xref: /linux/drivers/firmware/cirrus/cs_dsp.c (revision ea04ef19ebdcd22e8a21054a19c2c8fefae011ce)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * cs_dsp.c  --  Cirrus Logic DSP firmware support
4  *
5  * Based on sound/soc/codecs/wm_adsp.c
6  *
7  * Copyright 2012 Wolfson Microelectronics plc
8  * Copyright (C) 2015-2021 Cirrus Logic, Inc. and
9  *                         Cirrus Logic International Semiconductor Ltd.
10  */
11 
12 #include <linux/ctype.h>
13 #include <linux/debugfs.h>
14 #include <linux/delay.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/seq_file.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 
21 #include <linux/firmware/cirrus/cs_dsp.h>
22 #include <linux/firmware/cirrus/wmfw.h>
23 
24 #define cs_dsp_err(_dsp, fmt, ...) \
25 	dev_err(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
26 #define cs_dsp_warn(_dsp, fmt, ...) \
27 	dev_warn(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
28 #define cs_dsp_info(_dsp, fmt, ...) \
29 	dev_info(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
30 #define cs_dsp_dbg(_dsp, fmt, ...) \
31 	dev_dbg(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
32 
33 #define ADSP1_CONTROL_1                   0x00
34 #define ADSP1_CONTROL_2                   0x02
35 #define ADSP1_CONTROL_3                   0x03
36 #define ADSP1_CONTROL_4                   0x04
37 #define ADSP1_CONTROL_5                   0x06
38 #define ADSP1_CONTROL_6                   0x07
39 #define ADSP1_CONTROL_7                   0x08
40 #define ADSP1_CONTROL_8                   0x09
41 #define ADSP1_CONTROL_9                   0x0A
42 #define ADSP1_CONTROL_10                  0x0B
43 #define ADSP1_CONTROL_11                  0x0C
44 #define ADSP1_CONTROL_12                  0x0D
45 #define ADSP1_CONTROL_13                  0x0F
46 #define ADSP1_CONTROL_14                  0x10
47 #define ADSP1_CONTROL_15                  0x11
48 #define ADSP1_CONTROL_16                  0x12
49 #define ADSP1_CONTROL_17                  0x13
50 #define ADSP1_CONTROL_18                  0x14
51 #define ADSP1_CONTROL_19                  0x16
52 #define ADSP1_CONTROL_20                  0x17
53 #define ADSP1_CONTROL_21                  0x18
54 #define ADSP1_CONTROL_22                  0x1A
55 #define ADSP1_CONTROL_23                  0x1B
56 #define ADSP1_CONTROL_24                  0x1C
57 #define ADSP1_CONTROL_25                  0x1E
58 #define ADSP1_CONTROL_26                  0x20
59 #define ADSP1_CONTROL_27                  0x21
60 #define ADSP1_CONTROL_28                  0x22
61 #define ADSP1_CONTROL_29                  0x23
62 #define ADSP1_CONTROL_30                  0x24
63 #define ADSP1_CONTROL_31                  0x26
64 
65 /*
66  * ADSP1 Control 19
67  */
68 #define ADSP1_WDMA_BUFFER_LENGTH_MASK     0x00FF  /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
69 #define ADSP1_WDMA_BUFFER_LENGTH_SHIFT         0  /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
70 #define ADSP1_WDMA_BUFFER_LENGTH_WIDTH         8  /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
71 
72 /*
73  * ADSP1 Control 30
74  */
75 #define ADSP1_DBG_CLK_ENA                 0x0008  /* DSP1_DBG_CLK_ENA */
76 #define ADSP1_DBG_CLK_ENA_MASK            0x0008  /* DSP1_DBG_CLK_ENA */
77 #define ADSP1_DBG_CLK_ENA_SHIFT                3  /* DSP1_DBG_CLK_ENA */
78 #define ADSP1_DBG_CLK_ENA_WIDTH                1  /* DSP1_DBG_CLK_ENA */
79 #define ADSP1_SYS_ENA                     0x0004  /* DSP1_SYS_ENA */
80 #define ADSP1_SYS_ENA_MASK                0x0004  /* DSP1_SYS_ENA */
81 #define ADSP1_SYS_ENA_SHIFT                    2  /* DSP1_SYS_ENA */
82 #define ADSP1_SYS_ENA_WIDTH                    1  /* DSP1_SYS_ENA */
83 #define ADSP1_CORE_ENA                    0x0002  /* DSP1_CORE_ENA */
84 #define ADSP1_CORE_ENA_MASK               0x0002  /* DSP1_CORE_ENA */
85 #define ADSP1_CORE_ENA_SHIFT                   1  /* DSP1_CORE_ENA */
86 #define ADSP1_CORE_ENA_WIDTH                   1  /* DSP1_CORE_ENA */
87 #define ADSP1_START                       0x0001  /* DSP1_START */
88 #define ADSP1_START_MASK                  0x0001  /* DSP1_START */
89 #define ADSP1_START_SHIFT                      0  /* DSP1_START */
90 #define ADSP1_START_WIDTH                      1  /* DSP1_START */
91 
92 /*
93  * ADSP1 Control 31
94  */
95 #define ADSP1_CLK_SEL_MASK                0x0007  /* CLK_SEL_ENA */
96 #define ADSP1_CLK_SEL_SHIFT                    0  /* CLK_SEL_ENA */
97 #define ADSP1_CLK_SEL_WIDTH                    3  /* CLK_SEL_ENA */
98 
99 #define ADSP2_CONTROL                     0x0
100 #define ADSP2_CLOCKING                    0x1
101 #define ADSP2V2_CLOCKING                  0x2
102 #define ADSP2_STATUS1                     0x4
103 #define ADSP2_WDMA_CONFIG_1               0x30
104 #define ADSP2_WDMA_CONFIG_2               0x31
105 #define ADSP2V2_WDMA_CONFIG_2             0x32
106 #define ADSP2_RDMA_CONFIG_1               0x34
107 
108 #define ADSP2_SCRATCH0                    0x40
109 #define ADSP2_SCRATCH1                    0x41
110 #define ADSP2_SCRATCH2                    0x42
111 #define ADSP2_SCRATCH3                    0x43
112 
113 #define ADSP2V2_SCRATCH0_1                0x40
114 #define ADSP2V2_SCRATCH2_3                0x42
115 
116 /*
117  * ADSP2 Control
118  */
119 #define ADSP2_MEM_ENA                     0x0010  /* DSP1_MEM_ENA */
120 #define ADSP2_MEM_ENA_MASK                0x0010  /* DSP1_MEM_ENA */
121 #define ADSP2_MEM_ENA_SHIFT                    4  /* DSP1_MEM_ENA */
122 #define ADSP2_MEM_ENA_WIDTH                    1  /* DSP1_MEM_ENA */
123 #define ADSP2_SYS_ENA                     0x0004  /* DSP1_SYS_ENA */
124 #define ADSP2_SYS_ENA_MASK                0x0004  /* DSP1_SYS_ENA */
125 #define ADSP2_SYS_ENA_SHIFT                    2  /* DSP1_SYS_ENA */
126 #define ADSP2_SYS_ENA_WIDTH                    1  /* DSP1_SYS_ENA */
127 #define ADSP2_CORE_ENA                    0x0002  /* DSP1_CORE_ENA */
128 #define ADSP2_CORE_ENA_MASK               0x0002  /* DSP1_CORE_ENA */
129 #define ADSP2_CORE_ENA_SHIFT                   1  /* DSP1_CORE_ENA */
130 #define ADSP2_CORE_ENA_WIDTH                   1  /* DSP1_CORE_ENA */
131 #define ADSP2_START                       0x0001  /* DSP1_START */
132 #define ADSP2_START_MASK                  0x0001  /* DSP1_START */
133 #define ADSP2_START_SHIFT                      0  /* DSP1_START */
134 #define ADSP2_START_WIDTH                      1  /* DSP1_START */
135 
136 /*
137  * ADSP2 clocking
138  */
139 #define ADSP2_CLK_SEL_MASK                0x0007  /* CLK_SEL_ENA */
140 #define ADSP2_CLK_SEL_SHIFT                    0  /* CLK_SEL_ENA */
141 #define ADSP2_CLK_SEL_WIDTH                    3  /* CLK_SEL_ENA */
142 
143 /*
144  * ADSP2V2 clocking
145  */
146 #define ADSP2V2_CLK_SEL_MASK             0x70000  /* CLK_SEL_ENA */
147 #define ADSP2V2_CLK_SEL_SHIFT                 16  /* CLK_SEL_ENA */
148 #define ADSP2V2_CLK_SEL_WIDTH                  3  /* CLK_SEL_ENA */
149 
150 #define ADSP2V2_RATE_MASK                 0x7800  /* DSP_RATE */
151 #define ADSP2V2_RATE_SHIFT                    11  /* DSP_RATE */
152 #define ADSP2V2_RATE_WIDTH                     4  /* DSP_RATE */
153 
154 /*
155  * ADSP2 Status 1
156  */
157 #define ADSP2_RAM_RDY                     0x0001
158 #define ADSP2_RAM_RDY_MASK                0x0001
159 #define ADSP2_RAM_RDY_SHIFT                    0
160 #define ADSP2_RAM_RDY_WIDTH                    1
161 
162 /*
163  * ADSP2 Lock support
164  */
165 #define ADSP2_LOCK_CODE_0                    0x5555
166 #define ADSP2_LOCK_CODE_1                    0xAAAA
167 
168 #define ADSP2_WATCHDOG                       0x0A
169 #define ADSP2_BUS_ERR_ADDR                   0x52
170 #define ADSP2_REGION_LOCK_STATUS             0x64
171 #define ADSP2_LOCK_REGION_1_LOCK_REGION_0    0x66
172 #define ADSP2_LOCK_REGION_3_LOCK_REGION_2    0x68
173 #define ADSP2_LOCK_REGION_5_LOCK_REGION_4    0x6A
174 #define ADSP2_LOCK_REGION_7_LOCK_REGION_6    0x6C
175 #define ADSP2_LOCK_REGION_9_LOCK_REGION_8    0x6E
176 #define ADSP2_LOCK_REGION_CTRL               0x7A
177 #define ADSP2_PMEM_ERR_ADDR_XMEM_ERR_ADDR    0x7C
178 
179 #define ADSP2_REGION_LOCK_ERR_MASK           0x8000
180 #define ADSP2_ADDR_ERR_MASK                  0x4000
181 #define ADSP2_WDT_TIMEOUT_STS_MASK           0x2000
182 #define ADSP2_CTRL_ERR_PAUSE_ENA             0x0002
183 #define ADSP2_CTRL_ERR_EINT                  0x0001
184 
185 #define ADSP2_BUS_ERR_ADDR_MASK              0x00FFFFFF
186 #define ADSP2_XMEM_ERR_ADDR_MASK             0x0000FFFF
187 #define ADSP2_PMEM_ERR_ADDR_MASK             0x7FFF0000
188 #define ADSP2_PMEM_ERR_ADDR_SHIFT            16
189 #define ADSP2_WDT_ENA_MASK                   0xFFFFFFFD
190 
191 #define ADSP2_LOCK_REGION_SHIFT              16
192 
193 /*
194  * Event control messages
195  */
196 #define CS_DSP_FW_EVENT_SHUTDOWN             0x000001
197 
198 /*
199  * HALO system info
200  */
201 #define HALO_AHBM_WINDOW_DEBUG_0             0x02040
202 #define HALO_AHBM_WINDOW_DEBUG_1             0x02044
203 
204 /*
205  * HALO core
206  */
207 #define HALO_SCRATCH1                        0x005c0
208 #define HALO_SCRATCH2                        0x005c8
209 #define HALO_SCRATCH3                        0x005d0
210 #define HALO_SCRATCH4                        0x005d8
211 #define HALO_CCM_CORE_CONTROL                0x41000
212 #define HALO_CORE_SOFT_RESET                 0x00010
213 #define HALO_WDT_CONTROL                     0x47000
214 
215 /*
216  * HALO MPU banks
217  */
218 #define HALO_MPU_XMEM_ACCESS_0               0x43000
219 #define HALO_MPU_YMEM_ACCESS_0               0x43004
220 #define HALO_MPU_WINDOW_ACCESS_0             0x43008
221 #define HALO_MPU_XREG_ACCESS_0               0x4300C
222 #define HALO_MPU_YREG_ACCESS_0               0x43014
223 #define HALO_MPU_XMEM_ACCESS_1               0x43018
224 #define HALO_MPU_YMEM_ACCESS_1               0x4301C
225 #define HALO_MPU_WINDOW_ACCESS_1             0x43020
226 #define HALO_MPU_XREG_ACCESS_1               0x43024
227 #define HALO_MPU_YREG_ACCESS_1               0x4302C
228 #define HALO_MPU_XMEM_ACCESS_2               0x43030
229 #define HALO_MPU_YMEM_ACCESS_2               0x43034
230 #define HALO_MPU_WINDOW_ACCESS_2             0x43038
231 #define HALO_MPU_XREG_ACCESS_2               0x4303C
232 #define HALO_MPU_YREG_ACCESS_2               0x43044
233 #define HALO_MPU_XMEM_ACCESS_3               0x43048
234 #define HALO_MPU_YMEM_ACCESS_3               0x4304C
235 #define HALO_MPU_WINDOW_ACCESS_3             0x43050
236 #define HALO_MPU_XREG_ACCESS_3               0x43054
237 #define HALO_MPU_YREG_ACCESS_3               0x4305C
238 #define HALO_MPU_XM_VIO_ADDR                 0x43100
239 #define HALO_MPU_XM_VIO_STATUS               0x43104
240 #define HALO_MPU_YM_VIO_ADDR                 0x43108
241 #define HALO_MPU_YM_VIO_STATUS               0x4310C
242 #define HALO_MPU_PM_VIO_ADDR                 0x43110
243 #define HALO_MPU_PM_VIO_STATUS               0x43114
244 #define HALO_MPU_LOCK_CONFIG                 0x43140
245 
246 /*
247  * HALO_AHBM_WINDOW_DEBUG_1
248  */
249 #define HALO_AHBM_CORE_ERR_ADDR_MASK         0x0fffff00
250 #define HALO_AHBM_CORE_ERR_ADDR_SHIFT                 8
251 #define HALO_AHBM_FLAGS_ERR_MASK             0x000000ff
252 
253 /*
254  * HALO_CCM_CORE_CONTROL
255  */
256 #define HALO_CORE_RESET                     0x00000200
257 #define HALO_CORE_EN                        0x00000001
258 
259 /*
260  * HALO_CORE_SOFT_RESET
261  */
262 #define HALO_CORE_SOFT_RESET_MASK           0x00000001
263 
264 /*
265  * HALO_WDT_CONTROL
266  */
267 #define HALO_WDT_EN_MASK                    0x00000001
268 
269 /*
270  * HALO_MPU_?M_VIO_STATUS
271  */
272 #define HALO_MPU_VIO_STS_MASK               0x007e0000
273 #define HALO_MPU_VIO_STS_SHIFT                      17
274 #define HALO_MPU_VIO_ERR_WR_MASK            0x00008000
275 #define HALO_MPU_VIO_ERR_SRC_MASK           0x00007fff
276 #define HALO_MPU_VIO_ERR_SRC_SHIFT                   0
277 
278 struct cs_dsp_ops {
279 	bool (*validate_version)(struct cs_dsp *dsp, unsigned int version);
280 	unsigned int (*parse_sizes)(struct cs_dsp *dsp,
281 				    const char * const file,
282 				    unsigned int pos,
283 				    const struct firmware *firmware);
284 	int (*setup_algs)(struct cs_dsp *dsp);
285 	unsigned int (*region_to_reg)(struct cs_dsp_region const *mem,
286 				      unsigned int offset);
287 
288 	void (*show_fw_status)(struct cs_dsp *dsp);
289 	void (*stop_watchdog)(struct cs_dsp *dsp);
290 
291 	int (*enable_memory)(struct cs_dsp *dsp);
292 	void (*disable_memory)(struct cs_dsp *dsp);
293 	int (*lock_memory)(struct cs_dsp *dsp, unsigned int lock_regions);
294 
295 	int (*enable_core)(struct cs_dsp *dsp);
296 	void (*disable_core)(struct cs_dsp *dsp);
297 
298 	int (*start_core)(struct cs_dsp *dsp);
299 	void (*stop_core)(struct cs_dsp *dsp);
300 };
301 
302 static const struct cs_dsp_ops cs_dsp_adsp1_ops;
303 static const struct cs_dsp_ops cs_dsp_adsp2_ops[];
304 static const struct cs_dsp_ops cs_dsp_halo_ops;
305 static const struct cs_dsp_ops cs_dsp_halo_ao_ops;
306 
307 struct cs_dsp_buf {
308 	struct list_head list;
309 	void *buf;
310 };
311 
312 static struct cs_dsp_buf *cs_dsp_buf_alloc(const void *src, size_t len,
313 					   struct list_head *list)
314 {
315 	struct cs_dsp_buf *buf = kzalloc(sizeof(*buf), GFP_KERNEL);
316 
317 	if (buf == NULL)
318 		return NULL;
319 
320 	buf->buf = vmalloc(len);
321 	if (!buf->buf) {
322 		kfree(buf);
323 		return NULL;
324 	}
325 	memcpy(buf->buf, src, len);
326 
327 	if (list)
328 		list_add_tail(&buf->list, list);
329 
330 	return buf;
331 }
332 
333 static void cs_dsp_buf_free(struct list_head *list)
334 {
335 	while (!list_empty(list)) {
336 		struct cs_dsp_buf *buf = list_first_entry(list,
337 							  struct cs_dsp_buf,
338 							  list);
339 		list_del(&buf->list);
340 		vfree(buf->buf);
341 		kfree(buf);
342 	}
343 }
344 
345 /**
346  * cs_dsp_mem_region_name() - Return a name string for a memory type
347  * @type: the memory type to match
348  *
349  * Return: A const string identifying the memory region.
