_SYS_ENA_MASK                0x0004  /* DSP1_SYS_ENA */
125 #define ADSP2_SYS_ENA_SHIFT                    2  /* DSP1_SYS_ENA */
126 #define ADSP2_SYS_ENA_WIDTH                    1  /* DSP1_SYS_ENA */
127 #define ADSP2_CORE_ENA                    0x0002  /* DSP1_CORE_ENA */
128 #define ADSP2_CORE_ENA_MASK               0x0002  /* DSP1_CORE_ENA */
129 #define ADSP2_CORE_ENA_SHIFT                   1  /* DSP1_CORE_ENA */
130 #define ADSP2_CORE_ENA_WIDTH                   1  /* DSP1_CORE_ENA */
131 #define ADSP2_START                       0x0001  /* DSP1_START */
132 #define ADSP2_START_MASK                  0x0001  /* DSP1_START */
133 #define ADSP2_START_SHIFT                      0  /* DSP1_START */
134 #define ADSP2_START_WIDTH                      1  /* DSP1_START */
135 
136 /*
137  * ADSP2 clocking
138  */
139 #define ADSP2_CLK_SEL_MASK                0x0007  /* CLK_SEL_ENA */
140 #define ADSP2_CLK_SEL_SHIFT                    0  /* CLK_SEL_ENA */
141 #define ADSP2_CLK_SEL_WIDTH                    3  /* CLK_SEL_ENA */
142 
143 /*
144  * ADSP2V2 clocking
145  */
146 #define ADSP2V2_CLK_SEL_MASK             0x70000  /* CLK_SEL_ENA */
147 #define ADSP2V2_CLK_SEL_SHIFT                 16  /* CLK_SEL_ENA */
148 #define ADSP2V2_CLK_SEL_WIDTH                  3  /* CLK_SEL_ENA */
149 
150 #define ADSP2V2_RATE_MASK                 0x7800  /* DSP_RATE */
151 #define ADSP2V2_RATE_SHIFT                    11  /* DSP_RATE */
152 #define ADSP2V2_RATE_WIDTH                     4  /* DSP_RATE */
153 
154 /*
155  * ADSP2 Status 1
156  */
157 #define ADSP2_RAM_RDY                     0x0001
158 #define ADSP2_RAM_RDY_MASK                0x0001
159 #define ADSP2_RAM_RDY_SHIFT                    0
160 #define ADSP2_RAM_RDY_WIDTH                    1
161 
162 /*
163  * ADSP2 Lock support
164  */
165 #define ADSP2_LOCK_CODE_0                    0x5555
166 #define ADSP2_LOCK_CODE_1                    0xAAAA
167 
168 #define ADSP2_WATCHDOG                       0x0A
169 #define ADSP2_BUS_ERR_ADDR                   0x52
170 #define ADSP2_REGION_LOCK_STATUS             0x64
171 #define ADSP2_LOCK_REGION_1_LOCK_REGION_0    0x66
172 #define ADSP2_LOCK_REGION_3_LOCK_REGION_2    0x68
173 #define ADSP2_LOCK_REGION_5_LOCK_REGION_4    0x6A
174 #define ADSP2_LOCK_REGION_7_LOCK_REGION_6    0x6C
175 #define ADSP2_LOCK_REGION_9_LOCK_REGION_8    0x6E
176 #define ADSP2_LOCK_REGION_CTRL               0x7A
177 #define ADSP2_PMEM_ERR_ADDR_XMEM_ERR_ADDR    0x7C
178 
179 #define ADSP2_REGION_LOCK_ERR_MASK           0x8000
180 #define ADSP2_ADDR_ERR_MASK                  0x4000
181 #define ADSP2_WDT_TIMEOUT_STS_MASK           0x2000
182 #define ADSP2_CTRL_ERR_PAUSE_ENA             0x0002
183 #define ADSP2_CTRL_ERR_EINT                  0x0001
184 
185 #define ADSP2_BUS_ERR_ADDR_MASK              0x00FFFFFF
186 #define ADSP2_XMEM_ERR_ADDR_MASK             0x0000FFFF
187 #define ADSP2_PMEM_ERR_ADDR_MASK             0x7FFF0000
188 #define ADSP2_PMEM_ERR_ADDR_SHIFT            16
189 #define ADSP2_WDT_ENA_MASK                   0xFFFFFFFD
190 
191 #define ADSP2_LOCK_REGION_SHIFT              16
192 
193 /*
194  * Event control messages
195  */
196 #define CS_DSP_FW_EVENT_SHUTDOWN             0x000001
197 
198 /*
199  * HALO system info
200  */
201 #define HALO_AHBM_WINDOW_DEBUG_0             0x02040
202 #define HALO_AHBM_WINDOW_DEBUG_1             0x02044
203 
204 /*
205  * HALO core
206  */
207 #define HALO_SCRATCH1                        0x005c0
208 #define HALO_SCRATCH2                        0x005c8
209 #define HALO_SCRATCH3                        0x005d0
210 #define HALO_SCRATCH4                        0x005d8
211 #define HALO_CCM_CORE_CONTROL                0x41000
212 #define HALO_CORE_SOFT_RESET                 0x00010
213 #define HALO_WDT_CONTROL                     0x47000
214 
215 /*
216  * HALO MPU banks
217  */
218 #define HALO_MPU_XMEM_ACCESS_0               0x43000
219 #define HALO_MPU_YMEM_ACCESS_0               0x43004
220 #define HALO_MPU_WINDOW_ACCESS_0             0x43008
221 #define HALO_MPU_XREG_ACCESS_0               0x4300C
222 #define HALO_MPU_YREG_ACCESS_0               0x43014
223 #define HALO_MPU_XMEM_ACCESS_1               0x43018
224 #define HALO_MPU_YMEM_ACCESS_1               0x4301C
225 #define HALO_MPU_WINDOW_ACCESS_1             0x43020
226 #define HALO_MPU_XREG_ACCESS_1               0x43024
227 #define HALO_MPU_YREG_ACCESS_1               0x4302C
228 #define HALO_MPU_XMEM_ACCESS_2               0x43030
229 #define HALO_MPU_YMEM_ACCESS_2               0x43034
230 #define HALO_MPU_WINDOW_ACCESS_2             0x43038
231 #define HALO_MPU_XREG_ACCESS_2               0x4303C
232 #define HALO_MPU_YREG_ACCESS_2               0x43044
233 #define HALO_MPU_XMEM_ACCESS_3               0x43048
234 #define HALO_MPU_YMEM_ACCESS_3               0x4304C
235 #define HALO_MPU_WINDOW_ACCESS_3             0x43050
236 #define HALO_MPU_XREG_ACCESS_3               0x43054
237 #define HALO_MPU_YREG_ACCESS_3               0x4305C
238 #define HALO_MPU_XM_VIO_ADDR                 0x43100
239 #define HALO_MPU_XM_VIO_STATUS               0x43104
240 #define HALO_MPU_YM_VIO_ADDR                 0x43108
241 #define HALO_MPU_YM_VIO_STATUS               0x4310C
242 #define HALO_MPU_PM_VIO_ADDR                 0x43110
243 #define HALO_MPU_PM_VIO_STATUS               0x43114
244 #define HALO_MPU_LOCK_CONFIG                 0x43140
245 
246 /*
247  * HALO_AHBM_WINDOW_DEBUG_1
248  */
249 #define HALO_AHBM_CORE_ERR_ADDR_MASK         0x0fffff00
250 #define HALO_AHBM_CORE_ERR_ADDR_SHIFT                 8
251 #define HALO_AHBM_FLAGS_ERR_MASK             0x000000ff
252 
253 /*
254  * HALO_CCM_CORE_CONTROL
255  */
256 #define HALO_CORE_RESET                     0x00000200
257 #define HALO_CORE_EN                        0x00000001
258 
259 /*
260  * HALO_CORE_SOFT_RESET
261  */
262 #define HALO_CORE_SOFT_RESET_MASK           0x00000001
263 
264 /*
265  * HALO_WDT_CONTROL
266  */
267 #define HALO_WDT_EN_MASK                    0x00000001
268 
269 /*
270  * HALO_MPU_?M_VIO_STATUS
271  */
272 #define HALO_MPU_VIO_STS_MASK               0x007e0000
273 #define HALO_MPU_VIO_STS_SHIFT                      17
274 #define HALO_MPU_VIO_ERR_WR_MASK            0x00008000
275 #define HALO_MPU_VIO_ERR_SRC_MASK           0x00007fff
276 #define HALO_MPU_VIO_ERR_SRC_SHIFT                   0
277 
278 struct cs_dsp_ops {
279 	bool (*validate_version)(struct cs_dsp *dsp, unsigned int version);
280 	unsigned int (*parse_sizes)(struct cs_dsp *dsp,
281 				    const char * const file,
282 				    unsigned int pos,
283 				    const struct firmware *firmware);
284 	int (*setup_algs)(struct cs_dsp *dsp);
285 	unsigned int (*region_to_reg)(struct cs_dsp_region const *mem,
286 				      unsigned int offset);
287 
288 	void (*show_fw_status)(struct cs_dsp *dsp);
289 	void (*stop_watchdog)(struct cs_dsp *dsp);
290 
291 	int (*enable_memory)(struct cs_dsp *dsp);
292 	void (*disable_memory)(struct cs_dsp *dsp);
293 	int (*lock_memory)(struct cs_dsp *dsp, unsigned int lock_regions);
294 
295 	int (*enable_core)(struct cs_dsp *dsp);
296 	void (*disable_core)(struct cs_dsp *dsp);
297 
298 	int (*start_core)(struct cs_dsp *dsp);
299 	void (*stop_core)(struct cs_dsp *dsp);
300 };
301 
302 static const struct cs_dsp_ops cs_dsp_adsp1_ops;
303 static const struct cs_dsp_ops cs_dsp_adsp2_ops[];
304 static const struct cs_dsp_ops cs_dsp_halo_ops;
305 static const struct cs_dsp_ops cs_dsp_halo_ao_ops;
306 
307 struct cs_dsp_buf {
308 	struct list_head list;
309 	void *buf;
310 };
311 
312 static struct cs_dsp_buf *cs_dsp_buf_alloc(const void *src, size_t len,
313 					   struct list_head *list)
314 {
315 	struct cs_dsp_buf *buf = kzalloc(sizeof(*buf), GFP_KERNEL);
316 
317 	if (buf == NULL)
318 		return NULL;
319 
320 	buf->buf = vmalloc(len);
321 	if (!buf->buf) {
322 		kfree(buf);
323 		return NULL;
324 	}
325 	memcpy(buf->buf, src, len);
326 
327 	if (list)
328 		list_add_tail(&buf->list, list);
329 
330 	return buf;
331 }
332 
333 static void cs_dsp_buf_free(struct list_head *list)
334 {
335 	while (!list_empty(list)) {
336 		struct cs_dsp_buf *buf = list_first_entry(list,
337 							  struct cs_dsp_buf,
338 							  list);
339 		list_del(&buf->list);
340 		vfree(buf->buf);
341 		kfree(buf);
342 	}
343 }
344 
345 /**
346  * cs_dsp_mem_region_name() - Return a name string for a memory type
347  * @type: the memory type to match
348  *
349  * Return: A const string identifying the memory region.
350  */
351 const char *cs_dsp_mem_region_name(unsigned int type)
352 {
353 	switch (type) {
354 	case WMFW_ADSP1_PM:
355 		return "PM";
356 	case WMFW_HALO_PM_PACKED:
357 		return "PM_PACKED";
358 	case WMFW_ADSP1_DM:
359 		return "DM";
360 	case WMFW_ADSP2_XM:
361 		return "XM";
362 	case WMFW_HALO_XM_PACKED:
363 		return "XM_PACKED";
364 	case WMFW_ADSP2_YM:
365 		return "YM";
366 	case WMFW_HALO_YM_PACKED:
367 		return "YM_PACKED";
368 	case WMFW_ADSP1_ZM:
369 		return "ZM";
370 	default:
371 		return NULL;
372 	}
373 }
374 EXPORT_SYMBOL_NS_GPL(cs_dsp_mem_region_name, FW_CS_DSP);
375 
376 #ifdef CONFIG_DEBUG_FS
377 static void cs_dsp_debugfs_save_wmfwname(struct cs_dsp *dsp, const char *s)
378 {
379 	char *tmp = kasprintf(GFP_KERNEL, "%s\n", s);
380 
381 	kfree(dsp->wmfw_file_name);
382 	dsp->wmfw_file_name = tmp;
383 }
384 
385 static void cs_dsp_debugfs_save_binname(struct cs_dsp *dsp, const char *s)
386 {
387 	char *tmp = kasprintf(GFP_KERNEL, "%s\n", s);
388 
389 	kfree(dsp->bin_file_name);
390 	dsp->bin_file_name = tmp;
391 }
392 
393 static void cs_dsp_debugfs_clear(struct cs_dsp *dsp)
394 {
395 	kfree(dsp->wmfw_file_name);
396 	kfree(dsp->bin_file_name);
397 	dsp->wmfw_file_name = NULL;
398 	dsp->bin_file_name = NULL;
399 }
400 
401 static ssize_t cs_dsp_debugfs_wmfw_read(struct file *file,
402 					char __user *user_buf,
403 					size_t count, loff_t *ppos)
404 {
405 	struct cs_dsp *dsp = file->private_data;
406 	ssize_t ret;
407 
408 	mutex_lock(&dsp->pwr_lock);
409 
410 	if (!dsp->wmfw_file_name || !dsp->booted)
411 		ret = 0;
412 	else
413 		ret = simple_read_from_buffer(user_buf, count, ppos,
414 					      dsp->wmfw_file_name,
415 					      strlen(dsp->wmfw_file_name));
416 
417 	mutex_unlock(&dsp->pwr_lock);
418 	return ret;
419 }
420 
421 static ssize_t cs_dsp_debugfs_bin_read(struct file *file,
422 				       char __user *user_buf,
423 				       size_t count, loff_t *ppos)
424 {
425 	struct cs_dsp *dsp = file->private_data;
426 	ssize_t ret;
427 
428 	mutex_lock(&dsp->pwr_lock);
429 
430 	if (!dsp->bin_file_name || !dsp->booted)
431 		ret = 0;
432 	else
433 		ret = simple_read_from_buffer(user_buf, count, ppos,
434 					      dsp->bin_file_name,
435 					      strlen(dsp->bin_file_name));
436 
437 	mutex_unlock(&dsp->pwr_lock);
438 	return ret;
439 }
440 
441 static const struct {
442 	const char *name;
443 	const struct file_operations fops;
444 } cs_dsp_debugfs_fops[] = {
445 	{
446 		.name = "wmfw_file_name",
447 		.fops = {
448 			.open = simple_open,
449 			.read = cs_dsp_debugfs_wmfw_read,
450 		},
451 	},
452 	{
453 		.name = "bin_file_name",
454 		.fops = {
455 			.open = simple_open,
456 			.read = cs_dsp_debugfs_bin_read,
457 		},
458 	},
459 };
460 
461 static int cs_dsp_coeff_base_reg(struct cs_dsp_coeff_ctl *ctl, unsigned int *reg,
462 				 unsigned int off);
463 
464 static int cs_dsp_debugfs_read_controls_show(struct seq_file *s, void *ignored)
465 {
466 	struct cs_dsp *dsp = s->private;
467 	struct cs_dsp_coeff_ctl *ctl;
468 	unsigned int reg;
469 
470 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
471 		cs_dsp_coeff_base_reg(ctl, &reg, 0);
472 		seq_printf(s, "%22.*s: %#8zx %s:%08x %#8x %s %#8x %#4x %c%c%c%c %s %s\n",
473 			   ctl->subname_len, ctl->subname, ctl->len,
474 			   cs_dsp_mem_region_name(ctl->alg_region.type),
475 			   ctl->offset, reg, ctl->fw_name, ctl->alg_region.alg, ctl->type,
476 			   ctl->flags & WMFW_CTL_FLAG_VOLATILE ? 'V' : '-',
477 			   ctl->flags & WMFW_CTL_FLAG_SYS ? 'S' : '-',
478 			   ctl->flags & WMFW_CTL_FLAG_READABLE ? 'R' : '-',
479 			   ctl->flags & WMFW_CTL_FLAG_WRITEABLE ? 'W' : '-',
480 			   ctl->enabled ? "enabled" : "disabled",
481 			   ctl->set ? "dirty" : "clean");
482 	}
483 
484 	return 0;
485 }
486 DEFINE_SHOW_ATTRIBUTE(cs_dsp_debugfs_read_controls);
487 
488 /**
489  * cs_dsp_init_debugfs() - Create and populate DSP representation in debugfs
490  * @dsp: pointer to DSP structure
491  * @debugfs_root: pointer to debugfs directory in which to create this DSP
492  *                representation
493  */
494 void cs_dsp_init_debugfs(struct cs_dsp *dsp, struct dentry *debugfs_root)
495 {
496 	struct dentry *root = NULL;
497 	int i;
498 
499 	root = debugfs_create_dir(dsp->name, debugfs_root);
500 
501 	debugfs_create_bool("booted", 0444, root, &dsp->booted);
502 	debugfs_create_bool("running", 0444, root, &dsp->running);
503 	debugfs_create_x32("fw_id", 0444, root, &dsp->fw_id);
504 	debugfs_create_x32("fw_version", 0444, root, &dsp->fw_id_version);
505 
506 	for (i = 0; i < ARRAY_SIZE(cs_dsp_debugfs_fops); ++i)
507 		debugfs_create_file(cs_dsp_debugfs_fops[i].name, 0444, root,
508 				    dsp, &cs_dsp_debugfs_fops[i].fops);
509 
510 	debugfs_create_file("controls", 0444, root, dsp,
511 			    &cs_dsp_debugfs_read_controls_fops);
512 
