xref: /linux/drivers/firmware/cirrus/cs_dsp.c (revision c434e25b62f8efcfbb6bf1f7ce55960206c1137e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * cs_dsp.c  --  Cirrus Logic DSP firmware support
4  *
5  * Based on sound/soc/codecs/wm_adsp.c
6  *
7  * Copyright 2012 Wolfson Microelectronics plc
8  * Copyright (C) 2015-2021 Cirrus Logic, Inc. and
9  *                         Cirrus Logic International Semiconductor Ltd.
10  */
11 
12 #include <linux/ctype.h>
13 #include <linux/debugfs.h>
14 #include <linux/delay.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/seq_file.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 
21 #include <linux/firmware/cirrus/cs_dsp.h>
22 #include <linux/firmware/cirrus/wmfw.h>
23 
24 #define cs_dsp_err(_dsp, fmt, ...) \
25 	dev_err(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
26 #define cs_dsp_warn(_dsp, fmt, ...) \
27 	dev_warn(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
28 #define cs_dsp_info(_dsp, fmt, ...) \
29 	dev_info(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
30 #define cs_dsp_dbg(_dsp, fmt, ...) \
31 	dev_dbg(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
32 
33 #define ADSP1_CONTROL_1                   0x00
34 #define ADSP1_CONTROL_2                   0x02
35 #define ADSP1_CONTROL_3                   0x03
36 #define ADSP1_CONTROL_4                   0x04
37 #define ADSP1_CONTROL_5                   0x06
38 #define ADSP1_CONTROL_6                   0x07
39 #define ADSP1_CONTROL_7                   0x08
40 #define ADSP1_CONTROL_8                   0x09
41 #define ADSP1_CONTROL_9                   0x0A
42 #define ADSP1_CONTROL_10                  0x0B
43 #define ADSP1_CONTROL_11                  0x0C
44 #define ADSP1_CONTROL_12                  0x0D
45 #define ADSP1_CONTROL_13                  0x0F
46 #define ADSP1_CONTROL_14                  0x10
47 #define ADSP1_CONTROL_15                  0x11
48 #define ADSP1_CONTROL_16                  0x12
49 #define ADSP1_CONTROL_17                  0x13
50 #define ADSP1_CONTROL_18                  0x14
51 #define ADSP1_CONTROL_19                  0x16
52 #define ADSP1_CONTROL_20                  0x17
53 #define ADSP1_CONTROL_21                  0x18
54 #define ADSP1_CONTROL_22                  0x1A
55 #define ADSP1_CONTROL_23                  0x1B
56 #define ADSP1_CONTROL_24                  0x1C
57 #define ADSP1_CONTROL_25                  0x1E
58 #define ADSP1_CONTROL_26                  0x20
59 #define ADSP1_CONTROL_27                  0x21
60 #define ADSP1_CONTROL_28                  0x22
61 #define ADSP1_CONTROL_29                  0x23
62 #define ADSP1_CONTROL_30                  0x24
63 #define ADSP1_CONTROL_31                  0x26
64 
65 /*
66  * ADSP1 Control 19
67  */
68 #define ADSP1_WDMA_BUFFER_LENGTH_MASK     0x00FF  /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
69 #define ADSP1_WDMA_BUFFER_LENGTH_SHIFT         0  /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
70 #define ADSP1_WDMA_BUFFER_LENGTH_WIDTH         8  /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
71 
72 /*
73  * ADSP1 Control 30
74  */
75 #define ADSP1_DBG_CLK_ENA                 0x0008  /* DSP1_DBG_CLK_ENA */
76 #define ADSP1_DBG_CLK_ENA_MASK            0x0008  /* DSP1_DBG_CLK_ENA */
77 #define ADSP1_DBG_CLK_ENA_SHIFT                3  /* DSP1_DBG_CLK_ENA */
78 #define ADSP1_DBG_CLK_ENA_WIDTH                1  /* DSP1_DBG_CLK_ENA */
79 #define ADSP1_SYS_ENA                     0x0004  /* DSP1_SYS_ENA */
80 #define ADSP1_SYS_ENA_MASK                0x0004  /* DSP1_SYS_ENA */
81 #define ADSP1_SYS_ENA_SHIFT                    2  /* DSP1_SYS_ENA */
82 #define ADSP1_SYS_ENA_WIDTH                    1  /* DSP1_SYS_ENA */
83 #define ADSP1_CORE_ENA                    0x0002  /* DSP1_CORE_ENA */
84 #define ADSP1_CORE_ENA_MASK               0x0002  /* DSP1_CORE_ENA */
85 #define ADSP1_CORE_ENA_SHIFT                   1  /* DSP1_CORE_ENA */
86 #define ADSP1_CORE_ENA_WIDTH                   1  /* DSP1_CORE_ENA */
87 #define ADSP1_START                       0x0001  /* DSP1_START */
88 #define ADSP1_START_MASK                  0x0001  /* DSP1_START */
89 #define ADSP1_START_SHIFT                      0  /* DSP1_START */
90 #define ADSP1_START_WIDTH                      1  /* DSP1_START */
91 
92 /*
93  * ADSP1 Control 31
94  */
95 #define ADSP1_CLK_SEL_MASK                0x0007  /* CLK_SEL_ENA */
96 #define ADSP1_CLK_SEL_SHIFT                    0  /* CLK_SEL_ENA */
97 #define ADSP1_CLK_SEL_WIDTH                    3  /* CLK_SEL_ENA */
98 
99 #define ADSP2_CONTROL                     0x0
100 #define ADSP2_CLOCKING                    0x1
101 #define ADSP2V2_CLOCKING                  0x2
102 #define ADSP2_STATUS1                     0x4
103 #define ADSP2_WDMA_CONFIG_1               0x30
104 #define ADSP2_WDMA_CONFIG_2               0x31
105 #define ADSP2V2_WDMA_CONFIG_2             0x32
106 #define ADSP2_RDMA_CONFIG_1               0x34
107 
108 #define ADSP2_SCRATCH0                    0x40
109 #define ADSP2_SCRATCH1                    0x41
110 #define ADSP2_SCRATCH2                    0x42
111 #define ADSP2_SCRATCH3                    0x43
112 
113 #define ADSP2V2_SCRATCH0_1                0x40
114 #define ADSP2V2_SCRATCH2_3                0x42
115 
116 /*
117  * ADSP2 Control
118  */
119 #define ADSP2_MEM_ENA                     0x0010  /* DSP1_MEM_ENA */
120 #define ADSP2_MEM_ENA_MASK                0x0010  /* DSP1_MEM_ENA */
121 #define ADSP2_MEM_ENA_SHIFT                    4  /* DSP1_MEM_ENA */
122 #define ADSP2_MEM_ENA_WIDTH                    1  /* DSP1_MEM_ENA */
123 #define ADSP2_SYS_ENA                     0x0004  /* DSP1_SYS_ENA */
124 #define ADSP2_SYS_ENA_MASK                0x0004  /* DSP1_SYS_ENA */
125 #define ADSP2_SYS_ENA_SHIFT                    2  /* DSP1_SYS_ENA */
126 #define ADSP2_SYS_ENA_WIDTH                    1  /* DSP1_SYS_ENA */
127 #define ADSP2_CORE_ENA                    0x0002  /* DSP1_CORE_ENA */
128 #define ADSP2_CORE_ENA_MASK               0x0002  /* DSP1_CORE_ENA */
129 #define ADSP2_CORE_ENA_SHIFT                   1  /* DSP1_CORE_ENA */
130 #define ADSP2_CORE_ENA_WIDTH                   1  /* DSP1_CORE_ENA */
131 #define ADSP2_START                       0x0001  /* DSP1_START */
132 #define ADSP2_START_MASK                  0x0001  /* DSP1_START */
133 #define ADSP2_START_SHIFT                      0  /* DSP1_START */
134 #define ADSP2_START_WIDTH                      1  /* DSP1_START */
135 
136 /*
137  * ADSP2 clocking
138  */
139 #define ADSP2_CLK_SEL_MASK                0x0007  /* CLK_SEL_ENA */
140 #define ADSP2_CLK_SEL_SHIFT                    0  /* CLK_SEL_ENA */
141 #define ADSP2_CLK_SEL_WIDTH                    3  /* CLK_SEL_ENA */
142 
143 /*
144  * ADSP2V2 clocking
145  */
146 #define ADSP2V2_CLK_SEL_MASK             0x70000  /* CLK_SEL_ENA */
147 #define ADSP2V2_CLK_SEL_SHIFT                 16  /* CLK_SEL_ENA */
148 #define ADSP2V2_CLK_SEL_WIDTH                  3  /* CLK_SEL_ENA */
149 
150 #define ADSP2V2_RATE_MASK                 0x7800  /* DSP_RATE */
151 #define ADSP2V2_RATE_SHIFT                    11  /* DSP_RATE */
152 #define ADSP2V2_RATE_WIDTH                     4  /* DSP_RATE */
153 
154 /*
155  * ADSP2 Status 1
156  */
157 #define ADSP2_RAM_RDY                     0x0001
158 #define ADSP2_RAM_RDY_MASK                0x0001
159 #define ADSP2_RAM_RDY_SHIFT                    0
160 #define ADSP2_RAM_RDY_WIDTH                    1
161 
162 /*
163  * ADSP2 Lock support
164  */
165 #define ADSP2_LOCK_CODE_0                    0x5555
166 #define ADSP2_LOCK_CODE_1                    0xAAAA
167 
168 #define ADSP2_WATCHDOG                       0x0A
169 #define ADSP2_BUS_ERR_ADDR                   0x52
170 #define ADSP2_REGION_LOCK_STATUS             0x64
171 #define ADSP2_LOCK_REGION_1_LOCK_REGION_0    0x66
172 #define ADSP2_LOCK_REGION_3_LOCK_REGION_2    0x68
173 #define ADSP2_LOCK_REGION_5_LOCK_REGION_4    0x6A
174 #define ADSP2_LOCK_REGION_7_LOCK_REGION_6    0x6C
175 #define ADSP2_LOCK_REGION_9_LOCK_REGION_8    0x6E
176 #define ADSP2_LOCK_REGION_CTRL               0x7A
177 #define ADSP2_PMEM_ERR_ADDR_XMEM_ERR_ADDR    0x7C
178 
179 #define ADSP2_REGION_LOCK_ERR_MASK           0x8000
180 #define ADSP2_ADDR_ERR_MASK                  0x4000
181 #define ADSP2_WDT_TIMEOUT_STS_MASK           0x2000
182 #define ADSP2_CTRL_ERR_PAUSE_ENA             0x0002
183 #define ADSP2_CTRL_ERR_EINT                  0x0001
184 
185 #define ADSP2_BUS_ERR_ADDR_MASK              0x00FFFFFF
186 #define ADSP2_XMEM_ERR_ADDR_MASK             0x0000FFFF
187 #define ADSP2_PMEM_ERR_ADDR_MASK             0x7FFF0000
188 #define ADSP2_PMEM_ERR_ADDR_SHIFT            16
189 #define ADSP2_WDT_ENA_MASK                   0xFFFFFFFD
190 
191 #define ADSP2_LOCK_REGION_SHIFT              16
192 
193 /*
194  * Event control messages
195  */
196 #define CS_DSP_FW_EVENT_SHUTDOWN             0x000001
197 
198 /*
199  * HALO system info
200  */
201 #define HALO_AHBM_WINDOW_DEBUG_0             0x02040
202 #define HALO_AHBM_WINDOW_DEBUG_1             0x02044
203 
204 /*
205  * HALO core
206  */
207 #define HALO_SCRATCH1                        0x005c0
208 #define HALO_SCRATCH2                        0x005c8
209 #define HALO_SCRATCH3                        0x005d0
210 #define HALO_SCRATCH4                        0x005d8
211 #define HALO_CCM_CORE_CONTROL                0x41000
212 #define HALO_CORE_SOFT_RESET                 0x00010
213 #define HALO_WDT_CONTROL                     0x47000
214 
215 /*
216  * HALO MPU banks
217  */
218 #define HALO_MPU_XMEM_ACCESS_0               0x43000
219 #define HALO_MPU_YMEM_ACCESS_0               0x43004
220 #define HALO_MPU_WINDOW_ACCESS_0             0x43008
221 #define HALO_MPU_XREG_ACCESS_0               0x4300C
222 #define HALO_MPU_YREG_ACCESS_0               0x43014
223 #define HALO_MPU_XMEM_ACCESS_1               0x43018
224 #define HALO_MPU_YMEM_ACCESS_1               0x4301C
225 #define HALO_MPU_WINDOW_ACCESS_1             0x43020
226 #define HALO_MPU_XREG_ACCESS_1               0x43024
227 #define HALO_MPU_YREG_ACCESS_1               0x4302C
228 #define HALO_MPU_XMEM_ACCESS_2               0x43030
229 #define HALO_MPU_YMEM_ACCESS_2               0x43034
230 #define HALO_MPU_WINDOW_ACCESS_2             0x43038
231 #define HALO_MPU_XREG_ACCESS_2               0x4303C
232 #define HALO_MPU_YREG_ACCESS_2               0x43044
233 #define HALO_MPU_XMEM_ACCESS_3               0x43048
234 #define HALO_MPU_YMEM_ACCESS_3               0x4304C
235 #define HALO_MPU_WINDOW_ACCESS_3             0x43050
236 #define HALO_MPU_XREG_ACCESS_3               0x43054
237 #define HALO_MPU_YREG_ACCESS_3               0x4305C
238 #define HALO_MPU_XM_VIO_ADDR                 0x43100
239 #define HALO_MPU_XM_VIO_STATUS               0x43104
240 #define HALO_MPU_YM_VIO_ADDR                 0x43108
241 #define HALO_MPU_YM_VIO_STATUS               0x4310C
242 #define HALO_MPU_PM_VIO_ADDR                 0x43110
243 #define HALO_MPU_PM_VIO_STATUS               0x43114
244 #define HALO_MPU_LOCK_CONFIG                 0x43140
245 
246 /*
247  * HALO_AHBM_WINDOW_DEBUG_1
248  */
249 #define HALO_AHBM_CORE_ERR_ADDR_MASK         0x0fffff00
250 #define HALO_AHBM_CORE_ERR_ADDR_SHIFT                 8
251 #define HALO_AHBM_FLAGS_ERR_MASK             0x000000ff
252 
253 /*
254  * HALO_CCM_CORE_CONTROL
255  */
256 #define HALO_CORE_RESET                     0x00000200
257 #define HALO_CORE_EN                        0x00000001
258 
259 /*
260  * HALO_CORE_SOFT_RESET
261  */
262 #define HALO_CORE_SOFT_RESET_MASK           0x00000001
263 
264 /*
265  * HALO_WDT_CONTROL
266  */
267 #define HALO_WDT_EN_MASK                    0x00000001
268 
269 /*
270  * HALO_MPU_?M_VIO_STATUS
271  */
272 #define HALO_MPU_VIO_STS_MASK               0x007e0000
273 #define HALO_MPU_VIO_STS_SHIFT                      17
274 #define HALO_MPU_VIO_ERR_WR_MASK            0x00008000
275 #define HALO_MPU_VIO_ERR_SRC_MASK           0x00007fff
276 #define HALO_MPU_VIO_ERR_SRC_SHIFT                   0
277 
278 /*
279  * Write Sequence
280  */
281 #define WSEQ_OP_MAX_WORDS	3
282 #define WSEQ_END_OF_SCRIPT	0xFFFFFF
283 
284 struct cs_dsp_ops {
285 	bool (*validate_version)(struct cs_dsp *dsp, unsigned int version);
286 	unsigned int (*parse_sizes)(struct cs_dsp *dsp,
287 				    const char * const file,
288 				    unsigned int pos,
289 				    const struct firmware *firmware);
290 	int (*setup_algs)(struct cs_dsp *dsp);
291 	unsigned int (*region_to_reg)(struct cs_dsp_region const *mem,
292 				      unsigned int offset);
293 
294 	void (*show_fw_status)(struct cs_dsp *dsp);
295 	void (*stop_watchdog)(struct cs_dsp *dsp);
296 
297 	int (*enable_memory)(struct cs_dsp *dsp);
298 	void (*disable_memory)(struct cs_dsp *dsp);
299 	int (*lock_memory)(struct cs_dsp *dsp, unsigned int lock_regions);
300 
301 	int (*enable_core)(struct cs_dsp *dsp);
302 	void (*disable_core)(struct cs_dsp *dsp);
303 
304 	int (*start_core)(struct cs_dsp *dsp);
305 	void (*stop_core)(struct cs_dsp *dsp);
306 };
307 
308 static const struct cs_dsp_ops cs_dsp_adsp1_ops;
309 static const struct cs_dsp_ops cs_dsp_adsp2_ops[];
310 static const struct cs_dsp_ops cs_dsp_halo_ops;
311 static const struct cs_dsp_ops cs_dsp_halo_ao_ops;
312 
313 struct cs_dsp_buf {
314 	struct list_head list;
315 	void *buf;
316 };
317 
318 static struct cs_dsp_buf *cs_dsp_buf_alloc(const void *src, size_t len,
319 					   struct list_head *list)
320 {
321 	struct cs_dsp_buf *buf = kzalloc(sizeof(*buf), GFP_KERNEL);
322 
323 	if (buf == NULL)
324 		return NULL;
325 
326 	buf->buf = vmalloc(len);
327 	if (!buf->buf) {
328 		kfree(buf);
329 		return NULL;
330 	}
331 	memcpy(buf->buf, src, len);
332 
333 	if (list)
334 		list_add_tail(&buf->list, list);
335 
336 	return buf;
337 }
338 
339 static void cs_dsp_buf_free(struct list_head *list)
340 {
341 	while (!list_empty(list)) {
342 		struct cs_dsp_buf *buf = list_first_entry(list,
343 							  struct cs_dsp_buf,
344 							  list);
345 		list_del(&buf->list);
346 		vfree(buf->buf);
347 		kfree(buf);
348 	}
349 }
350 
351 /**
352  * cs_dsp_mem_region_name() - Return a name string for a memory type
353  * @type: the memory type to match
354  *
355  * Return: A const string identifying the memory region.