350  */
351 const char *cs_dsp_mem_region_name(unsigned int type)
352 {
353 	switch (type) {
354 	case WMFW_ADSP1_PM:
355 		return "PM";
356 	case WMFW_HALO_PM_PACKED:
357 		return "PM_PACKED";
358 	case WMFW_ADSP1_DM:
359 		return "DM";
360 	case WMFW_ADSP2_XM:
361 		return "XM";
362 	case WMFW_HALO_XM_PACKED:
363 		return "XM_PACKED";
364 	case WMFW_ADSP2_YM:
365 		return "YM";
366 	case WMFW_HALO_YM_PACKED:
367 		return "YM_PACKED";
368 	case WMFW_ADSP1_ZM:
369 		return "ZM";
370 	default:
371 		return NULL;
372 	}
373 }
374 EXPORT_SYMBOL_NS_GPL(cs_dsp_mem_region_name, FW_CS_DSP);
375 
376 #ifdef CONFIG_DEBUG_FS
377 static void cs_dsp_debugfs_save_wmfwname(struct cs_dsp *dsp, const char *s)
378 {
379 	char *tmp = kasprintf(GFP_KERNEL, "%s\n", s);
380 
381 	kfree(dsp->wmfw_file_name);
382 	dsp->wmfw_file_name = tmp;
383 }
384 
385 static void cs_dsp_debugfs_save_binname(struct cs_dsp *dsp, const char *s)
386 {
387 	char *tmp = kasprintf(GFP_KERNEL, "%s\n", s);
388 
389 	kfree(dsp->bin_file_name);
390 	dsp->bin_file_name = tmp;
391 }
392 
393 static void cs_dsp_debugfs_clear(struct cs_dsp *dsp)
394 {
395 	kfree(dsp->wmfw_file_name);
396 	kfree(dsp->bin_file_name);
397 	dsp->wmfw_file_name = NULL;
398 	dsp->bin_file_name = NULL;
399 }
400 
401 static ssize_t cs_dsp_debugfs_wmfw_read(struct file *file,
402 					char __user *user_buf,
403 					size_t count, loff_t *ppos)
404 {
405 	struct cs_dsp *dsp = file->private_data;
406 	ssize_t ret;
407 
408 	mutex_lock(&dsp->pwr_lock);
409 
410 	if (!dsp->wmfw_file_name || !dsp->booted)
411 		ret = 0;
412 	else
413 		ret = simple_read_from_buffer(user_buf, count, ppos,
414 					      dsp->wmfw_file_name,
415 					      strlen(dsp->wmfw_file_name));
416 
417 	mutex_unlock(&dsp->pwr_lock);
418 	return ret;
419 }
420 
421 static ssize_t cs_dsp_debugfs_bin_read(struct file *file,
422 				       char __user *user_buf,
423 				       size_t count, loff_t *ppos)
424 {
425 	struct cs_dsp *dsp = file->private_data;
426 	ssize_t ret;
427 
428 	mutex_lock(&dsp->pwr_lock);
429 
430 	if (!dsp->bin_file_name || !dsp->booted)
431 		ret = 0;
432 	else
433 		ret = simple_read_from_buffer(user_buf, count, ppos,
434 					      dsp->bin_file_name,
435 					      strlen(dsp->bin_file_name));
436 
437 	mutex_unlock(&dsp->pwr_lock);
438 	return ret;
439 }
440 
441 static const struct {
442 	const char *name;
443 	const struct file_operations fops;
444 } cs_dsp_debugfs_fops[] = {
445 	{
446 		.name = "wmfw_file_name",
447 		.fops = {
448 			.open = simple_open,
449 			.read = cs_dsp_debugfs_wmfw_read,
450 		},
451 	},
452 	{
453 		.name = "bin_file_name",
454 		.fops = {
455 			.open = simple_open,
456 			.read = cs_dsp_debugfs_bin_read,
457 		},
458 	},
459 };
460 
461 static int cs_dsp_coeff_base_reg(struct cs_dsp_coeff_ctl *ctl, unsigned int *reg,
462 				 unsigned int off);
463 
464 static int cs_dsp_debugfs_read_controls_show(struct seq_file *s, void *ignored)
465 {
466 	struct cs_dsp *dsp = s->private;
467 	struct cs_dsp_coeff_ctl *ctl;
468 	unsigned int reg;
469 
470 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
471 		cs_dsp_coeff_base_reg(ctl, &reg, 0);
472 		seq_printf(s, "%22.*s: %#8zx %s:%08x %#8x %s %#8x %#4x %c%c%c%c %s %s\n",
473 			   ctl->subname_len, ctl->subname, ctl->len,
474 			   cs_dsp_mem_region_name(ctl->alg_region.type),
475 			   ctl->offset, reg, ctl->fw_name, ctl->alg_region.alg, ctl->type,
476 			   ctl->flags & WMFW_CTL_FLAG_VOLATILE ? 'V' : '-',
477 			   ctl->flags & WMFW_CTL_FLAG_SYS ? 'S' : '-',
478 			   ctl->flags & WMFW_CTL_FLAG_READABLE ? 'R' : '-',
479 			   ctl->flags & WMFW_CTL_FLAG_WRITEABLE ? 'W' : '-',
480 			   ctl->enabled ? "enabled" : "disabled",
481 			   ctl->set ? "dirty" : "clean");
482 	}
483 
484 	return 0;
485 }
486 DEFINE_SHOW_ATTRIBUTE(cs_dsp_debugfs_read_controls);
487 
488 /**
489  * cs_dsp_init_debugfs() - Create and populate DSP representation in debugfs
490  * @dsp: pointer to DSP structure
491  * @debugfs_root: pointer to debugfs directory in which to create this DSP
492  *                representation
493  */
494 void cs_dsp_init_debugfs(struct cs_dsp *dsp, struct dentry *debugfs_root)
495 {
496 	struct dentry *root = NULL;
497 	int i;
498 
499 	root = debugfs_create_dir(dsp->name, debugfs_root);
500 
501 	debugfs_create_bool("booted", 0444, root, &dsp->booted);
502 	debugfs_create_bool("running", 0444, root, &dsp->running);
503 	debugfs_create_x32("fw_id", 0444, root, &dsp->fw_id);
504 	debugfs_create_x32("fw_version", 0444, root, &dsp->fw_id_version);
505 
506 	for (i = 0; i < ARRAY_SIZE(cs_dsp_debugfs_fops); ++i)
507 		debugfs_create_file(cs_dsp_debugfs_fops[i].name, 0444, root,
508 				    dsp, &cs_dsp_debugfs_fops[i].fops);
509 
510 	debugfs_create_file("controls", 0444, root, dsp,
511 			    &cs_dsp_debugfs_read_controls_fops);
512 
513 	dsp->debugfs_root = root;
514 }
515 EXPORT_SYMBOL_NS_GPL(cs_dsp_init_debugfs, FW_CS_DSP);
516 
517 /**
518  * cs_dsp_cleanup_debugfs() - Removes DSP representation from debugfs
519  * @dsp: pointer to DSP structure
520  */
521 void cs_dsp_cleanup_debugfs(struct cs_dsp *dsp)
522 {
523 	cs_dsp_debugfs_clear(dsp);
524 	debugfs_remove_recursive(dsp->debugfs_root);
525 	dsp->debugfs_root = ERR_PTR(-ENODEV);
526 }
527 EXPORT_SYMBOL_NS_GPL(cs_dsp_cleanup_debugfs, FW_CS_DSP);
528 #else
529 void cs_dsp_init_debugfs(struct cs_dsp *dsp, struct dentry *debugfs_root)
530 {
531 }
532 EXPORT_SYMBOL_NS_GPL(cs_dsp_init_debugfs, FW_CS_DSP);
533 
534 void cs_dsp_cleanup_debugfs(struct cs_dsp *dsp)
535 {
536 }
537 EXPORT_SYMBOL_NS_GPL(cs_dsp_cleanup_debugfs, FW_CS_DSP);
538 
539 static inline void cs_dsp_debugfs_save_wmfwname(struct cs_dsp *dsp,
540 						const char *s)
541 {
542 }
543 
544 static inline void cs_dsp_debugfs_save_binname(struct cs_dsp *dsp,
545 					       const char *s)
546 {
547 }
548 
549 static inline void cs_dsp_debugfs_clear(struct cs_dsp *dsp)
550 {
551 }
552 #endif
553 
554 static const struct cs_dsp_region *cs_dsp_find_region(struct cs_dsp *dsp,
555 						      int type)
556 {
557 	int i;
558 
559 	for (i = 0; i < dsp->num_mems; i++)
560 		if (dsp->mem[i].type == type)
561 			return &dsp->mem[i];
562 
563 	return NULL;
564 }
565 
566 static unsigned int cs_dsp_region_to_reg(struct cs_dsp_region const *mem,
567 					 unsigned int offset)
568 {
569 	switch (mem->type) {
570 	case WMFW_ADSP1_PM:
571 		return mem->base + (offset * 3);
572 	case WMFW_ADSP1_DM:
573 	case WMFW_ADSP2_XM:
574 	case WMFW_ADSP2_YM:
575 	case WMFW_ADSP1_ZM:
576 		return mem->base + (offset * 2);
577 	default:
578 		WARN(1, "Unknown memory region type");
579 		return offset;
580 	}
581 }
582 
583 static unsigned int cs_dsp_halo_region_to_reg(struct cs_dsp_region const *mem,
584 					      unsigned int offset)
585 {
586 	switch (mem->type) {
587 	case WMFW_ADSP2_XM:
588 	case WMFW_ADSP2_YM:
589 		return mem->base + (offset * 4);
590 	case WMFW_HALO_XM_PACKED:
591 	case WMFW_HALO_YM_PACKED:
592 		return (mem->base + (offset * 3)) & ~0x3;
593 	case WMFW_HALO_PM_PACKED:
594 		return mem->base + (offset * 5);
595 	default:
596 		WARN(1, "Unknown memory region type");
597 		return offset;
598 	}
599 }
600 
601 static void cs_dsp_read_fw_status(struct cs_dsp *dsp,
602 				  int noffs, unsigned int *offs)
603 {
604 	unsigned int i;
605 	int ret;
606 
607 	for (i = 0; i < noffs; ++i) {
608 		ret = regmap_read(dsp->regmap, dsp->base + offs[i], &offs[i]);
609 		if (ret) {
610 			cs_dsp_err(dsp, "Failed to read SCRATCH%u: %d\n", i, ret);
611 			return;
612 		}
613 	}
614 }
615 
616 static void cs_dsp_adsp2_show_fw_status(struct cs_dsp *dsp)
617 {
618 	unsigned int offs[] = {
619 		ADSP2_SCRATCH0, ADSP2_SCRATCH1, ADSP2_SCRATCH2, ADSP2_SCRATCH3,
620 	};
621 
622 	cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
623 
624 	cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
625 		   offs[0], offs[1], offs[2], offs[3]);
626 }
627 
628 static void cs_dsp_adsp2v2_show_fw_status(struct cs_dsp *dsp)
629 {
630 	unsigned int offs[] = { ADSP2V2_SCRATCH0_1, ADSP2V2_SCRATCH2_3 };
631 
632 	cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
633 
634 	cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
635 		   offs[0] & 0xFFFF, offs[0] >> 16,
636 		   offs[1] & 0xFFFF, offs[1] >> 16);
637 }
638 
639 static void cs_dsp_halo_show_fw_status(struct cs_dsp *dsp)
640 {
641 	unsigned int offs[] = {
642 		HALO_SCRATCH1, HALO_SCRATCH2, HALO_SCRATCH3, HALO_SCRATCH4,
643 	};
644 
645 	cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
646 
647 	cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
648 		   offs[0], offs[1], offs[2], offs[3]);
649 }
650 
651 static int cs_dsp_coeff_base_reg(struct cs_dsp_coeff_ctl *ctl, unsigned int *reg,
652 				 unsigned int off)
653 {
654 	const struct cs_dsp_alg_region *alg_region = &ctl->alg_region;
655 	struct cs_dsp *dsp = ctl->dsp;
656 	const struct cs_dsp_region *mem;
657 
658 	mem = cs_dsp_find_region(dsp, alg_region->type);
659 	if (!mem) {
660 		cs_dsp_err(dsp, "No base for region %x\n",
661 			   alg_region->type);
662 		return -EINVAL;
663 	}
664 
665 	*reg = dsp->ops->region_to_reg(mem, ctl->alg_region.base + ctl->offset + off);
666 
667 	return 0;
668 }
669 
670 /**
671  * cs_dsp_coeff_write_acked_control() - Sends event_id to the acked control
672  * @ctl: pointer to acked coefficient control
673  * @event_id: the value to write to the given acked control
674  *
675  * Once the value has been written to the control the function shall block
676  * until the running firmware acknowledges the write or timeout is exceeded.
677  *
678  * Must be called with pwr_lock held.
679  *
680  * Return: Zero for success, a negative number on error.
681  */
682 int cs_dsp_coeff_write_acked_control(struct cs_dsp_coeff_ctl *ctl, unsigned int event_id)
683 {
684 	struct cs_dsp *dsp = ctl->dsp;
685 	__be32 val = cpu_to_be32(event_id);
686 	unsigned int reg;
687 	int i, ret;
688 
689 	lockdep_assert_held(&dsp->pwr_lock);
690 
691 	if (!dsp->running)
692 		return -EPERM;
693 
694 	ret = cs_dsp_coeff_base_reg(ctl, &reg, 0);
695 	if (ret)
696 		return ret;
697 
698 	cs_dsp_dbg(dsp, "Sending 0x%x to acked control alg 0x%x %s:0x%x\n",
699 		   event_id, ctl->alg_region.alg,
700 		   cs_dsp_mem_region_name(ctl->alg_region.type), ctl->offset);
701 
702 	ret = regmap_raw_write(dsp->regmap, reg, &val, sizeof(val));
703 	if (ret) {
704 		cs_dsp_err(dsp, "Failed to write %x: %d\n", reg, ret);
705 		return ret;
706 	}
707 
708 	/*
709 	 * Poll for ack, we initially poll at ~1ms intervals for firmwares
710 	 * that respond quickly, then go to ~10ms polls. A firmware is unlikely
711 	 * to ack instantly so we do the first 1ms delay before reading the
712 	 * control to avoid a pointless bus transaction
713 	 */
714 	for (i = 0; i < CS_DSP_ACKED_CTL_TIMEOUT_MS;) {
715 		switch (i) {
716 		case 0 ... CS_DSP_ACKED_CTL_N_QUICKPOLLS - 1:
717 			usleep_range(1000, 2000);
718 			i++;
719 			break;
720 		default:
721 			usleep_range(10000, 20000);
722 			i += 10;
723 			break;
724 		}
725 
726 		ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val));
727 		if (ret) {
728 			cs_dsp_err(dsp, "Failed to read %x: %d\n", reg, ret);
729 			return ret;
730 		}
731 
732 		if (val == 0) {
733 			cs_dsp_dbg(dsp, "Acked control ACKED at poll %u\n", i);
734 			return 0;
735 		}
736 	}
737 
738 	cs_dsp_warn(dsp, "Acked control @0x%x alg:0x%x %s:0x%x timed out\n",
739 		    reg, ctl->alg_region.alg,
740 		    cs_dsp_mem_region_name(ctl->alg_region.type),
741 		    ctl->offset);
742 
743 	return -ETIMEDOUT;
744 }
745 EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_write_acked_control, FW_CS_DSP);
746 
747 static int cs_dsp_coeff_write_ctrl_raw(struct cs_dsp_coeff_ctl *ctl,
748 				       unsigned int off, const void *buf, size_t len)
749 {
750 	struct cs_dsp *dsp = ctl->dsp;
751 	void *scratch;
752 	int ret;
753 	unsigned int reg;
754 
755 	ret = cs_dsp_coeff_base_reg(ctl, &reg, off);
756 	if (ret)
757 		return ret;
758 
759 	scratch = kmemdup(buf, len, GFP_KERNEL | GFP_DMA);
760 	if (!scratch)
761 		return -ENOMEM;
762 
763 	ret = regmap_raw_write(dsp->regmap, reg, scratch,
764 			       len);
765 	if (ret) {
766 		cs_dsp_err(dsp, "Failed to write %zu bytes to %x: %d\n",
767 			   len, reg, ret);
768 		kfree(scratch);
769 		return ret;
770 	}
771 	cs_dsp_dbg(dsp, "Wrote %zu bytes to %x\n", len, reg);
772 
773 	kfree(scratch);
774 
775 	return 0;
776 }
777 
778 /**
779  * cs_dsp_coeff_write_ctrl() - Writes the given buffer to the given coefficient control
780  * @ctl: pointer to coefficient control
781  * @off: word offset at which data should be written
782  * @buf: the buffer to write to the given control
783  * @len: the length of the buffer in bytes
784  *
785  * Must be called with pwr_lock held.
786  *
787  * Return: < 0 on error, 1 when the control value changed and 0 when it has not.
788  */
789 int cs_dsp_coeff_write_ctrl(struct cs_dsp_coeff_ctl *ctl,
790 			    unsigned int off, const void *buf, size_t len)
791 {
792 	int ret = 0;
793 
794 	if (!ctl)
795 		return -ENOENT;
796 
797 	lockdep_assert_held(&ctl->dsp->pwr_lock);
798 
799 	if (len + off * sizeof(u32) > ctl->len)
800 		return -EINVAL;
801 
802 	if (ctl->flags & WMFW_CTL_FLAG_VOLATILE) {
803 		ret = -EPERM;
804 	} else if (buf != ctl->cache) {
805 		if (memcmp(ctl->cache + off * sizeof(u32), buf, len))
806 			memcpy(ctl->cache + off * sizeof(u32), buf, len);
807 		else
808 			return 0;
809 	}
810 
811 	ctl->set = 1;
812 	if (ctl->enabled && ctl->dsp->running)
813 		ret = cs_dsp_coeff_write_ctrl_raw(ctl, off, buf, len);
814 
815 	if (ret < 0)
816 		return ret;
817 
818 	return 1;
819 }
820 EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_write_ctrl, FW_CS_DSP);
821 
822 /**
823  * cs_dsp_coeff_lock_and_write_ctrl() - Writes the given buffer to the given coefficient control
824  * @ctl: pointer to coefficient control
825  * @off: word offset at which data should be written
826  * @buf: the buffer to write to the given control
827  * @len: the length of the buffer in bytes
828  *
829  * Same as cs_dsp_coeff_write_ctrl() but takes pwr_lock.