513 	dsp->debugfs_root = root;
514 }
515 EXPORT_SYMBOL_NS_GPL(cs_dsp_init_debugfs, FW_CS_DSP);
516 
517 /**
518  * cs_dsp_cleanup_debugfs() - Removes DSP representation from debugfs
519  * @dsp: pointer to DSP structure
520  */
521 void cs_dsp_cleanup_debugfs(struct cs_dsp *dsp)
522 {
523 	cs_dsp_debugfs_clear(dsp);
524 	debugfs_remove_recursive(dsp->debugfs_root);
525 	dsp->debugfs_root = ERR_PTR(-ENODEV);
526 }
527 EXPORT_SYMBOL_NS_GPL(cs_dsp_cleanup_debugfs, FW_CS_DSP);
528 #else
529 void cs_dsp_init_debugfs(struct cs_dsp *dsp, struct dentry *debugfs_root)
530 {
531 }
532 EXPORT_SYMBOL_NS_GPL(cs_dsp_init_debugfs, FW_CS_DSP);
533 
534 void cs_dsp_cleanup_debugfs(struct cs_dsp *dsp)
535 {
536 }
537 EXPORT_SYMBOL_NS_GPL(cs_dsp_cleanup_debugfs, FW_CS_DSP);
538 
539 static inline void cs_dsp_debugfs_save_wmfwname(struct cs_dsp *dsp,
540 						const char *s)
541 {
542 }
543 
544 static inline void cs_dsp_debugfs_save_binname(struct cs_dsp *dsp,
545 					       const char *s)
546 {
547 }
548 
549 static inline void cs_dsp_debugfs_clear(struct cs_dsp *dsp)
550 {
551 }
552 #endif
553 
554 static const struct cs_dsp_region *cs_dsp_find_region(struct cs_dsp *dsp,
555 						      int type)
556 {
557 	int i;
558 
559 	for (i = 0; i < dsp->num_mems; i++)
560 		if (dsp->mem[i].type == type)
561 			return &dsp->mem[i];
562 
563 	return NULL;
564 }
565 
566 static unsigned int cs_dsp_region_to_reg(struct cs_dsp_region const *mem,
567 					 unsigned int offset)
568 {
569 	switch (mem->type) {
570 	case WMFW_ADSP1_PM:
571 		return mem->base + (offset * 3);
572 	case WMFW_ADSP1_DM:
573 	case WMFW_ADSP2_XM:
574 	case WMFW_ADSP2_YM:
575 	case WMFW_ADSP1_ZM:
576 		return mem->base + (offset * 2);
577 	default:
578 		WARN(1, "Unknown memory region type");
579 		return offset;
580 	}
581 }
582 
583 static unsigned int cs_dsp_halo_region_to_reg(struct cs_dsp_region const *mem,
584 					      unsigned int offset)
585 {
586 	switch (mem->type) {
587 	case WMFW_ADSP2_XM:
588 	case WMFW_ADSP2_YM:
589 		return mem->base + (offset * 4);
590 	case WMFW_HALO_XM_PACKED:
591 	case WMFW_HALO_YM_PACKED:
592 		return (mem->base + (offset * 3)) & ~0x3;
593 	case WMFW_HALO_PM_PACKED:
594 		return mem->base + (offset * 5);
595 	default:
596 		WARN(1, "Unknown memory region type");
597 		return offset;
598 	}
599 }
600 
601 static void cs_dsp_read_fw_status(struct cs_dsp *dsp,
602 				  int noffs, unsigned int *offs)
603 {
604 	unsigned int i;
605 	int ret;
606 
607 	for (i = 0; i < noffs; ++i) {
608 		ret = regmap_read(dsp->regmap, dsp->base + offs[i], &offs[i]);
609 		if (ret) {
610 			cs_dsp_err(dsp, "Failed to read SCRATCH%u: %d\n", i, ret);
611 			return;
612 		}
613 	}
614 }
615 
616 static void cs_dsp_adsp2_show_fw_status(struct cs_dsp *dsp)
617 {
618 	unsigned int offs[] = {
619 		ADSP2_SCRATCH0, ADSP2_SCRATCH1, ADSP2_SCRATCH2, ADSP2_SCRATCH3,
620 	};
621 
622 	cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
623 
624 	cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
625 		   offs[0], offs[1], offs[2], offs[3]);
626 }
627 
628 static void cs_dsp_adsp2v2_show_fw_status(struct cs_dsp *dsp)
629 {
630 	unsigned int offs[] = { ADSP2V2_SCRATCH0_1, ADSP2V2_SCRATCH2_3 };
631 
632 	cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
633 
634 	cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
635 		   offs[0] & 0xFFFF, offs[0] >> 16,
636 		   offs[1] & 0xFFFF, offs[1] >> 16);
637 }
638 
639 static void cs_dsp_halo_show_fw_status(struct cs_dsp *dsp)
640 {
641 	unsigned int offs[] = {
642 		HALO_SCRATCH1, HALO_SCRATCH2, HALO_SCRATCH3, HALO_SCRATCH4,
643 	};
644 
645 	cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
646 
647 	cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
648 		   offs[0], offs[1], offs[2], offs[3]);
649 }
650 
651 static int cs_dsp_coeff_base_reg(struct cs_dsp_coeff_ctl *ctl, unsigned int *reg,
652 				 unsigned int off)
653 {
654 	const struct cs_dsp_alg_region *alg_region = &ctl->alg_region;
655 	struct cs_dsp *dsp = ctl->dsp;
656 	const struct cs_dsp_region *mem;
657 
658 	mem = cs_dsp_find_region(dsp, alg_region->type);
659 	if (!mem) {
660 		cs_dsp_err(dsp, "No base for region %x\n",
661 			   alg_region->type);
662 		return -EINVAL;
663 	}
664 
665 	*reg = dsp->ops->region_to_reg(mem, ctl->alg_region.base + ctl->offset + off);
666 
667 	return 0;
668 }
669 
670 /**
671  * cs_dsp_coeff_write_acked_control() - Sends event_id to the acked control
672  * @ctl: pointer to acked coefficient control
673  * @event_id: the value to write to the given acked control
674  *
675  * Once the value has been written to the control the function shall block
676  * until the running firmware acknowledges the write or timeout is exceeded.
677  *
678  * Must be called with pwr_lock held.
679  *
680  * Return: Zero for success, a negative number on error.
681  */
682 int cs_dsp_coeff_write_acked_control(struct cs_dsp_coeff_ctl *ctl, unsigned int event_id)
683 {
684 	struct cs_dsp *dsp = ctl->dsp;
685 	__be32 val = cpu_to_be32(event_id);
686 	unsigned int reg;
687 	int i, ret;
688 
689 	lockdep_assert_held(&dsp->pwr_lock);
690 
691 	if (!dsp->running)
692 		return -EPERM;
693 
694 	ret = cs_dsp_coeff_base_reg(ctl, &reg, 0);
695 	if (ret)
696 		return ret;
697 
698 	cs_dsp_dbg(dsp, "Sending 0x%x to acked control alg 0x%x %s:0x%x\n",
699 		   event_id, ctl->alg_region.alg,
700 		   cs_dsp_mem_region_name(ctl->alg_region.type), ctl->offset);
701 
702 	ret = regmap_raw_write(dsp->regmap, reg, &val, sizeof(val));
703 	if (ret) {
704 		cs_dsp_err(dsp, "Failed to write %x: %d\n", reg, ret);
705 		return ret;
706 	}
707 
708 	/*
709 	 * Poll for ack, we initially poll at ~1ms intervals for firmwares
710 	 * that respond quickly, then go to ~10ms polls. A firmware is unlikely
711 	 * to ack instantly so we do the first 1ms delay before reading the
712 	 * control to avoid a pointless bus transaction
713 	 */
714 	for (i = 0; i < CS_DSP_ACKED_CTL_TIMEOUT_MS;) {
715 		switch (i) {
716 		case 0 ... CS_DSP_ACKED_CTL_N_QUICKPOLLS - 1:
717 			usleep_range(1000, 2000);
718 			i++;
719 			break;
720 		default:
721 			usleep_range(10000, 20000);
722 			i += 10;
723 			break;
724 		}
725 
726 		ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val));
727 		if (ret) {
728 			cs_dsp_err(dsp, "Failed to read %x: %d\n", reg, ret);
729 			return ret;
730 		}
731 
732 		if (val == 0) {
733 			cs_dsp_dbg(dsp, "Acked control ACKED at poll %u\n", i);
734 			return 0;
735 		}
736 	}
737 
738 	cs_dsp_warn(dsp, "Acked control @0x%x alg:0x%x %s:0x%x timed out\n",
739 		    reg, ctl->alg_region.alg,
740 		    cs_dsp_mem_region_name(ctl->alg_region.type),
741 		    ctl->offset);
742 
743 	return -ETIMEDOUT;
744 }
745 EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_write_acked_control, FW_CS_DSP);
746 
747 static int cs_dsp_coeff_write_ctrl_raw(struct cs_dsp_coeff_ctl *ctl,
748 				       unsigned int off, const void *buf, size_t len)
749 {
750 	struct cs_dsp *dsp = ctl->dsp;
751 	void *scratch;
752 	int ret;
753 	unsigned int reg;
754 
755 	ret = cs_dsp_coeff_base_reg(ctl, &reg, off);
756 	if (ret)
757 		return ret;
758 
759 	scratch = kmemdup(buf, len, GFP_KERNEL | GFP_DMA);
760 	if (!scratch)
761 		return -ENOMEM;
762 
763 	ret = regmap_raw_write(dsp->regmap, reg, scratch,
764 			       len);
765 	if (ret) {
766 		cs_dsp_err(dsp, "Failed to write %zu bytes to %x: %d\n",
767 			   len, reg, ret);
768 		kfree(scratch);
769 		return ret;
770 	}
771 	cs_dsp_dbg(dsp, "Wrote %zu bytes to %x\n", len, reg);
772 
773 	kfree(scratch);
774 
775 	return 0;
776 }
777 
778 /**
779  * cs_dsp_coeff_write_ctrl() - Writes the given buffer to the given coefficient control
780  * @ctl: pointer to coefficient control
781  * @off: word offset at which data should be written
782  * @buf: the buffer to write to the given control
783  * @len: the length of the buffer in bytes
784  *
785  * Must be called with pwr_lock held.
786  *
787  * Return: < 0 on error, 1 when the control value changed and 0 when it has not.
788  */
789 int cs_dsp_coeff_write_ctrl(struct cs_dsp_coeff_ctl *ctl,
790 			    unsigned int off, const void *buf, size_t len)
791 {
792 	int ret = 0;
793 
794 	if (!ctl)
795 		return -ENOENT;
796 
797 	lockdep_assert_held(&ctl->dsp->pwr_lock);
798 
799 	if (len + off * sizeof(u32) > ctl->len)
800 		return -EINVAL;
801 
802 	if (ctl->flags & WMFW_CTL_FLAG_VOLATILE) {
803 		ret = -EPERM;
804 	} else if (buf != ctl->cache) {
805 		if (memcmp(ctl->cache + off * sizeof(u32), buf, len))
806 			memcpy(ctl->cache + off * sizeof(u32), buf, len);
807 		else
808 			return 0;
809 	}
810 
811 	ctl->set = 1;
812 	if (ctl->enabled && ctl->dsp->running)
813 		ret = cs_dsp_coeff_write_ctrl_raw(ctl, off, buf, len);
814 
815 	if (ret < 0)
816 		return ret;
817 
818 	return 1;
819 }
820 EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_write_ctrl, FW_CS_DSP);
821 
822 /**
823  * cs_dsp_coeff_lock_and_write_ctrl() - Writes the given buffer to the given coefficient control
824  * @ctl: pointer to coefficient control
825  * @off: word offset at which data should be written
826  * @buf: the buffer to write to the given control
827  * @len: the length of the buffer in bytes
828  *
829  * Same as cs_dsp_coeff_write_ctrl() but takes pwr_lock.
830  *
831  * Return: A negative number on error, 1 when the control value changed and 0 when it has not.
832  */
833 int cs_dsp_coeff_lock_and_write_ctrl(struct cs_dsp_coeff_ctl *ctl,
834 				     unsigned int off, const void *buf, size_t len)
835 {
836 	struct cs_dsp *dsp = ctl->dsp;
837 	int ret;
838 
839 	lockdep_assert_not_held(&dsp->pwr_lock);
840 
841 	mutex_lock(&dsp->pwr_lock);
842 	ret = cs_dsp_coeff_write_ctrl(ctl, off, buf, len);
843 	mutex_unlock(&dsp->pwr_lock);
844 
845 	return ret;
846 }
847 EXPORT_SYMBOL_GPL(cs_dsp_coeff_lock_and_write_ctrl);
848 
849 static int cs_dsp_coeff_read_ctrl_raw(struct cs_dsp_coeff_ctl *ctl,
850 				      unsigned int off, void *buf, size_t len)
851 {
852 	struct cs_dsp *dsp = ctl->dsp;
853 	void *scratch;
854 	int ret;
855 	unsigned int reg;
856 
857 	ret = cs_dsp_coeff_base_reg(ctl, &reg, off);
858 	if (ret)
859 		return ret;
860 
861 	scratch = kmalloc(len, GFP_KERNEL | GFP_DMA);
862 	if (!scratch)
863 		return -ENOMEM;
864 
865 	ret = regmap_raw_read(dsp->regmap, reg, scratch, len);
866 	if (ret) {
867 		cs_dsp_err(dsp, "Failed to read %zu bytes from %x: %d\n",
868 			   len, reg, ret);
869 		kfree(scratch);
870 		return ret;
871 	}
872 	cs_dsp_dbg(dsp, "Read %zu bytes from %x\n", len, reg);
873 
874 	memcpy(buf, scratch, len);
875 	kfree(scratch);
876 
877 	return 0;
878 }
879 
880 /**
881  * cs_dsp_coeff_read_ctrl() - Reads the given coefficient control into the given buffer
882  * @ctl: pointer to coefficient control
883  * @off: word offset at which data should be read
884  * @buf: the buffer to store to the given control
885  * @len: the length of the buffer in bytes
886  *
887  * Must be called with pwr_lock held.
888  *
889  * Return: Zero for success, a negative number on error.
890  */
891 int cs_dsp_coeff_read_ctrl(struct cs_dsp_coeff_ctl *ctl,
892 			   unsigned int off, void *buf, size_t len)
893 {
894 	int ret = 0;
895 
896 	if (!ctl)
897 		return -ENOENT;
898 
899 	lockdep_assert_held(&ctl->dsp->pwr_lock);
900 
901 	if (len + off * sizeof(u32) > ctl->len)
902 		return -EINVAL;
903 
904 	if (ctl->flags & WMFW_CTL_FLAG_VOLATILE) {
905 		if (ctl->enabled && ctl->dsp->running)
906 			return cs_dsp_coeff_read_ctrl_raw(ctl, off, buf, len);
907 		else
908 			return -EPERM;
909 	} else {
910 		if (!ctl->flags && ctl->enabled && ctl->dsp->running)
911 			ret = cs_dsp_coeff_read_ctrl_raw(ctl, 0, ctl->cache, ctl->len);
912 
913 		if (buf != ctl->cache)
914 			memcpy(buf, ctl->cache + off * sizeof(u32), len);
915 	}
916 
917 	return ret;
918 }
919 EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_read_ctrl, FW_CS_DSP);
920 
921 /**
922  * cs_dsp_coeff_lock_and_read_ctrl() - Reads the given coefficient control into the given buffer
923  * @ctl: pointer to coefficient control
924  * @off: word offset at which data should be read
925  * @buf: the buffer to store to the given control
926  * @len: the length of the buffer in bytes
927  *
928  * Same as cs_dsp_coeff_read_ctrl() but takes pwr_lock.
929  *
930  * Return: Zero for success, a negative number on error.
931  */
932 int cs_dsp_coeff_lock_and_read_ctrl(struct cs_dsp_coeff_ctl *ctl,
933 				    unsigned int off, void *buf, size_t len)
934 {
935 	struct cs_dsp *dsp = ctl->dsp;
936 	int ret;
937 
938 	lockdep_assert_not_held(&dsp->pwr_lock);
939 
940 	mutex_lock(&dsp->pwr_lock);
941 	ret = cs_dsp_coeff_read_ctrl(ctl, off, buf, len);
942 	mutex_unlock(&dsp->pwr_lock);
943 
944 	return ret;
945 }
946 EXPORT_SYMBOL_GPL(cs_dsp_coeff_lock_and_read_ctrl);
947 
948 static int cs_dsp_coeff_init_control_caches(struct cs_dsp *dsp)
949 {
950 	struct cs_dsp_coeff_ctl *ctl;
951 	int ret;
952 
953 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
954 		if (!ctl->enabled || ctl->set)
955 			continue;
956 		if (ctl->flags & WMFW_CTL_FLAG_VOLATILE)
957 			continue;
958 
959 		/*
960 		 * For readable controls populate the cache from the DSP memory.
961 		 * For non-readable controls the cache was zero-filled when
962 		 * created so we don't need to do anything.