356  */
357 const char *cs_dsp_mem_region_name(unsigned int type)
358 {
359 	switch (type) {
360 	case WMFW_ADSP1_PM:
361 		return "PM";
362 	case WMFW_HALO_PM_PACKED:
363 		return "PM_PACKED";
364 	case WMFW_ADSP1_DM:
365 		return "DM";
366 	case WMFW_ADSP2_XM:
367 		return "XM";
368 	case WMFW_HALO_XM_PACKED:
369 		return "XM_PACKED";
370 	case WMFW_ADSP2_YM:
371 		return "YM";
372 	case WMFW_HALO_YM_PACKED:
373 		return "YM_PACKED";
374 	case WMFW_ADSP1_ZM:
375 		return "ZM";
376 	default:
377 		return NULL;
378 	}
379 }
380 EXPORT_SYMBOL_NS_GPL(cs_dsp_mem_region_name, FW_CS_DSP);
381 
382 #ifdef CONFIG_DEBUG_FS
383 static void cs_dsp_debugfs_save_wmfwname(struct cs_dsp *dsp, const char *s)
384 {
385 	char *tmp = kasprintf(GFP_KERNEL, "%s\n", s);
386 
387 	kfree(dsp->wmfw_file_name);
388 	dsp->wmfw_file_name = tmp;
389 }
390 
391 static void cs_dsp_debugfs_save_binname(struct cs_dsp *dsp, const char *s)
392 {
393 	char *tmp = kasprintf(GFP_KERNEL, "%s\n", s);
394 
395 	kfree(dsp->bin_file_name);
396 	dsp->bin_file_name = tmp;
397 }
398 
399 static void cs_dsp_debugfs_clear(struct cs_dsp *dsp)
400 {
401 	kfree(dsp->wmfw_file_name);
402 	kfree(dsp->bin_file_name);
403 	dsp->wmfw_file_name = NULL;
404 	dsp->bin_file_name = NULL;
405 }
406 
407 static ssize_t cs_dsp_debugfs_wmfw_read(struct file *file,
408 					char __user *user_buf,
409 					size_t count, loff_t *ppos)
410 {
411 	struct cs_dsp *dsp = file->private_data;
412 	ssize_t ret;
413 
414 	mutex_lock(&dsp->pwr_lock);
415 
416 	if (!dsp->wmfw_file_name || !dsp->booted)
417 		ret = 0;
418 	else
419 		ret = simple_read_from_buffer(user_buf, count, ppos,
420 					      dsp->wmfw_file_name,
421 					      strlen(dsp->wmfw_file_name));
422 
423 	mutex_unlock(&dsp->pwr_lock);
424 	return ret;
425 }
426 
427 static ssize_t cs_dsp_debugfs_bin_read(struct file *file,
428 				       char __user *user_buf,
429 				       size_t count, loff_t *ppos)
430 {
431 	struct cs_dsp *dsp = file->private_data;
432 	ssize_t ret;
433 
434 	mutex_lock(&dsp->pwr_lock);
435 
436 	if (!dsp->bin_file_name || !dsp->booted)
437 		ret = 0;
438 	else
439 		ret = simple_read_from_buffer(user_buf, count, ppos,
440 					      dsp->bin_file_name,
441 					      strlen(dsp->bin_file_name));
442 
443 	mutex_unlock(&dsp->pwr_lock);
444 	return ret;
445 }
446 
447 static const struct {
448 	const char *name;
449 	const struct file_operations fops;
450 } cs_dsp_debugfs_fops[] = {
451 	{
452 		.name = "wmfw_file_name",
453 		.fops = {
454 			.open = simple_open,
455 			.read = cs_dsp_debugfs_wmfw_read,
456 		},
457 	},
458 	{
459 		.name = "bin_file_name",
460 		.fops = {
461 			.open = simple_open,
462 			.read = cs_dsp_debugfs_bin_read,
463 		},
464 	},
465 };
466 
467 static int cs_dsp_coeff_base_reg(struct cs_dsp_coeff_ctl *ctl, unsigned int *reg,
468 				 unsigned int off);
469 
470 static int cs_dsp_debugfs_read_controls_show(struct seq_file *s, void *ignored)
471 {
472 	struct cs_dsp *dsp = s->private;
473 	struct cs_dsp_coeff_ctl *ctl;
474 	unsigned int reg;
475 
476 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
477 		cs_dsp_coeff_base_reg(ctl, &reg, 0);
478 		seq_printf(s, "%22.*s: %#8zx %s:%08x %#8x %s %#8x %#4x %c%c%c%c %s %s\n",
479 			   ctl->subname_len, ctl->subname, ctl->len,
480 			   cs_dsp_mem_region_name(ctl->alg_region.type),
481 			   ctl->offset, reg, ctl->fw_name, ctl->alg_region.alg, ctl->type,
482 			   ctl->flags & WMFW_CTL_FLAG_VOLATILE ? 'V' : '-',
483 			   ctl->flags & WMFW_CTL_FLAG_SYS ? 'S' : '-',
484 			   ctl->flags & WMFW_CTL_FLAG_READABLE ? 'R' : '-',
485 			   ctl->flags & WMFW_CTL_FLAG_WRITEABLE ? 'W' : '-',
486 			   ctl->enabled ? "enabled" : "disabled",
487 			   ctl->set ? "dirty" : "clean");
488 	}
489 
490 	return 0;
491 }
492 DEFINE_SHOW_ATTRIBUTE(cs_dsp_debugfs_read_controls);
493 
494 /**
495  * cs_dsp_init_debugfs() - Create and populate DSP representation in debugfs
496  * @dsp: pointer to DSP structure
497  * @debugfs_root: pointer to debugfs directory in which to create this DSP
498  *                representation
499  */
500 void cs_dsp_init_debugfs(struct cs_dsp *dsp, struct dentry *debugfs_root)
501 {
502 	struct dentry *root = NULL;
503 	int i;
504 
505 	root = debugfs_create_dir(dsp->name, debugfs_root);
506 
507 	debugfs_create_bool("booted", 0444, root, &dsp->booted);
508 	debugfs_create_bool("running", 0444, root, &dsp->running);
509 	debugfs_create_x32("fw_id", 0444, root, &dsp->fw_id);
510 	debugfs_create_x32("fw_version", 0444, root, &dsp->fw_id_version);
511 
512 	for (i = 0; i < ARRAY_SIZE(cs_dsp_debugfs_fops); ++i)
513 		debugfs_create_file(cs_dsp_debugfs_fops[i].name, 0444, root,
514 				    dsp, &cs_dsp_debugfs_fops[i].fops);
515 
516 	debugfs_create_file("controls", 0444, root, dsp,
517 			    &cs_dsp_debugfs_read_controls_fops);
518 
519 	dsp->debugfs_root = root;
520 }
521 EXPORT_SYMBOL_NS_GPL(cs_dsp_init_debugfs, FW_CS_DSP);
522 
523 /**
524  * cs_dsp_cleanup_debugfs() - Removes DSP representation from debugfs
525  * @dsp: pointer to DSP structure
526  */
527 void cs_dsp_cleanup_debugfs(struct cs_dsp *dsp)
528 {
529 	cs_dsp_debugfs_clear(dsp);
530 	debugfs_remove_recursive(dsp->debugfs_root);
531 	dsp->debugfs_root = ERR_PTR(-ENODEV);
532 }
533 EXPORT_SYMBOL_NS_GPL(cs_dsp_cleanup_debugfs, FW_CS_DSP);
534 #else
535 void cs_dsp_init_debugfs(struct cs_dsp *dsp, struct dentry *debugfs_root)
536 {
537 }
538 EXPORT_SYMBOL_NS_GPL(cs_dsp_init_debugfs, FW_CS_DSP);
539 
540 void cs_dsp_cleanup_debugfs(struct cs_dsp *dsp)
541 {
542 }
543 EXPORT_SYMBOL_NS_GPL(cs_dsp_cleanup_debugfs, FW_CS_DSP);
544 
545 static inline void cs_dsp_debugfs_save_wmfwname(struct cs_dsp *dsp,
546 						const char *s)
547 {
548 }
549 
550 static inline void cs_dsp_debugfs_save_binname(struct cs_dsp *dsp,
551 					       const char *s)
552 {
553 }
554 
555 static inline void cs_dsp_debugfs_clear(struct cs_dsp *dsp)
556 {
557 }
558 #endif
559 
560 static const struct cs_dsp_region *cs_dsp_find_region(struct cs_dsp *dsp,
561 						      int type)
562 {
563 	int i;
564 
565 	for (i = 0; i < dsp->num_mems; i++)
566 		if (dsp->mem[i].type == type)
567 			return &dsp->mem[i];
568 
569 	return NULL;
570 }
571 
572 static unsigned int cs_dsp_region_to_reg(struct cs_dsp_region const *mem,
573 					 unsigned int offset)
574 {
575 	switch (mem->type) {
576 	case WMFW_ADSP1_PM:
577 		return mem->base + (offset * 3);
578 	case WMFW_ADSP1_DM:
579 	case WMFW_ADSP2_XM:
580 	case WMFW_ADSP2_YM:
581 	case WMFW_ADSP1_ZM:
582 		return mem->base + (offset * 2);
583 	default:
584 		WARN(1, "Unknown memory region type");
585 		return offset;
586 	}
587 }
588 
589 static unsigned int cs_dsp_halo_region_to_reg(struct cs_dsp_region const *mem,
590 					      unsigned int offset)
591 {
592 	switch (mem->type) {
593 	case WMFW_ADSP2_XM:
594 	case WMFW_ADSP2_YM:
595 		return mem->base + (offset * 4);
596 	case WMFW_HALO_XM_PACKED:
597 	case WMFW_HALO_YM_PACKED:
598 		return (mem->base + (offset * 3)) & ~0x3;
599 	case WMFW_HALO_PM_PACKED:
600 		return mem->base + (offset * 5);
601 	default:
602 		WARN(1, "Unknown memory region type");
603 		return offset;
604 	}
605 }
606 
607 static void cs_dsp_read_fw_status(struct cs_dsp *dsp,
608 				  int noffs, unsigned int *offs)
609 {
610 	unsigned int i;
611 	int ret;
612 
613 	for (i = 0; i < noffs; ++i) {
614 		ret = regmap_read(dsp->regmap, dsp->base + offs[i], &offs[i]);
615 		if (ret) {
616 			cs_dsp_err(dsp, "Failed to read SCRATCH%u: %d\n", i, ret);
617 			return;
618 		}
619 	}
620 }
621 
622 static void cs_dsp_adsp2_show_fw_status(struct cs_dsp *dsp)
623 {
624 	unsigned int offs[] = {
625 		ADSP2_SCRATCH0, ADSP2_SCRATCH1, ADSP2_SCRATCH2, ADSP2_SCRATCH3,
626 	};
627 
628 	cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
629 
630 	cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
631 		   offs[0], offs[1], offs[2], offs[3]);
632 }
633 
634 static void cs_dsp_adsp2v2_show_fw_status(struct cs_dsp *dsp)
635 {
636 	unsigned int offs[] = { ADSP2V2_SCRATCH0_1, ADSP2V2_SCRATCH2_3 };
637 
638 	cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
639 
640 	cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
641 		   offs[0] & 0xFFFF, offs[0] >> 16,
642 		   offs[1] & 0xFFFF, offs[1] >> 16);
643 }
644 
645 static void cs_dsp_halo_show_fw_status(struct cs_dsp *dsp)
646 {
647 	unsigned int offs[] = {
648 		HALO_SCRATCH1, HALO_SCRATCH2, HALO_SCRATCH3, HALO_SCRATCH4,
649 	};
650 
651 	cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
652 
653 	cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
654 		   offs[0], offs[1], offs[2], offs[3]);
655 }
656 
657 static int cs_dsp_coeff_base_reg(struct cs_dsp_coeff_ctl *ctl, unsigned int *reg,
658 				 unsigned int off)
659 {
660 	const struct cs_dsp_alg_region *alg_region = &ctl->alg_region;
661 	struct cs_dsp *dsp = ctl->dsp;
662 	const struct cs_dsp_region *mem;
663 
664 	mem = cs_dsp_find_region(dsp, alg_region->type);
665 	if (!mem) {
666 		cs_dsp_err(dsp, "No base for region %x\n",
667 			   alg_region->type);
668 		return -EINVAL;
669 	}
670 
671 	*reg = dsp->ops->region_to_reg(mem, ctl->alg_region.base + ctl->offset + off);
672 
673 	return 0;
674 }
675 
676 /**
677  * cs_dsp_coeff_write_acked_control() - Sends event_id to the acked control
678  * @ctl: pointer to acked coefficient control
679  * @event_id: the value to write to the given acked control
680  *
681  * Once the value has been written to the control the function shall block
682  * until the running firmware acknowledges the write or timeout is exceeded.
683  *
684  * Must be called with pwr_lock held.
685  *
686  * Return: Zero for success, a negative number on error.