830  *
831  * Return: A negative number on error, 1 when the control value changed and 0 when it has not.
832  */
833 int cs_dsp_coeff_lock_and_write_ctrl(struct cs_dsp_coeff_ctl *ctl,
834 				     unsigned int off, const void *buf, size_t len)
835 {
836 	struct cs_dsp *dsp = ctl->dsp;
837 	int ret;
838 
839 	lockdep_assert_not_held(&dsp->pwr_lock);
840 
841 	mutex_lock(&dsp->pwr_lock);
842 	ret = cs_dsp_coeff_write_ctrl(ctl, off, buf, len);
843 	mutex_unlock(&dsp->pwr_lock);
844 
845 	return ret;
846 }
847 EXPORT_SYMBOL_GPL(cs_dsp_coeff_lock_and_write_ctrl);
848 
849 static int cs_dsp_coeff_read_ctrl_raw(struct cs_dsp_coeff_ctl *ctl,
850 				      unsigned int off, void *buf, size_t len)
851 {
852 	struct cs_dsp *dsp = ctl->dsp;
853 	void *scratch;
854 	int ret;
855 	unsigned int reg;
856 
857 	ret = cs_dsp_coeff_base_reg(ctl, &reg, off);
858 	if (ret)
859 		return ret;
860 
861 	scratch = kmalloc(len, GFP_KERNEL | GFP_DMA);
862 	if (!scratch)
863 		return -ENOMEM;
864 
865 	ret = regmap_raw_read(dsp->regmap, reg, scratch, len);
866 	if (ret) {
867 		cs_dsp_err(dsp, "Failed to read %zu bytes from %x: %d\n",
868 			   len, reg, ret);
869 		kfree(scratch);
870 		return ret;
871 	}
872 	cs_dsp_dbg(dsp, "Read %zu bytes from %x\n", len, reg);
873 
874 	memcpy(buf, scratch, len);
875 	kfree(scratch);
876 
877 	return 0;
878 }
879 
880 /**
881  * cs_dsp_coeff_read_ctrl() - Reads the given coefficient control into the given buffer
882  * @ctl: pointer to coefficient control
883  * @off: word offset at which data should be read
884  * @buf: the buffer to store to the given control
885  * @len: the length of the buffer in bytes
886  *
887  * Must be called with pwr_lock held.
888  *
889  * Return: Zero for success, a negative number on error.
890  */
891 int cs_dsp_coeff_read_ctrl(struct cs_dsp_coeff_ctl *ctl,
892 			   unsigned int off, void *buf, size_t len)
893 {
894 	int ret = 0;
895 
896 	if (!ctl)
897 		return -ENOENT;
898 
899 	lockdep_assert_held(&ctl->dsp->pwr_lock);
900 
901 	if (len + off * sizeof(u32) > ctl->len)
902 		return -EINVAL;
903 
904 	if (ctl->flags & WMFW_CTL_FLAG_VOLATILE) {
905 		if (ctl->enabled && ctl->dsp->running)
906 			return cs_dsp_coeff_read_ctrl_raw(ctl, off, buf, len);
907 		else
908 			return -EPERM;
909 	} else {
910 		if (!ctl->flags && ctl->enabled && ctl->dsp->running)
911 			ret = cs_dsp_coeff_read_ctrl_raw(ctl, 0, ctl->cache, ctl->len);
912 
913 		if (buf != ctl->cache)
914 			memcpy(buf, ctl->cache + off * sizeof(u32), len);
915 	}
916 
917 	return ret;
918 }
919 EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_read_ctrl, FW_CS_DSP);
920 
921 /**
922  * cs_dsp_coeff_lock_and_read_ctrl() - Reads the given coefficient control into the given buffer
923  * @ctl: pointer to coefficient control
924  * @off: word offset at which data should be read
925  * @buf: the buffer to store to the given control
926  * @len: the length of the buffer in bytes
927  *
928  * Same as cs_dsp_coeff_read_ctrl() but takes pwr_lock.
929  *
930  * Return: Zero for success, a negative number on error.
931  */
932 int cs_dsp_coeff_lock_and_read_ctrl(struct cs_dsp_coeff_ctl *ctl,
933 				    unsigned int off, void *buf, size_t len)
934 {
935 	struct cs_dsp *dsp = ctl->dsp;
936 	int ret;
937 
938 	lockdep_assert_not_held(&dsp->pwr_lock);
939 
940 	mutex_lock(&dsp->pwr_lock);
941 	ret = cs_dsp_coeff_read_ctrl(ctl, off, buf, len);
942 	mutex_unlock(&dsp->pwr_lock);
943 
944 	return ret;
945 }
946 EXPORT_SYMBOL_GPL(cs_dsp_coeff_lock_and_read_ctrl);
947 
948 static int cs_dsp_coeff_init_control_caches(struct cs_dsp *dsp)
949 {
950 	struct cs_dsp_coeff_ctl *ctl;
951 	int ret;
952 
953 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
954 		if (!ctl->enabled || ctl->set)
955 			continue;
956 		if (ctl->flags & WMFW_CTL_FLAG_VOLATILE)
957 			continue;
958 
959 		/*
960 		 * For readable controls populate the cache from the DSP memory.
961 		 * For non-readable controls the cache was zero-filled when
962 		 * created so we don't need to do anything.
963 		 */
964 		if (!ctl->flags || (ctl->flags & WMFW_CTL_FLAG_READABLE)) {
965 			ret = cs_dsp_coeff_read_ctrl_raw(ctl, 0, ctl->cache, ctl->len);
966 			if (ret < 0)
967 				return ret;
968 		}
969 	}
970 
971 	return 0;
972 }
973 
974 static int cs_dsp_coeff_sync_controls(struct cs_dsp *dsp)
975 {
976 	struct cs_dsp_coeff_ctl *ctl;
977 	int ret;
978 
979 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
980 		if (!ctl->enabled)
981 			continue;
982 		if (ctl->set && !(ctl->flags & WMFW_CTL_FLAG_VOLATILE)) {
983 			ret = cs_dsp_coeff_write_ctrl_raw(ctl, 0, ctl->cache,
984 							  ctl->len);
985 			if (ret < 0)
986 				return ret;
987 		}
988 	}
989 
990 	return 0;
991 }
992 
993 static void cs_dsp_signal_event_controls(struct cs_dsp *dsp,
994 					 unsigned int event)
995 {
996 	struct cs_dsp_coeff_ctl *ctl;
997 	int ret;
998 
999 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
1000 		if (ctl->type != WMFW_CTL_TYPE_HOSTEVENT)
1001 			continue;
1002 
1003 		if (!ctl->enabled)
1004 			continue;
1005 
1006 		ret = cs_dsp_coeff_write_acked_control(ctl, event);
1007 		if (ret)
1008 			cs_dsp_warn(dsp,
1009 				    "Failed to send 0x%x event to alg 0x%x (%d)\n",
1010 				    event, ctl->alg_region.alg, ret);
1011 	}
1012 }
1013 
1014 static void cs_dsp_free_ctl_blk(struct cs_dsp_coeff_ctl *ctl)
1015 {
1016 	kfree(ctl->cache);
1017 	kfree(ctl->subname);
1018 	kfree(ctl);
1019 }
1020 
1021 static int cs_dsp_create_control(struct cs_dsp *dsp,
1022 				 const struct cs_dsp_alg_region *alg_region,
1023 				 unsigned int offset, unsigned int len,
1024 				 const char *subname, unsigned int subname_len,
1025 				 unsigned int flags, unsigned int type)
1026 {
1027 	struct cs_dsp_coeff_ctl *ctl;
1028 	int ret;
1029 
1030 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
1031 		if (ctl->fw_name == dsp->fw_name &&
1032 		    ctl->alg_region.alg == alg_region->alg &&
1033 		    ctl->alg_region.type == alg_region->type) {
1034 			if ((!subname && !ctl->subname) ||
1035 			    (subname && (ctl->subname_len == subname_len) &&
1036 			     !strncmp(ctl->subname, subname, ctl->subname_len))) {
1037 				if (!ctl->enabled)
1038 					ctl->enabled = 1;
1039 				return 0;
1040 			}
1041 		}
1042 	}
1043 
1044 	ctl = kzalloc(sizeof(*ctl), GFP_KERNEL);
1045 	if (!ctl)
1046 		return -ENOMEM;
1047 
1048 	ctl->fw_name = dsp->fw_name;
1049 	ctl->alg_region = *alg_region;
1050 	if (subname && dsp->fw_ver >= 2) {
1051 		ctl->subname_len = subname_len;
1052 		ctl->subname = kasprintf(GFP_KERNEL, "%.*s", subname_len, subname);
1053 		if (!ctl->subname) {
1054 			ret = -ENOMEM;
1055 			goto err_ctl;
1056 		}
1057 	}
1058 	ctl->enabled = 1;
1059 	ctl->set = 0;
1060 	ctl->dsp = dsp;
1061 
1062 	ctl->flags = flags;
1063 	ctl->type = type;
1064 	ctl->offset = offset;
1065 	ctl->len = len;
1066 	ctl->cache = kzalloc(ctl->len, GFP_KERNEL);
1067 	if (!ctl->cache) {
1068 		ret = -ENOMEM;
1069 		goto err_ctl_subname;
1070 	}
1071 
1072 	list_add(&ctl->list, &dsp->ctl_list);
1073 
1074 	if (dsp->client_ops->control_add) {
1075 		ret = dsp->client_ops->control_add(ctl);
1076 		if (ret)
1077 			goto err_list_del;
1078 	}
1079 
1080 	return 0;
1081 
1082 err_list_del:
1083 	list_del(&ctl->list);
1084 	kfree(ctl->cache);
1085 err_ctl_subname:
1086 	kfree(ctl->subname);
1087 err_ctl:
1088 	kfree(ctl);
1089 
1090 	return ret;
1091 }
1092 
1093 struct cs_dsp_coeff_parsed_alg {
1094 	int id;
1095 	const u8 *name;
1096 	int name_len;
1097 	int ncoeff;
1098 };
1099 
1100 struct cs_dsp_coeff_parsed_coeff {
1101 	int offset;
1102 	int mem_type;
1103 	const u8 *name;
1104 	int name_len;
1105 	unsigned int ctl_type;
1106 	int flags;
1107 	int len;
1108 };
1109 
1110 static int cs_dsp_coeff_parse_string(int bytes, const u8 **pos, const u8 **str)
1111 {
1112 	int length;
1113 
1114 	switch (bytes) {
1115 	case 1:
1116 		length = **pos;
1117 		break;
1118 	case 2:
1119 		length = le16_to_cpu(*((__le16 *)*pos));
1120 		break;
1121 	default:
1122 		return 0;
1123 	}
1124 
1125 	if (str)
1126 		*str = *pos + bytes;
1127 
1128 	*pos += ((length + bytes) + 3) & ~0x03;
1129 
1130 	return length;
1131 }
1132 
1133 static int cs_dsp_coeff_parse_int(int bytes, const u8 **pos)
1134 {
1135 	int val = 0;
1136 
1137 	switch (bytes) {
1138 	case 2:
1139 		val = le16_to_cpu(*((__le16 *)*pos));
1140 		break;
1141 	case 4:
1142 		val = le32_to_cpu(*((__le32 *)*pos));
1143 		break;
1144 	default:
1145 		break;
1146 	}
1147 
1148 	*pos += bytes;
1149 
1150 	return val;
1151 }
1152 
1153 static inline void cs_dsp_coeff_parse_alg(struct cs_dsp *dsp, const u8 **data,
1154 					  struct cs_dsp_coeff_parsed_alg *blk)
1155 {
1156 	const struct wmfw_adsp_alg_data *raw;
1157 
1158 	switch (dsp->fw_ver) {
1159 	case 0:
1160 	case 1:
1161 		raw = (const struct wmfw_adsp_alg_data *)*data;
1162 		*data = raw->data;
1163 
1164 		blk->id = le32_to_cpu(raw->id);
1165 		blk->name = raw->name;
1166 		blk->name_len = strlen(raw->name);
1167 		blk->ncoeff = le32_to_cpu(raw->ncoeff);
1168 		break;
1169 	default:
1170 		blk->id = cs_dsp_coeff_parse_int(sizeof(raw->id), data);
1171 		blk->name_len = cs_dsp_coeff_parse_string(sizeof(u8), data,
1172 							  &blk->name);
1173 		cs_dsp_coeff_parse_string(sizeof(u16), data, NULL);
1174 		blk->ncoeff = cs_dsp_coeff_parse_int(sizeof(raw->ncoeff), data);
1175 		break;
1176 	}
1177 
1178 	cs_dsp_dbg(dsp, "Algorithm ID: %#x\n", blk->id);
1179 	cs_dsp_dbg(dsp, "Algorithm name: %.*s\n", blk->name_len, blk->name);
1180 	cs_dsp_dbg(dsp, "# of coefficient descriptors: %#x\n", blk->ncoeff);
1181 }
1182 
1183 static inline void cs_dsp_coeff_parse_coeff(struct cs_dsp *dsp, const u8 **data,
1184 					    struct cs_dsp_coeff_parsed_coeff *blk)
1185 {
1186 	const struct wmfw_adsp_coeff_data *raw;
1187 	const u8 *tmp;
1188 	int length;
1189 
1190 	switch (dsp->fw_ver) {
1191 	case 0:
1192 	case 1:
1193 		raw = (const struct wmfw_adsp_coeff_data *)*data;
1194 		*data = *data + sizeof(raw->hdr) + le32_to_cpu(raw->hdr.size);
1195 
1196 		blk->offset = le16_to_cpu(raw->hdr.offset);
1197 		blk->mem_type = le16_to_cpu(raw->hdr.type);
1198 		blk->name = raw->name;
1199 		blk->name_len = strlen(raw->name);
1200 		blk->ctl_type = le16_to_cpu(raw->ctl_type);
1201 		blk->flags = le16_to_cpu(raw->flags);
1202 		blk->len = le32_to_cpu(raw->len);
1203 		break;
1204 	default:
1205 		tmp = *data;
1206 		blk->offset = cs_dsp_coeff_parse_int(sizeof(raw->hdr.offset), &tmp);
1207 		blk->mem_type = cs_dsp_coeff_parse_int(sizeof(raw->hdr.type), &tmp);
1208 		length = cs_dsp_coeff_parse_int(sizeof(raw->hdr.size), &tmp);
1209 		blk->name_len = cs_dsp_coeff_parse_string(sizeof(u8), &tmp,
1210 							  &blk->name);
1211 		cs_dsp_coeff_parse_string(sizeof(u8), &tmp, NULL);
1212 		cs_dsp_coeff_parse_string(sizeof(u16), &tmp, NULL);
1213 		blk->ctl_type = cs_dsp_coeff_parse_int(sizeof(raw->ctl_type), &tmp);
1214 		blk->flags = cs_dsp_coeff_parse_int(sizeof(raw->flags), &tmp);
1215 		blk->len = cs_dsp_coeff_parse_int(sizeof(raw->len), &tmp);
1216 
1217 		*data = *data + sizeof(raw->hdr) + length;
1218 		break;
1219 	}
1220 
1221 	cs_dsp_dbg(dsp, "\tCoefficient type: %#x\n", blk->mem_type);
1222 	cs_dsp_dbg(dsp, "\tCoefficient offset: %#x\n", blk->offset);
1223 	cs_dsp_dbg(dsp, "\tCoefficient name: %.*s\n", blk->name_len, blk->name);
1224 	cs_dsp_dbg(dsp, "\tCoefficient flags: %#x\n", blk->flags);
1225 	cs_dsp_dbg(dsp, "\tALSA control type: %#x\n", blk->ctl_type);
1226 	cs_dsp_dbg(dsp, "\tALSA control len: %#x\n", blk->len);
1227 }
1228 
1229 static int cs_dsp_check_coeff_flags(struct cs_dsp *dsp,
1230 				    const struct cs_dsp_coeff_parsed_coeff *coeff_blk,
1231 				    unsigned int f_required,
1232 				    unsigned int f_illegal)
1233 {
1234 	if ((coeff_blk->flags & f_illegal) ||
1235 	    ((coeff_blk->flags & f_required) != f_required)) {
1236 		cs_dsp_err(dsp, "Illegal flags 0x%x for control type 0x%x\n",
1237 			   coeff_blk->flags, coeff_blk->ctl_type);
1238 		return -EINVAL;
1239 	}
1240 
1241 	return 0;
1242 }
1243 
1244 static int cs_dsp_parse_coeff(struct cs_dsp *dsp,
1245 			      const struct wmfw_region *region)
1246 {
1247 	struct cs_dsp_alg_region alg_region = {};
1248 	struct cs_dsp_coeff_parsed_alg alg_blk;
1249 	struct cs_dsp_coeff_parsed_coeff coeff_blk;
1250 	const u8 *data = region->data;
1251 	int i, ret;
1252 
1253 	cs_dsp_coeff_parse_alg(dsp, &data, &alg_blk);