963 		 */
964 		if (!ctl->flags || (ctl->flags & WMFW_CTL_FLAG_READABLE)) {
965 			ret = cs_dsp_coeff_read_ctrl_raw(ctl, 0, ctl->cache, ctl->len);
966 			if (ret < 0)
967 				return ret;
968 		}
969 	}
970 
971 	return 0;
972 }
973 
974 static int cs_dsp_coeff_sync_controls(struct cs_dsp *dsp)
975 {
976 	struct cs_dsp_coeff_ctl *ctl;
977 	int ret;
978 
979 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
980 		if (!ctl->enabled)
981 			continue;
982 		if (ctl->set && !(ctl->flags & WMFW_CTL_FLAG_VOLATILE)) {
983 			ret = cs_dsp_coeff_write_ctrl_raw(ctl, 0, ctl->cache,
984 							  ctl->len);
985 			if (ret < 0)
986 				return ret;
987 		}
988 	}
989 
990 	return 0;
991 }
992 
993 static void cs_dsp_signal_event_controls(struct cs_dsp *dsp,
994 					 unsigned int event)
995 {
996 	struct cs_dsp_coeff_ctl *ctl;
997 	int ret;
998 
999 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
1000 		if (ctl->type != WMFW_CTL_TYPE_HOSTEVENT)
1001 			continue;
1002 
1003 		if (!ctl->enabled)
1004 			continue;
1005 
1006 		ret = cs_dsp_coeff_write_acked_control(ctl, event);
1007 		if (ret)
1008 			cs_dsp_warn(dsp,
1009 				    "Failed to send 0x%x event to alg 0x%x (%d)\n",
1010 				    event, ctl->alg_region.alg, ret);
1011 	}
1012 }
1013 
1014 static void cs_dsp_free_ctl_blk(struct cs_dsp_coeff_ctl *ctl)
1015 {
1016 	kfree(ctl->cache);
1017 	kfree(ctl->subname);
1018 	kfree(ctl);
1019 }
1020 
1021 static int cs_dsp_create_control(struct cs_dsp *dsp,
1022 				 const struct cs_dsp_alg_region *alg_region,
1023 				 unsigned int offset, unsigned int len,
1024 				 const char *subname, unsigned int subname_len,
1025 				 unsigned int flags, unsigned int type)
1026 {
1027 	struct cs_dsp_coeff_ctl *ctl;
1028 	int ret;
1029 
1030 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
1031 		if (ctl->fw_name == dsp->fw_name &&
1032 		    ctl->alg_region.alg == alg_region->alg &&
1033 		    ctl->alg_region.type == alg_region->type) {
1034 			if ((!subname && !ctl->subname) ||
1035 			    (subname && (ctl->subname_len == subname_len) &&
1036 			     !strncmp(ctl->subname, subname, ctl->subname_len))) {
1037 				if (!ctl->enabled)
1038 					ctl->enabled = 1;
1039 				return 0;
1040 			}
1041 		}
1042 	}
1043 
1044 	ctl = kzalloc(sizeof(*ctl), GFP_KERNEL);
1045 	if (!ctl)
1046 		return -ENOMEM;
1047 
1048 	ctl->fw_name = dsp->fw_name;
1049 	ctl->alg_region = *alg_region;
1050 	if (subname && dsp->fw_ver >= 2) {
1051 		ctl->subname_len = subname_len;
1052 		ctl->subname = kasprintf(GFP_KERNEL, "%.*s", subname_len, subname);
1053 		if (!ctl->subname) {
1054 			ret = -ENOMEM;
1055 			goto err_ctl;
1056 		}
1057 	}
1058 	ctl->enabled = 1;
1059 	ctl->set = 0;
1060 	ctl->dsp = dsp;
1061 
1062 	ctl->flags = flags;
1063 	ctl->type = type;
1064 	ctl->offset = offset;
1065 	ctl->len = len;
1066 	ctl->cache = kzalloc(ctl->len, GFP_KERNEL);
1067 	if (!ctl->cache) {
1068 		ret = -ENOMEM;
1069 		goto err_ctl_subname;
1070 	}
1071 
1072 	list_add(&ctl->list, &dsp->ctl_list);
1073 
1074 	if (dsp->client_ops->control_add) {
1075 		ret = dsp->client_ops->control_add(ctl);
1076 		if (ret)
1077 			goto err_list_del;
1078 	}
1079 
1080 	return 0;
1081 
1082 err_list_del:
1083 	list_del(&ctl->list);
1084 	kfree(ctl->cache);
1085 err_ctl_subname:
1086 	kfree(ctl->subname);
1087 err_ctl:
1088 	kfree(ctl);
1089 
1090 	return ret;
1091 }
1092 
1093 struct cs_dsp_coeff_parsed_alg {
1094 	int id;
1095 	const u8 *name;
1096 	int name_len;
1097 	int ncoeff;
1098 };
1099 
1100 struct cs_dsp_coeff_parsed_coeff {
1101 	int offset;
1102 	int mem_type;
1103 	const u8 *name;
1104 	int name_len;
1105 	unsigned int ctl_type;
1106 	int flags;
1107 	int len;
1108 };
1109 
1110 static int cs_dsp_coeff_parse_string(int bytes, const u8 **pos, unsigned int avail,
1111 				     const u8 **str)
1112 {
1113 	int length, total_field_len;
1114 
1115 	/* String fields are at least one __le32 */
1116 	if (sizeof(__le32) > avail) {
1117 		*pos = NULL;
1118 		return 0;
1119 	}
1120 
1121 	switch (bytes) {
1122 	case 1:
1123 		length = **pos;
1124 		break;
1125 	case 2:
1126 		length = le16_to_cpu(*((__le16 *)*pos));
1127 		break;
1128 	default:
1129 		return 0;
1130 	}
1131 
1132 	total_field_len = ((length + bytes) + 3) & ~0x03;
1133 	if ((unsigned int)total_field_len > avail) {
1134 		*pos = NULL;
1135 		return 0;
1136 	}
1137 
1138 	if (str)
1139 		*str = *pos + bytes;
1140 
1141 	*pos += total_field_len;
1142 
1143 	return length;
1144 }
1145 
1146 static int cs_dsp_coeff_parse_int(int bytes, const u8 **pos)
1147 {
1148 	int val = 0;
1149 
1150 	switch (bytes) {
1151 	case 2:
1152 		val = le16_to_cpu(*((__le16 *)*pos));
1153 		break;
1154 	case 4:
1155 		val = le32_to_cpu(*((__le32 *)*pos));
1156 		break;
1157 	default:
1158 		break;
1159 	}
1160 
1161 	*pos += bytes;
1162 
1163 	return val;
1164 }
1165 
1166 static int cs_dsp_coeff_parse_alg(struct cs_dsp *dsp,
1167 				  const struct wmfw_region *region,
1168 				  struct cs_dsp_coeff_parsed_alg *blk)
1169 {
1170 	const struct wmfw_adsp_alg_data *raw;
1171 	unsigned int data_len = le32_to_cpu(region->len);
1172 	unsigned int pos;
1173 	const u8 *tmp;
1174 
1175 	raw = (const struct wmfw_adsp_alg_data *)region->data;
1176 
1177 	switch (dsp->fw_ver) {
1178 	case 0:
1179 	case 1:
1180 		if (sizeof(*raw) > data_len)
1181 			return -EOVERFLOW;
1182 
1183 		blk->id = le32_to_cpu(raw->id);
1184 		blk->name = raw->name;
1185 		blk->name_len = strnlen(raw->name, ARRAY_SIZE(raw->name));
1186 		blk->ncoeff = le32_to_cpu(raw->ncoeff);
1187 
1188 		pos = sizeof(*raw);
1189 		break;
1190 	default:
1191 		if (sizeof(raw->id) > data_len)
1192 			return -EOVERFLOW;
1193 
1194 		tmp = region->data;
1195 		blk->id = cs_dsp_coeff_parse_int(sizeof(raw->id), &tmp);
1196 		pos = tmp - region->data;
1197 
1198 		tmp = &region->data[pos];
1199 		blk->name_len = cs_dsp_coeff_parse_string(sizeof(u8), &tmp, data_len - pos,
1200 							  &blk->name);
1201 		if (!tmp)
1202 			return -EOVERFLOW;
1203 
1204 		pos = tmp - region->data;
1205 		cs_dsp_coeff_parse_string(sizeof(u16), &tmp, data_len - pos, NULL);
1206 		if (!tmp)
1207 			return -EOVERFLOW;
1208 
1209 		pos = tmp - region->data;
1210 		if (sizeof(raw->ncoeff) > (data_len - pos))
1211 			return -EOVERFLOW;
1212 
1213 		blk->ncoeff = cs_dsp_coeff_parse_int(sizeof(raw->ncoeff), &tmp);
1214 		pos += sizeof(raw->ncoeff);
1215 		break;
1216 	}
1217 
1218 	if ((int)blk->ncoeff < 0)
1219 		return -EOVERFLOW;
1220 
1221 	cs_dsp_dbg(dsp, "Algorithm ID: %#x\n", blk->id);
1222 	cs_dsp_dbg(dsp, "Algorithm name: %.*s\n", blk->name_len, blk->name);
1223 	cs_dsp_dbg(dsp, "# of coefficient descriptors: %#x\n", blk->ncoeff);
1224 
1225 	return pos;
1226 }
1227 
1228 static int cs_dsp_coeff_parse_coeff(struct cs_dsp *dsp,
1229 				    const struct wmfw_region *region,
1230 				    unsigned int pos,
1231 				    struct cs_dsp_coeff_parsed_coeff *blk)
1232 {
1233 	const struct wmfw_adsp_coeff_data *raw;
1234 	unsigned int data_len = le32_to_cpu(region->len);
1235 	unsigned int blk_len, blk_end_pos;
1236 	const u8 *tmp;
1237 
1238 	raw = (const struct wmfw_adsp_coeff_data *)&region->data[pos];
1239 	if (sizeof(raw->hdr) > (data_len - pos))
1240 		return -EOVERFLOW;
1241 
1242 	blk_len = le32_to_cpu(raw->hdr.size);
1243 	if (blk_len > S32_MAX)
1244 		return -EOVERFLOW;
1245 
1246 	if (blk_len > (data_len - pos - sizeof(raw->hdr)))
1247 		return -EOVERFLOW;
1248 
1249 	blk_end_pos = pos + sizeof(raw->hdr) + blk_len;
1250 
1251 	blk->offset = le16_to_cpu(raw->hdr.offset);
1252 	blk->mem_type = le16_to_cpu(raw->hdr.type);
1253 
1254 	switch (dsp->fw_ver) {
1255 	case 0:
1256 	case 1:
1257 		if (sizeof(*raw) > (data_len - pos))
1258 			return -EOVERFLOW;
1259 
1260 		blk->name = raw->name;
1261 		blk->name_len = strnlen(raw->name, ARRAY_SIZE(raw->name));
1262 		blk->ctl_type = le16_to_cpu(raw->ctl_type);
1263 		blk->flags = le16_to_cpu(raw->flags);
1264 		blk->len = le32_to_cpu(raw->len);
1265 		break;
1266 	default:
1267 		pos += sizeof(raw->hdr);
1268 		tmp = &region->data[pos];
1269 		blk->name_len = cs_dsp_coeff_parse_string(sizeof(u8), &tmp, data_len - pos,
1270 							  &blk->name);
1271 		if (!tmp)
1272 			return -EOVERFLOW;
1273 
1274 		pos = tmp - region->data;
1275 		cs_dsp_coeff_parse_string(sizeof(u8), &tmp, data_len - pos, NULL);
1276 		if (!tmp)
1277 			return -EOVERFLOW;
1278 
1279 		pos = tmp - region->data;
1280 		cs_dsp_coeff_parse_string(sizeof(u16), &tmp, data_len - pos, NULL);
1281 		if (!tmp)
1282 			return -EOVERFLOW;
1283 
1284 		pos = tmp - region->data;
1285 		if (sizeof(raw->ctl_type) + sizeof(raw->flags) + sizeof(raw->len) >
1286 		    (data_len - pos))
1287 			return -EOVERFLOW;
1288 
1289 		blk->ctl_type = cs_dsp_coeff_parse_int(sizeof(raw->ctl_type), &tmp);
1290 		pos += sizeof(raw->ctl_type);
1291 		blk->flags = cs_dsp_coeff_parse_int(sizeof(raw->flags), &tmp);
1292 		pos += sizeof(raw->flags);
1293 		blk->len = cs_dsp_coeff_parse_int(sizeof(raw->len), &tmp);
1294 		break;
1295 	}
1296 
1297 	cs_dsp_dbg(dsp, "\tCoefficient type: %#x\n", blk->mem_type);
1298 	cs_dsp_dbg(dsp, "\tCoefficient offset: %#x\n", blk->offset);
1299 	cs_dsp_dbg(dsp, "\tCoefficient name: %.*s\n", blk->name_len, blk->name);
1300 	cs_dsp_dbg(dsp, "\tCoefficient flags: %#x\n", blk->flags);
1301 	cs_dsp_dbg(dsp, "\tALSA control type: %#x\n", blk->ctl_type);
1302 	cs_dsp_dbg(dsp, "\tALSA control len: %#x\n", blk->len);
1303 
1304 	return blk_end_pos;
1305 }
1306 
1307 static int cs_dsp_check_coeff_flags(struct cs_dsp *dsp,
1308 				    const struct cs_dsp_coeff_parsed_coeff *coeff_blk,
1309 				    unsigned int f_required,
1310 				    unsigned int f_illegal)
1311 {
1312 	if ((coeff_blk->flags & f_illegal) ||
1313 	    ((coeff_blk->flags & f_required) != f_required)) {
1314 		cs_dsp_err(dsp, "Illegal flags 0x%x for control type 0x%x\n",
1315 			   coeff_blk->flags, coeff_blk->ctl_type);
1316 		return -EINVAL;
1317 	}
1318 
1319 	return 0;
1320 }
1321 
1322 static int cs_dsp_parse_coeff(struct cs_dsp *dsp,
1323 			      const struct wmfw_region *region)
1324 {
1325 	struct cs_dsp_alg_region alg_region = {};
1326 	struct cs_dsp_coeff_parsed_alg alg_blk;
1327 	struct cs_dsp_coeff_parsed_coeff coeff_blk;
1328 	int i, pos, ret;
1329 
1330 	pos = cs_dsp_coeff_parse_alg(dsp, region, &alg_blk);
1331 	if (pos < 0)
1332 		return pos;
1333 
1334 	for (i = 0; i < alg_blk.ncoeff; i++) {
1335 		pos = cs_dsp_coeff_parse_coeff(dsp, region, pos, &coeff_blk);
1336 		if (pos < 0)
1337 			return pos;
1338 
1339 		switch (coeff_blk.ctl_type) {
1340 		case WMFW_CTL_TYPE_BYTES:
1341 			break;
1342 		case WMFW_CTL_TYPE_ACKED:
1343 			if (coeff_blk.flags & WMFW_CTL_FLAG_SYS)
1344 				continue;	/* ignore */
1345 
1346 			ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1347 						       WMFW_CTL_FLAG_VOLATILE |
1348 						       WMFW_CTL_FLAG_WRITEABLE |
1349 						       WMFW_CTL_FLAG_READABLE,
1350 						       0);
1351 			if (ret)
1352 				return -EINVAL;
1353 			break;
1354 		case WMFW_CTL_TYPE_HOSTEVENT:
1355 		case WMFW_CTL_TYPE_FWEVENT:
1356 			ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1357 						       WMFW_CTL_FLAG_SYS |
1358 						       WMFW_CTL_FLAG_VOLATILE |
1359 						       WMFW_CTL_FLAG_WRITEABLE |
1360 						       WMFW_CTL_FLAG_READABLE,
1361 						       0);
1362 			if (ret)
1363 				return -EINVAL;
1364 			break;
1365 		case WMFW_CTL_TYPE_HOST_BUFFER:
1366 			ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1367 						       WMFW_CTL_FLAG_SYS |