687  */
688 int cs_dsp_coeff_write_acked_control(struct cs_dsp_coeff_ctl *ctl, unsigned int event_id)
689 {
690 	struct cs_dsp *dsp = ctl->dsp;
691 	__be32 val = cpu_to_be32(event_id);
692 	unsigned int reg;
693 	int i, ret;
694 
695 	lockdep_assert_held(&dsp->pwr_lock);
696 
697 	if (!dsp->running)
698 		return -EPERM;
699 
700 	ret = cs_dsp_coeff_base_reg(ctl, &reg, 0);
701 	if (ret)
702 		return ret;
703 
704 	cs_dsp_dbg(dsp, "Sending 0x%x to acked control alg 0x%x %s:0x%x\n",
705 		   event_id, ctl->alg_region.alg,
706 		   cs_dsp_mem_region_name(ctl->alg_region.type), ctl->offset);
707 
708 	ret = regmap_raw_write(dsp->regmap, reg, &val, sizeof(val));
709 	if (ret) {
710 		cs_dsp_err(dsp, "Failed to write %x: %d\n", reg, ret);
711 		return ret;
712 	}
713 
714 	/*
715 	 * Poll for ack, we initially poll at ~1ms intervals for firmwares
716 	 * that respond quickly, then go to ~10ms polls. A firmware is unlikely
717 	 * to ack instantly so we do the first 1ms delay before reading the
718 	 * control to avoid a pointless bus transaction
719 	 */
720 	for (i = 0; i < CS_DSP_ACKED_CTL_TIMEOUT_MS;) {
721 		switch (i) {
722 		case 0 ... CS_DSP_ACKED_CTL_N_QUICKPOLLS - 1:
723 			usleep_range(1000, 2000);
724 			i++;
725 			break;
726 		default:
727 			usleep_range(10000, 20000);
728 			i += 10;
729 			break;
730 		}
731 
732 		ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val));
733 		if (ret) {
734 			cs_dsp_err(dsp, "Failed to read %x: %d\n", reg, ret);
735 			return ret;
736 		}
737 
738 		if (val == 0) {
739 			cs_dsp_dbg(dsp, "Acked control ACKED at poll %u\n", i);
740 			return 0;
741 		}
742 	}
743 
744 	cs_dsp_warn(dsp, "Acked control @0x%x alg:0x%x %s:0x%x timed out\n",
745 		    reg, ctl->alg_region.alg,
746 		    cs_dsp_mem_region_name(ctl->alg_region.type),
747 		    ctl->offset);
748 
749 	return -ETIMEDOUT;
750 }
751 EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_write_acked_control, FW_CS_DSP);
752 
753 static int cs_dsp_coeff_write_ctrl_raw(struct cs_dsp_coeff_ctl *ctl,
754 				       unsigned int off, const void *buf, size_t len)
755 {
756 	struct cs_dsp *dsp = ctl->dsp;
757 	void *scratch;
758 	int ret;
759 	unsigned int reg;
760 
761 	ret = cs_dsp_coeff_base_reg(ctl, &reg, off);
762 	if (ret)
763 		return ret;
764 
765 	scratch = kmemdup(buf, len, GFP_KERNEL | GFP_DMA);
766 	if (!scratch)
767 		return -ENOMEM;
768 
769 	ret = regmap_raw_write(dsp->regmap, reg, scratch,
770 			       len);
771 	if (ret) {
772 		cs_dsp_err(dsp, "Failed to write %zu bytes to %x: %d\n",
773 			   len, reg, ret);
774 		kfree(scratch);
775 		return ret;
776 	}
777 	cs_dsp_dbg(dsp, "Wrote %zu bytes to %x\n", len, reg);
778 
779 	kfree(scratch);
780 
781 	return 0;
782 }
783 
784 /**
785  * cs_dsp_coeff_write_ctrl() - Writes the given buffer to the given coefficient control
786  * @ctl: pointer to coefficient control
787  * @off: word offset at which data should be written
788  * @buf: the buffer to write to the given control
789  * @len: the length of the buffer in bytes
790  *
791  * Must be called with pwr_lock held.
792  *
793  * Return: < 0 on error, 1 when the control value changed and 0 when it has not.
794  */
795 int cs_dsp_coeff_write_ctrl(struct cs_dsp_coeff_ctl *ctl,
796 			    unsigned int off, const void *buf, size_t len)
797 {
798 	int ret = 0;
799 
800 	if (!ctl)
801 		return -ENOENT;
802 
803 	lockdep_assert_held(&ctl->dsp->pwr_lock);
804 
805 	if (len + off * sizeof(u32) > ctl->len)
806 		return -EINVAL;
807 
808 	if (ctl->flags & WMFW_CTL_FLAG_VOLATILE) {
809 		ret = -EPERM;
810 	} else if (buf != ctl->cache) {
811 		if (memcmp(ctl->cache + off * sizeof(u32), buf, len))
812 			memcpy(ctl->cache + off * sizeof(u32), buf, len);
813 		else
814 			return 0;
815 	}
816 
817 	ctl->set = 1;
818 	if (ctl->enabled && ctl->dsp->running)
819 		ret = cs_dsp_coeff_write_ctrl_raw(ctl, off, buf, len);
820 
821 	if (ret < 0)
822 		return ret;
823 
824 	return 1;
825 }
826 EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_write_ctrl, FW_CS_DSP);
827 
828 /**
829  * cs_dsp_coeff_lock_and_write_ctrl() - Writes the given buffer to the given coefficient control
830  * @ctl: pointer to coefficient control
831  * @off: word offset at which data should be written
832  * @buf: the buffer to write to the given control
833  * @len: the length of the buffer in bytes
834  *
835  * Same as cs_dsp_coeff_write_ctrl() but takes pwr_lock.
836  *
837  * Return: A negative number on error, 1 when the control value changed and 0 when it has not.
838  */
839 int cs_dsp_coeff_lock_and_write_ctrl(struct cs_dsp_coeff_ctl *ctl,
840 				     unsigned int off, const void *buf, size_t len)
841 {
842 	struct cs_dsp *dsp = ctl->dsp;
843 	int ret;
844 
845 	lockdep_assert_not_held(&dsp->pwr_lock);
846 
847 	mutex_lock(&dsp->pwr_lock);
848 	ret = cs_dsp_coeff_write_ctrl(ctl, off, buf, len);
849 	mutex_unlock(&dsp->pwr_lock);
850 
851 	return ret;
852 }
853 EXPORT_SYMBOL_GPL(cs_dsp_coeff_lock_and_write_ctrl);
854 
855 static int cs_dsp_coeff_read_ctrl_raw(struct cs_dsp_coeff_ctl *ctl,
856 				      unsigned int off, void *buf, size_t len)
857 {
858 	struct cs_dsp *dsp = ctl->dsp;
859 	void *scratch;
860 	int ret;
861 	unsigned int reg;
862 
863 	ret = cs_dsp_coeff_base_reg(ctl, &reg, off);
864 	if (ret)
865 		return ret;
866 
867 	scratch = kmalloc(len, GFP_KERNEL | GFP_DMA);
868 	if (!scratch)
869 		return -ENOMEM;
870 
871 	ret = regmap_raw_read(dsp->regmap, reg, scratch, len);
872 	if (ret) {
873 		cs_dsp_err(dsp, "Failed to read %zu bytes from %x: %d\n",
874 			   len, reg, ret);
875 		kfree(scratch);
876 		return ret;
877 	}
878 	cs_dsp_dbg(dsp, "Read %zu bytes from %x\n", len, reg);
879 
880 	memcpy(buf, scratch, len);
881 	kfree(scratch);
882 
883 	return 0;
884 }
885 
886 /**
887  * cs_dsp_coeff_read_ctrl() - Reads the given coefficient control into the given buffer
888  * @ctl: pointer to coefficient control
889  * @off: word offset at which data should be read
890  * @buf: the buffer to store to the given control
891  * @len: the length of the buffer in bytes
892  *
893  * Must be called with pwr_lock held.
894  *
895  * Return: Zero for success, a negative number on error.
896  */
897 int cs_dsp_coeff_read_ctrl(struct cs_dsp_coeff_ctl *ctl,
898 			   unsigned int off, void *buf, size_t len)
899 {
900 	int ret = 0;
901 
902 	if (!ctl)
903 		return -ENOENT;
904 
905 	lockdep_assert_held(&ctl->dsp->pwr_lock);
906 
907 	if (len + off * sizeof(u32) > ctl->len)
908 		return -EINVAL;
909 
910 	if (ctl->flags & WMFW_CTL_FLAG_VOLATILE) {
911 		if (ctl->enabled && ctl->dsp->running)
912 			return cs_dsp_coeff_read_ctrl_raw(ctl, off, buf, len);
913 		else
914 			return -EPERM;
915 	} else {
916 		if (!ctl->flags && ctl->enabled && ctl->dsp->running)
917 			ret = cs_dsp_coeff_read_ctrl_raw(ctl, 0, ctl->cache, ctl->len);
918 
919 		if (buf != ctl->cache)
920 			memcpy(buf, ctl->cache + off * sizeof(u32), len);
921 	}
922 
923 	return ret;
924 }
925 EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_read_ctrl, FW_CS_DSP);
926 
927 /**
928  * cs_dsp_coeff_lock_and_read_ctrl() - Reads the given coefficient control into the given buffer
929  * @ctl: pointer to coefficient control
930  * @off: word offset at which data should be read
931  * @buf: the buffer to store to the given control
932  * @len: the length of the buffer in bytes
933  *
934  * Same as cs_dsp_coeff_read_ctrl() but takes pwr_lock.
935  *
936  * Return: Zero for success, a negative number on error.
937  */
938 int cs_dsp_coeff_lock_and_read_ctrl(struct cs_dsp_coeff_ctl *ctl,
939 				    unsigned int off, void *buf, size_t len)
940 {
941 	struct cs_dsp *dsp = ctl->dsp;
942 	int ret;
943 
944 	lockdep_assert_not_held(&dsp->pwr_lock);
945 
946 	mutex_lock(&dsp->pwr_lock);
947 	ret = cs_dsp_coeff_read_ctrl(ctl, off, buf, len);
948 	mutex_unlock(&dsp->pwr_lock);
949 
950 	return ret;
951 }
952 EXPORT_SYMBOL_GPL(cs_dsp_coeff_lock_and_read_ctrl);
953 
954 static int cs_dsp_coeff_init_control_caches(struct cs_dsp *dsp)
955 {
956 	struct cs_dsp_coeff_ctl *ctl;
957 	int ret;
958 
959 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
960 		if (!ctl->enabled || ctl->set)
961 			continue;
962 		if (ctl->flags & WMFW_CTL_FLAG_VOLATILE)
963 			continue;
964 
965 		/*
966 		 * For readable controls populate the cache from the DSP memory.
967 		 * For non-readable controls the cache was zero-filled when
968 		 * created so we don't need to do anything.
969 		 */
970 		if (!ctl->flags || (ctl->flags & WMFW_CTL_FLAG_READABLE)) {
971 			ret = cs_dsp_coeff_read_ctrl_raw(ctl, 0, ctl->cache, ctl->len);
972 			if (ret < 0)
973 				return ret;
974 		}
975 	}
976 
977 	return 0;
978 }
979 
980 static int cs_dsp_coeff_sync_controls(struct cs_dsp *dsp)
981 {
982 	struct cs_dsp_coeff_ctl *ctl;
983 	int ret;
984 
985 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
986 		if (!ctl->enabled)
987 			continue;
988 		if (ctl->set && !(ctl->flags & WMFW_CTL_FLAG_VOLATILE)) {
989 			ret = cs_dsp_coeff_write_ctrl_raw(ctl, 0, ctl->cache,
990 							  ctl->len);
991 			if (ret < 0)
992 				return ret;
993 		}
994 	}
995 
996 	return 0;
997 }
998 
999 static void cs_dsp_signal_event_controls(struct cs_dsp *dsp,
1000 					 unsigned int event)
1001 {
1002 	struct cs_dsp_coeff_ctl *ctl;
1003 	int ret;
1004 
1005 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
1006 		if (ctl->type != WMFW_CTL_TYPE_HOSTEVENT)
1007 			continue;
1008 
1009 		if (!ctl->enabled)
1010 			continue;
1011 
1012 		ret = cs_dsp_coeff_write_acked_control(ctl, event);
1013 		if (ret)
1014 			cs_dsp_warn(dsp,
1015 				    "Failed to send 0x%x event to alg 0x%x (%d)\n",
1016 				    event, ctl->alg_region.alg, ret);
1017 	}
1018 }
1019 
1020 static void cs_dsp_free_ctl_blk(struct cs_dsp_coeff_ctl *ctl)
1021 {
1022 	kfree(ctl->cache);
1023 	kfree(ctl->subname);
1024 	kfree(ctl);
1025 }
1026 
1027 static int cs_dsp_create_control(struct cs_dsp *dsp,
1028 				 const struct cs_dsp_alg_region *alg_region,
1029 				 unsigned int offset, unsigned int len,
1030 				 const char *subname, unsigned int subname_len,
1031 				 unsigned int flags, unsigned int type)
1032 {
1033 	struct cs_dsp_coeff_ctl *ctl;
1034 	int ret;
1035 
1036 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
1037 		if (ctl->fw_name == dsp->fw_name &&
1038 		    ctl->alg_region.alg == alg_region->alg &&
1039 		    ctl->alg_region.type == alg_region->type) {
1040 			if ((!subname && !ctl->subname) ||
1041 			    (subname && (ctl->subname_len == subname_len) &&
1042 			     !strncmp(ctl->subname, subname, ctl->subname_len))) {
1043 				if (!ctl->enabled)
1044 					ctl->enabled = 1;
1045 				return 0;
1046 			}
1047 		}
1048 	}
1049 
1050 	ctl = kzalloc(sizeof(*ctl), GFP_KERNEL);
1051 	if (!ctl)
1052 		return -ENOMEM;
1053 
1054 	ctl->fw_name = dsp->fw_name;
1055 	ctl->alg_region = *alg_region;
1056 	if (subname && dsp->fw_ver >= 2) {
1057 		ctl->subname_len = subname_len;
1058 		ctl->subname = kasprintf(GFP_KERNEL, "%.*s", subname_len, subname);
1059 		if (!ctl->subname) {
1060 			ret = -ENOMEM;
1061 			goto err_ctl;
1062 		}
1063 	}
1064 	ctl->enabled = 1;
1065 	ctl->set = 0;
1066 	ctl->dsp = dsp;
1067 
1068 	ctl->flags = flags;
1069 	ctl->type = type;
1070 	ctl->offset = offset;
1071 	ctl->len = len;
1072 	ctl->cache = kzalloc(ctl->len, GFP_KERNEL);
1073 	if (!ctl->cache) {
1074 		ret = -ENOMEM;
1075 		goto err_ctl_subname;
1076 	}
1077 
1078 	list_add(&ctl->list, &dsp->ctl_list);
1079 
1080 	if (dsp->client_ops->control_add) {
1081 		ret = dsp->client_ops->control_add(ctl);
1082 		if (ret)
1083 			goto err_list_del;
1084 	}
1085 
1086 	return 0;
1087 
1088 err_list_del:
1089 	list_del(&ctl->list);
1090 	kfree(ctl->cache);
1091 err_ctl_subname:
1092 	kfree(ctl->subname);
1093 err_ctl:
1094 	kfree(ctl);
1095 
1096 	return ret;
1097 }
1098 