1254 	for (i = 0; i < alg_blk.ncoeff; i++) {
1255 		cs_dsp_coeff_parse_coeff(dsp, &data, &coeff_blk);
1256 
1257 		switch (coeff_blk.ctl_type) {
1258 		case WMFW_CTL_TYPE_BYTES:
1259 			break;
1260 		case WMFW_CTL_TYPE_ACKED:
1261 			if (coeff_blk.flags & WMFW_CTL_FLAG_SYS)
1262 				continue;	/* ignore */
1263 
1264 			ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1265 						       WMFW_CTL_FLAG_VOLATILE |
1266 						       WMFW_CTL_FLAG_WRITEABLE |
1267 						       WMFW_CTL_FLAG_READABLE,
1268 						       0);
1269 			if (ret)
1270 				return -EINVAL;
1271 			break;
1272 		case WMFW_CTL_TYPE_HOSTEVENT:
1273 		case WMFW_CTL_TYPE_FWEVENT:
1274 			ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1275 						       WMFW_CTL_FLAG_SYS |
1276 						       WMFW_CTL_FLAG_VOLATILE |
1277 						       WMFW_CTL_FLAG_WRITEABLE |
1278 						       WMFW_CTL_FLAG_READABLE,
1279 						       0);
1280 			if (ret)
1281 				return -EINVAL;
1282 			break;
1283 		case WMFW_CTL_TYPE_HOST_BUFFER:
1284 			ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1285 						       WMFW_CTL_FLAG_SYS |
1286 						       WMFW_CTL_FLAG_VOLATILE |
1287 						       WMFW_CTL_FLAG_READABLE,
1288 						       0);
1289 			if (ret)
1290 				return -EINVAL;
1291 			break;
1292 		default:
1293 			cs_dsp_err(dsp, "Unknown control type: %d\n",
1294 				   coeff_blk.ctl_type);
1295 			return -EINVAL;
1296 		}
1297 
1298 		alg_region.type = coeff_blk.mem_type;
1299 		alg_region.alg = alg_blk.id;
1300 
1301 		ret = cs_dsp_create_control(dsp, &alg_region,
1302 					    coeff_blk.offset,
1303 					    coeff_blk.len,
1304 					    coeff_blk.name,
1305 					    coeff_blk.name_len,
1306 					    coeff_blk.flags,
1307 					    coeff_blk.ctl_type);
1308 		if (ret < 0)
1309 			cs_dsp_err(dsp, "Failed to create control: %.*s, %d\n",
1310 				   coeff_blk.name_len, coeff_blk.name, ret);
1311 	}
1312 
1313 	return 0;
1314 }
1315 
1316 static unsigned int cs_dsp_adsp1_parse_sizes(struct cs_dsp *dsp,
1317 					     const char * const file,
1318 					     unsigned int pos,
1319 					     const struct firmware *firmware)
1320 {
1321 	const struct wmfw_adsp1_sizes *adsp1_sizes;
1322 
1323 	adsp1_sizes = (void *)&firmware->data[pos];
1324 
1325 	cs_dsp_dbg(dsp, "%s: %d DM, %d PM, %d ZM\n", file,
1326 		   le32_to_cpu(adsp1_sizes->dm), le32_to_cpu(adsp1_sizes->pm),
1327 		   le32_to_cpu(adsp1_sizes->zm));
1328 
1329 	return pos + sizeof(*adsp1_sizes);
1330 }
1331 
1332 static unsigned int cs_dsp_adsp2_parse_sizes(struct cs_dsp *dsp,
1333 					     const char * const file,
1334 					     unsigned int pos,
1335 					     const struct firmware *firmware)
1336 {
1337 	const struct wmfw_adsp2_sizes *adsp2_sizes;
1338 
1339 	adsp2_sizes = (void *)&firmware->data[pos];
1340 
1341 	cs_dsp_dbg(dsp, "%s: %d XM, %d YM %d PM, %d ZM\n", file,
1342 		   le32_to_cpu(adsp2_sizes->xm), le32_to_cpu(adsp2_sizes->ym),
1343 		   le32_to_cpu(adsp2_sizes->pm), le32_to_cpu(adsp2_sizes->zm));
1344 
1345 	return pos + sizeof(*adsp2_sizes);
1346 }
1347 
1348 static bool cs_dsp_validate_version(struct cs_dsp *dsp, unsigned int version)
1349 {
1350 	switch (version) {
1351 	case 0:
1352 		cs_dsp_warn(dsp, "Deprecated file format %d\n", version);
1353 		return true;
1354 	case 1:
1355 	case 2:
1356 		return true;
1357 	default:
1358 		return false;
1359 	}
1360 }
1361 
1362 static bool cs_dsp_halo_validate_version(struct cs_dsp *dsp, unsigned int version)
1363 {
1364 	switch (version) {
1365 	case 3:
1366 		return true;
1367 	default:
1368 		return false;
1369 	}
1370 }
1371 
1372 static int cs_dsp_load(struct cs_dsp *dsp, const struct firmware *firmware,
1373 		       const char *file)
1374 {
1375 	LIST_HEAD(buf_list);
1376 	struct regmap *regmap = dsp->regmap;
1377 	unsigned int pos = 0;
1378 	const struct wmfw_header *header;
1379 	const struct wmfw_adsp1_sizes *adsp1_sizes;
1380 	const struct wmfw_footer *footer;
1381 	const struct wmfw_region *region;
1382 	const struct cs_dsp_region *mem;
1383 	const char *region_name;
1384 	char *text = NULL;
1385 	struct cs_dsp_buf *buf;
1386 	unsigned int reg;
1387 	int regions = 0;
1388 	int ret, offset, type;
1389 
1390 	if (!firmware)
1391 		return 0;
1392 
1393 	ret = -EINVAL;
1394 
1395 	pos = sizeof(*header) + sizeof(*adsp1_sizes) + sizeof(*footer);
1396 	if (pos >= firmware->size) {
1397 		cs_dsp_err(dsp, "%s: file too short, %zu bytes\n",
1398 			   file, firmware->size);
1399 		goto out_fw;
1400 	}
1401 
1402 	header = (void *)&firmware->data[0];
1403 
1404 	if (memcmp(&header->magic[0], "WMFW", 4) != 0) {
1405 		cs_dsp_err(dsp, "%s: invalid magic\n", file);
1406 		goto out_fw;
1407 	}
1408 
1409 	if (!dsp->ops->validate_version(dsp, header->ver)) {
1410 		cs_dsp_err(dsp, "%s: unknown file format %d\n",
1411 			   file, header->ver);
1412 		goto out_fw;
1413 	}
1414 
1415 	cs_dsp_info(dsp, "Firmware version: %d\n", header->ver);
1416 	dsp->fw_ver = header->ver;
1417 
1418 	if (header->core != dsp->type) {
1419 		cs_dsp_err(dsp, "%s: invalid core %d != %d\n",
1420 			   file, header->core, dsp->type);
1421 		goto out_fw;
1422 	}
1423 
1424 	pos = sizeof(*header);
1425 	pos = dsp->ops->parse_sizes(dsp, file, pos, firmware);
1426 
1427 	footer = (void *)&firmware->data[pos];
1428 	pos += sizeof(*footer);
1429 
1430 	if (le32_to_cpu(header->len) != pos) {
1431 		cs_dsp_err(dsp, "%s: unexpected header length %d\n",
1432 			   file, le32_to_cpu(header->len));
1433 		goto out_fw;
1434 	}
1435 
1436 	cs_dsp_dbg(dsp, "%s: timestamp %llu\n", file,
1437 		   le64_to_cpu(footer->timestamp));
1438 
1439 	while (pos < firmware->size &&
1440 	       sizeof(*region) < firmware->size - pos) {
1441 		region = (void *)&(firmware->data[pos]);
1442 		region_name = "Unknown";
1443 		reg = 0;
1444 		text = NULL;
1445 		offset = le32_to_cpu(region->offset) & 0xffffff;
1446 		type = be32_to_cpu(region->type) & 0xff;
1447 
1448 		switch (type) {
1449 		case WMFW_NAME_TEXT:
1450 			region_name = "Firmware name";
1451 			text = kzalloc(le32_to_cpu(region->len) + 1,
1452 				       GFP_KERNEL);
1453 			break;
1454 		case WMFW_ALGORITHM_DATA:
1455 			region_name = "Algorithm";
1456 			ret = cs_dsp_parse_coeff(dsp, region);
1457 			if (ret != 0)
1458 				goto out_fw;
1459 			break;
1460 		case WMFW_INFO_TEXT:
1461 			region_name = "Information";
1462 			text = kzalloc(le32_to_cpu(region->len) + 1,
1463 				       GFP_KERNEL);
1464 			break;
1465 		case WMFW_ABSOLUTE:
1466 			region_name = "Absolute";
1467 			reg = offset;
1468 			break;
1469 		case WMFW_ADSP1_PM:
1470 		case WMFW_ADSP1_DM:
1471 		case WMFW_ADSP2_XM:
1472 		case WMFW_ADSP2_YM:
1473 		case WMFW_ADSP1_ZM:
1474 		case WMFW_HALO_PM_PACKED:
1475 		case WMFW_HALO_XM_PACKED:
1476 		case WMFW_HALO_YM_PACKED:
1477 			mem = cs_dsp_find_region(dsp, type);
1478 			if (!mem) {
1479 				cs_dsp_err(dsp, "No region of type: %x\n", type);
1480 				ret = -EINVAL;
1481 				goto out_fw;
1482 			}
1483 
1484 			region_name = cs_dsp_mem_region_name(type);
1485 			reg = dsp->ops->region_to_reg(mem, offset);
1486 			break;
1487 		default:
1488 			cs_dsp_warn(dsp,
1489 				    "%s.%d: Unknown region type %x at %d(%x)\n",
1490 				    file, regions, type, pos, pos);
1491 			break;
1492 		}
1493 
1494 		cs_dsp_dbg(dsp, "%s.%d: %d bytes at %d in %s\n", file,
1495 			   regions, le32_to_cpu(region->len), offset,
1496 			   region_name);
1497 
1498 		if (le32_to_cpu(region->len) >
1499 		    firmware->size - pos - sizeof(*region)) {
1500 			cs_dsp_err(dsp,
1501 				   "%s.%d: %s region len %d bytes exceeds file length %zu\n",
1502 				   file, regions, region_name,
1503 				   le32_to_cpu(region->len), firmware->size);
1504 			ret = -EINVAL;
1505 			goto out_fw;
1506 		}
1507 
1508 		if (text) {
1509 			memcpy(text, region->data, le32_to_cpu(region->len));
1510 			cs_dsp_info(dsp, "%s: %s\n", file, text);
1511 			kfree(text);
1512 			text = NULL;
1513 		}
1514 
1515 		if (reg) {
1516 			buf = cs_dsp_buf_alloc(region->data,
1517 					       le32_to_cpu(region->len),
1518 					       &buf_list);
1519 			if (!buf) {
1520 				cs_dsp_err(dsp, "Out of memory\n");
1521 				ret = -ENOMEM;
1522 				goto out_fw;
1523 			}
1524 
1525 			ret = regmap_raw_write_async(regmap, reg, buf->buf,
1526 						     le32_to_cpu(region->len));
1527 			if (ret != 0) {
1528 				cs_dsp_err(dsp,
1529 					   "%s.%d: Failed to write %d bytes at %d in %s: %d\n",
1530 					   file, regions,
1531 					   le32_to_cpu(region->len), offset,
1532 					   region_name, ret);
1533 				goto out_fw;
1534 			}
1535 		}
1536 
1537 		pos += le32_to_cpu(region->len) + sizeof(*region);
1538 		regions++;
1539 	}
1540 
1541 	ret = regmap_async_complete(regmap);
1542 	if (ret != 0) {
1543 		cs_dsp_err(dsp, "Failed to complete async write: %d\n", ret);
1544 		goto out_fw;
1545 	}
1546 
1547 	if (pos > firmware->size)
1548 		cs_dsp_warn(dsp, "%s.%d: %zu bytes at end of file\n",
1549 			    file, regions, pos - firmware->size);
1550 
1551 	cs_dsp_debugfs_save_wmfwname(dsp, file);
1552 
1553 out_fw:
1554 	regmap_async_complete(regmap);
1555 	cs_dsp_buf_free(&buf_list);
1556 	kfree(text);
1557 
1558 	return ret;
1559 }
1560 
1561 /**
1562  * cs_dsp_get_ctl() - Finds a matching coefficient control
1563  * @dsp: pointer to DSP structure
1564  * @name: pointer to string to match with a control's subname
1565  * @type: the algorithm type to match
1566  * @alg: the algorithm id to match
1567  *
1568  * Find cs_dsp_coeff_ctl with input name as its subname
1569  *
1570  * Return: pointer to the control on success, NULL if not found
1571  */
1572 struct cs_dsp_coeff_ctl *cs_dsp_get_ctl(struct cs_dsp *dsp, const char *name, int type,
1573 					unsigned int alg)
1574 {
1575 	struct cs_dsp_coeff_ctl *pos, *rslt = NULL;
1576 
1577 	lockdep_assert_held(&dsp->pwr_lock);
1578 
1579 	list_for_each_entry(pos, &dsp->ctl_list, list) {
1580 		if (!pos->subname)
1581 			continue;
1582 		if (strncmp(pos->subname, name, pos->subname_len) == 0 &&
1583 		    pos->fw_name == dsp->fw_name &&
1584 		    pos->alg_region.alg == alg &&
1585 		    pos->alg_region.type == type) {
1586 			rslt = pos;
1587 			break;
1588 		}
1589 	}
1590 
1591 	return rslt;
1592 }
1593 EXPORT_SYMBOL_NS_GPL(cs_dsp_get_ctl, FW_CS_DSP);
1594 
1595 static void cs_dsp_ctl_fixup_base(struct cs_dsp *dsp,
1596 				  const struct cs_dsp_alg_region *alg_region)
1597 {
1598 	struct cs_dsp_coeff_ctl *ctl;
1599 
1600 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
1601 		if (ctl->fw_name == dsp->fw_name &&
1602 		    alg_region->alg == ctl->alg_region.alg &&
1603 		    alg_region->type == ctl->alg_region.type) {
1604 			ctl->alg_region.base = alg_region->base;
1605 		}
1606 	}
1607 }
1608 
1609 static void *cs_dsp_read_algs(struct cs_dsp *dsp, size_t n_algs,
1610 			      const struct cs_dsp_region *mem,
1611 			      unsigned int pos, unsigned int len)
1612 {
1613 	void *alg;
1614 	unsigned int reg;
1615 	int ret;
1616 	__be32 val;
1617 
1618 	if (n_algs == 0) {
1619 		cs_dsp_err(dsp, "No algorithms\n");
1620 		return ERR_PTR(-EINVAL);
1621 	}
1622 
1623 	if (n_algs > 1024) {
1624 		cs_dsp_err(dsp, "Algorithm count %zx excessive\n", n_algs);
1625 		return ERR_PTR(-EINVAL);
1626 	}
1627 
1628 	/* Read the terminator first to validate the length */
1629 	reg = dsp->ops->region_to_reg(mem, pos + len);
1630 
1631 	ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val));
1632 	if (ret != 0) {
1633 		cs_dsp_err(dsp, "Failed to read algorithm list end: %d\n",
1634 			   ret);
1635 		return ERR_PTR(ret);
1636 	}
1637 
1638 	if (be32_to_cpu(val) != 0xbedead)
1639 		cs_dsp_warn(dsp, "Algorithm list end %x 0x%x != 0xbedead\n",
1640 			    reg, be32_to_cpu(val));
1641 
1642 	/* Convert length from DSP words to bytes */
1643 	len *= sizeof(u32);
1644 
1645 	alg = kzalloc(len, GFP_KERNEL | GFP_DMA);
1646 	if (!alg)
1647 		return ERR_PTR(-ENOMEM);
1648 
1649 	reg = dsp->ops->region_to_reg(mem, pos);
1650 
1651 	ret = regmap_raw_read(dsp->regmap, reg, alg, len);
1652 	if (ret != 0) {
1653 		cs_dsp_err(dsp, "Failed to read algorithm list: %d\n", ret);
1654 		kfree(alg);
1655 		return ERR_PTR(ret);
1656 	}
1657 
1658 	return alg;
1659 }
1660 
1661 /**
1662  * cs_dsp_find_alg_region() - Finds a matching algorithm region
1663  * @dsp: pointer to DSP structure
1664  * @type: the algorithm type to match
1665  * @id: the algorithm id to match
1666  *
1667  * Return: Pointer to matching algorithm region, or NULL if not found.