1368 						       WMFW_CTL_FLAG_VOLATILE |
1369 						       WMFW_CTL_FLAG_READABLE,
1370 						       0);
1371 			if (ret)
1372 				return -EINVAL;
1373 			break;
1374 		default:
1375 			cs_dsp_err(dsp, "Unknown control type: %d\n",
1376 				   coeff_blk.ctl_type);
1377 			return -EINVAL;
1378 		}
1379 
1380 		alg_region.type = coeff_blk.mem_type;
1381 		alg_region.alg = alg_blk.id;
1382 
1383 		ret = cs_dsp_create_control(dsp, &alg_region,
1384 					    coeff_blk.offset,
1385 					    coeff_blk.len,
1386 					    coeff_blk.name,
1387 					    coeff_blk.name_len,
1388 					    coeff_blk.flags,
1389 					    coeff_blk.ctl_type);
1390 		if (ret < 0)
1391 			cs_dsp_err(dsp, "Failed to create control: %.*s, %d\n",
1392 				   coeff_blk.name_len, coeff_blk.name, ret);
1393 	}
1394 
1395 	return 0;
1396 }
1397 
1398 static unsigned int cs_dsp_adsp1_parse_sizes(struct cs_dsp *dsp,
1399 					     const char * const file,
1400 					     unsigned int pos,
1401 					     const struct firmware *firmware)
1402 {
1403 	const struct wmfw_adsp1_sizes *adsp1_sizes;
1404 
1405 	adsp1_sizes = (void *)&firmware->data[pos];
1406 	if (sizeof(*adsp1_sizes) > firmware->size - pos) {
1407 		cs_dsp_err(dsp, "%s: file truncated\n", file);
1408 		return 0;
1409 	}
1410 
1411 	cs_dsp_dbg(dsp, "%s: %d DM, %d PM, %d ZM\n", file,
1412 		   le32_to_cpu(adsp1_sizes->dm), le32_to_cpu(adsp1_sizes->pm),
1413 		   le32_to_cpu(adsp1_sizes->zm));
1414 
1415 	return pos + sizeof(*adsp1_sizes);
1416 }
1417 
1418 static unsigned int cs_dsp_adsp2_parse_sizes(struct cs_dsp *dsp,
1419 					     const char * const file,
1420 					     unsigned int pos,
1421 					     const struct firmware *firmware)
1422 {
1423 	const struct wmfw_adsp2_sizes *adsp2_sizes;
1424 
1425 	adsp2_sizes = (void *)&firmware->data[pos];
1426 	if (sizeof(*adsp2_sizes) > firmware->size - pos) {
1427 		cs_dsp_err(dsp, "%s: file truncated\n", file);
1428 		return 0;
1429 	}
1430 
1431 	cs_dsp_dbg(dsp, "%s: %d XM, %d YM %d PM, %d ZM\n", file,
1432 		   le32_to_cpu(adsp2_sizes->xm), le32_to_cpu(adsp2_sizes->ym),
1433 		   le32_to_cpu(adsp2_sizes->pm), le32_to_cpu(adsp2_sizes->zm));
1434 
1435 	return pos + sizeof(*adsp2_sizes);
1436 }
1437 
1438 static bool cs_dsp_validate_version(struct cs_dsp *dsp, unsigned int version)
1439 {
1440 	switch (version) {
1441 	case 0:
1442 		cs_dsp_warn(dsp, "Deprecated file format %d\n", version);
1443 		return true;
1444 	case 1:
1445 	case 2:
1446 		return true;
1447 	default:
1448 		return false;
1449 	}
1450 }
1451 
1452 static bool cs_dsp_halo_validate_version(struct cs_dsp *dsp, unsigned int version)
1453 {
1454 	switch (version) {
1455 	case 3:
1456 		return true;
1457 	default:
1458 		return false;
1459 	}
1460 }
1461 
1462 static int cs_dsp_load(struct cs_dsp *dsp, const struct firmware *firmware,
1463 		       const char *file)
1464 {
1465 	LIST_HEAD(buf_list);
1466 	struct regmap *regmap = dsp->regmap;
1467 	unsigned int pos = 0;
1468 	const struct wmfw_header *header;
1469 	const struct wmfw_footer *footer;
1470 	const struct wmfw_region *region;
1471 	const struct cs_dsp_region *mem;
1472 	const char *region_name;
1473 	char *text = NULL;
1474 	struct cs_dsp_buf *buf;
1475 	unsigned int reg;
1476 	int regions = 0;
1477 	int ret, offset, type;
1478 
1479 	if (!firmware)
1480 		return 0;
1481 
1482 	ret = -EINVAL;
1483 
1484 	if (sizeof(*header) >= firmware->size) {
1485 		ret = -EOVERFLOW;
1486 		goto out_fw;
1487 	}
1488 
1489 	header = (void *)&firmware->data[0];
1490 
1491 	if (memcmp(&header->magic[0], "WMFW", 4) != 0) {
1492 		cs_dsp_err(dsp, "%s: invalid magic\n", file);
1493 		goto out_fw;
1494 	}
1495 
1496 	if (!dsp->ops->validate_version(dsp, header->ver)) {
1497 		cs_dsp_err(dsp, "%s: unknown file format %d\n",
1498 			   file, header->ver);
1499 		goto out_fw;
1500 	}
1501 
1502 	cs_dsp_info(dsp, "Firmware version: %d\n", header->ver);
1503 	dsp->fw_ver = header->ver;
1504 
1505 	if (header->core != dsp->type) {
1506 		cs_dsp_err(dsp, "%s: invalid core %d != %d\n",
1507 			   file, header->core, dsp->type);
1508 		goto out_fw;
1509 	}
1510 
1511 	pos = sizeof(*header);
1512 	pos = dsp->ops->parse_sizes(dsp, file, pos, firmware);
1513 	if ((pos == 0) || (sizeof(*footer) > firmware->size - pos)) {
1514 		ret = -EOVERFLOW;
1515 		goto out_fw;
1516 	}
1517 
1518 	footer = (void *)&firmware->data[pos];
1519 	pos += sizeof(*footer);
1520 
1521 	if (le32_to_cpu(header->len) != pos) {
1522 		ret = -EOVERFLOW;
1523 		goto out_fw;
1524 	}
1525 
1526 	cs_dsp_dbg(dsp, "%s: timestamp %llu\n", file,
1527 		   le64_to_cpu(footer->timestamp));
1528 
1529 	while (pos < firmware->size) {
1530 		/* Is there enough data for a complete block header? */
1531 		if (sizeof(*region) > firmware->size - pos) {
1532 			ret = -EOVERFLOW;
1533 			goto out_fw;
1534 		}
1535 
1536 		region = (void *)&(firmware->data[pos]);
1537 
1538 		if (le32_to_cpu(region->len) > firmware->size - pos - sizeof(*region)) {
1539 			ret = -EOVERFLOW;
1540 			goto out_fw;
1541 		}
1542 
1543 		region_name = "Unknown";
1544 		reg = 0;
1545 		text = NULL;
1546 		offset = le32_to_cpu(region->offset) & 0xffffff;
1547 		type = be32_to_cpu(region->type) & 0xff;
1548 
1549 		switch (type) {
1550 		case WMFW_NAME_TEXT:
1551 			region_name = "Firmware name";
1552 			text = kzalloc(le32_to_cpu(region->len) + 1,
1553 				       GFP_KERNEL);
1554 			break;
1555 		case WMFW_ALGORITHM_DATA:
1556 			region_name = "Algorithm";
1557 			ret = cs_dsp_parse_coeff(dsp, region);
1558 			if (ret != 0)
1559 				goto out_fw;
1560 			break;
1561 		case WMFW_INFO_TEXT:
1562 			region_name = "Information";
1563 			text = kzalloc(le32_to_cpu(region->len) + 1,
1564 				       GFP_KERNEL);
1565 			break;
1566 		case WMFW_ABSOLUTE:
1567 			region_name = "Absolute";
1568 			reg = offset;
1569 			break;
1570 		case WMFW_ADSP1_PM:
1571 		case WMFW_ADSP1_DM:
1572 		case WMFW_ADSP2_XM:
1573 		case WMFW_ADSP2_YM:
1574 		case WMFW_ADSP1_ZM:
1575 		case WMFW_HALO_PM_PACKED:
1576 		case WMFW_HALO_XM_PACKED:
1577 		case WMFW_HALO_YM_PACKED:
1578 			mem = cs_dsp_find_region(dsp, type);
1579 			if (!mem) {
1580 				cs_dsp_err(dsp, "No region of type: %x\n", type);
1581 				ret = -EINVAL;
1582 				goto out_fw;
1583 			}
1584 
1585 			region_name = cs_dsp_mem_region_name(type);
1586 			reg = dsp->ops->region_to_reg(mem, offset);
1587 			break;
1588 		default:
1589 			cs_dsp_warn(dsp,
1590 				    "%s.%d: Unknown region type %x at %d(%x)\n",
1591 				    file, regions, type, pos, pos);
1592 			break;
1593 		}
1594 
1595 		cs_dsp_dbg(dsp, "%s.%d: %d bytes at %d in %s\n", file,
1596 			   regions, le32_to_cpu(region->len), offset,
1597 			   region_name);
1598 
1599 		if (text) {
1600 			memcpy(text, region->data, le32_to_cpu(region->len));
1601 			cs_dsp_info(dsp, "%s: %s\n", file, text);
1602 			kfree(text);
1603 			text = NULL;
1604 		}
1605 
1606 		if (reg) {
1607 			buf = cs_dsp_buf_alloc(region->data,
1608 					       le32_to_cpu(region->len),
1609 					       &buf_list);
1610 			if (!buf) {
1611 				cs_dsp_err(dsp, "Out of memory\n");
1612 				ret = -ENOMEM;
1613 				goto out_fw;
1614 			}
1615 
1616 			ret = regmap_raw_write_async(regmap, reg, buf->buf,
1617 						     le32_to_cpu(region->len));
1618 			if (ret != 0) {
1619 				cs_dsp_err(dsp,
1620 					   "%s.%d: Failed to write %d bytes at %d in %s: %d\n",
1621 					   file, regions,
1622 					   le32_to_cpu(region->len), offset,
1623 					   region_name, ret);
1624 				goto out_fw;
1625 			}
1626 		}
1627 
1628 		pos += le32_to_cpu(region->len) + sizeof(*region);
1629 		regions++;
1630 	}
1631 
1632 	ret = regmap_async_complete(regmap);
1633 	if (ret != 0) {
1634 		cs_dsp_err(dsp, "Failed to complete async write: %d\n", ret);
1635 		goto out_fw;
1636 	}
1637 
1638 	if (pos > firmware->size)
1639 		cs_dsp_warn(dsp, "%s.%d: %zu bytes at end of file\n",
1640 			    file, regions, pos - firmware->size);
1641 
1642 	cs_dsp_debugfs_save_wmfwname(dsp, file);
1643 
1644 out_fw:
1645 	regmap_async_complete(regmap);
1646 	cs_dsp_buf_free(&buf_list);
1647 	kfree(text);
1648 
1649 	if (ret == -EOVERFLOW)
1650 		cs_dsp_err(dsp, "%s: file content overflows file data\n", file);
1651 
1652 	return ret;
1653 }
1654 
1655 /**
1656  * cs_dsp_get_ctl() - Finds a matching coefficient control
1657  * @dsp: pointer to DSP structure
1658  * @name: pointer to string to match with a control's subname
1659  * @type: the algorithm type to match
1660  * @alg: the algorithm id to match
1661  *
1662  * Find cs_dsp_coeff_ctl with input name as its subname
1663  *
1664  * Return: pointer to the control on success, NULL if not found
1665  */
1666 struct cs_dsp_coeff_ctl *cs_dsp_get_ctl(struct cs_dsp *dsp, const char *name, int type,
1667 					unsigned int alg)
1668 {
1669 	struct cs_dsp_coeff_ctl *pos, *rslt = NULL;
1670 
1671 	lockdep_assert_held(&dsp->pwr_lock);
1672 
1673 	list_for_each_entry(pos, &dsp->ctl_list, list) {
1674 		if (!pos->subname)
1675 			continue;
1676 		if (strncmp(pos->subname, name, pos->subname_len) == 0 &&
1677 		    pos->fw_name == dsp->fw_name &&
1678 		    pos->alg_region.alg == alg &&
1679 		    pos->alg_region.type == type) {
1680 			rslt = pos;
1681 			break;
1682 		}
1683 	}
1684 
1685 	return rslt;
1686 }
1687 EXPORT_SYMBOL_NS_GPL(cs_dsp_get_ctl, FW_CS_DSP);
1688 
1689 static void cs_dsp_ctl_fixup_base(struct cs_dsp *dsp,
1690 				  const struct cs_dsp_alg_region *alg_region)
1691 {
1692 	struct cs_dsp_coeff_ctl *ctl;
1693 
1694 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
1695 		if (ctl->fw_name == dsp->fw_name &&
1696 		    alg_region->alg == ctl->alg_region.alg &&
1697 		    alg_region->type == ctl->alg_region.type) {
1698 			ctl->alg_region.base = alg_region->base;
1699 		}
1700 	}
1701 }
1702 
1703 static void *cs_dsp_read_algs(struct cs_dsp *dsp, size_t n_algs,
1704 			      const struct cs_dsp_region *mem,
1705 			      unsigned int pos, unsigned int len)
1706 {
1707 	void *alg;
1708 	unsigned int reg;
1709 	int ret;
1710 	__be32 val;
1711 
1712 	if (n_algs == 0) {
1713 		cs_dsp_err(dsp, "No algorithms\n");
1714 		return ERR_PTR(-EINVAL);
1715 	}
1716 
1717 	if (n_algs > 1024) {
1718 		cs_dsp_err(dsp, "Algorithm count %zx excessive\n", n_algs);
1719 		return ERR_PTR(-EINVAL);
1720 	}
1721 
1722 	/* Read the terminator first to validate the length */
1723 	reg = dsp->ops->region_to_reg(mem, pos + len);
1724 
1725 	ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val));
1726 	if (ret != 0) {
1727 		cs_dsp_err(dsp, "Failed to read algorithm list end: %d\n",
1728 			   ret);
1729 		return ERR_PTR(ret);
1730 	}
1731 
1732 	if (be32_to_cpu(val) != 0xbedead)
1733 		cs_dsp_warn(dsp, "Algorithm list end %x 0x%x != 0xbedead\n",
1734 			    reg, be32_to_cpu(val));
1735 
1736 	/* Convert length from DSP words to bytes */
1737 	len *= sizeof(u32);
1738 
1739 	alg = kzalloc(len, GFP_KERNEL | GFP_DMA);
1740 	if (!alg)
1741 		return ERR_PTR(-ENOMEM);
1742 
1743 	reg = dsp->ops->region_to_reg(mem, pos);
1744 
1745 	ret = regmap_raw_read(dsp->regmap, reg, alg, len);
1746 	if (ret != 0) {
1747 		cs_dsp_err(dsp, "Failed to read algorithm list: %d\n", ret);
1748 		kfree(alg);
1749 		return ERR_PTR(ret);
1750 	}
1751 
1752 	return alg;
1753 }
1754 
1755 /**
1756  * cs_dsp_find_alg_region() - Finds a matching algorithm region
1757  * @dsp: pointer to DSP structure
1758  * @type: the algorithm type to match
1759  * @id: the algorithm id to match
1760  *
1761  * Return: Pointer to matching algorithm region, or NULL if not found.