1099 struct cs_dsp_coeff_parsed_alg {
1100 	int id;
1101 	const u8 *name;
1102 	int name_len;
1103 	int ncoeff;
1104 };
1105 
1106 struct cs_dsp_coeff_parsed_coeff {
1107 	int offset;
1108 	int mem_type;
1109 	const u8 *name;
1110 	int name_len;
1111 	unsigned int ctl_type;
1112 	int flags;
1113 	int len;
1114 };
1115 
1116 static int cs_dsp_coeff_parse_string(int bytes, const u8 **pos, unsigned int avail,
1117 				     const u8 **str)
1118 {
1119 	int length, total_field_len;
1120 
1121 	/* String fields are at least one __le32 */
1122 	if (sizeof(__le32) > avail) {
1123 		*pos = NULL;
1124 		return 0;
1125 	}
1126 
1127 	switch (bytes) {
1128 	case 1:
1129 		length = **pos;
1130 		break;
1131 	case 2:
1132 		length = le16_to_cpu(*((__le16 *)*pos));
1133 		break;
1134 	default:
1135 		return 0;
1136 	}
1137 
1138 	total_field_len = ((length + bytes) + 3) & ~0x03;
1139 	if ((unsigned int)total_field_len > avail) {
1140 		*pos = NULL;
1141 		return 0;
1142 	}
1143 
1144 	if (str)
1145 		*str = *pos + bytes;
1146 
1147 	*pos += total_field_len;
1148 
1149 	return length;
1150 }
1151 
1152 static int cs_dsp_coeff_parse_int(int bytes, const u8 **pos)
1153 {
1154 	int val = 0;
1155 
1156 	switch (bytes) {
1157 	case 2:
1158 		val = le16_to_cpu(*((__le16 *)*pos));
1159 		break;
1160 	case 4:
1161 		val = le32_to_cpu(*((__le32 *)*pos));
1162 		break;
1163 	default:
1164 		break;
1165 	}
1166 
1167 	*pos += bytes;
1168 
1169 	return val;
1170 }
1171 
1172 static int cs_dsp_coeff_parse_alg(struct cs_dsp *dsp,
1173 				  const struct wmfw_region *region,
1174 				  struct cs_dsp_coeff_parsed_alg *blk)
1175 {
1176 	const struct wmfw_adsp_alg_data *raw;
1177 	unsigned int data_len = le32_to_cpu(region->len);
1178 	unsigned int pos;
1179 	const u8 *tmp;
1180 
1181 	raw = (const struct wmfw_adsp_alg_data *)region->data;
1182 
1183 	switch (dsp->fw_ver) {
1184 	case 0:
1185 	case 1:
1186 		if (sizeof(*raw) > data_len)
1187 			return -EOVERFLOW;
1188 
1189 		blk->id = le32_to_cpu(raw->id);
1190 		blk->name = raw->name;
1191 		blk->name_len = strnlen(raw->name, ARRAY_SIZE(raw->name));
1192 		blk->ncoeff = le32_to_cpu(raw->ncoeff);
1193 
1194 		pos = sizeof(*raw);
1195 		break;
1196 	default:
1197 		if (sizeof(raw->id) > data_len)
1198 			return -EOVERFLOW;
1199 
1200 		tmp = region->data;
1201 		blk->id = cs_dsp_coeff_parse_int(sizeof(raw->id), &tmp);
1202 		pos = tmp - region->data;
1203 
1204 		tmp = &region->data[pos];
1205 		blk->name_len = cs_dsp_coeff_parse_string(sizeof(u8), &tmp, data_len - pos,
1206 							  &blk->name);
1207 		if (!tmp)
1208 			return -EOVERFLOW;
1209 
1210 		pos = tmp - region->data;
1211 		cs_dsp_coeff_parse_string(sizeof(u16), &tmp, data_len - pos, NULL);
1212 		if (!tmp)
1213 			return -EOVERFLOW;
1214 
1215 		pos = tmp - region->data;
1216 		if (sizeof(raw->ncoeff) > (data_len - pos))
1217 			return -EOVERFLOW;
1218 
1219 		blk->ncoeff = cs_dsp_coeff_parse_int(sizeof(raw->ncoeff), &tmp);
1220 		pos += sizeof(raw->ncoeff);
1221 		break;
1222 	}
1223 
1224 	if ((int)blk->ncoeff < 0)
1225 		return -EOVERFLOW;
1226 
1227 	cs_dsp_dbg(dsp, "Algorithm ID: %#x\n", blk->id);
1228 	cs_dsp_dbg(dsp, "Algorithm name: %.*s\n", blk->name_len, blk->name);
1229 	cs_dsp_dbg(dsp, "# of coefficient descriptors: %#x\n", blk->ncoeff);
1230 
1231 	return pos;
1232 }
1233 
1234 static int cs_dsp_coeff_parse_coeff(struct cs_dsp *dsp,
1235 				    const struct wmfw_region *region,
1236 				    unsigned int pos,
1237 				    struct cs_dsp_coeff_parsed_coeff *blk)
1238 {
1239 	const struct wmfw_adsp_coeff_data *raw;
1240 	unsigned int data_len = le32_to_cpu(region->len);
1241 	unsigned int blk_len, blk_end_pos;
1242 	const u8 *tmp;
1243 
1244 	raw = (const struct wmfw_adsp_coeff_data *)&region->data[pos];
1245 	if (sizeof(raw->hdr) > (data_len - pos))
1246 		return -EOVERFLOW;
1247 
1248 	blk_len = le32_to_cpu(raw->hdr.size);
1249 	if (blk_len > S32_MAX)
1250 		return -EOVERFLOW;
1251 
1252 	if (blk_len > (data_len - pos - sizeof(raw->hdr)))
1253 		return -EOVERFLOW;
1254 
1255 	blk_end_pos = pos + sizeof(raw->hdr) + blk_len;
1256 
1257 	blk->offset = le16_to_cpu(raw->hdr.offset);
1258 	blk->mem_type = le16_to_cpu(raw->hdr.type);
1259 
1260 	switch (dsp->fw_ver) {
1261 	case 0:
1262 	case 1:
1263 		if (sizeof(*raw) > (data_len - pos))
1264 			return -EOVERFLOW;
1265 
1266 		blk->name = raw->name;
1267 		blk->name_len = strnlen(raw->name, ARRAY_SIZE(raw->name));
1268 		blk->ctl_type = le16_to_cpu(raw->ctl_type);
1269 		blk->flags = le16_to_cpu(raw->flags);
1270 		blk->len = le32_to_cpu(raw->len);
1271 		break;
1272 	default:
1273 		pos += sizeof(raw->hdr);
1274 		tmp = &region->data[pos];
1275 		blk->name_len = cs_dsp_coeff_parse_string(sizeof(u8), &tmp, data_len - pos,
1276 							  &blk->name);
1277 		if (!tmp)
1278 			return -EOVERFLOW;
1279 
1280 		pos = tmp - region->data;
1281 		cs_dsp_coeff_parse_string(sizeof(u8), &tmp, data_len - pos, NULL);
1282 		if (!tmp)
1283 			return -EOVERFLOW;
1284 
1285 		pos = tmp - region->data;
1286 		cs_dsp_coeff_parse_string(sizeof(u16), &tmp, data_len - pos, NULL);
1287 		if (!tmp)
1288 			return -EOVERFLOW;
1289 
1290 		pos = tmp - region->data;
1291 		if (sizeof(raw->ctl_type) + sizeof(raw->flags) + sizeof(raw->len) >
1292 		    (data_len - pos))
1293 			return -EOVERFLOW;
1294 
1295 		blk->ctl_type = cs_dsp_coeff_parse_int(sizeof(raw->ctl_type), &tmp);
1296 		pos += sizeof(raw->ctl_type);
1297 		blk->flags = cs_dsp_coeff_parse_int(sizeof(raw->flags), &tmp);
1298 		pos += sizeof(raw->flags);
1299 		blk->len = cs_dsp_coeff_parse_int(sizeof(raw->len), &tmp);
1300 		break;
1301 	}
1302 
1303 	cs_dsp_dbg(dsp, "\tCoefficient type: %#x\n", blk->mem_type);
1304 	cs_dsp_dbg(dsp, "\tCoefficient offset: %#x\n", blk->offset);
1305 	cs_dsp_dbg(dsp, "\tCoefficient name: %.*s\n", blk->name_len, blk->name);
1306 	cs_dsp_dbg(dsp, "\tCoefficient flags: %#x\n", blk->flags);
1307 	cs_dsp_dbg(dsp, "\tALSA control type: %#x\n", blk->ctl_type);
1308 	cs_dsp_dbg(dsp, "\tALSA control len: %#x\n", blk->len);
1309 
1310 	return blk_end_pos;
1311 }
1312 
1313 static int cs_dsp_check_coeff_flags(struct cs_dsp *dsp,
1314 				    const struct cs_dsp_coeff_parsed_coeff *coeff_blk,
1315 				    unsigned int f_required,
1316 				    unsigned int f_illegal)
1317 {
1318 	if ((coeff_blk->flags & f_illegal) ||
1319 	    ((coeff_blk->flags & f_required) != f_required)) {
1320 		cs_dsp_err(dsp, "Illegal flags 0x%x for control type 0x%x\n",
1321 			   coeff_blk->flags, coeff_blk->ctl_type);
1322 		return -EINVAL;
1323 	}
1324 
1325 	return 0;
1326 }
1327 
1328 static int cs_dsp_parse_coeff(struct cs_dsp *dsp,
1329 			      const struct wmfw_region *region)
1330 {
1331 	struct cs_dsp_alg_region alg_region = {};
1332 	struct cs_dsp_coeff_parsed_alg alg_blk;
1333 	struct cs_dsp_coeff_parsed_coeff coeff_blk;
1334 	int i, pos, ret;
1335 
1336 	pos = cs_dsp_coeff_parse_alg(dsp, region, &alg_blk);
1337 	if (pos < 0)
1338 		return pos;
1339 
1340 	for (i = 0; i < alg_blk.ncoeff; i++) {
1341 		pos = cs_dsp_coeff_parse_coeff(dsp, region, pos, &coeff_blk);
1342 		if (pos < 0)
1343 			return pos;
1344 
1345 		switch (coeff_blk.ctl_type) {
1346 		case WMFW_CTL_TYPE_BYTES:
1347 			break;
1348 		case WMFW_CTL_TYPE_ACKED:
1349 			if (coeff_blk.flags & WMFW_CTL_FLAG_SYS)
1350 				continue;	/* ignore */
1351 
1352 			ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1353 						       WMFW_CTL_FLAG_VOLATILE |
1354 						       WMFW_CTL_FLAG_WRITEABLE |
1355 						       WMFW_CTL_FLAG_READABLE,
1356 						       0);
1357 			if (ret)
1358 				return -EINVAL;
1359 			break;
1360 		case WMFW_CTL_TYPE_HOSTEVENT:
1361 		case WMFW_CTL_TYPE_FWEVENT:
1362 			ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1363 						       WMFW_CTL_FLAG_SYS |
1364 						       WMFW_CTL_FLAG_VOLATILE |
1365 						       WMFW_CTL_FLAG_WRITEABLE |
1366 						       WMFW_CTL_FLAG_READABLE,
1367 						       0);
1368 			if (ret)
1369 				return -EINVAL;
1370 			break;
1371 		case WMFW_CTL_TYPE_HOST_BUFFER:
1372 			ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1373 						       WMFW_CTL_FLAG_SYS |
1374 						       WMFW_CTL_FLAG_VOLATILE |
1375 						       WMFW_CTL_FLAG_READABLE,
1376 						       0);
1377 			if (ret)
1378 				return -EINVAL;
1379 			break;
1380 		default:
1381 			cs_dsp_err(dsp, "Unknown control type: %d\n",
1382 				   coeff_blk.ctl_type);
1383 			return -EINVAL;
1384 		}
1385 
1386 		alg_region.type = coeff_blk.mem_type;
1387 		alg_region.alg = alg_blk.id;
1388 
1389 		ret = cs_dsp_create_control(dsp, &alg_region,
1390 					    coeff_blk.offset,
1391 					    coeff_blk.len,
1392 					    coeff_blk.name,
1393 					    coeff_blk.name_len,
1394 					    coeff_blk.flags,
1395 					    coeff_blk.ctl_type);
1396 		if (ret < 0)
1397 			cs_dsp_err(dsp, "Failed to create control: %.*s, %d\n",
1398 				   coeff_blk.name_len, coeff_blk.name, ret);
1399 	}
1400 
1401 	return 0;
1402 }
1403 
1404 static unsigned int cs_dsp_adsp1_parse_sizes(struct cs_dsp *dsp,
1405 					     const char * const file,
1406 					     unsigned int pos,
1407 					     const struct firmware *firmware)
1408 {
1409 	const struct wmfw_adsp1_sizes *adsp1_sizes;
1410 
1411 	adsp1_sizes = (void *)&firmware->data[pos];
1412 	if (sizeof(*adsp1_sizes) > firmware->size - pos) {
1413 		cs_dsp_err(dsp, "%s: file truncated\n", file);
1414 		return 0;
1415 	}
1416 
1417 	cs_dsp_dbg(dsp, "%s: %d DM, %d PM, %d ZM\n", file,
1418 		   le32_to_cpu(adsp1_sizes->dm), le32_to_cpu(adsp1_sizes->pm),
1419 		   le32_to_cpu(adsp1_sizes->zm));
1420 
1421 	return pos + sizeof(*adsp1_sizes);
1422 }
1423 
1424 static unsigned int cs_dsp_adsp2_parse_sizes(struct cs_dsp *dsp,
1425 					     const char * const file,
1426 					     unsigned int pos,
1427 					     const struct firmware *firmware)
1428 {
1429 	const struct wmfw_adsp2_sizes *adsp2_sizes;
1430 
1431 	adsp2_sizes = (void *)&firmware->data[pos];
1432 	if (sizeof(*adsp2_sizes) > firmware->size - pos) {
1433 		cs_dsp_err(dsp, "%s: file truncated\n", file);
1434 		return 0;
1435 	}
1436 
1437 	cs_dsp_dbg(dsp, "%s: %d XM, %d YM %d PM, %d ZM\n", file,
1438 		   le32_to_cpu(adsp2_sizes->xm), le32_to_cpu(adsp2_sizes->ym),
1439 		   le32_to_cpu(adsp2_sizes->pm), le32_to_cpu(adsp2_sizes->zm));
1440 
1441 	return pos + sizeof(*adsp2_sizes);
1442 }
1443 
1444 static bool cs_dsp_validate_version(struct cs_dsp *dsp, unsigned int version)
1445 {
1446 	switch (version) {
1447 	case 0:
1448 		cs_dsp_warn(dsp, "Deprecated file format %d\n", version);
1449 		return true;
1450 	case 1:
1451 	case 2:
1452 		return true;
1453 	default:
1454 		return false;
1455 	}
1456 }
1457 
1458 static bool cs_dsp_halo_validate_version(struct cs_dsp *dsp, unsigned int version)
1459 {
1460 	switch (version) {
1461 	case 3:
1462 		return true;
1463 	default:
1464 		return false;
1465 	}
1466 }
1467 
1468 static int cs_dsp_load(struct cs_dsp *dsp, const struct firmware *firmware,
1469 		       const char *file)
1470 {
1471 	LIST_HEAD(buf_list);
1472 	struct regmap *regmap = dsp->regmap;
1473 	unsigned int pos = 0;
1474 	const struct wmfw_header *header;
1475 	const struct wmfw_footer *footer;
1476 	const struct wmfw_region *region;
1477 	const struct cs_dsp_region *mem;
1478 	const char *region_name;
1479 	char *text = NULL;
1480 	struct cs_dsp_buf *buf;
1481 	unsigned int reg;
1482 	int regions = 0;
1483 	int ret, offset, type;
1484 
1485 	if (!firmware)
1486 		return 0;
1487 
1488 	ret = -EINVAL;
1489 
1490 	if (sizeof(*header) >= firmware->size) {
1491 		ret = -EOVERFLOW;
1492 		goto out_fw;
1493 	}
1494 
1495 	header = (void *)&firmware->data[0];
1496 
1497 	if (memcmp(&header->magic[0], "WMFW", 4) != 0) {
1498 		cs_dsp_err(dsp, "%s: invalid magic\n", file);
1499 		goto out_fw;
1500 	}
1501 
1502 	if (!dsp->ops->validate_version(dsp, header->ver)) {
1503 		cs_dsp_err(dsp, "%s: unknown file format %d\n",