1668  */
1669 struct cs_dsp_alg_region *cs_dsp_find_alg_region(struct cs_dsp *dsp,
1670 						 int type, unsigned int id)
1671 {
1672 	struct cs_dsp_alg_region *alg_region;
1673 
1674 	lockdep_assert_held(&dsp->pwr_lock);
1675 
1676 	list_for_each_entry(alg_region, &dsp->alg_regions, list) {
1677 		if (id == alg_region->alg && type == alg_region->type)
1678 			return alg_region;
1679 	}
1680 
1681 	return NULL;
1682 }
1683 EXPORT_SYMBOL_NS_GPL(cs_dsp_find_alg_region, FW_CS_DSP);
1684 
1685 static struct cs_dsp_alg_region *cs_dsp_create_region(struct cs_dsp *dsp,
1686 						      int type, __be32 id,
1687 						      __be32 ver, __be32 base)
1688 {
1689 	struct cs_dsp_alg_region *alg_region;
1690 
1691 	alg_region = kzalloc(sizeof(*alg_region), GFP_KERNEL);
1692 	if (!alg_region)
1693 		return ERR_PTR(-ENOMEM);
1694 
1695 	alg_region->type = type;
1696 	alg_region->alg = be32_to_cpu(id);
1697 	alg_region->ver = be32_to_cpu(ver);
1698 	alg_region->base = be32_to_cpu(base);
1699 
1700 	list_add_tail(&alg_region->list, &dsp->alg_regions);
1701 
1702 	if (dsp->fw_ver > 0)
1703 		cs_dsp_ctl_fixup_base(dsp, alg_region);
1704 
1705 	return alg_region;
1706 }
1707 
1708 static void cs_dsp_free_alg_regions(struct cs_dsp *dsp)
1709 {
1710 	struct cs_dsp_alg_region *alg_region;
1711 
1712 	while (!list_empty(&dsp->alg_regions)) {
1713 		alg_region = list_first_entry(&dsp->alg_regions,
1714 					      struct cs_dsp_alg_region,
1715 					      list);
1716 		list_del(&alg_region->list);
1717 		kfree(alg_region);
1718 	}
1719 }
1720 
1721 static void cs_dsp_parse_wmfw_id_header(struct cs_dsp *dsp,
1722 					struct wmfw_id_hdr *fw, int nalgs)
1723 {
1724 	dsp->fw_id = be32_to_cpu(fw->id);
1725 	dsp->fw_id_version = be32_to_cpu(fw->ver);
1726 
1727 	cs_dsp_info(dsp, "Firmware: %x v%d.%d.%d, %d algorithms\n",
1728 		    dsp->fw_id, (dsp->fw_id_version & 0xff0000) >> 16,
1729 		    (dsp->fw_id_version & 0xff00) >> 8, dsp->fw_id_version & 0xff,
1730 		    nalgs);
1731 }
1732 
1733 static void cs_dsp_parse_wmfw_v3_id_header(struct cs_dsp *dsp,
1734 					   struct wmfw_v3_id_hdr *fw, int nalgs)
1735 {
1736 	dsp->fw_id = be32_to_cpu(fw->id);
1737 	dsp->fw_id_version = be32_to_cpu(fw->ver);
1738 	dsp->fw_vendor_id = be32_to_cpu(fw->vendor_id);
1739 
1740 	cs_dsp_info(dsp, "Firmware: %x vendor: 0x%x v%d.%d.%d, %d algorithms\n",
1741 		    dsp->fw_id, dsp->fw_vendor_id,
1742 		    (dsp->fw_id_version & 0xff0000) >> 16,
1743 		    (dsp->fw_id_version & 0xff00) >> 8, dsp->fw_id_version & 0xff,
1744 		    nalgs);
1745 }
1746 
1747 static int cs_dsp_create_regions(struct cs_dsp *dsp, __be32 id, __be32 ver,
1748 				 int nregions, const int *type, __be32 *base)
1749 {
1750 	struct cs_dsp_alg_region *alg_region;
1751 	int i;
1752 
1753 	for (i = 0; i < nregions; i++) {
1754 		alg_region = cs_dsp_create_region(dsp, type[i], id, ver, base[i]);
1755 		if (IS_ERR(alg_region))
1756 			return PTR_ERR(alg_region);
1757 	}
1758 
1759 	return 0;
1760 }
1761 
1762 static int cs_dsp_adsp1_setup_algs(struct cs_dsp *dsp)
1763 {
1764 	struct wmfw_adsp1_id_hdr adsp1_id;
1765 	struct wmfw_adsp1_alg_hdr *adsp1_alg;
1766 	struct cs_dsp_alg_region *alg_region;
1767 	const struct cs_dsp_region *mem;
1768 	unsigned int pos, len;
1769 	size_t n_algs;
1770 	int i, ret;
1771 
1772 	mem = cs_dsp_find_region(dsp, WMFW_ADSP1_DM);
1773 	if (WARN_ON(!mem))
1774 		return -EINVAL;
1775 
1776 	ret = regmap_raw_read(dsp->regmap, mem->base, &adsp1_id,
1777 			      sizeof(adsp1_id));
1778 	if (ret != 0) {
1779 		cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
1780 			   ret);
1781 		return ret;
1782 	}
1783 
1784 	n_algs = be32_to_cpu(adsp1_id.n_algs);
1785 
1786 	cs_dsp_parse_wmfw_id_header(dsp, &adsp1_id.fw, n_algs);
1787 
1788 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_ZM,
1789 					  adsp1_id.fw.id, adsp1_id.fw.ver,
1790 					  adsp1_id.zm);
1791 	if (IS_ERR(alg_region))
1792 		return PTR_ERR(alg_region);
1793 
1794 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_DM,
1795 					  adsp1_id.fw.id, adsp1_id.fw.ver,
1796 					  adsp1_id.dm);
1797 	if (IS_ERR(alg_region))
1798 		return PTR_ERR(alg_region);
1799 
1800 	/* Calculate offset and length in DSP words */
1801 	pos = sizeof(adsp1_id) / sizeof(u32);
1802 	len = (sizeof(*adsp1_alg) * n_algs) / sizeof(u32);
1803 
1804 	adsp1_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
1805 	if (IS_ERR(adsp1_alg))
1806 		return PTR_ERR(adsp1_alg);
1807 
1808 	for (i = 0; i < n_algs; i++) {
1809 		cs_dsp_info(dsp, "%d: ID %x v%d.%d.%d DM@%x ZM@%x\n",
1810 			    i, be32_to_cpu(adsp1_alg[i].alg.id),
1811 			    (be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff0000) >> 16,
1812 			    (be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff00) >> 8,
1813 			    be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff,
1814 			    be32_to_cpu(adsp1_alg[i].dm),
1815 			    be32_to_cpu(adsp1_alg[i].zm));
1816 
1817 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_DM,
1818 						  adsp1_alg[i].alg.id,
1819 						  adsp1_alg[i].alg.ver,
1820 						  adsp1_alg[i].dm);
1821 		if (IS_ERR(alg_region)) {
1822 			ret = PTR_ERR(alg_region);
1823 			goto out;
1824 		}
1825 		if (dsp->fw_ver == 0) {
1826 			if (i + 1 < n_algs) {
1827 				len = be32_to_cpu(adsp1_alg[i + 1].dm);
1828 				len -= be32_to_cpu(adsp1_alg[i].dm);
1829 				len *= 4;
1830 				cs_dsp_create_control(dsp, alg_region, 0,
1831 						      len, NULL, 0, 0,
1832 						      WMFW_CTL_TYPE_BYTES);
1833 			} else {
1834 				cs_dsp_warn(dsp, "Missing length info for region DM with ID %x\n",
1835 					    be32_to_cpu(adsp1_alg[i].alg.id));
1836 			}
1837 		}
1838 
1839 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_ZM,
1840 						  adsp1_alg[i].alg.id,
1841 						  adsp1_alg[i].alg.ver,
1842 						  adsp1_alg[i].zm);
1843 		if (IS_ERR(alg_region)) {
1844 			ret = PTR_ERR(alg_region);
1845 			goto out;
1846 		}
1847 		if (dsp->fw_ver == 0) {
1848 			if (i + 1 < n_algs) {
1849 				len = be32_to_cpu(adsp1_alg[i + 1].zm);
1850 				len -= be32_to_cpu(adsp1_alg[i].zm);
1851 				len *= 4;
1852 				cs_dsp_create_control(dsp, alg_region, 0,
1853 						      len, NULL, 0, 0,
1854 						      WMFW_CTL_TYPE_BYTES);
1855 			} else {
1856 				cs_dsp_warn(dsp, "Missing length info for region ZM with ID %x\n",
1857 					    be32_to_cpu(adsp1_alg[i].alg.id));
1858 			}
1859 		}
1860 	}
1861 
1862 out:
1863 	kfree(adsp1_alg);
1864 	return ret;
1865 }
1866 
1867 static int cs_dsp_adsp2_setup_algs(struct cs_dsp *dsp)
1868 {
1869 	struct wmfw_adsp2_id_hdr adsp2_id;
1870 	struct wmfw_adsp2_alg_hdr *adsp2_alg;
1871 	struct cs_dsp_alg_region *alg_region;
1872 	const struct cs_dsp_region *mem;
1873 	unsigned int pos, len;
1874 	size_t n_algs;
1875 	int i, ret;
1876 
1877 	mem = cs_dsp_find_region(dsp, WMFW_ADSP2_XM);
1878 	if (WARN_ON(!mem))
1879 		return -EINVAL;
1880 
1881 	ret = regmap_raw_read(dsp->regmap, mem->base, &adsp2_id,
1882 			      sizeof(adsp2_id));
1883 	if (ret != 0) {
1884 		cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
1885 			   ret);
1886 		return ret;
1887 	}
1888 
1889 	n_algs = be32_to_cpu(adsp2_id.n_algs);
1890 
1891 	cs_dsp_parse_wmfw_id_header(dsp, &adsp2_id.fw, n_algs);
1892 
1893 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_XM,
1894 					  adsp2_id.fw.id, adsp2_id.fw.ver,
1895 					  adsp2_id.xm);
1896 	if (IS_ERR(alg_region))
1897 		return PTR_ERR(alg_region);
1898 
1899 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_YM,
1900 					  adsp2_id.fw.id, adsp2_id.fw.ver,
1901 					  adsp2_id.ym);
1902 	if (IS_ERR(alg_region))
1903 		return PTR_ERR(alg_region);
1904 
1905 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_ZM,
1906 					  adsp2_id.fw.id, adsp2_id.fw.ver,
1907 					  adsp2_id.zm);
1908 	if (IS_ERR(alg_region))
1909 		return PTR_ERR(alg_region);
1910 
1911 	/* Calculate offset and length in DSP words */
1912 	pos = sizeof(adsp2_id) / sizeof(u32);
1913 	len = (sizeof(*adsp2_alg) * n_algs) / sizeof(u32);
1914 
1915 	adsp2_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
1916 	if (IS_ERR(adsp2_alg))
1917 		return PTR_ERR(adsp2_alg);
1918 
1919 	for (i = 0; i < n_algs; i++) {
1920 		cs_dsp_dbg(dsp,
1921 			   "%d: ID %x v%d.%d.%d XM@%x YM@%x ZM@%x\n",
1922 			   i, be32_to_cpu(adsp2_alg[i].alg.id),
1923 			   (be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff0000) >> 16,
1924 			   (be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff00) >> 8,
1925 			   be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff,
1926 			   be32_to_cpu(adsp2_alg[i].xm),
1927 			   be32_to_cpu(adsp2_alg[i].ym),
1928 			   be32_to_cpu(adsp2_alg[i].zm));
1929 
1930 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_XM,
1931 						  adsp2_alg[i].alg.id,
1932 						  adsp2_alg[i].alg.ver,
1933 						  adsp2_alg[i].xm);
1934 		if (IS_ERR(alg_region)) {
1935 			ret = PTR_ERR(alg_region);
1936 			goto out;
1937 		}
1938 		if (dsp->fw_ver == 0) {
1939 			if (i + 1 < n_algs) {
1940 				len = be32_to_cpu(adsp2_alg[i + 1].xm);
1941 				len -= be32_to_cpu(adsp2_alg[i].xm);
1942 				len *= 4;
1943 				cs_dsp_create_control(dsp, alg_region, 0,
1944 						      len, NULL, 0, 0,
1945 						      WMFW_CTL_TYPE_BYTES);
1946 			} else {
1947 				cs_dsp_warn(dsp, "Missing length info for region XM with ID %x\n",
1948 					    be32_to_cpu(adsp2_alg[i].alg.id));
1949 			}
1950 		}
1951 
1952 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_YM,
1953 						  adsp2_alg[i].alg.id,
1954 						  adsp2_alg[i].alg.ver,
1955 						  adsp2_alg[i].ym);
1956 		if (IS_ERR(alg_region)) {
1957 			ret = PTR_ERR(alg_region);
1958 			goto out;
1959 		}
1960 		if (dsp->fw_ver == 0) {
1961 			if (i + 1 < n_algs) {
1962 				len = be32_to_cpu(adsp2_alg[i + 1].ym);
1963 				len -= be32_to_cpu(adsp2_alg[i].ym);
1964 				len *= 4;
1965 				cs_dsp_create_control(dsp, alg_region, 0,
1966 						      len, NULL, 0, 0,
1967 						      WMFW_CTL_TYPE_BYTES);
1968 			} else {
1969 				cs_dsp_warn(dsp, "Missing length info for region YM with ID %x\n",
1970 					    be32_to_cpu(adsp2_alg[i].alg.id));
1971 			}
1972 		}
1973 
1974 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_ZM,
1975 						  adsp2_alg[i].alg.id,
1976 						  adsp2_alg[i].alg.ver,
1977 						  adsp2_alg[i].zm);
1978 		if (IS_ERR(alg_region)) {
1979 			ret = PTR_ERR(alg_region);
1980 			goto out;
1981 		}
1982 		if (dsp->fw_ver == 0) {
1983 			if (i + 1 < n_algs) {
1984 				len = be32_to_cpu(adsp2_alg[i + 1].zm);
1985 				len -= be32_to_cpu(adsp2_alg[i].zm);
1986 				len *= 4;
1987 				cs_dsp_create_control(dsp, alg_region, 0,
1988 						      len, NULL, 0, 0,
1989 						      WMFW_CTL_TYPE_BYTES);
1990 			} else {
1991 				cs_dsp_warn(dsp, "Missing length info for region ZM with ID %x\n",
1992 					    be32_to_cpu(adsp2_alg[i].alg.id));
1993 			}
1994 		}
1995 	}
1996 
1997 out:
1998 	kfree(adsp2_alg);
1999 	return ret;
2000 }
2001 
2002 static int cs_dsp_halo_create_regions(struct cs_dsp *dsp, __be32 id, __be32 ver,
2003 				      __be32 xm_base, __be32 ym_base)
2004 {
2005 	static const int types[] = {
2006 		WMFW_ADSP2_XM, WMFW_HALO_XM_PACKED,
2007 		WMFW_ADSP2_YM, WMFW_HALO_YM_PACKED
2008 	};
2009 	__be32 bases[] = { xm_base, xm_base, ym_base, ym_base };
2010 
2011 	return cs_dsp_create_regions(dsp, id, ver, ARRAY_SIZE(types), types, bases);
2012 }
2013 
2014 static int cs_dsp_halo_setup_algs(struct cs_dsp *dsp)
2015 {
2016 	struct wmfw_halo_id_hdr halo_id;
2017 	struct wmfw_halo_alg_hdr *halo_alg;
2018 	const struct cs_dsp_region *mem;
2019 	unsigned int pos, len;
2020 	size_t n_algs;
2021 	int i, ret;
2022 
2023 	mem = cs_dsp_find_region(dsp, WMFW_ADSP2_XM);
2024 	if (WARN_ON(!mem))
2025 		return -EINVAL;
2026 
2027 	ret = regmap_raw_read(dsp->regmap, mem->base, &halo_id,
2028 			      sizeof(halo_id));
2029 	if (ret != 0) {
2030 		cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
2031 			   ret);
2032 		return ret;
2033 	}
2034 
2035 	n_algs = be32_to_cpu(halo_id.n_algs);
2036 
2037 	cs_dsp_parse_wmfw_v3_id_header(dsp, &halo_id.fw, n_algs);
2038 
2039 	ret = cs_dsp_halo_create_regions(dsp, halo_id.fw.id, halo_id.fw.ver,
2040 					 halo_id.xm_base, halo_id.ym_base);
2041 	if (ret)
2042 		return ret;
2043 
2044 	/* Calculate offset and length in DSP words */
2045 	pos = sizeof(halo_id) / sizeof(u32);
2046 	len = (sizeof(*halo_alg) * n_algs) / sizeof(u32);
2047 
2048 	halo_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
2049 	if (IS_ERR(halo_alg))
2050 		return PTR_ERR(halo_alg);
2051 
2052 	for (i = 0; i < n_algs; i++) {
2053 		cs_dsp_dbg(dsp,
2054 			   "%d: ID %x v%d.%d.%d XM@%x YM@%x\n",
2055 			   i, be32_to_cpu(halo_alg[i].alg.id),
2056 			   (be32_to_cpu(halo_alg[i].alg.ver) & 0xff0000) >> 16,
2057 			   (be32_to_cpu(halo_alg[i].alg.ver) & 0xff00) >> 8,
2058 			   be32_to_cpu(halo_alg[i].alg.ver) & 0xff,
2059 			   be32_to_cpu(halo_alg[i].xm_base),
2060 			   be32_to_cpu(halo_alg[i].ym_base));
2061 
2062 		ret = cs_dsp_halo_create_regions(dsp, halo_alg[i].alg.id,
2063 						 halo_alg[i].alg.ver,
2064 						 halo_alg[i].xm_base,
2065 						 halo_alg[i].ym_base);
2066 		if (ret)
2067 			goto out;
2068 	}
2069 
2070 out:
2071 	kfree(halo_alg);
2072 	return ret;
2073 }
2074 
2075 static int cs_dsp_load_coeff(struct cs_dsp *dsp, const struct firmware *firmware,
2076 			     const char *file)
2077 {
2078 	LIST_HEAD(buf_list);
2079 	struct regmap *regmap = dsp->regmap;
2080 	struct wmfw_coeff_hdr *hdr;
2081 	struct wmfw_coeff_item *blk;
2082 	const struct cs_dsp_region *mem;
2083 	struct cs_dsp_alg_region *alg_region;
2084 	const char *region_name;
2085 	int ret, pos, blocks, type, offset, reg, version;
2086 	char *text = NULL;
2087 	struct cs_dsp_buf *buf;
2088 
2089 	if (!firmware)
2090 		return 0;
2091 
2092 	ret = -EINVAL;
2093 
2094 	if (sizeof(*hdr) >= firmware->size) {
2095 		cs_dsp_err(dsp, "%s: coefficient file too short, %zu bytes\n",
2096 			   file, firmware->size);
2097 		goto out_fw;
2098 	}
2099 
2100 	hdr = (void *)&firmware->data[0];
2101 	if (memcmp(hdr->magic, "WMDR", 4) != 0) {
2102 		cs_dsp_err(dsp, "%s: invalid coefficient magic\n", file);
2103 		goto out_fw;
2104 	}
2105 
2106 	switch (be32_to_cpu(hdr->rev) & 0xff) {
2107 	case 1:
2108 	case 2:
2109 		break;
2110 	default:
2111 		cs_dsp_err(dsp, "%s: Unsupported coefficient file format %d\n",
2112 			   file, be32_to_cpu(hdr->rev) & 0xff);
2113 		ret = -EINVAL;
2114 		goto out_fw;
2115 	}
2116 
2117 	cs_dsp_info(dsp, "%s: v%d.%d.%d\n", file,
2118 		    (le32_to_cpu(hdr->ver) >> 16) & 0xff,
2119 		    (le32_to_cpu(hdr->ver) >>  8) & 0xff,
2120 		    le32_to_cpu(hdr->ver) & 0xff);
2121 
2122 	pos = le32_to_cpu(hdr->len);
2123 
2124 	blocks = 0;
2125 	while (pos < firmware->size &&
2126 	       sizeof(*blk) < firmware->size - pos) {
2127 		blk = (void *)(&firmware->data[pos]);
2128 
2129 		type = le16_to_cpu(blk->type);
2130 		offset = le16_to_cpu(blk->offset);
2131 		version = le32_to_cpu(blk->ver) >> 8;
2132 
2133 		cs_dsp_dbg(dsp, "%s.%d: %x v%d.%d.%d\n",
2134 			   file, blocks, le32_to_cpu(blk->id),
2135 			   (le32_to_cpu(blk->ver) >> 16) & 0xff,
2136 			   (le32_to_cpu(blk->ver) >>  8) & 0xff,
2137 			   le32_to_cpu(blk->ver) & 0xff);
2138 		cs_dsp_dbg(dsp, "%s.%d: %d bytes at 0x%x in %x\n",
2139 			   file, blocks, le32_to_cpu(blk->len), offset, type);
2140 
2141 		reg = 0;
2142 		region_name = "Unknown";
2143 		switch (type) {
2144 		case (WMFW_NAME_TEXT << 8):
2145 			text = kzalloc(le32_to_cpu(blk->len) + 1, GFP_KERNEL);
2146 			break;
2147 		case (WMFW_INFO_TEXT << 8):
2148 		case (WMFW_METADATA << 8):
2149 			break;
2150 		case (WMFW_ABSOLUTE << 8):
2151 			/*
2152 			 * Old files may use this for global
2153 			 * coefficients.