1762  */
1763 struct cs_dsp_alg_region *cs_dsp_find_alg_region(struct cs_dsp *dsp,
1764 						 int type, unsigned int id)
1765 {
1766 	struct cs_dsp_alg_region *alg_region;
1767 
1768 	lockdep_assert_held(&dsp->pwr_lock);
1769 
1770 	list_for_each_entry(alg_region, &dsp->alg_regions, list) {
1771 		if (id == alg_region->alg && type == alg_region->type)
1772 			return alg_region;
1773 	}
1774 
1775 	return NULL;
1776 }
1777 EXPORT_SYMBOL_NS_GPL(cs_dsp_find_alg_region, FW_CS_DSP);
1778 
1779 static struct cs_dsp_alg_region *cs_dsp_create_region(struct cs_dsp *dsp,
1780 						      int type, __be32 id,
1781 						      __be32 ver, __be32 base)
1782 {
1783 	struct cs_dsp_alg_region *alg_region;
1784 
1785 	alg_region = kzalloc(sizeof(*alg_region), GFP_KERNEL);
1786 	if (!alg_region)
1787 		return ERR_PTR(-ENOMEM);
1788 
1789 	alg_region->type = type;
1790 	alg_region->alg = be32_to_cpu(id);
1791 	alg_region->ver = be32_to_cpu(ver);
1792 	alg_region->base = be32_to_cpu(base);
1793 
1794 	list_add_tail(&alg_region->list, &dsp->alg_regions);
1795 
1796 	if (dsp->fw_ver > 0)
1797 		cs_dsp_ctl_fixup_base(dsp, alg_region);
1798 
1799 	return alg_region;
1800 }
1801 
1802 static void cs_dsp_free_alg_regions(struct cs_dsp *dsp)
1803 {
1804 	struct cs_dsp_alg_region *alg_region;
1805 
1806 	while (!list_empty(&dsp->alg_regions)) {
1807 		alg_region = list_first_entry(&dsp->alg_regions,
1808 					      struct cs_dsp_alg_region,
1809 					      list);
1810 		list_del(&alg_region->list);
1811 		kfree(alg_region);
1812 	}
1813 }
1814 
1815 static void cs_dsp_parse_wmfw_id_header(struct cs_dsp *dsp,
1816 					struct wmfw_id_hdr *fw, int nalgs)
1817 {
1818 	dsp->fw_id = be32_to_cpu(fw->id);
1819 	dsp->fw_id_version = be32_to_cpu(fw->ver);
1820 
1821 	cs_dsp_info(dsp, "Firmware: %x v%d.%d.%d, %d algorithms\n",
1822 		    dsp->fw_id, (dsp->fw_id_version & 0xff0000) >> 16,
1823 		    (dsp->fw_id_version & 0xff00) >> 8, dsp->fw_id_version & 0xff,
1824 		    nalgs);
1825 }
1826 
1827 static void cs_dsp_parse_wmfw_v3_id_header(struct cs_dsp *dsp,
1828 					   struct wmfw_v3_id_hdr *fw, int nalgs)
1829 {
1830 	dsp->fw_id = be32_to_cpu(fw->id);
1831 	dsp->fw_id_version = be32_to_cpu(fw->ver);
1832 	dsp->fw_vendor_id = be32_to_cpu(fw->vendor_id);
1833 
1834 	cs_dsp_info(dsp, "Firmware: %x vendor: 0x%x v%d.%d.%d, %d algorithms\n",
1835 		    dsp->fw_id, dsp->fw_vendor_id,
1836 		    (dsp->fw_id_version & 0xff0000) >> 16,
1837 		    (dsp->fw_id_version & 0xff00) >> 8, dsp->fw_id_version & 0xff,
1838 		    nalgs);
1839 }
1840 
1841 static int cs_dsp_create_regions(struct cs_dsp *dsp, __be32 id, __be32 ver,
1842 				 int nregions, const int *type, __be32 *base)
1843 {
1844 	struct cs_dsp_alg_region *alg_region;
1845 	int i;
1846 
1847 	for (i = 0; i < nregions; i++) {
1848 		alg_region = cs_dsp_create_region(dsp, type[i], id, ver, base[i]);
1849 		if (IS_ERR(alg_region))
1850 			return PTR_ERR(alg_region);
1851 	}
1852 
1853 	return 0;
1854 }
1855 
1856 static int cs_dsp_adsp1_setup_algs(struct cs_dsp *dsp)
1857 {
1858 	struct wmfw_adsp1_id_hdr adsp1_id;
1859 	struct wmfw_adsp1_alg_hdr *adsp1_alg;
1860 	struct cs_dsp_alg_region *alg_region;
1861 	const struct cs_dsp_region *mem;
1862 	unsigned int pos, len;
1863 	size_t n_algs;
1864 	int i, ret;
1865 
1866 	mem = cs_dsp_find_region(dsp, WMFW_ADSP1_DM);
1867 	if (WARN_ON(!mem))
1868 		return -EINVAL;
1869 
1870 	ret = regmap_raw_read(dsp->regmap, mem->base, &adsp1_id,
1871 			      sizeof(adsp1_id));
1872 	if (ret != 0) {
1873 		cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
1874 			   ret);
1875 		return ret;
1876 	}
1877 
1878 	n_algs = be32_to_cpu(adsp1_id.n_algs);
1879 
1880 	cs_dsp_parse_wmfw_id_header(dsp, &adsp1_id.fw, n_algs);
1881 
1882 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_ZM,
1883 					  adsp1_id.fw.id, adsp1_id.fw.ver,
1884 					  adsp1_id.zm);
1885 	if (IS_ERR(alg_region))
1886 		return PTR_ERR(alg_region);
1887 
1888 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_DM,
1889 					  adsp1_id.fw.id, adsp1_id.fw.ver,
1890 					  adsp1_id.dm);
1891 	if (IS_ERR(alg_region))
1892 		return PTR_ERR(alg_region);
1893 
1894 	/* Calculate offset and length in DSP words */
1895 	pos = sizeof(adsp1_id) / sizeof(u32);
1896 	len = (sizeof(*adsp1_alg) * n_algs) / sizeof(u32);
1897 
1898 	adsp1_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
1899 	if (IS_ERR(adsp1_alg))
1900 		return PTR_ERR(adsp1_alg);
1901 
1902 	for (i = 0; i < n_algs; i++) {
1903 		cs_dsp_info(dsp, "%d: ID %x v%d.%d.%d DM@%x ZM@%x\n",
1904 			    i, be32_to_cpu(adsp1_alg[i].alg.id),
1905 			    (be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff0000) >> 16,
1906 			    (be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff00) >> 8,
1907 			    be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff,
1908 			    be32_to_cpu(adsp1_alg[i].dm),
1909 			    be32_to_cpu(adsp1_alg[i].zm));
1910 
1911 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_DM,
1912 						  adsp1_alg[i].alg.id,
1913 						  adsp1_alg[i].alg.ver,
1914 						  adsp1_alg[i].dm);
1915 		if (IS_ERR(alg_region)) {
1916 			ret = PTR_ERR(alg_region);
1917 			goto out;
1918 		}
1919 		if (dsp->fw_ver == 0) {
1920 			if (i + 1 < n_algs) {
1921 				len = be32_to_cpu(adsp1_alg[i + 1].dm);
1922 				len -= be32_to_cpu(adsp1_alg[i].dm);
1923 				len *= 4;
1924 				cs_dsp_create_control(dsp, alg_region, 0,
1925 						      len, NULL, 0, 0,
1926 						      WMFW_CTL_TYPE_BYTES);
1927 			} else {
1928 				cs_dsp_warn(dsp, "Missing length info for region DM with ID %x\n",
1929 					    be32_to_cpu(adsp1_alg[i].alg.id));
1930 			}
1931 		}
1932 
1933 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_ZM,
1934 						  adsp1_alg[i].alg.id,
1935 						  adsp1_alg[i].alg.ver,
1936 						  adsp1_alg[i].zm);
1937 		if (IS_ERR(alg_region)) {
1938 			ret = PTR_ERR(alg_region);
1939 			goto out;
1940 		}
1941 		if (dsp->fw_ver == 0) {
1942 			if (i + 1 < n_algs) {
1943 				len = be32_to_cpu(adsp1_alg[i + 1].zm);
1944 				len -= be32_to_cpu(adsp1_alg[i].zm);
1945 				len *= 4;
1946 				cs_dsp_create_control(dsp, alg_region, 0,
1947 						      len, NULL, 0, 0,
1948 						      WMFW_CTL_TYPE_BYTES);
1949 			} else {
1950 				cs_dsp_warn(dsp, "Missing length info for region ZM with ID %x\n",
1951 					    be32_to_cpu(adsp1_alg[i].alg.id));
1952 			}
1953 		}
1954 	}
1955 
1956 out:
1957 	kfree(adsp1_alg);
1958 	return ret;
1959 }
1960 
1961 static int cs_dsp_adsp2_setup_algs(struct cs_dsp *dsp)
1962 {
1963 	struct wmfw_adsp2_id_hdr adsp2_id;
1964 	struct wmfw_adsp2_alg_hdr *adsp2_alg;
1965 	struct cs_dsp_alg_region *alg_region;
1966 	const struct cs_dsp_region *mem;
1967 	unsigned int pos, len;
1968 	size_t n_algs;
1969 	int i, ret;
1970 
1971 	mem = cs_dsp_find_region(dsp, WMFW_ADSP2_XM);
1972 	if (WARN_ON(!mem))
1973 		return -EINVAL;
1974 
1975 	ret = regmap_raw_read(dsp->regmap, mem->base, &adsp2_id,
1976 			      sizeof(adsp2_id));
1977 	if (ret != 0) {
1978 		cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
1979 			   ret);
1980 		return ret;
1981 	}
1982 
1983 	n_algs = be32_to_cpu(adsp2_id.n_algs);
1984 
1985 	cs_dsp_parse_wmfw_id_header(dsp, &adsp2_id.fw, n_algs);
1986 
1987 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_XM,
1988 					  adsp2_id.fw.id, adsp2_id.fw.ver,
1989 					  adsp2_id.xm);
1990 	if (IS_ERR(alg_region))
1991 		return PTR_ERR(alg_region);
1992 
1993 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_YM,
1994 					  adsp2_id.fw.id, adsp2_id.fw.ver,
1995 					  adsp2_id.ym);
1996 	if (IS_ERR(alg_region))
1997 		return PTR_ERR(alg_region);
1998 
1999 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_ZM,
2000 					  adsp2_id.fw.id, adsp2_id.fw.ver,
2001 					  adsp2_id.zm);
2002 	if (IS_ERR(alg_region))
2003 		return PTR_ERR(alg_region);
2004 
2005 	/* Calculate offset and length in DSP words */
2006 	pos = sizeof(adsp2_id) / sizeof(u32);
2007 	len = (sizeof(*adsp2_alg) * n_algs) / sizeof(u32);
2008 
2009 	adsp2_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
2010 	if (IS_ERR(adsp2_alg))
2011 		return PTR_ERR(adsp2_alg);
2012 
2013 	for (i = 0; i < n_algs; i++) {
2014 		cs_dsp_dbg(dsp,
2015 			   "%d: ID %x v%d.%d.%d XM@%x YM@%x ZM@%x\n",
2016 			   i, be32_to_cpu(adsp2_alg[i].alg.id),
2017 			   (be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff0000) >> 16,
2018 			   (be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff00) >> 8,
2019 			   be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff,
2020 			   be32_to_cpu(adsp2_alg[i].xm),
2021 			   be32_to_cpu(adsp2_alg[i].ym),
2022 			   be32_to_cpu(adsp2_alg[i].zm));
2023 
2024 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_XM,
2025 						  adsp2_alg[i].alg.id,
2026 						  adsp2_alg[i].alg.ver,
2027 						  adsp2_alg[i].xm);
2028 		if (IS_ERR(alg_region)) {
2029 			ret = PTR_ERR(alg_region);
2030 			goto out;
2031 		}
2032 		if (dsp->fw_ver == 0) {
2033 			if (i + 1 < n_algs) {
2034 				len = be32_to_cpu(adsp2_alg[i + 1].xm);
2035 				len -= be32_to_cpu(adsp2_alg[i].xm);
2036 				len *= 4;
2037 				cs_dsp_create_control(dsp, alg_region, 0,
2038 						      len, NULL, 0, 0,
2039 						      WMFW_CTL_TYPE_BYTES);
2040 			} else {
2041 				cs_dsp_warn(dsp, "Missing length info for region XM with ID %x\n",
2042 					    be32_to_cpu(adsp2_alg[i].alg.id));
2043 			}
2044 		}
2045 
2046 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_YM,
2047 						  adsp2_alg[i].alg.id,
2048 						  adsp2_alg[i].alg.ver,
2049 						  adsp2_alg[i].ym);
2050 		if (IS_ERR(alg_region)) {
2051 			ret = PTR_ERR(alg_region);
2052 			goto out;
2053 		}
2054 		if (dsp->fw_ver == 0) {
2055 			if (i + 1 < n_algs) {
2056 				len = be32_to_cpu(adsp2_alg[i + 1].ym);
2057 				len -= be32_to_cpu(adsp2_alg[i].ym);
2058 				len *= 4;
2059 				cs_dsp_create_control(dsp, alg_region, 0,
2060 						      len, NULL, 0, 0,
2061 						      WMFW_CTL_TYPE_BYTES);
2062 			} else {
2063 				cs_dsp_warn(dsp, "Missing length info for region YM with ID %x\n",
2064 					    be32_to_cpu(adsp2_alg[i].alg.id));
2065 			}
2066 		}
2067 
2068 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_ZM,
2069 						  adsp2_alg[i].alg.id,
2070 						  adsp2_alg[i].alg.ver,
2071 						  adsp2_alg[i].zm);
2072 		if (IS_ERR(alg_region)) {
2073 			ret = PTR_ERR(alg_region);
2074 			goto out;
2075 		}
2076 		if (dsp->fw_ver == 0) {
2077 			if (i + 1 < n_algs) {
2078 				len = be32_to_cpu(adsp2_alg[i + 1].zm);
2079 				len -= be32_to_cpu(adsp2_alg[i].zm);
2080 				len *= 4;
2081 				cs_dsp_create_control(dsp, alg_region, 0,
2082 						      len, NULL, 0, 0,
2083 						      WMFW_CTL_TYPE_BYTES);
2084 			} else {
2085 				cs_dsp_warn(dsp, "Missing length info for region ZM with ID %x\n",
2086 					    be32_to_cpu(adsp2_alg[i].alg.id));
2087 			}
2088 		}
2089 	}
2090 
2091 out:
2092 	kfree(adsp2_alg);
2093 	return ret;
2094 }
2095 
2096 static int cs_dsp_halo_create_regions(struct cs_dsp *dsp, __be32 id, __be32 ver,
2097 				      __be32 xm_base, __be32 ym_base)
2098 {
2099 	static const int types[] = {
2100 		WMFW_ADSP2_XM, WMFW_HALO_XM_PACKED,
2101 		WMFW_ADSP2_YM, WMFW_HALO_YM_PACKED
2102 	};
2103 	__be32 bases[] = { xm_base, xm_base, ym_base, ym_base };
2104 
2105 	return cs_dsp_create_regions(dsp, id, ver, ARRAY_SIZE(types), types, bases);
2106 }
2107 
2108 static int cs_dsp_halo_setup_algs(struct cs_dsp *dsp)
2109 {
2110 	struct wmfw_halo_id_hdr halo_id;
2111 	struct wmfw_halo_alg_hdr *halo_alg;
2112 	const struct cs_dsp_region *mem;
2113 	unsigned int pos, len;
2114 	size_t n_algs;
2115 	int i, ret;
2116 
2117 	mem = cs_dsp_find_region(dsp, WMFW_ADSP2_XM);
2118 	if (WARN_ON(!mem))
2119 		return -EINVAL;
2120 
2121 	ret = regmap_raw_read(dsp->regmap, mem->base, &halo_id,
2122 			      sizeof(halo_id));
2123 	if (ret != 0) {
2124 		cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
2125 			   ret);
2126 		return ret;
2127 	}
2128 
2129 	n_algs = be32_to_cpu(halo_id.n_algs);
2130 
2131 	cs_dsp_parse_wmfw_v3_id_header(dsp, &halo_id.fw, n_algs);
2132 
2133 	ret = cs_dsp_halo_create_regions(dsp, halo_id.fw.id, halo_id.fw.ver,
2134 					 halo_id.xm_base, halo_id.ym_base);
2135 	if (ret)
2136 		return ret;
2137 
2138 	/* Calculate offset and length in DSP words */
2139 	pos = sizeof(halo_id) / sizeof(u32);
2140 	len = (sizeof(*halo_alg) * n_algs) / sizeof(u32);
2141 
2142 	halo_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
2143 	if (IS_ERR(halo_alg))
2144 		return PTR_ERR(halo_alg);
2145 
2146 	for (i = 0; i < n_algs; i++) {
2147 		cs_dsp_dbg(dsp,
2148 			   "%d: ID %x v%d.%d.%d XM@%x YM@%x\n",
2149 			   i, be32_to_cpu(halo_alg[i].alg.id),
2150 			   (be32_to_cpu(halo_alg[i].alg.ver) & 0xff0000) >> 16,
2151 			   (be32_to_cpu(halo_alg[i].alg.ver) & 0xff00) >> 8,
2152 			   be32_to_cpu(halo_alg[i].alg.ver) & 0xff,
2153 			   be32_to_cpu(halo_alg[i].xm_base),
2154 			   be32_to_cpu(halo_alg[i].ym_base));
2155 
2156 		ret = cs_dsp_halo_create_regions(dsp, halo_alg[i].alg.id,
2157 						 halo_alg[i].alg.ver,
2158 						 halo_alg[i].xm_base,
2159 						 halo_alg[i].ym_base);
2160 		if (ret)
2161 			goto out;
2162 	}
2163 
2164 out:
2165 	kfree(halo_alg);
2166 	return ret;
2167 }
2168 
2169 static int cs_dsp_load_coeff(struct cs_dsp *dsp, const struct firmware *firmware,
2170 			     const char *file)
2171 {
2172 	LIST_HEAD(buf_list);
2173 	struct regmap *regmap = dsp->regmap;
2174 	struct wmfw_coeff_hdr *hdr;
2175 	struct wmfw_coeff_item *blk;
2176 	const struct cs_dsp_region *mem;
2177 	struct cs_dsp_alg_region *alg_region;
2178 	const char *region_name;
2179 	int ret, pos, blocks, type, offset, reg, version;
2180 	char *text = NULL;
2181 	struct cs_dsp_buf *buf;
2182 
2183 	if (!firmware)
2184 		return 0;
2185 
2186 	ret = -EINVAL;
2187 
2188 	if (sizeof(*hdr) >= firmware->size) {
2189 		cs_dsp_err(dsp, "%s: coefficient file too short, %zu bytes\n",
2190 			   file, firmware->size);
2191 		goto out_fw;
2192 	}
2193 
2194 	hdr = (void *)&firmware->data[0];
2195 	if (memcmp(hdr->magic, "WMDR", 4) != 0) {
2196 		cs_dsp_err(dsp, "%s: invalid coefficient magic\n", file);
2197 		goto out_fw;
2198 	}
2199 
2200 	switch (be32_to_cpu(hdr->rev) & 0xff) {
2201 	case 1:
2202 	case 2:
2203 		break;
2204 	default:
2205 		cs_dsp_err(dsp, "%s: Unsupported coefficient file format %d\n",
2206 			   file, be32_to_cpu(hdr->rev) & 0xff);
2207 		ret = -EINVAL;
2208 		goto out_fw;
2209 	}
2210 
2211 	cs_dsp_info(dsp, "%s: v%d.%d.%d\n", file,
2212 		    (le32_to_cpu(hdr->ver) >> 16) & 0xff,
2213 		    (le32_to_cpu(hdr->ver) >>  8) & 0xff,
2214 		    le32_to_cpu(hdr->ver) & 0xff);
2215 
2216 	pos = le32_to_cpu(hdr->len);
2217 
2218 	blocks = 0;
2219 	while (pos < firmware->size) {
2220 		/* Is there enough data for a complete block header? */
2221 		if (sizeof(*blk) > firmware->size - pos) {
2222 			ret = -EOVERFLOW;
2223 			goto out_fw;
2224 		}
2225 
2226 		blk = (void *)(&firmware->data[pos]);
2227 
2228 		if (le32_to_cpu(blk->len) > firmware->size - pos - sizeof(*blk)) {
2229 			ret = -EOVERFLOW;
2230 			goto out_fw;
2231 		}
2232 
2233 		type = le16_to_cpu(blk->type);
2234 		offset = le16_to_cpu(blk->offset);
2235 		version = le32_to_cpu(blk->ver) >> 8;
2236 
2237 		cs_dsp_dbg(dsp, "%s.%d: %x v%d.%d.%d\n",
2238 			   file, blocks, le32_to_cpu(blk->id),
2239 			   (le32_to_cpu(blk->ver) >> 16) & 0xff,
2240 			   (le32_to_cpu(blk->ver) >>  8) & 0xff,
2241 			   le32_to_cpu(blk->ver) & 0xff);
2242 		cs_dsp_dbg(dsp, "%s.%d: %d bytes at 0x%x in %x\n",
2243 			   file, blocks, le32_to_cpu(blk->len), offset, type);
2244 
2245 		reg = 0;
2246 		region_name = "Unknown";
2247 		switch (type) {
2248 		case (WMFW_NAME_TEXT << 8):
2249 			text = kzalloc(le32_to_cpu(blk->len) + 1, GFP_KERNEL);
2250 			break;
2251 		case (WMFW_INFO_TEXT << 8):
2252 		case (WMFW_METADATA << 8):
2253 			break;
2254 		case (WMFW_ABSOLUTE << 8):
2255 			/*
2256 			 * Old files may use this for global
2257 			 * coefficients.