1504 			   file, header->ver);
1505 		goto out_fw;
1506 	}
1507 
1508 	cs_dsp_info(dsp, "Firmware version: %d\n", header->ver);
1509 	dsp->fw_ver = header->ver;
1510 
1511 	if (header->core != dsp->type) {
1512 		cs_dsp_err(dsp, "%s: invalid core %d != %d\n",
1513 			   file, header->core, dsp->type);
1514 		goto out_fw;
1515 	}
1516 
1517 	pos = sizeof(*header);
1518 	pos = dsp->ops->parse_sizes(dsp, file, pos, firmware);
1519 	if ((pos == 0) || (sizeof(*footer) > firmware->size - pos)) {
1520 		ret = -EOVERFLOW;
1521 		goto out_fw;
1522 	}
1523 
1524 	footer = (void *)&firmware->data[pos];
1525 	pos += sizeof(*footer);
1526 
1527 	if (le32_to_cpu(header->len) != pos) {
1528 		ret = -EOVERFLOW;
1529 		goto out_fw;
1530 	}
1531 
1532 	cs_dsp_dbg(dsp, "%s: timestamp %llu\n", file,
1533 		   le64_to_cpu(footer->timestamp));
1534 
1535 	while (pos < firmware->size) {
1536 		/* Is there enough data for a complete block header? */
1537 		if (sizeof(*region) > firmware->size - pos) {
1538 			ret = -EOVERFLOW;
1539 			goto out_fw;
1540 		}
1541 
1542 		region = (void *)&(firmware->data[pos]);
1543 
1544 		if (le32_to_cpu(region->len) > firmware->size - pos - sizeof(*region)) {
1545 			ret = -EOVERFLOW;
1546 			goto out_fw;
1547 		}
1548 
1549 		region_name = "Unknown";
1550 		reg = 0;
1551 		text = NULL;
1552 		offset = le32_to_cpu(region->offset) & 0xffffff;
1553 		type = be32_to_cpu(region->type) & 0xff;
1554 
1555 		switch (type) {
1556 		case WMFW_NAME_TEXT:
1557 			region_name = "Firmware name";
1558 			text = kzalloc(le32_to_cpu(region->len) + 1,
1559 				       GFP_KERNEL);
1560 			break;
1561 		case WMFW_ALGORITHM_DATA:
1562 			region_name = "Algorithm";
1563 			ret = cs_dsp_parse_coeff(dsp, region);
1564 			if (ret != 0)
1565 				goto out_fw;
1566 			break;
1567 		case WMFW_INFO_TEXT:
1568 			region_name = "Information";
1569 			text = kzalloc(le32_to_cpu(region->len) + 1,
1570 				       GFP_KERNEL);
1571 			break;
1572 		case WMFW_ABSOLUTE:
1573 			region_name = "Absolute";
1574 			reg = offset;
1575 			break;
1576 		case WMFW_ADSP1_PM:
1577 		case WMFW_ADSP1_DM:
1578 		case WMFW_ADSP2_XM:
1579 		case WMFW_ADSP2_YM:
1580 		case WMFW_ADSP1_ZM:
1581 		case WMFW_HALO_PM_PACKED:
1582 		case WMFW_HALO_XM_PACKED:
1583 		case WMFW_HALO_YM_PACKED:
1584 			mem = cs_dsp_find_region(dsp, type);
1585 			if (!mem) {
1586 				cs_dsp_err(dsp, "No region of type: %x\n", type);
1587 				ret = -EINVAL;
1588 				goto out_fw;
1589 			}
1590 
1591 			region_name = cs_dsp_mem_region_name(type);
1592 			reg = dsp->ops->region_to_reg(mem, offset);
1593 			break;
1594 		default:
1595 			cs_dsp_warn(dsp,
1596 				    "%s.%d: Unknown region type %x at %d(%x)\n",
1597 				    file, regions, type, pos, pos);
1598 			break;
1599 		}
1600 
1601 		cs_dsp_dbg(dsp, "%s.%d: %d bytes at %d in %s\n", file,
1602 			   regions, le32_to_cpu(region->len), offset,
1603 			   region_name);
1604 
1605 		if (text) {
1606 			memcpy(text, region->data, le32_to_cpu(region->len));
1607 			cs_dsp_info(dsp, "%s: %s\n", file, text);
1608 			kfree(text);
1609 			text = NULL;
1610 		}
1611 
1612 		if (reg) {
1613 			buf = cs_dsp_buf_alloc(region->data,
1614 					       le32_to_cpu(region->len),
1615 					       &buf_list);
1616 			if (!buf) {
1617 				cs_dsp_err(dsp, "Out of memory\n");
1618 				ret = -ENOMEM;
1619 				goto out_fw;
1620 			}
1621 
1622 			ret = regmap_raw_write_async(regmap, reg, buf->buf,
1623 						     le32_to_cpu(region->len));
1624 			if (ret != 0) {
1625 				cs_dsp_err(dsp,
1626 					   "%s.%d: Failed to write %d bytes at %d in %s: %d\n",
1627 					   file, regions,
1628 					   le32_to_cpu(region->len), offset,
1629 					   region_name, ret);
1630 				goto out_fw;
1631 			}
1632 		}
1633 
1634 		pos += le32_to_cpu(region->len) + sizeof(*region);
1635 		regions++;
1636 	}
1637 
1638 	ret = regmap_async_complete(regmap);
1639 	if (ret != 0) {
1640 		cs_dsp_err(dsp, "Failed to complete async write: %d\n", ret);
1641 		goto out_fw;
1642 	}
1643 
1644 	if (pos > firmware->size)
1645 		cs_dsp_warn(dsp, "%s.%d: %zu bytes at end of file\n",
1646 			    file, regions, pos - firmware->size);
1647 
1648 	cs_dsp_debugfs_save_wmfwname(dsp, file);
1649 
1650 out_fw:
1651 	regmap_async_complete(regmap);
1652 	cs_dsp_buf_free(&buf_list);
1653 	kfree(text);
1654 
1655 	if (ret == -EOVERFLOW)
1656 		cs_dsp_err(dsp, "%s: file content overflows file data\n", file);
1657 
1658 	return ret;
1659 }
1660 
1661 /**
1662  * cs_dsp_get_ctl() - Finds a matching coefficient control
1663  * @dsp: pointer to DSP structure
1664  * @name: pointer to string to match with a control's subname
1665  * @type: the algorithm type to match
1666  * @alg: the algorithm id to match
1667  *
1668  * Find cs_dsp_coeff_ctl with input name as its subname
1669  *
1670  * Return: pointer to the control on success, NULL if not found
1671  */
1672 struct cs_dsp_coeff_ctl *cs_dsp_get_ctl(struct cs_dsp *dsp, const char *name, int type,
1673 					unsigned int alg)
1674 {
1675 	struct cs_dsp_coeff_ctl *pos, *rslt = NULL;
1676 
1677 	lockdep_assert_held(&dsp->pwr_lock);
1678 
1679 	list_for_each_entry(pos, &dsp->ctl_list, list) {
1680 		if (!pos->subname)
1681 			continue;
1682 		if (strncmp(pos->subname, name, pos->subname_len) == 0 &&
1683 		    pos->fw_name == dsp->fw_name &&
1684 		    pos->alg_region.alg == alg &&
1685 		    pos->alg_region.type == type) {
1686 			rslt = pos;
1687 			break;
1688 		}
1689 	}
1690 
1691 	return rslt;
1692 }
1693 EXPORT_SYMBOL_NS_GPL(cs_dsp_get_ctl, FW_CS_DSP);
1694 
1695 static void cs_dsp_ctl_fixup_base(struct cs_dsp *dsp,
1696 				  const struct cs_dsp_alg_region *alg_region)
1697 {
1698 	struct cs_dsp_coeff_ctl *ctl;
1699 
1700 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
1701 		if (ctl->fw_name == dsp->fw_name &&
1702 		    alg_region->alg == ctl->alg_region.alg &&
1703 		    alg_region->type == ctl->alg_region.type) {
1704 			ctl->alg_region.base = alg_region->base;
1705 		}
1706 	}
1707 }
1708 
1709 static void *cs_dsp_read_algs(struct cs_dsp *dsp, size_t n_algs,
1710 			      const struct cs_dsp_region *mem,
1711 			      unsigned int pos, unsigned int len)
1712 {
1713 	void *alg;
1714 	unsigned int reg;
1715 	int ret;
1716 	__be32 val;
1717 
1718 	if (n_algs == 0) {
1719 		cs_dsp_err(dsp, "No algorithms\n");
1720 		return ERR_PTR(-EINVAL);
1721 	}
1722 
1723 	if (n_algs > 1024) {
1724 		cs_dsp_err(dsp, "Algorithm count %zx excessive\n", n_algs);
1725 		return ERR_PTR(-EINVAL);
1726 	}
1727 
1728 	/* Read the terminator first to validate the length */
1729 	reg = dsp->ops->region_to_reg(mem, pos + len);
1730 
1731 	ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val));
1732 	if (ret != 0) {
1733 		cs_dsp_err(dsp, "Failed to read algorithm list end: %d\n",
1734 			   ret);
1735 		return ERR_PTR(ret);
1736 	}
1737 
1738 	if (be32_to_cpu(val) != 0xbedead)
1739 		cs_dsp_warn(dsp, "Algorithm list end %x 0x%x != 0xbedead\n",
1740 			    reg, be32_to_cpu(val));
1741 
1742 	/* Convert length from DSP words to bytes */
1743 	len *= sizeof(u32);
1744 
1745 	alg = kzalloc(len, GFP_KERNEL | GFP_DMA);
1746 	if (!alg)
1747 		return ERR_PTR(-ENOMEM);
1748 
1749 	reg = dsp->ops->region_to_reg(mem, pos);
1750 
1751 	ret = regmap_raw_read(dsp->regmap, reg, alg, len);
1752 	if (ret != 0) {
1753 		cs_dsp_err(dsp, "Failed to read algorithm list: %d\n", ret);
1754 		kfree(alg);
1755 		return ERR_PTR(ret);
1756 	}
1757 
1758 	return alg;
1759 }
1760 
1761 /**
1762  * cs_dsp_find_alg_region() - Finds a matching algorithm region
1763  * @dsp: pointer to DSP structure
1764  * @type: the algorithm type to match
1765  * @id: the algorithm id to match
1766  *
1767  * Return: Pointer to matching algorithm region, or NULL if not found.
1768  */
1769 struct cs_dsp_alg_region *cs_dsp_find_alg_region(struct cs_dsp *dsp,
1770 						 int type, unsigned int id)
1771 {
1772 	struct cs_dsp_alg_region *alg_region;
1773 
1774 	lockdep_assert_held(&dsp->pwr_lock);
1775 
1776 	list_for_each_entry(alg_region, &dsp->alg_regions, list) {
1777 		if (id == alg_region->alg && type == alg_region->type)
1778 			return alg_region;
1779 	}
1780 
1781 	return NULL;
1782 }
1783 EXPORT_SYMBOL_NS_GPL(cs_dsp_find_alg_region, FW_CS_DSP);
1784 
1785 static struct cs_dsp_alg_region *cs_dsp_create_region(struct cs_dsp *dsp,
1786 						      int type, __be32 id,
1787 						      __be32 ver, __be32 base)
1788 {
1789 	struct cs_dsp_alg_region *alg_region;
1790 
1791 	alg_region = kzalloc(sizeof(*alg_region), GFP_KERNEL);
1792 	if (!alg_region)
1793 		return ERR_PTR(-ENOMEM);
1794 
1795 	alg_region->type = type;
1796 	alg_region->alg = be32_to_cpu(id);
1797 	alg_region->ver = be32_to_cpu(ver);
1798 	alg_region->base = be32_to_cpu(base);
1799 
1800 	list_add_tail(&alg_region->list, &dsp->alg_regions);
1801 
1802 	if (dsp->fw_ver > 0)
1803 		cs_dsp_ctl_fixup_base(dsp, alg_region);
1804 
1805 	return alg_region;
1806 }
1807 
1808 static void cs_dsp_free_alg_regions(struct cs_dsp *dsp)
1809 {
1810 	struct cs_dsp_alg_region *alg_region;
1811 
1812 	while (!list_empty(&dsp->alg_regions)) {
1813 		alg_region = list_first_entry(&dsp->alg_regions,
1814 					      struct cs_dsp_alg_region,
1815 					      list);
1816 		list_del(&alg_region->list);
1817 		kfree(alg_region);
1818 	}
1819 }
1820 
1821 static void cs_dsp_parse_wmfw_id_header(struct cs_dsp *dsp,
1822 					struct wmfw_id_hdr *fw, int nalgs)
1823 {
1824 	dsp->fw_id = be32_to_cpu(fw->id);
1825 	dsp->fw_id_version = be32_to_cpu(fw->ver);
1826 
1827 	cs_dsp_info(dsp, "Firmware: %x v%d.%d.%d, %d algorithms\n",
1828 		    dsp->fw_id, (dsp->fw_id_version & 0xff0000) >> 16,
1829 		    (dsp->fw_id_version & 0xff00) >> 8, dsp->fw_id_version & 0xff,
1830 		    nalgs);
1831 }
1832 
1833 static void cs_dsp_parse_wmfw_v3_id_header(struct cs_dsp *dsp,
1834 					   struct wmfw_v3_id_hdr *fw, int nalgs)
1835 {
1836 	dsp->fw_id = be32_to_cpu(fw->id);
1837 	dsp->fw_id_version = be32_to_cpu(fw->ver);
1838 	dsp->fw_vendor_id = be32_to_cpu(fw->vendor_id);
1839 
1840 	cs_dsp_info(dsp, "Firmware: %x vendor: 0x%x v%d.%d.%d, %d algorithms\n",
1841 		    dsp->fw_id, dsp->fw_vendor_id,
1842 		    (dsp->fw_id_version & 0xff0000) >> 16,
1843 		    (dsp->fw_id_version & 0xff00) >> 8, dsp->fw_id_version & 0xff,
1844 		    nalgs);
1845 }
1846 
1847 static int cs_dsp_create_regions(struct cs_dsp *dsp, __be32 id, __be32 ver,
1848 				 int nregions, const int *type, __be32 *base)
1849 {
1850 	struct cs_dsp_alg_region *alg_region;
1851 	int i;
1852 
1853 	for (i = 0; i < nregions; i++) {
1854 		alg_region = cs_dsp_create_region(dsp, type[i], id, ver, base[i]);
1855 		if (IS_ERR(alg_region))
1856 			return PTR_ERR(alg_region);
1857 	}
1858 
1859 	return 0;
1860 }
1861 
1862 static int cs_dsp_adsp1_setup_algs(struct cs_dsp *dsp)
1863 {
1864 	struct wmfw_adsp1_id_hdr adsp1_id;
1865 	struct wmfw_adsp1_alg_hdr *adsp1_alg;
1866 	struct cs_dsp_alg_region *alg_region;
1867 	const struct cs_dsp_region *mem;
1868 	unsigned int pos, len;
1869 	size_t n_algs;
1870 	int i, ret;
1871 
1872 	mem = cs_dsp_find_region(dsp, WMFW_ADSP1_DM);
1873 	if (WARN_ON(!mem))
1874 		return -EINVAL;
1875 
1876 	ret = regmap_raw_read(dsp->regmap, mem->base, &adsp1_id,
1877 			      sizeof(adsp1_id));
1878 	if (ret != 0) {
1879 		cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
1880 			   ret);
1881 		return ret;
1882 	}
1883 
1884 	n_algs = be32_to_cpu(adsp1_id.n_algs);
1885 
1886 	cs_dsp_parse_wmfw_id_header(dsp, &adsp1_id.fw, n_algs);
1887 
1888 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_ZM,
1889 					  adsp1_id.fw.id, adsp1_id.fw.ver,
1890 					  adsp1_id.zm);
1891 	if (IS_ERR(alg_region))
1892 		return PTR_ERR(alg_region);
1893 
1894 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_DM,
1895 					  adsp1_id.fw.id, adsp1_id.fw.ver,
1896 					  adsp1_id.dm);
1897 	if (IS_ERR(alg_region))