2154 			 */
2155 			if (le32_to_cpu(blk->id) == dsp->fw_id &&
2156 			    offset == 0) {
2157 				region_name = "global coefficients";
2158 				mem = cs_dsp_find_region(dsp, type);
2159 				if (!mem) {
2160 					cs_dsp_err(dsp, "No ZM\n");
2161 					break;
2162 				}
2163 				reg = dsp->ops->region_to_reg(mem, 0);
2164 
2165 			} else {
2166 				region_name = "register";
2167 				reg = offset;
2168 			}
2169 			break;
2170 
2171 		case WMFW_ADSP1_DM:
2172 		case WMFW_ADSP1_ZM:
2173 		case WMFW_ADSP2_XM:
2174 		case WMFW_ADSP2_YM:
2175 		case WMFW_HALO_XM_PACKED:
2176 		case WMFW_HALO_YM_PACKED:
2177 		case WMFW_HALO_PM_PACKED:
2178 			cs_dsp_dbg(dsp, "%s.%d: %d bytes in %x for %x\n",
2179 				   file, blocks, le32_to_cpu(blk->len),
2180 				   type, le32_to_cpu(blk->id));
2181 
2182 			region_name = cs_dsp_mem_region_name(type);
2183 			mem = cs_dsp_find_region(dsp, type);
2184 			if (!mem) {
2185 				cs_dsp_err(dsp, "No base for region %x\n", type);
2186 				break;
2187 			}
2188 
2189 			alg_region = cs_dsp_find_alg_region(dsp, type,
2190 							    le32_to_cpu(blk->id));
2191 			if (alg_region) {
2192 				if (version != alg_region->ver)
2193 					cs_dsp_warn(dsp,
2194 						    "Algorithm coefficient version %d.%d.%d but expected %d.%d.%d\n",
2195 						   (version >> 16) & 0xFF,
2196 						   (version >> 8) & 0xFF,
2197 						   version & 0xFF,
2198 						   (alg_region->ver >> 16) & 0xFF,
2199 						   (alg_region->ver >> 8) & 0xFF,
2200 						   alg_region->ver & 0xFF);
2201 
2202 				reg = alg_region->base;
2203 				reg = dsp->ops->region_to_reg(mem, reg);
2204 				reg += offset;
2205 			} else {
2206 				cs_dsp_err(dsp, "No %s for algorithm %x\n",
2207 					   region_name, le32_to_cpu(blk->id));
2208 			}
2209 			break;
2210 
2211 		default:
2212 			cs_dsp_err(dsp, "%s.%d: Unknown region type %x at %d\n",
2213 				   file, blocks, type, pos);
2214 			break;
2215 		}
2216 
2217 		if (text) {
2218 			memcpy(text, blk->data, le32_to_cpu(blk->len));
2219 			cs_dsp_info(dsp, "%s: %s\n", dsp->fw_name, text);
2220 			kfree(text);
2221 			text = NULL;
2222 		}
2223 
2224 		if (reg) {
2225 			if (le32_to_cpu(blk->len) >
2226 			    firmware->size - pos - sizeof(*blk)) {
2227 				cs_dsp_err(dsp,
2228 					   "%s.%d: %s region len %d bytes exceeds file length %zu\n",
2229 					   file, blocks, region_name,
2230 					   le32_to_cpu(blk->len),
2231 					   firmware->size);
2232 				ret = -EINVAL;
2233 				goto out_fw;
2234 			}
2235 
2236 			buf = cs_dsp_buf_alloc(blk->data,
2237 					       le32_to_cpu(blk->len),
2238 					       &buf_list);
2239 			if (!buf) {
2240 				cs_dsp_err(dsp, "Out of memory\n");
2241 				ret = -ENOMEM;
2242 				goto out_fw;
2243 			}
2244 
2245 			cs_dsp_dbg(dsp, "%s.%d: Writing %d bytes at %x\n",
2246 				   file, blocks, le32_to_cpu(blk->len),
2247 				   reg);
2248 			ret = regmap_raw_write_async(regmap, reg, buf->buf,
2249 						     le32_to_cpu(blk->len));
2250 			if (ret != 0) {
2251 				cs_dsp_err(dsp,
2252 					   "%s.%d: Failed to write to %x in %s: %d\n",
2253 					   file, blocks, reg, region_name, ret);
2254 			}
2255 		}
2256 
2257 		pos += (le32_to_cpu(blk->len) + sizeof(*blk) + 3) & ~0x03;
2258 		blocks++;
2259 	}
2260 
2261 	ret = regmap_async_complete(regmap);
2262 	if (ret != 0)
2263 		cs_dsp_err(dsp, "Failed to complete async write: %d\n", ret);
2264 
2265 	if (pos > firmware->size)
2266 		cs_dsp_warn(dsp, "%s.%d: %zu bytes at end of file\n",
2267 			    file, blocks, pos - firmware->size);
2268 
2269 	cs_dsp_debugfs_save_binname(dsp, file);
2270 
2271 out_fw:
2272 	regmap_async_complete(regmap);
2273 	cs_dsp_buf_free(&buf_list);
2274 	kfree(text);
2275 	return ret;
2276 }
2277 
2278 static int cs_dsp_create_name(struct cs_dsp *dsp)
2279 {
2280 	if (!dsp->name) {
2281 		dsp->name = devm_kasprintf(dsp->dev, GFP_KERNEL, "DSP%d",
2282 					   dsp->num);
2283 		if (!dsp->name)
2284 			return -ENOMEM;
2285 	}
2286 
2287 	return 0;
2288 }
2289 
2290 static int cs_dsp_common_init(struct cs_dsp *dsp)
2291 {
2292 	int ret;
2293 
2294 	ret = cs_dsp_create_name(dsp);
2295 	if (ret)
2296 		return ret;
2297 
2298 	INIT_LIST_HEAD(&dsp->alg_regions);
2299 	INIT_LIST_HEAD(&dsp->ctl_list);
2300 
2301 	mutex_init(&dsp->pwr_lock);
2302 
2303 #ifdef CONFIG_DEBUG_FS
2304 	/* Ensure this is invalid if client never provides a debugfs root */
2305 	dsp->debugfs_root = ERR_PTR(-ENODEV);
2306 #endif
2307 
2308 	return 0;
2309 }
2310 
2311 /**
2312  * cs_dsp_adsp1_init() - Initialise a cs_dsp structure representing a ADSP1 device
2313  * @dsp: pointer to DSP structure
2314  *
2315  * Return: Zero for success, a negative number on error.
2316  */
2317 int cs_dsp_adsp1_init(struct cs_dsp *dsp)
2318 {
2319 	dsp->ops = &cs_dsp_adsp1_ops;
2320 
2321 	return cs_dsp_common_init(dsp);
2322 }
2323 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_init, FW_CS_DSP);
2324 
2325 /**
2326  * cs_dsp_adsp1_power_up() - Load and start the named firmware
2327  * @dsp: pointer to DSP structure
2328  * @wmfw_firmware: the firmware to be sent
2329  * @wmfw_filename: file name of firmware to be sent
2330  * @coeff_firmware: the coefficient data to be sent
2331  * @coeff_filename: file name of coefficient to data be sent
2332  * @fw_name: the user-friendly firmware name
2333  *
2334  * Return: Zero for success, a negative number on error.
2335  */
2336 int cs_dsp_adsp1_power_up(struct cs_dsp *dsp,
2337 			  const struct firmware *wmfw_firmware, char *wmfw_filename,
2338 			  const struct firmware *coeff_firmware, char *coeff_filename,
2339 			  const char *fw_name)
2340 {
2341 	unsigned int val;
2342 	int ret;
2343 
2344 	mutex_lock(&dsp->pwr_lock);
2345 
2346 	dsp->fw_name = fw_name;
2347 
2348 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2349 			   ADSP1_SYS_ENA, ADSP1_SYS_ENA);
2350 
2351 	/*
2352 	 * For simplicity set the DSP clock rate to be the
2353 	 * SYSCLK rate rather than making it configurable.
2354 	 */
2355 	if (dsp->sysclk_reg) {
2356 		ret = regmap_read(dsp->regmap, dsp->sysclk_reg, &val);
2357 		if (ret != 0) {
2358 			cs_dsp_err(dsp, "Failed to read SYSCLK state: %d\n", ret);
2359 			goto err_mutex;
2360 		}
2361 
2362 		val = (val & dsp->sysclk_mask) >> dsp->sysclk_shift;
2363 
2364 		ret = regmap_update_bits(dsp->regmap,
2365 					 dsp->base + ADSP1_CONTROL_31,
2366 					 ADSP1_CLK_SEL_MASK, val);
2367 		if (ret != 0) {
2368 			cs_dsp_err(dsp, "Failed to set clock rate: %d\n", ret);
2369 			goto err_mutex;
2370 		}
2371 	}
2372 
2373 	ret = cs_dsp_load(dsp, wmfw_firmware, wmfw_filename);
2374 	if (ret != 0)
2375 		goto err_ena;
2376 
2377 	ret = cs_dsp_adsp1_setup_algs(dsp);
2378 	if (ret != 0)
2379 		goto err_ena;
2380 
2381 	ret = cs_dsp_load_coeff(dsp, coeff_firmware, coeff_filename);
2382 	if (ret != 0)
2383 		goto err_ena;
2384 
2385 	/* Initialize caches for enabled and unset controls */
2386 	ret = cs_dsp_coeff_init_control_caches(dsp);
2387 	if (ret != 0)
2388 		goto err_ena;
2389 
2390 	/* Sync set controls */
2391 	ret = cs_dsp_coeff_sync_controls(dsp);
2392 	if (ret != 0)
2393 		goto err_ena;
2394 
2395 	dsp->booted = true;
2396 
2397 	/* Start the core running */
2398 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2399 			   ADSP1_CORE_ENA | ADSP1_START,
2400 			   ADSP1_CORE_ENA | ADSP1_START);
2401 
2402 	dsp->running = true;
2403 
2404 	mutex_unlock(&dsp->pwr_lock);
2405 
2406 	return 0;
2407 
2408 err_ena:
2409 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2410 			   ADSP1_SYS_ENA, 0);
2411 err_mutex:
2412 	mutex_unlock(&dsp->pwr_lock);
2413 	return ret;
2414 }
2415 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_power_up, FW_CS_DSP);
2416 
2417 /**
2418  * cs_dsp_adsp1_power_down() - Halts the DSP
2419  * @dsp: pointer to DSP structure
2420  */
2421 void cs_dsp_adsp1_power_down(struct cs_dsp *dsp)
2422 {
2423 	struct cs_dsp_coeff_ctl *ctl;
2424 
2425 	mutex_lock(&dsp->pwr_lock);
2426 
2427 	dsp->running = false;
2428 	dsp->booted = false;
2429 
2430 	/* Halt the core */
2431 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2432 			   ADSP1_CORE_ENA | ADSP1_START, 0);
2433 
2434 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_19,
2435 			   ADSP1_WDMA_BUFFER_LENGTH_MASK, 0);
2436 
2437 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2438 			   ADSP1_SYS_ENA, 0);
2439 
2440 	list_for_each_entry(ctl, &dsp->ctl_list, list)
2441 		ctl->enabled = 0;
2442 
2443 	cs_dsp_free_alg_regions(dsp);
2444 
2445 	mutex_unlock(&dsp->pwr_lock);
2446 }
2447 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_power_down, FW_CS_DSP);
2448 
2449 static int cs_dsp_adsp2v2_enable_core(struct cs_dsp *dsp)
2450 {
2451 	unsigned int val;
2452 	int ret, count;
2453 
2454 	/* Wait for the RAM to start, should be near instantaneous */
2455 	for (count = 0; count < 10; ++count) {
2456 		ret = regmap_read(dsp->regmap, dsp->base + ADSP2_STATUS1, &val);
2457 		if (ret != 0)
2458 			return ret;
2459 
2460 		if (val & ADSP2_RAM_RDY)
2461 			break;
2462 
2463 		usleep_range(250, 500);
2464 	}
2465 
2466 	if (!(val & ADSP2_RAM_RDY)) {
2467 		cs_dsp_err(dsp, "Failed to start DSP RAM\n");
2468 		return -EBUSY;
2469 	}
2470 
2471 	cs_dsp_dbg(dsp, "RAM ready after %d polls\n", count);
2472 
2473 	return 0;
2474 }
2475 
2476 static int cs_dsp_adsp2_enable_core(struct cs_dsp *dsp)
2477 {
2478 	int ret;
2479 
2480 	ret = regmap_update_bits_async(dsp->regmap, dsp->base + ADSP2_CONTROL,
2481 				       ADSP2_SYS_ENA, ADSP2_SYS_ENA);
2482 	if (ret != 0)
2483 		return ret;
2484 
2485 	return cs_dsp_adsp2v2_enable_core(dsp);
2486 }
2487 
2488 static int cs_dsp_adsp2_lock(struct cs_dsp *dsp, unsigned int lock_regions)
2489 {
2490 	struct regmap *regmap = dsp->regmap;
2491 	unsigned int code0, code1, lock_reg;
2492 
2493 	if (!(lock_regions & CS_ADSP2_REGION_ALL))
2494 		return 0;
2495 
2496 	lock_regions &= CS_ADSP2_REGION_ALL;
2497 	lock_reg = dsp->base + ADSP2_LOCK_REGION_1_LOCK_REGION_0;
2498 
2499 	while (lock_regions) {
2500 		code0 = code1 = 0;
2501 		if (lock_regions & BIT(0)) {
2502 			code0 = ADSP2_LOCK_CODE_0;
2503 			code1 = ADSP2_LOCK_CODE_1;
2504 		}
2505 		if (lock_regions & BIT(1)) {
2506 			code0 |= ADSP2_LOCK_CODE_0 << ADSP2_LOCK_REGION_SHIFT;
2507 			code1 |= ADSP2_LOCK_CODE_1 << ADSP2_LOCK_REGION_SHIFT;
2508 		}
2509 		regmap_write(regmap, lock_reg, code0);
2510 		regmap_write(regmap, lock_reg, code1);
2511 		lock_regions >>= 2;
2512 		lock_reg += 2;
2513 	}
2514 
2515 	return 0;
2516 }
2517 
2518 static int cs_dsp_adsp2_enable_memory(struct cs_dsp *dsp)
2519 {
2520 	return regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2521 				  ADSP2_MEM_ENA, ADSP2_MEM_ENA);
2522 }
2523 
2524 static void cs_dsp_adsp2_disable_memory(struct cs_dsp *dsp)
2525 {
2526 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2527 			   ADSP2_MEM_ENA, 0);
2528 }
2529 
2530 static void cs_dsp_adsp2_disable_core(struct cs_dsp *dsp)
2531 {
2532 	regmap_write(dsp->regmap, dsp->base + ADSP2_RDMA_CONFIG_1, 0);
2533 	regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_1, 0);
2534 	regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_2, 0);
2535 
2536 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2537 			   ADSP2_SYS_ENA, 0);
2538 }
2539 
2540 static void cs_dsp_adsp2v2_disable_core(struct cs_dsp *dsp)
2541 {
2542 	regmap_write(dsp->regmap, dsp->base + ADSP2_RDMA_CONFIG_1, 0);
2543 	regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_1, 0);
2544 	regmap_write(dsp->regmap, dsp->base + ADSP2V2_WDMA_CONFIG_2, 0);
2545 }
2546 
2547 static int cs_dsp_halo_configure_mpu(struct cs_dsp *dsp, unsigned int lock_regions)
2548 {
2549 	struct reg_sequence config[] = {
2550 		{ dsp->base + HALO_MPU_LOCK_CONFIG,     0x5555 },
2551 		{ dsp->base + HALO_MPU_LOCK_CONFIG,     0xAAAA },
2552 		{ dsp->base + HALO_MPU_XMEM_ACCESS_0,   0xFFFFFFFF },
2553 		{ dsp->base + HALO_MPU_YMEM_ACCESS_0,   0xFFFFFFFF },
2554 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_0, lock_regions },
2555 		{ dsp->base + HALO_MPU_XREG_ACCESS_0,   lock_regions },
2556 		{ dsp->base + HALO_MPU_YREG_ACCESS_0,   lock_regions },
2557 		{ dsp->base + HALO_MPU_XMEM_ACCESS_1,   0xFFFFFFFF },
2558 		{ dsp->base + HALO_MPU_YMEM_ACCESS_1,   0xFFFFFFFF },
2559 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_1, lock_regions },
2560 		{ dsp->base + HALO_MPU_XREG_ACCESS_1,   lock_regions },
2561 		{ dsp->base + HALO_MPU_YREG_ACCESS_1,   lock_regions },
2562 		{ dsp->base + HALO_MPU_XMEM_ACCESS_2,   0xFFFFFFFF },
2563 		{ dsp->base + HALO_MPU_YMEM_ACCESS_2,   0xFFFFFFFF },
2564 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_2, lock_regions },
2565 		{ dsp->base + HALO_MPU_XREG_ACCESS_2,   lock_regions },
2566 		{ dsp->base + HALO_MPU_YREG_ACCESS_2,   lock_regions },
2567 		{ dsp->base + HALO_MPU_XMEM_ACCESS_3,   0xFFFFFFFF },
2568 		{ dsp->base + HALO_MPU_YMEM_ACCESS_3,   0xFFFFFFFF },
2569 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_3, lock_regions },
2570 		{ dsp->base + HALO_MPU_XREG_ACCESS_3,   lock_regions },
2571 		{ dsp->base + HALO_MPU_YREG_ACCESS_3,   lock_regions },
2572 		{ dsp->base + HALO_MPU_LOCK_CONFIG,     0 },
2573 	};
2574 
2575 	return regmap_multi_reg_write(dsp->regmap, config, ARRAY_SIZE(config));
2576 }
2577 
2578 /**
2579  * cs_dsp_set_dspclk() - Applies the given frequency to the given cs_dsp
2580  * @dsp: pointer to DSP structure
2581  * @freq: clock rate to set
2582  *
2583  * This is only for use on ADSP2 cores.