2258 			 */
2259 			if (le32_to_cpu(blk->id) == dsp->fw_id &&
2260 			    offset == 0) {
2261 				region_name = "global coefficients";
2262 				mem = cs_dsp_find_region(dsp, type);
2263 				if (!mem) {
2264 					cs_dsp_err(dsp, "No ZM\n");
2265 					break;
2266 				}
2267 				reg = dsp->ops->region_to_reg(mem, 0);
2268 
2269 			} else {
2270 				region_name = "register";
2271 				reg = offset;
2272 			}
2273 			break;
2274 
2275 		case WMFW_ADSP1_DM:
2276 		case WMFW_ADSP1_ZM:
2277 		case WMFW_ADSP2_XM:
2278 		case WMFW_ADSP2_YM:
2279 		case WMFW_HALO_XM_PACKED:
2280 		case WMFW_HALO_YM_PACKED:
2281 		case WMFW_HALO_PM_PACKED:
2282 			cs_dsp_dbg(dsp, "%s.%d: %d bytes in %x for %x\n",
2283 				   file, blocks, le32_to_cpu(blk->len),
2284 				   type, le32_to_cpu(blk->id));
2285 
2286 			region_name = cs_dsp_mem_region_name(type);
2287 			mem = cs_dsp_find_region(dsp, type);
2288 			if (!mem) {
2289 				cs_dsp_err(dsp, "No base for region %x\n", type);
2290 				break;
2291 			}
2292 
2293 			alg_region = cs_dsp_find_alg_region(dsp, type,
2294 							    le32_to_cpu(blk->id));
2295 			if (alg_region) {
2296 				if (version != alg_region->ver)
2297 					cs_dsp_warn(dsp,
2298 						    "Algorithm coefficient version %d.%d.%d but expected %d.%d.%d\n",
2299 						   (version >> 16) & 0xFF,
2300 						   (version >> 8) & 0xFF,
2301 						   version & 0xFF,
2302 						   (alg_region->ver >> 16) & 0xFF,
2303 						   (alg_region->ver >> 8) & 0xFF,
2304 						   alg_region->ver & 0xFF);
2305 
2306 				reg = alg_region->base;
2307 				reg = dsp->ops->region_to_reg(mem, reg);
2308 				reg += offset;
2309 			} else {
2310 				cs_dsp_err(dsp, "No %s for algorithm %x\n",
2311 					   region_name, le32_to_cpu(blk->id));
2312 			}
2313 			break;
2314 
2315 		default:
2316 			cs_dsp_err(dsp, "%s.%d: Unknown region type %x at %d\n",
2317 				   file, blocks, type, pos);
2318 			break;
2319 		}
2320 
2321 		if (text) {
2322 			memcpy(text, blk->data, le32_to_cpu(blk->len));
2323 			cs_dsp_info(dsp, "%s: %s\n", dsp->fw_name, text);
2324 			kfree(text);
2325 			text = NULL;
2326 		}
2327 
2328 		if (reg) {
2329 			buf = cs_dsp_buf_alloc(blk->data,
2330 					       le32_to_cpu(blk->len),
2331 					       &buf_list);
2332 			if (!buf) {
2333 				cs_dsp_err(dsp, "Out of memory\n");
2334 				ret = -ENOMEM;
2335 				goto out_fw;
2336 			}
2337 
2338 			cs_dsp_dbg(dsp, "%s.%d: Writing %d bytes at %x\n",
2339 				   file, blocks, le32_to_cpu(blk->len),
2340 				   reg);
2341 			ret = regmap_raw_write_async(regmap, reg, buf->buf,
2342 						     le32_to_cpu(blk->len));
2343 			if (ret != 0) {
2344 				cs_dsp_err(dsp,
2345 					   "%s.%d: Failed to write to %x in %s: %d\n",
2346 					   file, blocks, reg, region_name, ret);
2347 			}
2348 		}
2349 
2350 		pos += (le32_to_cpu(blk->len) + sizeof(*blk) + 3) & ~0x03;
2351 		blocks++;
2352 	}
2353 
2354 	ret = regmap_async_complete(regmap);
2355 	if (ret != 0)
2356 		cs_dsp_err(dsp, "Failed to complete async write: %d\n", ret);
2357 
2358 	if (pos > firmware->size)
2359 		cs_dsp_warn(dsp, "%s.%d: %zu bytes at end of file\n",
2360 			    file, blocks, pos - firmware->size);
2361 
2362 	cs_dsp_debugfs_save_binname(dsp, file);
2363 
2364 out_fw:
2365 	regmap_async_complete(regmap);
2366 	cs_dsp_buf_free(&buf_list);
2367 	kfree(text);
2368 
2369 	if (ret == -EOVERFLOW)
2370 		cs_dsp_err(dsp, "%s: file content overflows file data\n", file);
2371 
2372 	return ret;
2373 }
2374 
2375 static int cs_dsp_create_name(struct cs_dsp *dsp)
2376 {
2377 	if (!dsp->name) {
2378 		dsp->name = devm_kasprintf(dsp->dev, GFP_KERNEL, "DSP%d",
2379 					   dsp->num);
2380 		if (!dsp->name)
2381 			return -ENOMEM;
2382 	}
2383 
2384 	return 0;
2385 }
2386 
2387 static int cs_dsp_common_init(struct cs_dsp *dsp)
2388 {
2389 	int ret;
2390 
2391 	ret = cs_dsp_create_name(dsp);
2392 	if (ret)
2393 		return ret;
2394 
2395 	INIT_LIST_HEAD(&dsp->alg_regions);
2396 	INIT_LIST_HEAD(&dsp->ctl_list);
2397 
2398 	mutex_init(&dsp->pwr_lock);
2399 
2400 #ifdef CONFIG_DEBUG_FS
2401 	/* Ensure this is invalid if client never provides a debugfs root */
2402 	dsp->debugfs_root = ERR_PTR(-ENODEV);
2403 #endif
2404 
2405 	return 0;
2406 }
2407 
2408 /**
2409  * cs_dsp_adsp1_init() - Initialise a cs_dsp structure representing a ADSP1 device
2410  * @dsp: pointer to DSP structure
2411  *
2412  * Return: Zero for success, a negative number on error.
2413  */
2414 int cs_dsp_adsp1_init(struct cs_dsp *dsp)
2415 {
2416 	dsp->ops = &cs_dsp_adsp1_ops;
2417 
2418 	return cs_dsp_common_init(dsp);
2419 }
2420 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_init, FW_CS_DSP);
2421 
2422 /**
2423  * cs_dsp_adsp1_power_up() - Load and start the named firmware
2424  * @dsp: pointer to DSP structure
2425  * @wmfw_firmware: the firmware to be sent
2426  * @wmfw_filename: file name of firmware to be sent
2427  * @coeff_firmware: the coefficient data to be sent
2428  * @coeff_filename: file name of coefficient to data be sent
2429  * @fw_name: the user-friendly firmware name
2430  *
2431  * Return: Zero for success, a negative number on error.
2432  */
2433 int cs_dsp_adsp1_power_up(struct cs_dsp *dsp,
2434 			  const struct firmware *wmfw_firmware, char *wmfw_filename,
2435 			  const struct firmware *coeff_firmware, char *coeff_filename,
2436 			  const char *fw_name)
2437 {
2438 	unsigned int val;
2439 	int ret;
2440 
2441 	mutex_lock(&dsp->pwr_lock);
2442 
2443 	dsp->fw_name = fw_name;
2444 
2445 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2446 			   ADSP1_SYS_ENA, ADSP1_SYS_ENA);
2447 
2448 	/*
2449 	 * For simplicity set the DSP clock rate to be the
2450 	 * SYSCLK rate rather than making it configurable.
2451 	 */
2452 	if (dsp->sysclk_reg) {
2453 		ret = regmap_read(dsp->regmap, dsp->sysclk_reg, &val);
2454 		if (ret != 0) {
2455 			cs_dsp_err(dsp, "Failed to read SYSCLK state: %d\n", ret);
2456 			goto err_mutex;
2457 		}
2458 
2459 		val = (val & dsp->sysclk_mask) >> dsp->sysclk_shift;
2460 
2461 		ret = regmap_update_bits(dsp->regmap,
2462 					 dsp->base + ADSP1_CONTROL_31,
2463 					 ADSP1_CLK_SEL_MASK, val);
2464 		if (ret != 0) {
2465 			cs_dsp_err(dsp, "Failed to set clock rate: %d\n", ret);
2466 			goto err_mutex;
2467 		}
2468 	}
2469 
2470 	ret = cs_dsp_load(dsp, wmfw_firmware, wmfw_filename);
2471 	if (ret != 0)
2472 		goto err_ena;
2473 
2474 	ret = cs_dsp_adsp1_setup_algs(dsp);
2475 	if (ret != 0)
2476 		goto err_ena;
2477 
2478 	ret = cs_dsp_load_coeff(dsp, coeff_firmware, coeff_filename);
2479 	if (ret != 0)
2480 		goto err_ena;
2481 
2482 	/* Initialize caches for enabled and unset controls */
2483 	ret = cs_dsp_coeff_init_control_caches(dsp);
2484 	if (ret != 0)
2485 		goto err_ena;
2486 
2487 	/* Sync set controls */
2488 	ret = cs_dsp_coeff_sync_controls(dsp);
2489 	if (ret != 0)
2490 		goto err_ena;
2491 
2492 	dsp->booted = true;
2493 
2494 	/* Start the core running */
2495 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2496 			   ADSP1_CORE_ENA | ADSP1_START,
2497 			   ADSP1_CORE_ENA | ADSP1_START);
2498 
2499 	dsp->running = true;
2500 
2501 	mutex_unlock(&dsp->pwr_lock);
2502 
2503 	return 0;
2504 
2505 err_ena:
2506 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2507 			   ADSP1_SYS_ENA, 0);
2508 err_mutex:
2509 	mutex_unlock(&dsp->pwr_lock);
2510 	return ret;
2511 }
2512 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_power_up, FW_CS_DSP);
2513 
2514 /**
2515  * cs_dsp_adsp1_power_down() - Halts the DSP
2516  * @dsp: pointer to DSP structure
2517  */
2518 void cs_dsp_adsp1_power_down(struct cs_dsp *dsp)
2519 {
2520 	struct cs_dsp_coeff_ctl *ctl;
2521 
2522 	mutex_lock(&dsp->pwr_lock);
2523 
2524 	dsp->running = false;
2525 	dsp->booted = false;
2526 
2527 	/* Halt the core */
2528 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2529 			   ADSP1_CORE_ENA | ADSP1_START, 0);
2530 
2531 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_19,
2532 			   ADSP1_WDMA_BUFFER_LENGTH_MASK, 0);
2533 
2534 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2535 			   ADSP1_SYS_ENA, 0);
2536 
2537 	list_for_each_entry(ctl, &dsp->ctl_list, list)
2538 		ctl->enabled = 0;
2539 
2540 	cs_dsp_free_alg_regions(dsp);
2541 
2542 	mutex_unlock(&dsp->pwr_lock);
2543 }
2544 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_power_down, FW_CS_DSP);
2545 
2546 static int cs_dsp_adsp2v2_enable_core(struct cs_dsp *dsp)
2547 {
2548 	unsigned int val;
2549 	int ret, count;
2550 
2551 	/* Wait for the RAM to start, should be near instantaneous */
2552 	for (count = 0; count < 10; ++count) {
2553 		ret = regmap_read(dsp->regmap, dsp->base + ADSP2_STATUS1, &val);
2554 		if (ret != 0)
2555 			return ret;
2556 
2557 		if (val & ADSP2_RAM_RDY)
2558 			break;
2559 
2560 		usleep_range(250, 500);
2561 	}
2562 
2563 	if (!(val & ADSP2_RAM_RDY)) {
2564 		cs_dsp_err(dsp, "Failed to start DSP RAM\n");
2565 		return -EBUSY;
2566 	}
2567 
2568 	cs_dsp_dbg(dsp, "RAM ready after %d polls\n", count);
2569 
2570 	return 0;
2571 }
2572 
2573 static int cs_dsp_adsp2_enable_core(struct cs_dsp *dsp)
2574 {
2575 	int ret;
2576 
2577 	ret = regmap_update_bits_async(dsp->regmap, dsp->base + ADSP2_CONTROL,
2578 				       ADSP2_SYS_ENA, ADSP2_SYS_ENA);
2579 	if (ret != 0)
2580 		return ret;
2581 
2582 	return cs_dsp_adsp2v2_enable_core(dsp);
2583 }
2584 
2585 static int cs_dsp_adsp2_lock(struct cs_dsp *dsp, unsigned int lock_regions)
2586 {
2587 	struct regmap *regmap = dsp->regmap;
2588 	unsigned int code0, code1, lock_reg;
2589 
2590 	if (!(lock_regions & CS_ADSP2_REGION_ALL))
2591 		return 0;
2592 
2593 	lock_regions &= CS_ADSP2_REGION_ALL;
2594 	lock_reg = dsp->base + ADSP2_LOCK_REGION_1_LOCK_REGION_0;
2595 
2596 	while (lock_regions) {
2597 		code0 = code1 = 0;
2598 		if (lock_regions & BIT(0)) {
2599 			code0 = ADSP2_LOCK_CODE_0;
2600 			code1 = ADSP2_LOCK_CODE_1;
2601 		}
2602 		if (lock_regions & BIT(1)) {
2603 			code0 |= ADSP2_LOCK_CODE_0 << ADSP2_LOCK_REGION_SHIFT;
2604 			code1 |= ADSP2_LOCK_CODE_1 << ADSP2_LOCK_REGION_SHIFT;
2605 		}
2606 		regmap_write(regmap, lock_reg, code0);
2607 		regmap_write(regmap, lock_reg, code1);
2608 		lock_regions >>= 2;
2609 		lock_reg += 2;
2610 	}
2611 
2612 	return 0;
2613 }
2614 
2615 static int cs_dsp_adsp2_enable_memory(struct cs_dsp *dsp)
2616 {
2617 	return regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2618 				  ADSP2_MEM_ENA, ADSP2_MEM_ENA);
2619 }
2620 
2621 static void cs_dsp_adsp2_disable_memory(struct cs_dsp *dsp)
2622 {
2623 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2624 			   ADSP2_MEM_ENA, 0);
2625 }
2626 
2627 static void cs_dsp_adsp2_disable_core(struct cs_dsp *dsp)
2628 {
2629 	regmap_write(dsp->regmap, dsp->base + ADSP2_RDMA_CONFIG_1, 0);
2630 	regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_1, 0);
2631 	regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_2, 0);
2632 
2633 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2634 			   ADSP2_SYS_ENA, 0);
2635 }
2636 
2637 static void cs_dsp_adsp2v2_disable_core(struct cs_dsp *dsp)
2638 {
2639 	regmap_write(dsp->regmap, dsp->base + ADSP2_RDMA_CONFIG_1, 0);
2640 	regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_1, 0);
2641 	regmap_write(dsp->regmap, dsp->base + ADSP2V2_WDMA_CONFIG_2, 0);
2642 }
2643 
2644 static int cs_dsp_halo_configure_mpu(struct cs_dsp *dsp, unsigned int lock_regions)
2645 {
2646 	struct reg_sequence config[] = {
2647 		{ dsp->base + HALO_MPU_LOCK_CONFIG,     0x5555 },
2648 		{ dsp->base + HALO_MPU_LOCK_CONFIG,     0xAAAA },
2649 		{ dsp->base + HALO_MPU_XMEM_ACCESS_0,   0xFFFFFFFF },
2650 		{ dsp->base + HALO_MPU_YMEM_ACCESS_0,   0xFFFFFFFF },
2651 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_0, lock_regions },
2652 		{ dsp->base + HALO_MPU_XREG_ACCESS_0,   lock_regions },
2653 		{ dsp->base + HALO_MPU_YREG_ACCESS_0,   lock_regions },
2654 		{ dsp->base + HALO_MPU_XMEM_ACCESS_1,   0xFFFFFFFF },
2655 		{ dsp->base + HALO_MPU_YMEM_ACCESS_1,   0xFFFFFFFF },
2656 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_1, lock_regions },
2657 		{ dsp->base + HALO_MPU_XREG_ACCESS_1,   lock_regions },
2658 		{ dsp->base + HALO_MPU_YREG_ACCESS_1,   lock_regions },
2659 		{ dsp->base + HALO_MPU_XMEM_ACCESS_2,   0xFFFFFFFF },
2660 		{ dsp->base + HALO_MPU_YMEM_ACCESS_2,   0xFFFFFFFF },
2661 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_2, lock_regions },
2662 		{ dsp->base + HALO_MPU_XREG_ACCESS_2,   lock_regions },
2663 		{ dsp->base + HALO_MPU_YREG_ACCESS_2,   lock_regions },
2664 		{ dsp->base + HALO_MPU_XMEM_ACCESS_3,   0xFFFFFFFF },
2665 		{ dsp->base + HALO_MPU_YMEM_ACCESS_3,   0xFFFFFFFF },
2666 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_3, lock_regions },
2667 		{ dsp->base + HALO_MPU_XREG_ACCESS_3,   lock_regions },
2668 		{ dsp->base + HALO_MPU_YREG_ACCESS_3,   lock_regions },
2669 		{ dsp->base + HALO_MPU_LOCK_CONFIG,     0 },
2670 	};
2671 
2672 	return regmap_multi_reg_write(dsp->regmap, config, ARRAY_SIZE(config));
2673 }
2674 
2675 /**
2676  * cs_dsp_set_dspclk() - Applies the given frequency to the given cs_dsp
2677  * @dsp: pointer to DSP structure
2678  * @freq: clock rate to set
2679  *
2680  * This is only for use on ADSP2 cores.