1898 		return PTR_ERR(alg_region);
1899 
1900 	/* Calculate offset and length in DSP words */
1901 	pos = sizeof(adsp1_id) / sizeof(u32);
1902 	len = (sizeof(*adsp1_alg) * n_algs) / sizeof(u32);
1903 
1904 	adsp1_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
1905 	if (IS_ERR(adsp1_alg))
1906 		return PTR_ERR(adsp1_alg);
1907 
1908 	for (i = 0; i < n_algs; i++) {
1909 		cs_dsp_info(dsp, "%d: ID %x v%d.%d.%d DM@%x ZM@%x\n",
1910 			    i, be32_to_cpu(adsp1_alg[i].alg.id),
1911 			    (be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff0000) >> 16,
1912 			    (be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff00) >> 8,
1913 			    be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff,
1914 			    be32_to_cpu(adsp1_alg[i].dm),
1915 			    be32_to_cpu(adsp1_alg[i].zm));
1916 
1917 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_DM,
1918 						  adsp1_alg[i].alg.id,
1919 						  adsp1_alg[i].alg.ver,
1920 						  adsp1_alg[i].dm);
1921 		if (IS_ERR(alg_region)) {
1922 			ret = PTR_ERR(alg_region);
1923 			goto out;
1924 		}
1925 		if (dsp->fw_ver == 0) {
1926 			if (i + 1 < n_algs) {
1927 				len = be32_to_cpu(adsp1_alg[i + 1].dm);
1928 				len -= be32_to_cpu(adsp1_alg[i].dm);
1929 				len *= 4;
1930 				cs_dsp_create_control(dsp, alg_region, 0,
1931 						      len, NULL, 0, 0,
1932 						      WMFW_CTL_TYPE_BYTES);
1933 			} else {
1934 				cs_dsp_warn(dsp, "Missing length info for region DM with ID %x\n",
1935 					    be32_to_cpu(adsp1_alg[i].alg.id));
1936 			}
1937 		}
1938 
1939 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_ZM,
1940 						  adsp1_alg[i].alg.id,
1941 						  adsp1_alg[i].alg.ver,
1942 						  adsp1_alg[i].zm);
1943 		if (IS_ERR(alg_region)) {
1944 			ret = PTR_ERR(alg_region);
1945 			goto out;
1946 		}
1947 		if (dsp->fw_ver == 0) {
1948 			if (i + 1 < n_algs) {
1949 				len = be32_to_cpu(adsp1_alg[i + 1].zm);
1950 				len -= be32_to_cpu(adsp1_alg[i].zm);
1951 				len *= 4;
1952 				cs_dsp_create_control(dsp, alg_region, 0,
1953 						      len, NULL, 0, 0,
1954 						      WMFW_CTL_TYPE_BYTES);
1955 			} else {
1956 				cs_dsp_warn(dsp, "Missing length info for region ZM with ID %x\n",
1957 					    be32_to_cpu(adsp1_alg[i].alg.id));
1958 			}
1959 		}
1960 	}
1961 
1962 out:
1963 	kfree(adsp1_alg);
1964 	return ret;
1965 }
1966 
1967 static int cs_dsp_adsp2_setup_algs(struct cs_dsp *dsp)
1968 {
1969 	struct wmfw_adsp2_id_hdr adsp2_id;
1970 	struct wmfw_adsp2_alg_hdr *adsp2_alg;
1971 	struct cs_dsp_alg_region *alg_region;
1972 	const struct cs_dsp_region *mem;
1973 	unsigned int pos, len;
1974 	size_t n_algs;
1975 	int i, ret;
1976 
1977 	mem = cs_dsp_find_region(dsp, WMFW_ADSP2_XM);
1978 	if (WARN_ON(!mem))
1979 		return -EINVAL;
1980 
1981 	ret = regmap_raw_read(dsp->regmap, mem->base, &adsp2_id,
1982 			      sizeof(adsp2_id));
1983 	if (ret != 0) {
1984 		cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
1985 			   ret);
1986 		return ret;
1987 	}
1988 
1989 	n_algs = be32_to_cpu(adsp2_id.n_algs);
1990 
1991 	cs_dsp_parse_wmfw_id_header(dsp, &adsp2_id.fw, n_algs);
1992 
1993 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_XM,
1994 					  adsp2_id.fw.id, adsp2_id.fw.ver,
1995 					  adsp2_id.xm);
1996 	if (IS_ERR(alg_region))
1997 		return PTR_ERR(alg_region);
1998 
1999 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_YM,
2000 					  adsp2_id.fw.id, adsp2_id.fw.ver,
2001 					  adsp2_id.ym);
2002 	if (IS_ERR(alg_region))
2003 		return PTR_ERR(alg_region);
2004 
2005 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_ZM,
2006 					  adsp2_id.fw.id, adsp2_id.fw.ver,
2007 					  adsp2_id.zm);
2008 	if (IS_ERR(alg_region))
2009 		return PTR_ERR(alg_region);
2010 
2011 	/* Calculate offset and length in DSP words */
2012 	pos = sizeof(adsp2_id) / sizeof(u32);
2013 	len = (sizeof(*adsp2_alg) * n_algs) / sizeof(u32);
2014 
2015 	adsp2_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
2016 	if (IS_ERR(adsp2_alg))
2017 		return PTR_ERR(adsp2_alg);
2018 
2019 	for (i = 0; i < n_algs; i++) {
2020 		cs_dsp_dbg(dsp,
2021 			   "%d: ID %x v%d.%d.%d XM@%x YM@%x ZM@%x\n",
2022 			   i, be32_to_cpu(adsp2_alg[i].alg.id),
2023 			   (be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff0000) >> 16,
2024 			   (be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff00) >> 8,
2025 			   be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff,
2026 			   be32_to_cpu(adsp2_alg[i].xm),
2027 			   be32_to_cpu(adsp2_alg[i].ym),
2028 			   be32_to_cpu(adsp2_alg[i].zm));
2029 
2030 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_XM,
2031 						  adsp2_alg[i].alg.id,
2032 						  adsp2_alg[i].alg.ver,
2033 						  adsp2_alg[i].xm);
2034 		if (IS_ERR(alg_region)) {
2035 			ret = PTR_ERR(alg_region);
2036 			goto out;
2037 		}
2038 		if (dsp->fw_ver == 0) {
2039 			if (i + 1 < n_algs) {
2040 				len = be32_to_cpu(adsp2_alg[i + 1].xm);
2041 				len -= be32_to_cpu(adsp2_alg[i].xm);
2042 				len *= 4;
2043 				cs_dsp_create_control(dsp, alg_region, 0,
2044 						      len, NULL, 0, 0,
2045 						      WMFW_CTL_TYPE_BYTES);
2046 			} else {
2047 				cs_dsp_warn(dsp, "Missing length info for region XM with ID %x\n",
2048 					    be32_to_cpu(adsp2_alg[i].alg.id));
2049 			}
2050 		}
2051 
2052 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_YM,
2053 						  adsp2_alg[i].alg.id,
2054 						  adsp2_alg[i].alg.ver,
2055 						  adsp2_alg[i].ym);
2056 		if (IS_ERR(alg_region)) {
2057 			ret = PTR_ERR(alg_region);
2058 			goto out;
2059 		}
2060 		if (dsp->fw_ver == 0) {
2061 			if (i + 1 < n_algs) {
2062 				len = be32_to_cpu(adsp2_alg[i + 1].ym);
2063 				len -= be32_to_cpu(adsp2_alg[i].ym);
2064 				len *= 4;
2065 				cs_dsp_create_control(dsp, alg_region, 0,
2066 						      len, NULL, 0, 0,
2067 						      WMFW_CTL_TYPE_BYTES);
2068 			} else {
2069 				cs_dsp_warn(dsp, "Missing length info for region YM with ID %x\n",
2070 					    be32_to_cpu(adsp2_alg[i].alg.id));
2071 			}
2072 		}
2073 
2074 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_ZM,
2075 						  adsp2_alg[i].alg.id,
2076 						  adsp2_alg[i].alg.ver,
2077 						  adsp2_alg[i].zm);
2078 		if (IS_ERR(alg_region)) {
2079 			ret = PTR_ERR(alg_region);
2080 			goto out;
2081 		}
2082 		if (dsp->fw_ver == 0) {
2083 			if (i + 1 < n_algs) {
2084 				len = be32_to_cpu(adsp2_alg[i + 1].zm);
2085 				len -= be32_to_cpu(adsp2_alg[i].zm);
2086 				len *= 4;
2087 				cs_dsp_create_control(dsp, alg_region, 0,
2088 						      len, NULL, 0, 0,
2089 						      WMFW_CTL_TYPE_BYTES);
2090 			} else {
2091 				cs_dsp_warn(dsp, "Missing length info for region ZM with ID %x\n",
2092 					    be32_to_cpu(adsp2_alg[i].alg.id));
2093 			}
2094 		}
2095 	}
2096 
2097 out:
2098 	kfree(adsp2_alg);
2099 	return ret;
2100 }
2101 
2102 static int cs_dsp_halo_create_regions(struct cs_dsp *dsp, __be32 id, __be32 ver,
2103 				      __be32 xm_base, __be32 ym_base)
2104 {
2105 	static const int types[] = {
2106 		WMFW_ADSP2_XM, WMFW_HALO_XM_PACKED,
2107 		WMFW_ADSP2_YM, WMFW_HALO_YM_PACKED
2108 	};
2109 	__be32 bases[] = { xm_base, xm_base, ym_base, ym_base };
2110 
2111 	return cs_dsp_create_regions(dsp, id, ver, ARRAY_SIZE(types), types, bases);
2112 }
2113 
2114 static int cs_dsp_halo_setup_algs(struct cs_dsp *dsp)
2115 {
2116 	struct wmfw_halo_id_hdr halo_id;
2117 	struct wmfw_halo_alg_hdr *halo_alg;
2118 	const struct cs_dsp_region *mem;
2119 	unsigned int pos, len;
2120 	size_t n_algs;
2121 	int i, ret;
2122 
2123 	mem = cs_dsp_find_region(dsp, WMFW_ADSP2_XM);
2124 	if (WARN_ON(!mem))
2125 		return -EINVAL;
2126 
2127 	ret = regmap_raw_read(dsp->regmap, mem->base, &halo_id,
2128 			      sizeof(halo_id));
2129 	if (ret != 0) {
2130 		cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
2131 			   ret);
2132 		return ret;
2133 	}
2134 
2135 	n_algs = be32_to_cpu(halo_id.n_algs);
2136 
2137 	cs_dsp_parse_wmfw_v3_id_header(dsp, &halo_id.fw, n_algs);
2138 
2139 	ret = cs_dsp_halo_create_regions(dsp, halo_id.fw.id, halo_id.fw.ver,
2140 					 halo_id.xm_base, halo_id.ym_base);
2141 	if (ret)
2142 		return ret;
2143 
2144 	/* Calculate offset and length in DSP words */
2145 	pos = sizeof(halo_id) / sizeof(u32);
2146 	len = (sizeof(*halo_alg) * n_algs) / sizeof(u32);
2147 
2148 	halo_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
2149 	if (IS_ERR(halo_alg))
2150 		return PTR_ERR(halo_alg);
2151 
2152 	for (i = 0; i < n_algs; i++) {
2153 		cs_dsp_dbg(dsp,
2154 			   "%d: ID %x v%d.%d.%d XM@%x YM@%x\n",
2155 			   i, be32_to_cpu(halo_alg[i].alg.id),
2156 			   (be32_to_cpu(halo_alg[i].alg.ver) & 0xff0000) >> 16,
2157 			   (be32_to_cpu(halo_alg[i].alg.ver) & 0xff00) >> 8,
2158 			   be32_to_cpu(halo_alg[i].alg.ver) & 0xff,
2159 			   be32_to_cpu(halo_alg[i].xm_base),
2160 			   be32_to_cpu(halo_alg[i].ym_base));
2161 
2162 		ret = cs_dsp_halo_create_regions(dsp, halo_alg[i].alg.id,
2163 						 halo_alg[i].alg.ver,
2164 						 halo_alg[i].xm_base,
2165 						 halo_alg[i].ym_base);
2166 		if (ret)
2167 			goto out;
2168 	}
2169 
2170 out:
2171 	kfree(halo_alg);
2172 	return ret;
2173 }
2174 
2175 static int cs_dsp_load_coeff(struct cs_dsp *dsp, const struct firmware *firmware,
2176 			     const char *file)
2177 {
2178 	LIST_HEAD(buf_list);
2179 	struct regmap *regmap = dsp->regmap;
2180 	struct wmfw_coeff_hdr *hdr;
2181 	struct wmfw_coeff_item *blk;
2182 	const struct cs_dsp_region *mem;
2183 	struct cs_dsp_alg_region *alg_region;
2184 	const char *region_name;
2185 	int ret, pos, blocks, type, offset, reg, version;
2186 	char *text = NULL;
2187 	struct cs_dsp_buf *buf;
2188 
2189 	if (!firmware)
2190 		return 0;
2191 
2192 	ret = -EINVAL;
2193 
2194 	if (sizeof(*hdr) >= firmware->size) {
2195 		cs_dsp_err(dsp, "%s: coefficient file too short, %zu bytes\n",
2196 			   file, firmware->size);
2197 		goto out_fw;
2198 	}
2199 
2200 	hdr = (void *)&firmware->data[0];
2201 	if (memcmp(hdr->magic, "WMDR", 4) != 0) {
2202 		cs_dsp_err(dsp, "%s: invalid coefficient magic\n", file);
2203 		goto out_fw;
2204 	}
2205 
2206 	switch (be32_to_cpu(hdr->rev) & 0xff) {
2207 	case 1:
2208 	case 2:
2209 		break;
2210 	default:
2211 		cs_dsp_err(dsp, "%s: Unsupported coefficient file format %d\n",
2212 			   file, be32_to_cpu(hdr->rev) & 0xff);
2213 		ret = -EINVAL;
2214 		goto out_fw;
2215 	}
2216 
2217 	cs_dsp_info(dsp, "%s: v%d.%d.%d\n", file,
2218 		    (le32_to_cpu(hdr->ver) >> 16) & 0xff,
2219 		    (le32_to_cpu(hdr->ver) >>  8) & 0xff,
2220 		    le32_to_cpu(hdr->ver) & 0xff);
2221 
2222 	pos = le32_to_cpu(hdr->len);
2223 
2224 	blocks = 0;
2225 	while (pos < firmware->size) {
2226 		/* Is there enough data for a complete block header? */
2227 		if (sizeof(*blk) > firmware->size - pos) {
2228 			ret = -EOVERFLOW;
2229 			goto out_fw;
2230 		}
2231 
2232 		blk = (void *)(&firmware->data[pos]);
2233 
2234 		if (le32_to_cpu(blk->len) > firmware->size - pos - sizeof(*blk)) {
2235 			ret = -EOVERFLOW;
2236 			goto out_fw;
2237 		}
2238 
2239 		type = le16_to_cpu(blk->type);
2240 		offset = le16_to_cpu(blk->offset);
2241 		version = le32_to_cpu(blk->ver) >> 8;
2242 
2243 		cs_dsp_dbg(dsp, "%s.%d: %x v%d.%d.%d\n",
2244 			   file, blocks, le32_to_cpu(blk->id),
2245 			   (le32_to_cpu(blk->ver) >> 16) & 0xff,
2246 			   (le32_to_cpu(blk->ver) >>  8) & 0xff,
2247 			   le32_to_cpu(blk->ver) & 0xff);
2248 		cs_dsp_dbg(dsp, "%s.%d: %d bytes at 0x%x in %x\n",
2249 			   file, blocks, le32_to_cpu(blk->len), offset, type);
2250 
2251 		reg = 0;
2252 		region_name = "Unknown";
2253 		switch (type) {
2254 		case (WMFW_NAME_TEXT << 8):
2255 			text = kzalloc(le32_to_cpu(blk->len) + 1, GFP_KERNEL);
2256 			break;
2257 		case (WMFW_INFO_TEXT << 8):
2258 		case (WMFW_METADATA << 8):
2259 			break;
2260 		case (WMFW_ABSOLUTE << 8):
2261 			/*
2262 			 * Old files may use this for global
2263 			 * coefficients.