2584  *
2585  * Return: Zero for success, a negative number on error.
2586  */
2587 int cs_dsp_set_dspclk(struct cs_dsp *dsp, unsigned int freq)
2588 {
2589 	int ret;
2590 
2591 	ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CLOCKING,
2592 				 ADSP2_CLK_SEL_MASK,
2593 				 freq << ADSP2_CLK_SEL_SHIFT);
2594 	if (ret)
2595 		cs_dsp_err(dsp, "Failed to set clock rate: %d\n", ret);
2596 
2597 	return ret;
2598 }
2599 EXPORT_SYMBOL_NS_GPL(cs_dsp_set_dspclk, FW_CS_DSP);
2600 
2601 static void cs_dsp_stop_watchdog(struct cs_dsp *dsp)
2602 {
2603 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_WATCHDOG,
2604 			   ADSP2_WDT_ENA_MASK, 0);
2605 }
2606 
2607 static void cs_dsp_halo_stop_watchdog(struct cs_dsp *dsp)
2608 {
2609 	regmap_update_bits(dsp->regmap, dsp->base + HALO_WDT_CONTROL,
2610 			   HALO_WDT_EN_MASK, 0);
2611 }
2612 
2613 /**
2614  * cs_dsp_power_up() - Downloads firmware to the DSP
2615  * @dsp: pointer to DSP structure
2616  * @wmfw_firmware: the firmware to be sent
2617  * @wmfw_filename: file name of firmware to be sent
2618  * @coeff_firmware: the coefficient data to be sent
2619  * @coeff_filename: file name of coefficient to data be sent
2620  * @fw_name: the user-friendly firmware name
2621  *
2622  * This function is used on ADSP2 and Halo DSP cores, it powers-up the DSP core
2623  * and downloads the firmware but does not start the firmware running. The
2624  * cs_dsp booted flag will be set once completed and if the core has a low-power
2625  * memory retention mode it will be put into this state after the firmware is
2626  * downloaded.
2627  *
2628  * Return: Zero for success, a negative number on error.
2629  */
2630 int cs_dsp_power_up(struct cs_dsp *dsp,
2631 		    const struct firmware *wmfw_firmware, char *wmfw_filename,
2632 		    const struct firmware *coeff_firmware, char *coeff_filename,
2633 		    const char *fw_name)
2634 {
2635 	int ret;
2636 
2637 	mutex_lock(&dsp->pwr_lock);
2638 
2639 	dsp->fw_name = fw_name;
2640 
2641 	if (dsp->ops->enable_memory) {
2642 		ret = dsp->ops->enable_memory(dsp);
2643 		if (ret != 0)
2644 			goto err_mutex;
2645 	}
2646 
2647 	if (dsp->ops->enable_core) {
2648 		ret = dsp->ops->enable_core(dsp);
2649 		if (ret != 0)
2650 			goto err_mem;
2651 	}
2652 
2653 	ret = cs_dsp_load(dsp, wmfw_firmware, wmfw_filename);
2654 	if (ret != 0)
2655 		goto err_ena;
2656 
2657 	ret = dsp->ops->setup_algs(dsp);
2658 	if (ret != 0)
2659 		goto err_ena;
2660 
2661 	ret = cs_dsp_load_coeff(dsp, coeff_firmware, coeff_filename);
2662 	if (ret != 0)
2663 		goto err_ena;
2664 
2665 	/* Initialize caches for enabled and unset controls */
2666 	ret = cs_dsp_coeff_init_control_caches(dsp);
2667 	if (ret != 0)
2668 		goto err_ena;
2669 
2670 	if (dsp->ops->disable_core)
2671 		dsp->ops->disable_core(dsp);
2672 
2673 	dsp->booted = true;
2674 
2675 	mutex_unlock(&dsp->pwr_lock);
2676 
2677 	return 0;
2678 err_ena:
2679 	if (dsp->ops->disable_core)
2680 		dsp->ops->disable_core(dsp);
2681 err_mem:
2682 	if (dsp->ops->disable_memory)
2683 		dsp->ops->disable_memory(dsp);
2684 err_mutex:
2685 	mutex_unlock(&dsp->pwr_lock);
2686 
2687 	return ret;
2688 }
2689 EXPORT_SYMBOL_NS_GPL(cs_dsp_power_up, FW_CS_DSP);
2690 
2691 /**
2692  * cs_dsp_power_down() - Powers-down the DSP
2693  * @dsp: pointer to DSP structure
2694  *
2695  * cs_dsp_stop() must have been called before this function. The core will be
2696  * fully powered down and so the memory will not be retained.
2697  */
2698 void cs_dsp_power_down(struct cs_dsp *dsp)
2699 {
2700 	struct cs_dsp_coeff_ctl *ctl;
2701 
2702 	mutex_lock(&dsp->pwr_lock);
2703 
2704 	cs_dsp_debugfs_clear(dsp);
2705 
2706 	dsp->fw_id = 0;
2707 	dsp->fw_id_version = 0;
2708 
2709 	dsp->booted = false;
2710 
2711 	if (dsp->ops->disable_memory)
2712 		dsp->ops->disable_memory(dsp);
2713 
2714 	list_for_each_entry(ctl, &dsp->ctl_list, list)
2715 		ctl->enabled = 0;
2716 
2717 	cs_dsp_free_alg_regions(dsp);
2718 
2719 	mutex_unlock(&dsp->pwr_lock);
2720 
2721 	cs_dsp_dbg(dsp, "Shutdown complete\n");
2722 }
2723 EXPORT_SYMBOL_NS_GPL(cs_dsp_power_down, FW_CS_DSP);
2724 
2725 static int cs_dsp_adsp2_start_core(struct cs_dsp *dsp)
2726 {
2727 	return regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2728 				  ADSP2_CORE_ENA | ADSP2_START,
2729 				  ADSP2_CORE_ENA | ADSP2_START);
2730 }
2731 
2732 static void cs_dsp_adsp2_stop_core(struct cs_dsp *dsp)
2733 {
2734 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2735 			   ADSP2_CORE_ENA | ADSP2_START, 0);
2736 }
2737 
2738 /**
2739  * cs_dsp_run() - Starts the firmware running
2740  * @dsp: pointer to DSP structure
2741  *
2742  * cs_dsp_power_up() must have previously been called successfully.
2743  *
2744  * Return: Zero for success, a negative number on error.
2745  */
2746 int cs_dsp_run(struct cs_dsp *dsp)
2747 {
2748 	int ret;
2749 
2750 	mutex_lock(&dsp->pwr_lock);
2751 
2752 	if (!dsp->booted) {
2753 		ret = -EIO;
2754 		goto err;
2755 	}
2756 
2757 	if (dsp->ops->enable_core) {
2758 		ret = dsp->ops->enable_core(dsp);
2759 		if (ret != 0)
2760 			goto err;
2761 	}
2762 
2763 	if (dsp->client_ops->pre_run) {
2764 		ret = dsp->client_ops->pre_run(dsp);
2765 		if (ret)
2766 			goto err;
2767 	}
2768 
2769 	/* Sync set controls */
2770 	ret = cs_dsp_coeff_sync_controls(dsp);
2771 	if (ret != 0)
2772 		goto err;
2773 
2774 	if (dsp->ops->lock_memory) {
2775 		ret = dsp->ops->lock_memory(dsp, dsp->lock_regions);
2776 		if (ret != 0) {
2777 			cs_dsp_err(dsp, "Error configuring MPU: %d\n", ret);
2778 			goto err;
2779 		}
2780 	}
2781 
2782 	if (dsp->ops->start_core) {
2783 		ret = dsp->ops->start_core(dsp);
2784 		if (ret != 0)
2785 			goto err;
2786 	}
2787 
2788 	dsp->running = true;
2789 
2790 	if (dsp->client_ops->post_run) {
2791 		ret = dsp->client_ops->post_run(dsp);
2792 		if (ret)
2793 			goto err;
2794 	}
2795 
2796 	mutex_unlock(&dsp->pwr_lock);
2797 
2798 	return 0;
2799 
2800 err:
2801 	if (dsp->ops->stop_core)
2802 		dsp->ops->stop_core(dsp);
2803 	if (dsp->ops->disable_core)
2804 		dsp->ops->disable_core(dsp);
2805 	mutex_unlock(&dsp->pwr_lock);
2806 
2807 	return ret;
2808 }
2809 EXPORT_SYMBOL_NS_GPL(cs_dsp_run, FW_CS_DSP);
2810 
2811 /**
2812  * cs_dsp_stop() - Stops the firmware
2813  * @dsp: pointer to DSP structure
2814  *
2815  * Memory will not be disabled so firmware will remain loaded.
2816  */
2817 void cs_dsp_stop(struct cs_dsp *dsp)
2818 {
2819 	/* Tell the firmware to cleanup */
2820 	cs_dsp_signal_event_controls(dsp, CS_DSP_FW_EVENT_SHUTDOWN);
2821 
2822 	if (dsp->ops->stop_watchdog)
2823 		dsp->ops->stop_watchdog(dsp);
2824 
2825 	/* Log firmware state, it can be useful for analysis */
2826 	if (dsp->ops->show_fw_status)
2827 		dsp->ops->show_fw_status(dsp);
2828 
2829 	mutex_lock(&dsp->pwr_lock);
2830 
2831 	if (dsp->client_ops->pre_stop)
2832 		dsp->client_ops->pre_stop(dsp);
2833 
2834 	dsp->running = false;
2835 
2836 	if (dsp->ops->stop_core)
2837 		dsp->ops->stop_core(dsp);
2838 	if (dsp->ops->disable_core)
2839 		dsp->ops->disable_core(dsp);
2840 
2841 	if (dsp->client_ops->post_stop)
2842 		dsp->client_ops->post_stop(dsp);
2843 
2844 	mutex_unlock(&dsp->pwr_lock);
2845 
2846 	cs_dsp_dbg(dsp, "Execution stopped\n");
2847 }
2848 EXPORT_SYMBOL_NS_GPL(cs_dsp_stop, FW_CS_DSP);
2849 
2850 static int cs_dsp_halo_start_core(struct cs_dsp *dsp)
2851 {
2852 	int ret;
2853 
2854 	ret = regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2855 				 HALO_CORE_RESET | HALO_CORE_EN,
2856 				 HALO_CORE_RESET | HALO_CORE_EN);
2857 	if (ret)
2858 		return ret;
2859 
2860 	return regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2861 				  HALO_CORE_RESET, 0);
2862 }
2863 
2864 static void cs_dsp_halo_stop_core(struct cs_dsp *dsp)
2865 {
2866 	regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2867 			   HALO_CORE_EN, 0);
2868 
2869 	/* reset halo core with CORE_SOFT_RESET */
2870 	regmap_update_bits(dsp->regmap, dsp->base + HALO_CORE_SOFT_RESET,
2871 			   HALO_CORE_SOFT_RESET_MASK, 1);
2872 }
2873 
2874 /**
2875  * cs_dsp_adsp2_init() - Initialise a cs_dsp structure representing a ADSP2 core
2876  * @dsp: pointer to DSP structure
2877  *
2878  * Return: Zero for success, a negative number on error.
2879  */
2880 int cs_dsp_adsp2_init(struct cs_dsp *dsp)
2881 {
2882 	int ret;
2883 
2884 	switch (dsp->rev) {
2885 	case 0:
2886 		/*
2887 		 * Disable the DSP memory by default when in reset for a small
2888 		 * power saving.
2889 		 */
2890 		ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2891 					 ADSP2_MEM_ENA, 0);
2892 		if (ret) {
2893 			cs_dsp_err(dsp,
2894 				   "Failed to clear memory retention: %d\n", ret);
2895 			return ret;
2896 		}
2897 
2898 		dsp->ops = &cs_dsp_adsp2_ops[0];
2899 		break;
2900 	case 1:
2901 		dsp->ops = &cs_dsp_adsp2_ops[1];
2902 		break;
2903 	default:
2904 		dsp->ops = &cs_dsp_adsp2_ops[2];
2905 		break;
2906 	}
2907 
2908 	return cs_dsp_common_init(dsp);
2909 }
2910 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp2_init, FW_CS_DSP);
2911 
2912 /**
2913  * cs_dsp_halo_init() - Initialise a cs_dsp structure representing a HALO Core DSP
2914  * @dsp: pointer to DSP structure
2915  *
2916  * Return: Zero for success, a negative number on error.
2917  */
2918 int cs_dsp_halo_init(struct cs_dsp *dsp)
2919 {
2920 	if (dsp->no_core_startstop)
2921 		dsp->ops = &cs_dsp_halo_ao_ops;
2922 	else
2923 		dsp->ops = &cs_dsp_halo_ops;
2924 
2925 	return cs_dsp_common_init(dsp);
2926 }
2927 EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_init, FW_CS_DSP);
2928 
2929 /**
2930  * cs_dsp_remove() - Clean a cs_dsp before deletion
2931  * @dsp: pointer to DSP structure
2932  */
2933 void cs_dsp_remove(struct cs_dsp *dsp)
2934 {
2935 	struct cs_dsp_coeff_ctl *ctl;
2936 
2937 	while (!list_empty(&dsp->ctl_list)) {
2938 		ctl = list_first_entry(&dsp->ctl_list, struct cs_dsp_coeff_ctl, list);
2939 
2940 		if (dsp->client_ops->control_remove)
2941 			dsp->client_ops->control_remove(ctl);
2942 
2943 		list_del(&ctl->list);
2944 		cs_dsp_free_ctl_blk(ctl);
2945 	}
2946 }
2947 EXPORT_SYMBOL_NS_GPL(cs_dsp_remove, FW_CS_DSP);
2948 
2949 /**
2950  * cs_dsp_read_raw_data_block() - Reads a block of data from DSP memory
2951  * @dsp: pointer to DSP structure
2952  * @mem_type: the type of DSP memory containing the data to be read
2953  * @mem_addr: the address of the data within the memory region
2954  * @num_words: the length of the data to read
2955  * @data: a buffer to store the fetched data
2956  *
2957  * If this is used to read unpacked 24-bit memory, each 24-bit DSP word will
2958  * occupy 32-bits in data (MSbyte will be 0). This padding can be removed using
2959  * cs_dsp_remove_padding()
2960  *
2961  * Return: Zero for success, a negative number on error.
2962  */
2963 int cs_dsp_read_raw_data_block(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr,
2964 			       unsigned int num_words, __be32 *data)
2965 {
2966 	struct cs_dsp_region const *mem = cs_dsp_find_region(dsp, mem_type);
2967 	unsigned int reg;
2968 	int ret;
2969 
2970 	lockdep_assert_held(&dsp->pwr_lock);
2971 
2972 	if (!mem)
2973 		return -EINVAL;
2974 
2975 	reg = dsp->ops->region_to_reg(mem, mem_addr);
2976 
2977 	ret = regmap_raw_read(dsp->regmap, reg, data,
2978 			      sizeof(*data) * num_words);
2979 	if (ret < 0)
2980 		return ret;
2981 
2982 	return 0;
2983 }
2984 EXPORT_SYMBOL_NS_GPL(cs_dsp_read_raw_data_block, FW_CS_DSP);
2985 
2986 /**
2987  * cs_dsp_read_data_word() - Reads a word from DSP memory
2988  * @dsp: pointer to DSP structure
2989  * @mem_type: the type of DSP memory containing the data to be read
2990  * @mem_addr: the address of the data within the memory region
2991  * @data: a buffer to store the fetched data
2992  *
2993  * Return: Zero for success, a negative number on error.
2994  */
2995 int cs_dsp_read_data_word(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr, u32 *data)
2996 {
2997 	__be32 raw;
2998 	int ret;
2999 
3000 	ret = cs_dsp_read_raw_data_block(dsp, mem_type, mem_addr, 1, &raw);
3001 	if (ret < 0)
3002 		return ret;
3003 
3004 	*data = be32_to_cpu(raw) & 0x00ffffffu;
3005 
3006 	return 0;
3007 }
3008 EXPORT_SYMBOL_NS_GPL(cs_dsp_read_data_word, FW_CS_DSP);
3009 
3010 /**
3011  * cs_dsp_write_data_word() - Writes a word to DSP memory
3012  * @dsp: pointer to DSP structure
3013  * @mem_type: the type of DSP memory containing the data to be written
3014  * @mem_addr: the address of the data within the memory region
3015  * @data: the data to be written
3016  *
3017  * Return: Zero for success, a negative number on error.