2681  *
2682  * Return: Zero for success, a negative number on error.
2683  */
2684 int cs_dsp_set_dspclk(struct cs_dsp *dsp, unsigned int freq)
2685 {
2686 	int ret;
2687 
2688 	ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CLOCKING,
2689 				 ADSP2_CLK_SEL_MASK,
2690 				 freq << ADSP2_CLK_SEL_SHIFT);
2691 	if (ret)
2692 		cs_dsp_err(dsp, "Failed to set clock rate: %d\n", ret);
2693 
2694 	return ret;
2695 }
2696 EXPORT_SYMBOL_NS_GPL(cs_dsp_set_dspclk, FW_CS_DSP);
2697 
2698 static void cs_dsp_stop_watchdog(struct cs_dsp *dsp)
2699 {
2700 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_WATCHDOG,
2701 			   ADSP2_WDT_ENA_MASK, 0);
2702 }
2703 
2704 static void cs_dsp_halo_stop_watchdog(struct cs_dsp *dsp)
2705 {
2706 	regmap_update_bits(dsp->regmap, dsp->base + HALO_WDT_CONTROL,
2707 			   HALO_WDT_EN_MASK, 0);
2708 }
2709 
2710 /**
2711  * cs_dsp_power_up() - Downloads firmware to the DSP
2712  * @dsp: pointer to DSP structure
2713  * @wmfw_firmware: the firmware to be sent
2714  * @wmfw_filename: file name of firmware to be sent
2715  * @coeff_firmware: the coefficient data to be sent
2716  * @coeff_filename: file name of coefficient to data be sent
2717  * @fw_name: the user-friendly firmware name
2718  *
2719  * This function is used on ADSP2 and Halo DSP cores, it powers-up the DSP core
2720  * and downloads the firmware but does not start the firmware running. The
2721  * cs_dsp booted flag will be set once completed and if the core has a low-power
2722  * memory retention mode it will be put into this state after the firmware is
2723  * downloaded.
2724  *
2725  * Return: Zero for success, a negative number on error.
2726  */
2727 int cs_dsp_power_up(struct cs_dsp *dsp,
2728 		    const struct firmware *wmfw_firmware, char *wmfw_filename,
2729 		    const struct firmware *coeff_firmware, char *coeff_filename,
2730 		    const char *fw_name)
2731 {
2732 	int ret;
2733 
2734 	mutex_lock(&dsp->pwr_lock);
2735 
2736 	dsp->fw_name = fw_name;
2737 
2738 	if (dsp->ops->enable_memory) {
2739 		ret = dsp->ops->enable_memory(dsp);
2740 		if (ret != 0)
2741 			goto err_mutex;
2742 	}
2743 
2744 	if (dsp->ops->enable_core) {
2745 		ret = dsp->ops->enable_core(dsp);
2746 		if (ret != 0)
2747 			goto err_mem;
2748 	}
2749 
2750 	ret = cs_dsp_load(dsp, wmfw_firmware, wmfw_filename);
2751 	if (ret != 0)
2752 		goto err_ena;
2753 
2754 	ret = dsp->ops->setup_algs(dsp);
2755 	if (ret != 0)
2756 		goto err_ena;
2757 
2758 	ret = cs_dsp_load_coeff(dsp, coeff_firmware, coeff_filename);
2759 	if (ret != 0)
2760 		goto err_ena;
2761 
2762 	/* Initialize caches for enabled and unset controls */
2763 	ret = cs_dsp_coeff_init_control_caches(dsp);
2764 	if (ret != 0)
2765 		goto err_ena;
2766 
2767 	if (dsp->ops->disable_core)
2768 		dsp->ops->disable_core(dsp);
2769 
2770 	dsp->booted = true;
2771 
2772 	mutex_unlock(&dsp->pwr_lock);
2773 
2774 	return 0;
2775 err_ena:
2776 	if (dsp->ops->disable_core)
2777 		dsp->ops->disable_core(dsp);
2778 err_mem:
2779 	if (dsp->ops->disable_memory)
2780 		dsp->ops->disable_memory(dsp);
2781 err_mutex:
2782 	mutex_unlock(&dsp->pwr_lock);
2783 
2784 	return ret;
2785 }
2786 EXPORT_SYMBOL_NS_GPL(cs_dsp_power_up, FW_CS_DSP);
2787 
2788 /**
2789  * cs_dsp_power_down() - Powers-down the DSP
2790  * @dsp: pointer to DSP structure
2791  *
2792  * cs_dsp_stop() must have been called before this function. The core will be
2793  * fully powered down and so the memory will not be retained.
2794  */
2795 void cs_dsp_power_down(struct cs_dsp *dsp)
2796 {
2797 	struct cs_dsp_coeff_ctl *ctl;
2798 
2799 	mutex_lock(&dsp->pwr_lock);
2800 
2801 	cs_dsp_debugfs_clear(dsp);
2802 
2803 	dsp->fw_id = 0;
2804 	dsp->fw_id_version = 0;
2805 
2806 	dsp->booted = false;
2807 
2808 	if (dsp->ops->disable_memory)
2809 		dsp->ops->disable_memory(dsp);
2810 
2811 	list_for_each_entry(ctl, &dsp->ctl_list, list)
2812 		ctl->enabled = 0;
2813 
2814 	cs_dsp_free_alg_regions(dsp);
2815 
2816 	mutex_unlock(&dsp->pwr_lock);
2817 
2818 	cs_dsp_dbg(dsp, "Shutdown complete\n");
2819 }
2820 EXPORT_SYMBOL_NS_GPL(cs_dsp_power_down, FW_CS_DSP);
2821 
2822 static int cs_dsp_adsp2_start_core(struct cs_dsp *dsp)
2823 {
2824 	return regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2825 				  ADSP2_CORE_ENA | ADSP2_START,
2826 				  ADSP2_CORE_ENA | ADSP2_START);
2827 }
2828 
2829 static void cs_dsp_adsp2_stop_core(struct cs_dsp *dsp)
2830 {
2831 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2832 			   ADSP2_CORE_ENA | ADSP2_START, 0);
2833 }
2834 
2835 /**
2836  * cs_dsp_run() - Starts the firmware running
2837  * @dsp: pointer to DSP structure
2838  *
2839  * cs_dsp_power_up() must have previously been called successfully.
2840  *
2841  * Return: Zero for success, a negative number on error.
2842  */
2843 int cs_dsp_run(struct cs_dsp *dsp)
2844 {
2845 	int ret;
2846 
2847 	mutex_lock(&dsp->pwr_lock);
2848 
2849 	if (!dsp->booted) {
2850 		ret = -EIO;
2851 		goto err;
2852 	}
2853 
2854 	if (dsp->ops->enable_core) {
2855 		ret = dsp->ops->enable_core(dsp);
2856 		if (ret != 0)
2857 			goto err;
2858 	}
2859 
2860 	if (dsp->client_ops->pre_run) {
2861 		ret = dsp->client_ops->pre_run(dsp);
2862 		if (ret)
2863 			goto err;
2864 	}
2865 
2866 	/* Sync set controls */
2867 	ret = cs_dsp_coeff_sync_controls(dsp);
2868 	if (ret != 0)
2869 		goto err;
2870 
2871 	if (dsp->ops->lock_memory) {
2872 		ret = dsp->ops->lock_memory(dsp, dsp->lock_regions);
2873 		if (ret != 0) {
2874 			cs_dsp_err(dsp, "Error configuring MPU: %d\n", ret);
2875 			goto err;
2876 		}
2877 	}
2878 
2879 	if (dsp->ops->start_core) {
2880 		ret = dsp->ops->start_core(dsp);
2881 		if (ret != 0)
2882 			goto err;
2883 	}
2884 
2885 	dsp->running = true;
2886 
2887 	if (dsp->client_ops->post_run) {
2888 		ret = dsp->client_ops->post_run(dsp);
2889 		if (ret)
2890 			goto err;
2891 	}
2892 
2893 	mutex_unlock(&dsp->pwr_lock);
2894 
2895 	return 0;
2896 
2897 err:
2898 	if (dsp->ops->stop_core)
2899 		dsp->ops->stop_core(dsp);
2900 	if (dsp->ops->disable_core)
2901 		dsp->ops->disable_core(dsp);
2902 	mutex_unlock(&dsp->pwr_lock);
2903 
2904 	return ret;
2905 }
2906 EXPORT_SYMBOL_NS_GPL(cs_dsp_run, FW_CS_DSP);
2907 
2908 /**
2909  * cs_dsp_stop() - Stops the firmware
2910  * @dsp: pointer to DSP structure
2911  *
2912  * Memory will not be disabled so firmware will remain loaded.
2913  */
2914 void cs_dsp_stop(struct cs_dsp *dsp)
2915 {
2916 	/* Tell the firmware to cleanup */
2917 	cs_dsp_signal_event_controls(dsp, CS_DSP_FW_EVENT_SHUTDOWN);
2918 
2919 	if (dsp->ops->stop_watchdog)
2920 		dsp->ops->stop_watchdog(dsp);
2921 
2922 	/* Log firmware state, it can be useful for analysis */
2923 	if (dsp->ops->show_fw_status)
2924 		dsp->ops->show_fw_status(dsp);
2925 
2926 	mutex_lock(&dsp->pwr_lock);
2927 
2928 	if (dsp->client_ops->pre_stop)
2929 		dsp->client_ops->pre_stop(dsp);
2930 
2931 	dsp->running = false;
2932 
2933 	if (dsp->ops->stop_core)
2934 		dsp->ops->stop_core(dsp);
2935 	if (dsp->ops->disable_core)
2936 		dsp->ops->disable_core(dsp);
2937 
2938 	if (dsp->client_ops->post_stop)
2939 		dsp->client_ops->post_stop(dsp);
2940 
2941 	mutex_unlock(&dsp->pwr_lock);
2942 
2943 	cs_dsp_dbg(dsp, "Execution stopped\n");
2944 }
2945 EXPORT_SYMBOL_NS_GPL(cs_dsp_stop, FW_CS_DSP);
2946 
2947 static int cs_dsp_halo_start_core(struct cs_dsp *dsp)
2948 {
2949 	int ret;
2950 
2951 	ret = regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2952 				 HALO_CORE_RESET | HALO_CORE_EN,
2953 				 HALO_CORE_RESET | HALO_CORE_EN);
2954 	if (ret)
2955 		return ret;
2956 
2957 	return regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2958 				  HALO_CORE_RESET, 0);
2959 }
2960 
2961 static void cs_dsp_halo_stop_core(struct cs_dsp *dsp)
2962 {
2963 	regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2964 			   HALO_CORE_EN, 0);
2965 
2966 	/* reset halo core with CORE_SOFT_RESET */
2967 	regmap_update_bits(dsp->regmap, dsp->base + HALO_CORE_SOFT_RESET,
2968 			   HALO_CORE_SOFT_RESET_MASK, 1);
2969 }
2970 
2971 /**
2972  * cs_dsp_adsp2_init() - Initialise a cs_dsp structure representing a ADSP2 core
2973  * @dsp: pointer to DSP structure
2974  *
2975  * Return: Zero for success, a negative number on error.
2976  */
2977 int cs_dsp_adsp2_init(struct cs_dsp *dsp)
2978 {
2979 	int ret;
2980 
2981 	switch (dsp->rev) {
2982 	case 0:
2983 		/*
2984 		 * Disable the DSP memory by default when in reset for a small
2985 		 * power saving.
2986 		 */
2987 		ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2988 					 ADSP2_MEM_ENA, 0);
2989 		if (ret) {
2990 			cs_dsp_err(dsp,
2991 				   "Failed to clear memory retention: %d\n", ret);
2992 			return ret;
2993 		}
2994 
2995 		dsp->ops = &cs_dsp_adsp2_ops[0];
2996 		break;
2997 	case 1:
2998 		dsp->ops = &cs_dsp_adsp2_ops[1];
2999 		break;
3000 	default:
3001 		dsp->ops = &cs_dsp_adsp2_ops[2];
3002 		break;
3003 	}
3004 
3005 	return cs_dsp_common_init(dsp);
3006 }
3007 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp2_init, FW_CS_DSP);
3008 
3009 /**
3010  * cs_dsp_halo_init() - Initialise a cs_dsp structure representing a HALO Core DSP
3011  * @dsp: pointer to DSP structure
3012  *
3013  * Return: Zero for success, a negative number on error.
3014  */
3015 int cs_dsp_halo_init(struct cs_dsp *dsp)
3016 {
3017 	if (dsp->no_core_startstop)
3018 		dsp->ops = &cs_dsp_halo_ao_ops;
3019 	else
3020 		dsp->ops = &cs_dsp_halo_ops;
3021 
3022 	return cs_dsp_common_init(dsp);
3023 }
3024 EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_init, FW_CS_DSP);
3025 
3026 /**
3027  * cs_dsp_remove() - Clean a cs_dsp before deletion
3028  * @dsp: pointer to DSP structure
3029  */
3030 void cs_dsp_remove(struct cs_dsp *dsp)
3031 {
3032 	struct cs_dsp_coeff_ctl *ctl;
3033 
3034 	while (!list_empty(&dsp->ctl_list)) {
3035 		ctl = list_first_entry(&dsp->ctl_list, struct cs_dsp_coeff_ctl, list);
3036 
3037 		if (dsp->client_ops->control_remove)
3038 			dsp->client_ops->control_remove(ctl);
3039 
3040 		list_del(&ctl->list);
3041 		cs_dsp_free_ctl_blk(ctl);
3042 	}
3043 }
3044 EXPORT_SYMBOL_NS_GPL(cs_dsp_remove, FW_CS_DSP);
3045 
3046 /**
3047  * cs_dsp_read_raw_data_block() - Reads a block of data from DSP memory
3048  * @dsp: pointer to DSP structure
3049  * @mem_type: the type of DSP memory containing the data to be read
3050  * @mem_addr: the address of the data within the memory region
3051  * @num_words: the length of the data to read
3052  * @data: a buffer to store the fetched data
3053  *
3054  * If this is used to read unpacked 24-bit memory, each 24-bit DSP word will
3055  * occupy 32-bits in data (MSbyte will be 0). This padding can be removed using
3056  * cs_dsp_remove_padding()
3057  *
3058  * Return: Zero for success, a negative number on error.
3059  */
3060 int cs_dsp_read_raw_data_block(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr,
3061 			       unsigned int num_words, __be32 *data)
3062 {
3063 	struct cs_dsp_region const *mem = cs_dsp_find_region(dsp, mem_type);
3064 	unsigned int reg;
3065 	int ret;
3066 
3067 	lockdep_assert_held(&dsp->pwr_lock);
3068 
3069 	if (!mem)
3070 		return -EINVAL;
3071 
3072 	reg = dsp->ops->region_to_reg(mem, mem_addr);
3073 
3074 	ret = regmap_raw_read(dsp->regmap, reg, data,
3075 			      sizeof(*data) * num_words);
3076 	if (ret < 0)
3077 		return ret;
3078 
3079 	return 0;
3080 }
3081 EXPORT_SYMBOL_NS_GPL(cs_dsp_read_raw_data_block, FW_CS_DSP);
3082 
3083 /**
3084  * cs_dsp_read_data_word() - Reads a word from DSP memory
3085  * @dsp: pointer to DSP structure
3086  * @mem_type: the type of DSP memory containing the data to be read
3087  * @mem_addr: the address of the data within the memory region
3088  * @data: a buffer to store the fetched data
3089  *
3090  * Return: Zero for success, a negative number on error.
3091  */
3092 int cs_dsp_read_data_word(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr, u32 *data)
3093 {
3094 	__be32 raw;
3095 	int ret;
3096 
3097 	ret = cs_dsp_read_raw_data_block(dsp, mem_type, mem_addr, 1, &raw);
3098 	if (ret < 0)
3099 		return ret;
3100 
3101 	*data = be32_to_cpu(raw) & 0x00ffffffu;
3102 
3103 	return 0;
3104 }
3105 EXPORT_SYMBOL_NS_GPL(cs_dsp_read_data_word, FW_CS_DSP);
3106 
3107 /**
3108  * cs_dsp_write_data_word() - Writes a word to DSP memory
3109  * @dsp: pointer to DSP structure
3110  * @mem_type: the type of DSP memory containing the data to be written
3111  * @mem_addr: the address of the data within the memory region
3112  * @data: the data to be written
3113  *
3114  * Return: Zero for success, a negative number on error.