2264 			 */
2265 			if (le32_to_cpu(blk->id) == dsp->fw_id &&
2266 			    offset == 0) {
2267 				region_name = "global coefficients";
2268 				mem = cs_dsp_find_region(dsp, type);
2269 				if (!mem) {
2270 					cs_dsp_err(dsp, "No ZM\n");
2271 					break;
2272 				}
2273 				reg = dsp->ops->region_to_reg(mem, 0);
2274 
2275 			} else {
2276 				region_name = "register";
2277 				reg = offset;
2278 			}
2279 			break;
2280 
2281 		case WMFW_ADSP1_DM:
2282 		case WMFW_ADSP1_ZM:
2283 		case WMFW_ADSP2_XM:
2284 		case WMFW_ADSP2_YM:
2285 		case WMFW_HALO_XM_PACKED:
2286 		case WMFW_HALO_YM_PACKED:
2287 		case WMFW_HALO_PM_PACKED:
2288 			cs_dsp_dbg(dsp, "%s.%d: %d bytes in %x for %x\n",
2289 				   file, blocks, le32_to_cpu(blk->len),
2290 				   type, le32_to_cpu(blk->id));
2291 
2292 			region_name = cs_dsp_mem_region_name(type);
2293 			mem = cs_dsp_find_region(dsp, type);
2294 			if (!mem) {
2295 				cs_dsp_err(dsp, "No base for region %x\n", type);
2296 				break;
2297 			}
2298 
2299 			alg_region = cs_dsp_find_alg_region(dsp, type,
2300 							    le32_to_cpu(blk->id));
2301 			if (alg_region) {
2302 				if (version != alg_region->ver)
2303 					cs_dsp_warn(dsp,
2304 						    "Algorithm coefficient version %d.%d.%d but expected %d.%d.%d\n",
2305 						   (version >> 16) & 0xFF,
2306 						   (version >> 8) & 0xFF,
2307 						   version & 0xFF,
2308 						   (alg_region->ver >> 16) & 0xFF,
2309 						   (alg_region->ver >> 8) & 0xFF,
2310 						   alg_region->ver & 0xFF);
2311 
2312 				reg = alg_region->base;
2313 				reg = dsp->ops->region_to_reg(mem, reg);
2314 				reg += offset;
2315 			} else {
2316 				cs_dsp_err(dsp, "No %s for algorithm %x\n",
2317 					   region_name, le32_to_cpu(blk->id));
2318 			}
2319 			break;
2320 
2321 		default:
2322 			cs_dsp_err(dsp, "%s.%d: Unknown region type %x at %d\n",
2323 				   file, blocks, type, pos);
2324 			break;
2325 		}
2326 
2327 		if (text) {
2328 			memcpy(text, blk->data, le32_to_cpu(blk->len));
2329 			cs_dsp_info(dsp, "%s: %s\n", dsp->fw_name, text);
2330 			kfree(text);
2331 			text = NULL;
2332 		}
2333 
2334 		if (reg) {
2335 			buf = cs_dsp_buf_alloc(blk->data,
2336 					       le32_to_cpu(blk->len),
2337 					       &buf_list);
2338 			if (!buf) {
2339 				cs_dsp_err(dsp, "Out of memory\n");
2340 				ret = -ENOMEM;
2341 				goto out_fw;
2342 			}
2343 
2344 			cs_dsp_dbg(dsp, "%s.%d: Writing %d bytes at %x\n",
2345 				   file, blocks, le32_to_cpu(blk->len),
2346 				   reg);
2347 			ret = regmap_raw_write_async(regmap, reg, buf->buf,
2348 						     le32_to_cpu(blk->len));
2349 			if (ret != 0) {
2350 				cs_dsp_err(dsp,
2351 					   "%s.%d: Failed to write to %x in %s: %d\n",
2352 					   file, blocks, reg, region_name, ret);
2353 			}
2354 		}
2355 
2356 		pos += (le32_to_cpu(blk->len) + sizeof(*blk) + 3) & ~0x03;
2357 		blocks++;
2358 	}
2359 
2360 	ret = regmap_async_complete(regmap);
2361 	if (ret != 0)
2362 		cs_dsp_err(dsp, "Failed to complete async write: %d\n", ret);
2363 
2364 	if (pos > firmware->size)
2365 		cs_dsp_warn(dsp, "%s.%d: %zu bytes at end of file\n",
2366 			    file, blocks, pos - firmware->size);
2367 
2368 	cs_dsp_debugfs_save_binname(dsp, file);
2369 
2370 out_fw:
2371 	regmap_async_complete(regmap);
2372 	cs_dsp_buf_free(&buf_list);
2373 	kfree(text);
2374 
2375 	if (ret == -EOVERFLOW)
2376 		cs_dsp_err(dsp, "%s: file content overflows file data\n", file);
2377 
2378 	return ret;
2379 }
2380 
2381 static int cs_dsp_create_name(struct cs_dsp *dsp)
2382 {
2383 	if (!dsp->name) {
2384 		dsp->name = devm_kasprintf(dsp->dev, GFP_KERNEL, "DSP%d",
2385 					   dsp->num);
2386 		if (!dsp->name)
2387 			return -ENOMEM;
2388 	}
2389 
2390 	return 0;
2391 }
2392 
2393 static int cs_dsp_common_init(struct cs_dsp *dsp)
2394 {
2395 	int ret;
2396 
2397 	ret = cs_dsp_create_name(dsp);
2398 	if (ret)
2399 		return ret;
2400 
2401 	INIT_LIST_HEAD(&dsp->alg_regions);
2402 	INIT_LIST_HEAD(&dsp->ctl_list);
2403 
2404 	mutex_init(&dsp->pwr_lock);
2405 
2406 #ifdef CONFIG_DEBUG_FS
2407 	/* Ensure this is invalid if client never provides a debugfs root */
2408 	dsp->debugfs_root = ERR_PTR(-ENODEV);
2409 #endif
2410 
2411 	return 0;
2412 }
2413 
2414 /**
2415  * cs_dsp_adsp1_init() - Initialise a cs_dsp structure representing a ADSP1 device
2416  * @dsp: pointer to DSP structure
2417  *
2418  * Return: Zero for success, a negative number on error.
2419  */
2420 int cs_dsp_adsp1_init(struct cs_dsp *dsp)
2421 {
2422 	dsp->ops = &cs_dsp_adsp1_ops;
2423 
2424 	return cs_dsp_common_init(dsp);
2425 }
2426 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_init, FW_CS_DSP);
2427 
2428 /**
2429  * cs_dsp_adsp1_power_up() - Load and start the named firmware
2430  * @dsp: pointer to DSP structure
2431  * @wmfw_firmware: the firmware to be sent
2432  * @wmfw_filename: file name of firmware to be sent
2433  * @coeff_firmware: the coefficient data to be sent
2434  * @coeff_filename: file name of coefficient to data be sent
2435  * @fw_name: the user-friendly firmware name
2436  *
2437  * Return: Zero for success, a negative number on error.
2438  */
2439 int cs_dsp_adsp1_power_up(struct cs_dsp *dsp,
2440 			  const struct firmware *wmfw_firmware, char *wmfw_filename,
2441 			  const struct firmware *coeff_firmware, char *coeff_filename,
2442 			  const char *fw_name)
2443 {
2444 	unsigned int val;
2445 	int ret;
2446 
2447 	mutex_lock(&dsp->pwr_lock);
2448 
2449 	dsp->fw_name = fw_name;
2450 
2451 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2452 			   ADSP1_SYS_ENA, ADSP1_SYS_ENA);
2453 
2454 	/*
2455 	 * For simplicity set the DSP clock rate to be the
2456 	 * SYSCLK rate rather than making it configurable.
2457 	 */
2458 	if (dsp->sysclk_reg) {
2459 		ret = regmap_read(dsp->regmap, dsp->sysclk_reg, &val);
2460 		if (ret != 0) {
2461 			cs_dsp_err(dsp, "Failed to read SYSCLK state: %d\n", ret);
2462 			goto err_mutex;
2463 		}
2464 
2465 		val = (val & dsp->sysclk_mask) >> dsp->sysclk_shift;
2466 
2467 		ret = regmap_update_bits(dsp->regmap,
2468 					 dsp->base + ADSP1_CONTROL_31,
2469 					 ADSP1_CLK_SEL_MASK, val);
2470 		if (ret != 0) {
2471 			cs_dsp_err(dsp, "Failed to set clock rate: %d\n", ret);
2472 			goto err_mutex;
2473 		}
2474 	}
2475 
2476 	ret = cs_dsp_load(dsp, wmfw_firmware, wmfw_filename);
2477 	if (ret != 0)
2478 		goto err_ena;
2479 
2480 	ret = cs_dsp_adsp1_setup_algs(dsp);
2481 	if (ret != 0)
2482 		goto err_ena;
2483 
2484 	ret = cs_dsp_load_coeff(dsp, coeff_firmware, coeff_filename);
2485 	if (ret != 0)
2486 		goto err_ena;
2487 
2488 	/* Initialize caches for enabled and unset controls */
2489 	ret = cs_dsp_coeff_init_control_caches(dsp);
2490 	if (ret != 0)
2491 		goto err_ena;
2492 
2493 	/* Sync set controls */
2494 	ret = cs_dsp_coeff_sync_controls(dsp);
2495 	if (ret != 0)
2496 		goto err_ena;
2497 
2498 	dsp->booted = true;
2499 
2500 	/* Start the core running */
2501 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2502 			   ADSP1_CORE_ENA | ADSP1_START,
2503 			   ADSP1_CORE_ENA | ADSP1_START);
2504 
2505 	dsp->running = true;
2506 
2507 	mutex_unlock(&dsp->pwr_lock);
2508 
2509 	return 0;
2510 
2511 err_ena:
2512 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2513 			   ADSP1_SYS_ENA, 0);
2514 err_mutex:
2515 	mutex_unlock(&dsp->pwr_lock);
2516 	return ret;
2517 }
2518 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_power_up, FW_CS_DSP);
2519 
2520 /**
2521  * cs_dsp_adsp1_power_down() - Halts the DSP
2522  * @dsp: pointer to DSP structure
2523  */
2524 void cs_dsp_adsp1_power_down(struct cs_dsp *dsp)
2525 {
2526 	struct cs_dsp_coeff_ctl *ctl;
2527 
2528 	mutex_lock(&dsp->pwr_lock);
2529 
2530 	dsp->running = false;
2531 	dsp->booted = false;
2532 
2533 	/* Halt the core */
2534 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2535 			   ADSP1_CORE_ENA | ADSP1_START, 0);
2536 
2537 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_19,
2538 			   ADSP1_WDMA_BUFFER_LENGTH_MASK, 0);
2539 
2540 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2541 			   ADSP1_SYS_ENA, 0);
2542 
2543 	list_for_each_entry(ctl, &dsp->ctl_list, list)
2544 		ctl->enabled = 0;
2545 
2546 	cs_dsp_free_alg_regions(dsp);
2547 
2548 	mutex_unlock(&dsp->pwr_lock);
2549 }
2550 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_power_down, FW_CS_DSP);
2551 
2552 static int cs_dsp_adsp2v2_enable_core(struct cs_dsp *dsp)
2553 {
2554 	unsigned int val;
2555 	int ret, count;
2556 
2557 	/* Wait for the RAM to start, should be near instantaneous */
2558 	for (count = 0; count < 10; ++count) {
2559 		ret = regmap_read(dsp->regmap, dsp->base + ADSP2_STATUS1, &val);
2560 		if (ret != 0)
2561 			return ret;
2562 
2563 		if (val & ADSP2_RAM_RDY)
2564 			break;
2565 
2566 		usleep_range(250, 500);
2567 	}
2568 
2569 	if (!(val & ADSP2_RAM_RDY)) {
2570 		cs_dsp_err(dsp, "Failed to start DSP RAM\n");
2571 		return -EBUSY;
2572 	}
2573 
2574 	cs_dsp_dbg(dsp, "RAM ready after %d polls\n", count);
2575 
2576 	return 0;
2577 }
2578 
2579 static int cs_dsp_adsp2_enable_core(struct cs_dsp *dsp)
2580 {
2581 	int ret;
2582 
2583 	ret = regmap_update_bits_async(dsp->regmap, dsp->base + ADSP2_CONTROL,
2584 				       ADSP2_SYS_ENA, ADSP2_SYS_ENA);
2585 	if (ret != 0)
2586 		return ret;
2587 
2588 	return cs_dsp_adsp2v2_enable_core(dsp);
2589 }
2590 
2591 static int cs_dsp_adsp2_lock(struct cs_dsp *dsp, unsigned int lock_regions)
2592 {
2593 	struct regmap *regmap = dsp->regmap;
2594 	unsigned int code0, code1, lock_reg;
2595 
2596 	if (!(lock_regions & CS_ADSP2_REGION_ALL))
2597 		return 0;
2598 
2599 	lock_regions &= CS_ADSP2_REGION_ALL;
2600 	lock_reg = dsp->base + ADSP2_LOCK_REGION_1_LOCK_REGION_0;
2601 
2602 	while (lock_regions) {
2603 		code0 = code1 = 0;
2604 		if (lock_regions & BIT(0)) {
2605 			code0 = ADSP2_LOCK_CODE_0;
2606 			code1 = ADSP2_LOCK_CODE_1;
2607 		}
2608 		if (lock_regions & BIT(1)) {
2609 			code0 |= ADSP2_LOCK_CODE_0 << ADSP2_LOCK_REGION_SHIFT;
2610 			code1 |= ADSP2_LOCK_CODE_1 << ADSP2_LOCK_REGION_SHIFT;
2611 		}
2612 		regmap_write(regmap, lock_reg, code0);
2613 		regmap_write(regmap, lock_reg, code1);
2614 		lock_regions >>= 2;
2615 		lock_reg += 2;
2616 	}
2617 
2618 	return 0;
2619 }
2620 
2621 static int cs_dsp_adsp2_enable_memory(struct cs_dsp *dsp)
2622 {
2623 	return regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2624 				  ADSP2_MEM_ENA, ADSP2_MEM_ENA);
2625 }
2626 
2627 static void cs_dsp_adsp2_disable_memory(struct cs_dsp *dsp)
2628 {
2629 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2630 			   ADSP2_MEM_ENA, 0);
2631 }
2632 
2633 static void cs_dsp_adsp2_disable_core(struct cs_dsp *dsp)
2634 {
2635 	regmap_write(dsp->regmap, dsp->base + ADSP2_RDMA_CONFIG_1, 0);
2636 	regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_1, 0);
2637 	regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_2, 0);
2638 
2639 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2640 			   ADSP2_SYS_ENA, 0);
2641 }
2642 
2643 static void cs_dsp_adsp2v2_disable_core(struct cs_dsp *dsp)
2644 {
2645 	regmap_write(dsp->regmap, dsp->base + ADSP2_RDMA_CONFIG_1, 0);
2646 	regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_1, 0);
2647 	regmap_write(dsp->regmap, dsp->base + ADSP2V2_WDMA_CONFIG_2, 0);
2648 }
2649 
2650 static int cs_dsp_halo_configure_mpu(struct cs_dsp *dsp, unsigned int lock_regions)
2651 {
2652 	struct reg_sequence config[] = {
2653 		{ dsp->base + HALO_MPU_LOCK_CONFIG,     0x5555 },
2654 		{ dsp->base + HALO_MPU_LOCK_CONFIG,     0xAAAA },
2655 		{ dsp->base + HALO_MPU_XMEM_ACCESS_0,   0xFFFFFFFF },
2656 		{ dsp->base + HALO_MPU_YMEM_ACCESS_0,   0xFFFFFFFF },
2657 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_0, lock_regions },
2658 		{ dsp->base + HALO_MPU_XREG_ACCESS_0,   lock_regions },
2659 		{ dsp->base + HALO_MPU_YREG_ACCESS_0,   lock_regions },
2660 		{ dsp->base + HALO_MPU_XMEM_ACCESS_1,   0xFFFFFFFF },
2661 		{ dsp->base + HALO_MPU_YMEM_ACCESS_1,   0xFFFFFFFF },
2662 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_1, lock_regions },
2663 		{ dsp->base + HALO_MPU_XREG_ACCESS_1,   lock_regions },
2664 		{ dsp->base + HALO_MPU_YREG_ACCESS_1,   lock_regions },
2665 		{ dsp->base + HALO_MPU_XMEM_ACCESS_2,   0xFFFFFFFF },
2666 		{ dsp->base + HALO_MPU_YMEM_ACCESS_2,   0xFFFFFFFF },
2667 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_2, lock_regions },
2668 		{ dsp->base + HALO_MPU_XREG_ACCESS_2,   lock_regions },
2669 		{ dsp->base + HALO_MPU_YREG_ACCESS_2,   lock_regions },
2670 		{ dsp->base + HALO_MPU_XMEM_ACCESS_3,   0xFFFFFFFF },
2671 		{ dsp->base + HALO_MPU_YMEM_ACCESS_3,   0xFFFFFFFF },
2672 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_3, lock_regions },
2673 		{ dsp->base + HALO_MPU_XREG_ACCESS_3,   lock_regions },
2674 		{ dsp->base + HALO_MPU_YREG_ACCESS_3,   lock_regions },
2675 		{ dsp->base + HALO_MPU_LOCK_CONFIG,     0 },
2676 	};
2677 
2678 	return regmap_multi_reg_write(dsp->regmap, config, ARRAY_SIZE(config));
2679 }
2680 
2681 /**
2682  * cs_dsp_set_dspclk() - Applies the given frequency to the given cs_dsp
2683  * @dsp: pointer to DSP structure
2684  * @freq: clock rate to set
2685  *
2686  * This is only for use on ADSP2 cores.
2687  *
2688  * Return: Zero for success, a negative number on error.
2689  */
2690 int cs_dsp_set_dspclk(struct cs_dsp *dsp, unsigned int freq)
2691 {
2692 	int ret;
2693 
2694 	ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CLOCKING,
2695 				 ADSP2_CLK_SEL_MASK,
2696 				 freq << ADSP2_CLK_SEL_SHIFT);
2697 	if (ret)
2698 		cs_dsp_err(dsp, "Failed to set clock rate: %d\n", ret);
2699 
2700 	return ret;
2701 }
2702 EXPORT_SYMBOL_NS_GPL(cs_dsp_set_dspclk, FW_CS_DSP);
2703 
2704 static void cs_dsp_stop_watchdog(struct cs_dsp *dsp)
2705 {
2706 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_WATCHDOG,
2707 			   ADSP2_WDT_ENA_MASK, 0);
2708 }
2709 
2710 static void cs_dsp_halo_stop_watchdog(struct cs_dsp *dsp)
2711 {
2712 	regmap_update_bits(dsp->regmap, dsp->base + HALO_WDT_CONTROL,
2713 			   HALO_WDT_EN_MASK, 0);
2714 }
2715 
2716 /**
2717  * cs_dsp_power_up() - Downloads firmware to the DSP
2718  * @dsp: pointer to DSP structure
2719  * @wmfw_firmware: the firmware to be sent
2720  * @wmfw_filename: file name of firmware to be sent
2721  * @coeff_firmware: the coefficient data to be sent
2722  * @coeff_filename: file name of coefficient to data be sent
2723  * @fw_name: the user-friendly firmware name
2724  *
2725  * This function is used on ADSP2 and Halo DSP cores, it powers-up the DSP core
2726  * and downloads the firmware but does not start the firmware running. The
2727  * cs_dsp booted flag will be set once completed and if the core has a low-power
2728  * memory retention mode it will be put into this state after the firmware is
2729  * downloaded.