3018  */
3019 int cs_dsp_write_data_word(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr, u32 data)
3020 {
3021 	struct cs_dsp_region const *mem = cs_dsp_find_region(dsp, mem_type);
3022 	__be32 val = cpu_to_be32(data & 0x00ffffffu);
3023 	unsigned int reg;
3024 
3025 	lockdep_assert_held(&dsp->pwr_lock);
3026 
3027 	if (!mem)
3028 		return -EINVAL;
3029 
3030 	reg = dsp->ops->region_to_reg(mem, mem_addr);
3031 
3032 	return regmap_raw_write(dsp->regmap, reg, &val, sizeof(val));
3033 }
3034 EXPORT_SYMBOL_NS_GPL(cs_dsp_write_data_word, FW_CS_DSP);
3035 
3036 /**
3037  * cs_dsp_remove_padding() - Convert unpacked words to packed bytes
3038  * @buf: buffer containing DSP words read from DSP memory
3039  * @nwords: number of words to convert
3040  *
3041  * DSP words from the register map have pad bytes and the data bytes
3042  * are in swapped order. This swaps to the native endian order and
3043  * strips the pad bytes.
3044  */
3045 void cs_dsp_remove_padding(u32 *buf, int nwords)
3046 {
3047 	const __be32 *pack_in = (__be32 *)buf;
3048 	u8 *pack_out = (u8 *)buf;
3049 	int i;
3050 
3051 	for (i = 0; i < nwords; i++) {
3052 		u32 word = be32_to_cpu(*pack_in++);
3053 		*pack_out++ = (u8)word;
3054 		*pack_out++ = (u8)(word >> 8);
3055 		*pack_out++ = (u8)(word >> 16);
3056 	}
3057 }
3058 EXPORT_SYMBOL_NS_GPL(cs_dsp_remove_padding, FW_CS_DSP);
3059 
3060 /**
3061  * cs_dsp_adsp2_bus_error() - Handle a DSP bus error interrupt
3062  * @dsp: pointer to DSP structure
3063  *
3064  * The firmware and DSP state will be logged for future analysis.
3065  */
3066 void cs_dsp_adsp2_bus_error(struct cs_dsp *dsp)
3067 {
3068 	unsigned int val;
3069 	struct regmap *regmap = dsp->regmap;
3070 	int ret = 0;
3071 
3072 	mutex_lock(&dsp->pwr_lock);
3073 
3074 	ret = regmap_read(regmap, dsp->base + ADSP2_LOCK_REGION_CTRL, &val);
3075 	if (ret) {
3076 		cs_dsp_err(dsp,
3077 			   "Failed to read Region Lock Ctrl register: %d\n", ret);
3078 		goto error;
3079 	}
3080 
3081 	if (val & ADSP2_WDT_TIMEOUT_STS_MASK) {
3082 		cs_dsp_err(dsp, "watchdog timeout error\n");
3083 		dsp->ops->stop_watchdog(dsp);
3084 		if (dsp->client_ops->watchdog_expired)
3085 			dsp->client_ops->watchdog_expired(dsp);
3086 	}
3087 
3088 	if (val & (ADSP2_ADDR_ERR_MASK | ADSP2_REGION_LOCK_ERR_MASK)) {
3089 		if (val & ADSP2_ADDR_ERR_MASK)
3090 			cs_dsp_err(dsp, "bus error: address error\n");
3091 		else
3092 			cs_dsp_err(dsp, "bus error: region lock error\n");
3093 
3094 		ret = regmap_read(regmap, dsp->base + ADSP2_BUS_ERR_ADDR, &val);
3095 		if (ret) {
3096 			cs_dsp_err(dsp,
3097 				   "Failed to read Bus Err Addr register: %d\n",
3098 				   ret);
3099 			goto error;
3100 		}
3101 
3102 		cs_dsp_err(dsp, "bus error address = 0x%x\n",
3103 			   val & ADSP2_BUS_ERR_ADDR_MASK);
3104 
3105 		ret = regmap_read(regmap,
3106 				  dsp->base + ADSP2_PMEM_ERR_ADDR_XMEM_ERR_ADDR,
3107 				  &val);
3108 		if (ret) {
3109 			cs_dsp_err(dsp,
3110 				   "Failed to read Pmem Xmem Err Addr register: %d\n",
3111 				   ret);
3112 			goto error;
3113 		}
3114 
3115 		cs_dsp_err(dsp, "xmem error address = 0x%x\n",
3116 			   val & ADSP2_XMEM_ERR_ADDR_MASK);
3117 		cs_dsp_err(dsp, "pmem error address = 0x%x\n",
3118 			   (val & ADSP2_PMEM_ERR_ADDR_MASK) >>
3119 			   ADSP2_PMEM_ERR_ADDR_SHIFT);
3120 	}
3121 
3122 	regmap_update_bits(regmap, dsp->base + ADSP2_LOCK_REGION_CTRL,
3123 			   ADSP2_CTRL_ERR_EINT, ADSP2_CTRL_ERR_EINT);
3124 
3125 error:
3126 	mutex_unlock(&dsp->pwr_lock);
3127 }
3128 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp2_bus_error, FW_CS_DSP);
3129 
3130 /**
3131  * cs_dsp_halo_bus_error() - Handle a DSP bus error interrupt
3132  * @dsp: pointer to DSP structure
3133  *
3134  * The firmware and DSP state will be logged for future analysis.
3135  */
3136 void cs_dsp_halo_bus_error(struct cs_dsp *dsp)
3137 {
3138 	struct regmap *regmap = dsp->regmap;
3139 	unsigned int fault[6];
3140 	struct reg_sequence clear[] = {
3141 		{ dsp->base + HALO_MPU_XM_VIO_STATUS,     0x0 },
3142 		{ dsp->base + HALO_MPU_YM_VIO_STATUS,     0x0 },
3143 		{ dsp->base + HALO_MPU_PM_VIO_STATUS,     0x0 },
3144 	};
3145 	int ret;
3146 
3147 	mutex_lock(&dsp->pwr_lock);
3148 
3149 	ret = regmap_read(regmap, dsp->base_sysinfo + HALO_AHBM_WINDOW_DEBUG_1,
3150 			  fault);
3151 	if (ret) {
3152 		cs_dsp_warn(dsp, "Failed to read AHB DEBUG_1: %d\n", ret);
3153 		goto exit_unlock;
3154 	}
3155 
3156 	cs_dsp_warn(dsp, "AHB: STATUS: 0x%x ADDR: 0x%x\n",
3157 		    *fault & HALO_AHBM_FLAGS_ERR_MASK,
3158 		    (*fault & HALO_AHBM_CORE_ERR_ADDR_MASK) >>
3159 		    HALO_AHBM_CORE_ERR_ADDR_SHIFT);
3160 
3161 	ret = regmap_read(regmap, dsp->base_sysinfo + HALO_AHBM_WINDOW_DEBUG_0,
3162 			  fault);
3163 	if (ret) {
3164 		cs_dsp_warn(dsp, "Failed to read AHB DEBUG_0: %d\n", ret);
3165 		goto exit_unlock;
3166 	}
3167 
3168 	cs_dsp_warn(dsp, "AHB: SYS_ADDR: 0x%x\n", *fault);
3169 
3170 	ret = regmap_bulk_read(regmap, dsp->base + HALO_MPU_XM_VIO_ADDR,
3171 			       fault, ARRAY_SIZE(fault));
3172 	if (ret) {
3173 		cs_dsp_warn(dsp, "Failed to read MPU fault info: %d\n", ret);
3174 		goto exit_unlock;
3175 	}
3176 
3177 	cs_dsp_warn(dsp, "XM: STATUS:0x%x ADDR:0x%x\n", fault[1], fault[0]);
3178 	cs_dsp_warn(dsp, "YM: STATUS:0x%x ADDR:0x%x\n", fault[3], fault[2]);
3179 	cs_dsp_warn(dsp, "PM: STATUS:0x%x ADDR:0x%x\n", fault[5], fault[4]);
3180 
3181 	ret = regmap_multi_reg_write(dsp->regmap, clear, ARRAY_SIZE(clear));
3182 	if (ret)
3183 		cs_dsp_warn(dsp, "Failed to clear MPU status: %d\n", ret);
3184 
3185 exit_unlock:
3186 	mutex_unlock(&dsp->pwr_lock);
3187 }
3188 EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_bus_error, FW_CS_DSP);
3189 
3190 /**
3191  * cs_dsp_halo_wdt_expire() - Handle DSP watchdog expiry
3192  * @dsp: pointer to DSP structure
3193  *
3194  * This is logged for future analysis.
3195  */
3196 void cs_dsp_halo_wdt_expire(struct cs_dsp *dsp)
3197 {
3198 	mutex_lock(&dsp->pwr_lock);
3199 
3200 	cs_dsp_warn(dsp, "WDT Expiry Fault\n");
3201 
3202 	dsp->ops->stop_watchdog(dsp);
3203 	if (dsp->client_ops->watchdog_expired)
3204 		dsp->client_ops->watchdog_expired(dsp);
3205 
3206 	mutex_unlock(&dsp->pwr_lock);
3207 }
3208 EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_wdt_expire, FW_CS_DSP);
3209 
3210 static const struct cs_dsp_ops cs_dsp_adsp1_ops = {
3211 	.validate_version = cs_dsp_validate_version,
3212 	.parse_sizes = cs_dsp_adsp1_parse_sizes,
3213 	.region_to_reg = cs_dsp_region_to_reg,
3214 };
3215 
3216 static const struct cs_dsp_ops cs_dsp_adsp2_ops[] = {
3217 	{
3218 		.parse_sizes = cs_dsp_adsp2_parse_sizes,
3219 		.validate_version = cs_dsp_validate_version,
3220 		.setup_algs = cs_dsp_adsp2_setup_algs,
3221 		.region_to_reg = cs_dsp_region_to_reg,
3222 
3223 		.show_fw_status = cs_dsp_adsp2_show_fw_status,
3224 
3225 		.enable_memory = cs_dsp_adsp2_enable_memory,
3226 		.disable_memory = cs_dsp_adsp2_disable_memory,
3227 
3228 		.enable_core = cs_dsp_adsp2_enable_core,
3229 		.disable_core = cs_dsp_adsp2_disable_core,
3230 
3231 		.start_core = cs_dsp_adsp2_start_core,
3232 		.stop_core = cs_dsp_adsp2_stop_core,
3233 
3234 	},
3235 	{
3236 		.parse_sizes = cs_dsp_adsp2_parse_sizes,
3237 		.validate_version = cs_dsp_validate_version,
3238 		.setup_algs = cs_dsp_adsp2_setup_algs,
3239 		.region_to_reg = cs_dsp_region_to_reg,
3240 
3241 		.show_fw_status = cs_dsp_adsp2v2_show_fw_status,
3242 
3243 		.enable_memory = cs_dsp_adsp2_enable_memory,
3244 		.disable_memory = cs_dsp_adsp2_disable_memory,
3245 		.lock_memory = cs_dsp_adsp2_lock,
3246 
3247 		.enable_core = cs_dsp_adsp2v2_enable_core,
3248 		.disable_core = cs_dsp_adsp2v2_disable_core,
3249 
3250 		.start_core = cs_dsp_adsp2_start_core,
3251 		.stop_core = cs_dsp_adsp2_stop_core,
3252 	},
3253 	{
3254 		.parse_sizes = cs_dsp_adsp2_parse_sizes,
3255 		.validate_version = cs_dsp_validate_version,
3256 		.setup_algs = cs_dsp_adsp2_setup_algs,
3257 		.region_to_reg = cs_dsp_region_to_reg,
3258 
3259 		.show_fw_status = cs_dsp_adsp2v2_show_fw_status,
3260 		.stop_watchdog = cs_dsp_stop_watchdog,
3261 
3262 		.enable_memory = cs_dsp_adsp2_enable_memory,
3263 		.disable_memory = cs_dsp_adsp2_disable_memory,
3264 		.lock_memory = cs_dsp_adsp2_lock,
3265 
3266 		.enable_core = cs_dsp_adsp2v2_enable_core,
3267 		.disable_core = cs_dsp_adsp2v2_disable_core,
3268 
3269 		.start_core = cs_dsp_adsp2_start_core,
3270 		.stop_core = cs_dsp_adsp2_stop_core,
3271 	},
3272 };
3273 
3274 static const struct cs_dsp_ops cs_dsp_halo_ops = {
3275 	.parse_sizes = cs_dsp_adsp2_parse_sizes,
3276 	.validate_version = cs_dsp_halo_validate_version,
3277 	.setup_algs = cs_dsp_halo_setup_algs,
3278 	.region_to_reg = cs_dsp_halo_region_to_reg,
3279 
3280 	.show_fw_status = cs_dsp_halo_show_fw_status,
3281 	.stop_watchdog = cs_dsp_halo_stop_watchdog,
3282 
3283 	.lock_memory = cs_dsp_halo_configure_mpu,
3284 
3285 	.start_core = cs_dsp_halo_start_core,
3286 	.stop_core = cs_dsp_halo_stop_core,
3287 };
3288 
3289 static const struct cs_dsp_ops cs_dsp_halo_ao_ops = {
3290 	.parse_sizes = cs_dsp_adsp2_parse_sizes,
3291 	.validate_version = cs_dsp_halo_validate_version,
3292 	.setup_algs = cs_dsp_halo_setup_algs,
3293 	.region_to_reg = cs_dsp_halo_region_to_reg,
3294 	.show_fw_status = cs_dsp_halo_show_fw_status,
3295 };
3296 
3297 /**
3298  * cs_dsp_chunk_write() - Format data to a DSP memory chunk
3299  * @ch: Pointer to the chunk structure
3300  * @nbits: Number of bits to write
3301  * @val: Value to write
3302  *
3303  * This function sequentially writes values into the format required for DSP
3304  * memory, it handles both inserting of the padding bytes and converting to
3305  * big endian. Note that data is only committed to the chunk when a whole DSP
3306  * words worth of data is available.
3307  *
3308  * Return: Zero for success, a negative number on error.
3309  */
3310 int cs_dsp_chunk_write(struct cs_dsp_chunk *ch, int nbits, u32 val)
3311 {
3312 	int nwrite, i;
3313 
3314 	nwrite = min(CS_DSP_DATA_WORD_BITS - ch->cachebits, nbits);
3315 
3316 	ch->cache <<= nwrite;
3317 	ch->cache |= val >> (nbits - nwrite);
3318 	ch->cachebits += nwrite;
3319 	nbits -= nwrite;
3320 
3321 	if (ch->cachebits == CS_DSP_DATA_WORD_BITS) {
3322 		if (cs_dsp_chunk_end(ch))
3323 			return -ENOSPC;
3324 
3325 		ch->cache &= 0xFFFFFF;
3326 		for (i = 0; i < sizeof(ch->cache); i++, ch->cache <<= BITS_PER_BYTE)
3327 			*ch->data++ = (ch->cache & 0xFF000000) >> CS_DSP_DATA_WORD_BITS;
3328 
3329 		ch->bytes += sizeof(ch->cache);
3330 		ch->cachebits = 0;
3331 	}
3332 
3333 	if (nbits)
3334 		return cs_dsp_chunk_write(ch, nbits, val);
3335 
3336 	return 0;
3337 }
3338 EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_write, FW_CS_DSP);
3339 
3340 /**
3341  * cs_dsp_chunk_flush() - Pad remaining data with zero and commit to chunk
3342  * @ch: Pointer to the chunk structure
3343  *
3344  * As cs_dsp_chunk_write only writes data when a whole DSP word is ready to
3345  * be written out it is possible that some data will remain in the cache, this
3346  * function will pad that data with zeros upto a whole DSP word and write out.
3347  *
3348  * Return: Zero for success, a negative number on error.
3349  */
3350 int cs_dsp_chunk_flush(struct cs_dsp_chunk *ch)
3351 {
3352 	if (!ch->cachebits)
3353 		return 0;
3354 
3355 	return cs_dsp_chunk_write(ch, CS_DSP_DATA_WORD_BITS - ch->cachebits, 0);
3356 }
3357 EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_flush, FW_CS_DSP);
3358 
3359 /**
3360  * cs_dsp_chunk_read() - Parse data from a DSP memory chunk
3361  * @ch: Pointer to the chunk structure
3362  * @nbits: Number of bits to read
3363  *
3364  * This function sequentially reads values from a DSP memory formatted buffer,
3365  * it handles both removing of the padding bytes and converting from big endian.
3366  *
3367  * Return: A negative number is returned on error, otherwise the read value.
3368  */
3369 int cs_dsp_chunk_read(struct cs_dsp_chunk *ch, int nbits)
3370 {
3371 	int nread, i;
3372 	u32 result;
3373 
3374 	if (!ch->cachebits) {
3375 		if (cs_dsp_chunk_end(ch))
3376 			return -ENOSPC;
3377 
3378 		ch->cache = 0;
3379 		ch->cachebits = CS_DSP_DATA_WORD_BITS;
3380 
3381 		for (i = 0; i < sizeof(ch->cache); i++, ch->cache <<= BITS_PER_BYTE)
3382 			ch->cache |= *ch->data++;
3383 
3384 		ch->bytes += sizeof(ch->cache);
3385 	}
3386 
3387 	nread = min(ch->cachebits, nbits);
3388 	nbits -= nread;
3389 
3390 	result = ch->cache >> ((sizeof(ch->cache) * BITS_PER_BYTE) - nread);
3391 	ch->cache <<= nread;
3392 	ch->cachebits -= nread;
3393 
3394 	if (nbits)
3395 		result = (result << nbits) | cs_dsp_chunk_read(ch, nbits);
3396 
3397 	return result;
3398 }
3399 EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_read, FW_CS_DSP);
3400 
3401 MODULE_DESCRIPTION("Cirrus Logic DSP Support");
3402 MODULE_AUTHOR("Simon Trimmer <simont@opensource.cirrus.com>");
3403 MODULE_LICENSE("GPL v2");
3404