3115  */
3116 int cs_dsp_write_data_word(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr, u32 data)
3117 {
3118 	struct cs_dsp_region const *mem = cs_dsp_find_region(dsp, mem_type);
3119 	__be32 val = cpu_to_be32(data & 0x00ffffffu);
3120 	unsigned int reg;
3121 
3122 	lockdep_assert_held(&dsp->pwr_lock);
3123 
3124 	if (!mem)
3125 		return -EINVAL;
3126 
3127 	reg = dsp->ops->region_to_reg(mem, mem_addr);
3128 
3129 	return regmap_raw_write(dsp->regmap, reg, &val, sizeof(val));
3130 }
3131 EXPORT_SYMBOL_NS_GPL(cs_dsp_write_data_word, FW_CS_DSP);
3132 
3133 /**
3134  * cs_dsp_remove_padding() - Convert unpacked words to packed bytes
3135  * @buf: buffer containing DSP words read from DSP memory
3136  * @nwords: number of words to convert
3137  *
3138  * DSP words from the register map have pad bytes and the data bytes
3139  * are in swapped order. This swaps to the native endian order and
3140  * strips the pad bytes.
3141  */
3142 void cs_dsp_remove_padding(u32 *buf, int nwords)
3143 {
3144 	const __be32 *pack_in = (__be32 *)buf;
3145 	u8 *pack_out = (u8 *)buf;
3146 	int i;
3147 
3148 	for (i = 0; i < nwords; i++) {
3149 		u32 word = be32_to_cpu(*pack_in++);
3150 		*pack_out++ = (u8)word;
3151 		*pack_out++ = (u8)(word >> 8);
3152 		*pack_out++ = (u8)(word >> 16);
3153 	}
3154 }
3155 EXPORT_SYMBOL_NS_GPL(cs_dsp_remove_padding, FW_CS_DSP);
3156 
3157 /**
3158  * cs_dsp_adsp2_bus_error() - Handle a DSP bus error interrupt
3159  * @dsp: pointer to DSP structure
3160  *
3161  * The firmware and DSP state will be logged for future analysis.
3162  */
3163 void cs_dsp_adsp2_bus_error(struct cs_dsp *dsp)
3164 {
3165 	unsigned int val;
3166 	struct regmap *regmap = dsp->regmap;
3167 	int ret = 0;
3168 
3169 	mutex_lock(&dsp->pwr_lock);
3170 
3171 	ret = regmap_read(regmap, dsp->base + ADSP2_LOCK_REGION_CTRL, &val);
3172 	if (ret) {
3173 		cs_dsp_err(dsp,
3174 			   "Failed to read Region Lock Ctrl register: %d\n", ret);
3175 		goto error;
3176 	}
3177 
3178 	if (val & ADSP2_WDT_TIMEOUT_STS_MASK) {
3179 		cs_dsp_err(dsp, "watchdog timeout error\n");
3180 		dsp->ops->stop_watchdog(dsp);
3181 		if (dsp->client_ops->watchdog_expired)
3182 			dsp->client_ops->watchdog_expired(dsp);
3183 	}
3184 
3185 	if (val & (ADSP2_ADDR_ERR_MASK | ADSP2_REGION_LOCK_ERR_MASK)) {
3186 		if (val & ADSP2_ADDR_ERR_MASK)
3187 			cs_dsp_err(dsp, "bus error: address error\n");
3188 		else
3189 			cs_dsp_err(dsp, "bus error: region lock error\n");
3190 
3191 		ret = regmap_read(regmap, dsp->base + ADSP2_BUS_ERR_ADDR, &val);
3192 		if (ret) {
3193 			cs_dsp_err(dsp,
3194 				   "Failed to read Bus Err Addr register: %d\n",
3195 				   ret);
3196 			goto error;
3197 		}
3198 
3199 		cs_dsp_err(dsp, "bus error address = 0x%x\n",
3200 			   val & ADSP2_BUS_ERR_ADDR_MASK);
3201 
3202 		ret = regmap_read(regmap,
3203 				  dsp->base + ADSP2_PMEM_ERR_ADDR_XMEM_ERR_ADDR,
3204 				  &val);
3205 		if (ret) {
3206 			cs_dsp_err(dsp,
3207 				   "Failed to read Pmem Xmem Err Addr register: %d\n",
3208 				   ret);
3209 			goto error;
3210 		}
3211 
3212 		cs_dsp_err(dsp, "xmem error address = 0x%x\n",
3213 			   val & ADSP2_XMEM_ERR_ADDR_MASK);
3214 		cs_dsp_err(dsp, "pmem error address = 0x%x\n",
3215 			   (val & ADSP2_PMEM_ERR_ADDR_MASK) >>
3216 			   ADSP2_PMEM_ERR_ADDR_SHIFT);
3217 	}
3218 
3219 	regmap_update_bits(regmap, dsp->base + ADSP2_LOCK_REGION_CTRL,
3220 			   ADSP2_CTRL_ERR_EINT, ADSP2_CTRL_ERR_EINT);
3221 
3222 error:
3223 	mutex_unlock(&dsp->pwr_lock);
3224 }
3225 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp2_bus_error, FW_CS_DSP);
3226 
3227 /**
3228  * cs_dsp_halo_bus_error() - Handle a DSP bus error interrupt
3229  * @dsp: pointer to DSP structure
3230  *
3231  * The firmware and DSP state will be logged for future analysis.
3232  */
3233 void cs_dsp_halo_bus_error(struct cs_dsp *dsp)
3234 {
3235 	struct regmap *regmap = dsp->regmap;
3236 	unsigned int fault[6];
3237 	struct reg_sequence clear[] = {
3238 		{ dsp->base + HALO_MPU_XM_VIO_STATUS,     0x0 },
3239 		{ dsp->base + HALO_MPU_YM_VIO_STATUS,     0x0 },
3240 		{ dsp->base + HALO_MPU_PM_VIO_STATUS,     0x0 },
3241 	};
3242 	int ret;
3243 
3244 	mutex_lock(&dsp->pwr_lock);
3245 
3246 	ret = regmap_read(regmap, dsp->base_sysinfo + HALO_AHBM_WINDOW_DEBUG_1,
3247 			  fault);
3248 	if (ret) {
3249 		cs_dsp_warn(dsp, "Failed to read AHB DEBUG_1: %d\n", ret);
3250 		goto exit_unlock;
3251 	}
3252 
3253 	cs_dsp_warn(dsp, "AHB: STATUS: 0x%x ADDR: 0x%x\n",
3254 		    *fault & HALO_AHBM_FLAGS_ERR_MASK,
3255 		    (*fault & HALO_AHBM_CORE_ERR_ADDR_MASK) >>
3256 		    HALO_AHBM_CORE_ERR_ADDR_SHIFT);
3257 
3258 	ret = regmap_read(regmap, dsp->base_sysinfo + HALO_AHBM_WINDOW_DEBUG_0,
3259 			  fault);
3260 	if (ret) {
3261 		cs_dsp_warn(dsp, "Failed to read AHB DEBUG_0: %d\n", ret);
3262 		goto exit_unlock;
3263 	}
3264 
3265 	cs_dsp_warn(dsp, "AHB: SYS_ADDR: 0x%x\n", *fault);
3266 
3267 	ret = regmap_bulk_read(regmap, dsp->base + HALO_MPU_XM_VIO_ADDR,
3268 			       fault, ARRAY_SIZE(fault));
3269 	if (ret) {
3270 		cs_dsp_warn(dsp, "Failed to read MPU fault info: %d\n", ret);
3271 		goto exit_unlock;
3272 	}
3273 
3274 	cs_dsp_warn(dsp, "XM: STATUS:0x%x ADDR:0x%x\n", fault[1], fault[0]);
3275 	cs_dsp_warn(dsp, "YM: STATUS:0x%x ADDR:0x%x\n", fault[3], fault[2]);
3276 	cs_dsp_warn(dsp, "PM: STATUS:0x%x ADDR:0x%x\n", fault[5], fault[4]);
3277 
3278 	ret = regmap_multi_reg_write(dsp->regmap, clear, ARRAY_SIZE(clear));
3279 	if (ret)
3280 		cs_dsp_warn(dsp, "Failed to clear MPU status: %d\n", ret);
3281 
3282 exit_unlock:
3283 	mutex_unlock(&dsp->pwr_lock);
3284 }
3285 EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_bus_error, FW_CS_DSP);
3286 
3287 /**
3288  * cs_dsp_halo_wdt_expire() - Handle DSP watchdog expiry
3289  * @dsp: pointer to DSP structure
3290  *
3291  * This is logged for future analysis.
3292  */
3293 void cs_dsp_halo_wdt_expire(struct cs_dsp *dsp)
3294 {
3295 	mutex_lock(&dsp->pwr_lock);
3296 
3297 	cs_dsp_warn(dsp, "WDT Expiry Fault\n");
3298 
3299 	dsp->ops->stop_watchdog(dsp);
3300 	if (dsp->client_ops->watchdog_expired)
3301 		dsp->client_ops->watchdog_expired(dsp);
3302 
3303 	mutex_unlock(&dsp->pwr_lock);
3304 }
3305 EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_wdt_expire, FW_CS_DSP);
3306 
3307 static const struct cs_dsp_ops cs_dsp_adsp1_ops = {
3308 	.validate_version = cs_dsp_validate_version,
3309 	.parse_sizes = cs_dsp_adsp1_parse_sizes,
3310 	.region_to_reg = cs_dsp_region_to_reg,
3311 };
3312 
3313 static const struct cs_dsp_ops cs_dsp_adsp2_ops[] = {
3314 	{
3315 		.parse_sizes = cs_dsp_adsp2_parse_sizes,
3316 		.validate_version = cs_dsp_validate_version,
3317 		.setup_algs = cs_dsp_adsp2_setup_algs,
3318 		.region_to_reg = cs_dsp_region_to_reg,
3319 
3320 		.show_fw_status = cs_dsp_adsp2_show_fw_status,
3321 
3322 		.enable_memory = cs_dsp_adsp2_enable_memory,
3323 		.disable_memory = cs_dsp_adsp2_disable_memory,
3324 
3325 		.enable_core = cs_dsp_adsp2_enable_core,
3326 		.disable_core = cs_dsp_adsp2_disable_core,
3327 
3328 		.start_core = cs_dsp_adsp2_start_core,
3329 		.stop_core = cs_dsp_adsp2_stop_core,
3330 
3331 	},
3332 	{
3333 		.parse_sizes = cs_dsp_adsp2_parse_sizes,
3334 		.validate_version = cs_dsp_validate_version,
3335 		.setup_algs = cs_dsp_adsp2_setup_algs,
3336 		.region_to_reg = cs_dsp_region_to_reg,
3337 
3338 		.show_fw_status = cs_dsp_adsp2v2_show_fw_status,
3339 
3340 		.enable_memory = cs_dsp_adsp2_enable_memory,
3341 		.disable_memory = cs_dsp_adsp2_disable_memory,
3342 		.lock_memory = cs_dsp_adsp2_lock,
3343 
3344 		.enable_core = cs_dsp_adsp2v2_enable_core,
3345 		.disable_core = cs_dsp_adsp2v2_disable_core,
3346 
3347 		.start_core = cs_dsp_adsp2_start_core,
3348 		.stop_core = cs_dsp_adsp2_stop_core,
3349 	},
3350 	{
3351 		.parse_sizes = cs_dsp_adsp2_parse_sizes,
3352 		.validate_version = cs_dsp_validate_version,
3353 		.setup_algs = cs_dsp_adsp2_setup_algs,
3354 		.region_to_reg = cs_dsp_region_to_reg,
3355 
3356 		.show_fw_status = cs_dsp_adsp2v2_show_fw_status,
3357 		.stop_watchdog = cs_dsp_stop_watchdog,
3358 
3359 		.enable_memory = cs_dsp_adsp2_enable_memory,
3360 		.disable_memory = cs_dsp_adsp2_disable_memory,
3361 		.lock_memory = cs_dsp_adsp2_lock,
3362 
3363 		.enable_core = cs_dsp_adsp2v2_enable_core,
3364 		.disable_core = cs_dsp_adsp2v2_disable_core,
3365 
3366 		.start_core = cs_dsp_adsp2_start_core,
3367 		.stop_core = cs_dsp_adsp2_stop_core,
3368 	},
3369 };
3370 
3371 static const struct cs_dsp_ops cs_dsp_halo_ops = {
3372 	.parse_sizes = cs_dsp_adsp2_parse_sizes,
3373 	.validate_version = cs_dsp_halo_validate_version,
3374 	.setup_algs = cs_dsp_halo_setup_algs,
3375 	.region_to_reg = cs_dsp_halo_region_to_reg,
3376 
3377 	.show_fw_status = cs_dsp_halo_show_fw_status,
3378 	.stop_watchdog = cs_dsp_halo_stop_watchdog,
3379 
3380 	.lock_memory = cs_dsp_halo_configure_mpu,
3381 
3382 	.start_core = cs_dsp_halo_start_core,
3383 	.stop_core = cs_dsp_halo_stop_core,
3384 };
3385 
3386 static const struct cs_dsp_ops cs_dsp_halo_ao_ops = {
3387 	.parse_sizes = cs_dsp_adsp2_parse_sizes,
3388 	.validate_version = cs_dsp_halo_validate_version,
3389 	.setup_algs = cs_dsp_halo_setup_algs,
3390 	.region_to_reg = cs_dsp_halo_region_to_reg,
3391 	.show_fw_status = cs_dsp_halo_show_fw_status,
3392 };
3393 
3394 /**
3395  * cs_dsp_chunk_write() - Format data to a DSP memory chunk
3396  * @ch: Pointer to the chunk structure
3397  * @nbits: Number of bits to write
3398  * @val: Value to write
3399  *
3400  * This function sequentially writes values into the format required for DSP
3401  * memory, it handles both inserting of the padding bytes and converting to
3402  * big endian. Note that data is only committed to the chunk when a whole DSP
3403  * words worth of data is available.
3404  *
3405  * Return: Zero for success, a negative number on error.
3406  */
3407 int cs_dsp_chunk_write(struct cs_dsp_chunk *ch, int nbits, u32 val)
3408 {
3409 	int nwrite, i;
3410 
3411 	nwrite = min(CS_DSP_DATA_WORD_BITS - ch->cachebits, nbits);
3412 
3413 	ch->cache <<= nwrite;
3414 	ch->cache |= val >> (nbits - nwrite);
3415 	ch->cachebits += nwrite;
3416 	nbits -= nwrite;
3417 
3418 	if (ch->cachebits == CS_DSP_DATA_WORD_BITS) {
3419 		if (cs_dsp_chunk_end(ch))
3420 			return -ENOSPC;
3421 
3422 		ch->cache &= 0xFFFFFF;
3423 		for (i = 0; i < sizeof(ch->cache); i++, ch->cache <<= BITS_PER_BYTE)
3424 			*ch->data++ = (ch->cache & 0xFF000000) >> CS_DSP_DATA_WORD_BITS;
3425 
3426 		ch->bytes += sizeof(ch->cache);
3427 		ch->cachebits = 0;
3428 	}
3429 
3430 	if (nbits)
3431 		return cs_dsp_chunk_write(ch, nbits, val);
3432 
3433 	return 0;
3434 }
3435 EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_write, FW_CS_DSP);
3436 
3437 /**
3438  * cs_dsp_chunk_flush() - Pad remaining data with zero and commit to chunk
3439  * @ch: Pointer to the chunk structure
3440  *
3441  * As cs_dsp_chunk_write only writes data when a whole DSP word is ready to
3442  * be written out it is possible that some data will remain in the cache, this
3443  * function will pad that data with zeros upto a whole DSP word and write out.
3444  *
3445  * Return: Zero for success, a negative number on error.
3446  */
3447 int cs_dsp_chunk_flush(struct cs_dsp_chunk *ch)
3448 {
3449 	if (!ch->cachebits)
3450 		return 0;
3451 
3452 	return cs_dsp_chunk_write(ch, CS_DSP_DATA_WORD_BITS - ch->cachebits, 0);
3453 }
3454 EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_flush, FW_CS_DSP);
3455 
3456 /**
3457  * cs_dsp_chunk_read() - Parse data from a DSP memory chunk
3458  * @ch: Pointer to the chunk structure
3459  * @nbits: Number of bits to read
3460  *
3461  * This function sequentially reads values from a DSP memory formatted buffer,
3462  * it handles both removing of the padding bytes and converting from big endian.
3463  *
3464  * Return: A negative number is returned on error, otherwise the read value.
3465  */
3466 int cs_dsp_chunk_read(struct cs_dsp_chunk *ch, int nbits)
3467 {
3468 	int nread, i;
3469 	u32 result;
3470 
3471 	if (!ch->cachebits) {
3472 		if (cs_dsp_chunk_end(ch))
3473 			return -ENOSPC;
3474 
3475 		ch->cache = 0;
3476 		ch->cachebits = CS_DSP_DATA_WORD_BITS;
3477 
3478 		for (i = 0; i < sizeof(ch->cache); i++, ch->cache <<= BITS_PER_BYTE)
3479 			ch->cache |= *ch->data++;
3480 
3481 		ch->bytes += sizeof(ch->cache);
3482 	}
3483 
3484 	nread = min(ch->cachebits, nbits);
3485 	nbits -= nread;
3486 
3487 	result = ch->cache >> ((sizeof(ch->cache) * BITS_PER_BYTE) - nread);
3488 	ch->cache <<= nread;
3489 	ch->cachebits -= nread;
3490 
3491 	if (nbits)
3492 		result = (result << nbits) | cs_dsp_chunk_read(ch, nbits);
3493 
3494 	return result;
3495 }
3496 EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_read, FW_CS_DSP);
3497 
3498 MODULE_DESCRIPTION("Cirrus Logic DSP Support");
3499 MODULE_AUTHOR("Simon Trimmer <simont@opensource.cirrus.com>");
3500 MODULE_LICENSE("GPL v2");
3501