2730  *
2731  * Return: Zero for success, a negative number on error.
2732  */
2733 int cs_dsp_power_up(struct cs_dsp *dsp,
2734 		    const struct firmware *wmfw_firmware, char *wmfw_filename,
2735 		    const struct firmware *coeff_firmware, char *coeff_filename,
2736 		    const char *fw_name)
2737 {
2738 	int ret;
2739 
2740 	mutex_lock(&dsp->pwr_lock);
2741 
2742 	dsp->fw_name = fw_name;
2743 
2744 	if (dsp->ops->enable_memory) {
2745 		ret = dsp->ops->enable_memory(dsp);
2746 		if (ret != 0)
2747 			goto err_mutex;
2748 	}
2749 
2750 	if (dsp->ops->enable_core) {
2751 		ret = dsp->ops->enable_core(dsp);
2752 		if (ret != 0)
2753 			goto err_mem;
2754 	}
2755 
2756 	ret = cs_dsp_load(dsp, wmfw_firmware, wmfw_filename);
2757 	if (ret != 0)
2758 		goto err_ena;
2759 
2760 	ret = dsp->ops->setup_algs(dsp);
2761 	if (ret != 0)
2762 		goto err_ena;
2763 
2764 	ret = cs_dsp_load_coeff(dsp, coeff_firmware, coeff_filename);
2765 	if (ret != 0)
2766 		goto err_ena;
2767 
2768 	/* Initialize caches for enabled and unset controls */
2769 	ret = cs_dsp_coeff_init_control_caches(dsp);
2770 	if (ret != 0)
2771 		goto err_ena;
2772 
2773 	if (dsp->ops->disable_core)
2774 		dsp->ops->disable_core(dsp);
2775 
2776 	dsp->booted = true;
2777 
2778 	mutex_unlock(&dsp->pwr_lock);
2779 
2780 	return 0;
2781 err_ena:
2782 	if (dsp->ops->disable_core)
2783 		dsp->ops->disable_core(dsp);
2784 err_mem:
2785 	if (dsp->ops->disable_memory)
2786 		dsp->ops->disable_memory(dsp);
2787 err_mutex:
2788 	mutex_unlock(&dsp->pwr_lock);
2789 
2790 	return ret;
2791 }
2792 EXPORT_SYMBOL_NS_GPL(cs_dsp_power_up, FW_CS_DSP);
2793 
2794 /**
2795  * cs_dsp_power_down() - Powers-down the DSP
2796  * @dsp: pointer to DSP structure
2797  *
2798  * cs_dsp_stop() must have been called before this function. The core will be
2799  * fully powered down and so the memory will not be retained.
2800  */
2801 void cs_dsp_power_down(struct cs_dsp *dsp)
2802 {
2803 	struct cs_dsp_coeff_ctl *ctl;
2804 
2805 	mutex_lock(&dsp->pwr_lock);
2806 
2807 	cs_dsp_debugfs_clear(dsp);
2808 
2809 	dsp->fw_id = 0;
2810 	dsp->fw_id_version = 0;
2811 
2812 	dsp->booted = false;
2813 
2814 	if (dsp->ops->disable_memory)
2815 		dsp->ops->disable_memory(dsp);
2816 
2817 	list_for_each_entry(ctl, &dsp->ctl_list, list)
2818 		ctl->enabled = 0;
2819 
2820 	cs_dsp_free_alg_regions(dsp);
2821 
2822 	mutex_unlock(&dsp->pwr_lock);
2823 
2824 	cs_dsp_dbg(dsp, "Shutdown complete\n");
2825 }
2826 EXPORT_SYMBOL_NS_GPL(cs_dsp_power_down, FW_CS_DSP);
2827 
2828 static int cs_dsp_adsp2_start_core(struct cs_dsp *dsp)
2829 {
2830 	return regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2831 				  ADSP2_CORE_ENA | ADSP2_START,
2832 				  ADSP2_CORE_ENA | ADSP2_START);
2833 }
2834 
2835 static void cs_dsp_adsp2_stop_core(struct cs_dsp *dsp)
2836 {
2837 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2838 			   ADSP2_CORE_ENA | ADSP2_START, 0);
2839 }
2840 
2841 /**
2842  * cs_dsp_run() - Starts the firmware running
2843  * @dsp: pointer to DSP structure
2844  *
2845  * cs_dsp_power_up() must have previously been called successfully.
2846  *
2847  * Return: Zero for success, a negative number on error.
2848  */
2849 int cs_dsp_run(struct cs_dsp *dsp)
2850 {
2851 	int ret;
2852 
2853 	mutex_lock(&dsp->pwr_lock);
2854 
2855 	if (!dsp->booted) {
2856 		ret = -EIO;
2857 		goto err;
2858 	}
2859 
2860 	if (dsp->ops->enable_core) {
2861 		ret = dsp->ops->enable_core(dsp);
2862 		if (ret != 0)
2863 			goto err;
2864 	}
2865 
2866 	if (dsp->client_ops->pre_run) {
2867 		ret = dsp->client_ops->pre_run(dsp);
2868 		if (ret)
2869 			goto err;
2870 	}
2871 
2872 	/* Sync set controls */
2873 	ret = cs_dsp_coeff_sync_controls(dsp);
2874 	if (ret != 0)
2875 		goto err;
2876 
2877 	if (dsp->ops->lock_memory) {
2878 		ret = dsp->ops->lock_memory(dsp, dsp->lock_regions);
2879 		if (ret != 0) {
2880 			cs_dsp_err(dsp, "Error configuring MPU: %d\n", ret);
2881 			goto err;
2882 		}
2883 	}
2884 
2885 	if (dsp->ops->start_core) {
2886 		ret = dsp->ops->start_core(dsp);
2887 		if (ret != 0)
2888 			goto err;
2889 	}
2890 
2891 	dsp->running = true;
2892 
2893 	if (dsp->client_ops->post_run) {
2894 		ret = dsp->client_ops->post_run(dsp);
2895 		if (ret)
2896 			goto err;
2897 	}
2898 
2899 	mutex_unlock(&dsp->pwr_lock);
2900 
2901 	return 0;
2902 
2903 err:
2904 	if (dsp->ops->stop_core)
2905 		dsp->ops->stop_core(dsp);
2906 	if (dsp->ops->disable_core)
2907 		dsp->ops->disable_core(dsp);
2908 	mutex_unlock(&dsp->pwr_lock);
2909 
2910 	return ret;
2911 }
2912 EXPORT_SYMBOL_NS_GPL(cs_dsp_run, FW_CS_DSP);
2913 
2914 /**
2915  * cs_dsp_stop() - Stops the firmware
2916  * @dsp: pointer to DSP structure
2917  *
2918  * Memory will not be disabled so firmware will remain loaded.
2919  */
2920 void cs_dsp_stop(struct cs_dsp *dsp)
2921 {
2922 	/* Tell the firmware to cleanup */
2923 	cs_dsp_signal_event_controls(dsp, CS_DSP_FW_EVENT_SHUTDOWN);
2924 
2925 	if (dsp->ops->stop_watchdog)
2926 		dsp->ops->stop_watchdog(dsp);
2927 
2928 	/* Log firmware state, it can be useful for analysis */
2929 	if (dsp->ops->show_fw_status)
2930 		dsp->ops->show_fw_status(dsp);
2931 
2932 	mutex_lock(&dsp->pwr_lock);
2933 
2934 	if (dsp->client_ops->pre_stop)
2935 		dsp->client_ops->pre_stop(dsp);
2936 
2937 	dsp->running = false;
2938 
2939 	if (dsp->ops->stop_core)
2940 		dsp->ops->stop_core(dsp);
2941 	if (dsp->ops->disable_core)
2942 		dsp->ops->disable_core(dsp);
2943 
2944 	if (dsp->client_ops->post_stop)
2945 		dsp->client_ops->post_stop(dsp);
2946 
2947 	mutex_unlock(&dsp->pwr_lock);
2948 
2949 	cs_dsp_dbg(dsp, "Execution stopped\n");
2950 }
2951 EXPORT_SYMBOL_NS_GPL(cs_dsp_stop, FW_CS_DSP);
2952 
2953 static int cs_dsp_halo_start_core(struct cs_dsp *dsp)
2954 {
2955 	int ret;
2956 
2957 	ret = regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2958 				 HALO_CORE_RESET | HALO_CORE_EN,
2959 				 HALO_CORE_RESET | HALO_CORE_EN);
2960 	if (ret)
2961 		return ret;
2962 
2963 	return regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2964 				  HALO_CORE_RESET, 0);
2965 }
2966 
2967 static void cs_dsp_halo_stop_core(struct cs_dsp *dsp)
2968 {
2969 	regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2970 			   HALO_CORE_EN, 0);
2971 
2972 	/* reset halo core with CORE_SOFT_RESET */
2973 	regmap_update_bits(dsp->regmap, dsp->base + HALO_CORE_SOFT_RESET,
2974 			   HALO_CORE_SOFT_RESET_MASK, 1);
2975 }
2976 
2977 /**
2978  * cs_dsp_adsp2_init() - Initialise a cs_dsp structure representing a ADSP2 core
2979  * @dsp: pointer to DSP structure
2980  *
2981  * Return: Zero for success, a negative number on error.
2982  */
2983 int cs_dsp_adsp2_init(struct cs_dsp *dsp)
2984 {
2985 	int ret;
2986 
2987 	switch (dsp->rev) {
2988 	case 0:
2989 		/*
2990 		 * Disable the DSP memory by default when in reset for a small
2991 		 * power saving.
2992 		 */
2993 		ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2994 					 ADSP2_MEM_ENA, 0);
2995 		if (ret) {
2996 			cs_dsp_err(dsp,
2997 				   "Failed to clear memory retention: %d\n", ret);
2998 			return ret;
2999 		}
3000 
3001 		dsp->ops = &cs_dsp_adsp2_ops[0];
3002 		break;
3003 	case 1:
3004 		dsp->ops = &cs_dsp_adsp2_ops[1];
3005 		break;
3006 	default:
3007 		dsp->ops = &cs_dsp_adsp2_ops[2];
3008 		break;
3009 	}
3010 
3011 	return cs_dsp_common_init(dsp);
3012 }
3013 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp2_init, FW_CS_DSP);
3014 
3015 /**
3016  * cs_dsp_halo_init() - Initialise a cs_dsp structure representing a HALO Core DSP
3017  * @dsp: pointer to DSP structure
3018  *
3019  * Return: Zero for success, a negative number on error.
3020  */
3021 int cs_dsp_halo_init(struct cs_dsp *dsp)
3022 {
3023 	if (dsp->no_core_startstop)
3024 		dsp->ops = &cs_dsp_halo_ao_ops;
3025 	else
3026 		dsp->ops = &cs_dsp_halo_ops;
3027 
3028 	return cs_dsp_common_init(dsp);
3029 }
3030 EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_init, FW_CS_DSP);
3031 
3032 /**
3033  * cs_dsp_remove() - Clean a cs_dsp before deletion
3034  * @dsp: pointer to DSP structure
3035  */
3036 void cs_dsp_remove(struct cs_dsp *dsp)
3037 {
3038 	struct cs_dsp_coeff_ctl *ctl;
3039 
3040 	while (!list_empty(&dsp->ctl_list)) {
3041 		ctl = list_first_entry(&dsp->ctl_list, struct cs_dsp_coeff_ctl, list);
3042 
3043 		if (dsp->client_ops->control_remove)
3044 			dsp->client_ops->control_remove(ctl);
3045 
3046 		list_del(&ctl->list);
3047 		cs_dsp_free_ctl_blk(ctl);
3048 	}
3049 }
3050 EXPORT_SYMBOL_NS_GPL(cs_dsp_remove, FW_CS_DSP);
3051 
3052 /**
3053  * cs_dsp_read_raw_data_block() - Reads a block of data from DSP memory
3054  * @dsp: pointer to DSP structure
3055  * @mem_type: the type of DSP memory containing the data to be read
3056  * @mem_addr: the address of the data within the memory region
3057  * @num_words: the length of the data to read
3058  * @data: a buffer to store the fetched data
3059  *
3060  * If this is used to read unpacked 24-bit memory, each 24-bit DSP word will
3061  * occupy 32-bits in data (MSbyte will be 0). This padding can be removed using
3062  * cs_dsp_remove_padding()
3063  *
3064  * Return: Zero for success, a negative number on error.
3065  */
3066 int cs_dsp_read_raw_data_block(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr,
3067 			       unsigned int num_words, __be32 *data)
3068 {
3069 	struct cs_dsp_region const *mem = cs_dsp_find_region(dsp, mem_type);
3070 	unsigned int reg;
3071 	int ret;
3072 
3073 	lockdep_assert_held(&dsp->pwr_lock);
3074 
3075 	if (!mem)
3076 		return -EINVAL;
3077 
3078 	reg = dsp->ops->region_to_reg(mem, mem_addr);
3079 
3080 	ret = regmap_raw_read(dsp->regmap, reg, data,
3081 			      sizeof(*data) * num_words);
3082 	if (ret < 0)
3083 		return ret;
3084 
3085 	return 0;
3086 }
3087 EXPORT_SYMBOL_NS_GPL(cs_dsp_read_raw_data_block, FW_CS_DSP);
3088 
3089 /**
3090  * cs_dsp_read_data_word() - Reads a word from DSP memory
3091  * @dsp: pointer to DSP structure
3092  * @mem_type: the type of DSP memory containing the data to be read
3093  * @mem_addr: the address of the data within the memory region
3094  * @data: a buffer to store the fetched data
3095  *
3096  * Return: Zero for success, a negative number on error.
3097  */
3098 int cs_dsp_read_data_word(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr, u32 *data)
3099 {
3100 	__be32 raw;
3101 	int ret;
3102 
3103 	ret = cs_dsp_read_raw_data_block(dsp, mem_type, mem_addr, 1, &raw);
3104 	if (ret < 0)
3105 		return ret;
3106 
3107 	*data = be32_to_cpu(raw) & 0x00ffffffu;
3108 
3109 	return 0;
3110 }
3111 EXPORT_SYMBOL_NS_GPL(cs_dsp_read_data_word, FW_CS_DSP);
3112 
3113 /**
3114  * cs_dsp_write_data_word() - Writes a word to DSP memory
3115  * @dsp: pointer to DSP structure
3116  * @mem_type: the type of DSP memory containing the data to be written
3117  * @mem_addr: the address of the data within the memory region
3118  * @data: the data to be written
3119  *
3120  * Return: Zero for success, a negative number on error.
3121  */
3122 int cs_dsp_write_data_word(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr, u32 data)
3123 {
3124 	struct cs_dsp_region const *mem = cs_dsp_find_region(dsp, mem_type);
3125 	__be32 val = cpu_to_be32(data & 0x00ffffffu);
3126 	unsigned int reg;
3127 
3128 	lockdep_assert_held(&dsp->pwr_lock);
3129 
3130 	if (!mem)
3131 		return -EINVAL;
3132 
3133 	reg = dsp->ops->region_to_reg(mem, mem_addr);
3134 
3135 	return regmap_raw_write(dsp->regmap, reg, &val, sizeof(val));
3136 }
3137 EXPORT_SYMBOL_NS_GPL(cs_dsp_write_data_word, FW_CS_DSP);
3138 
3139 /**
3140  * cs_dsp_remove_padding() - Convert unpacked words to packed bytes
3141  * @buf: buffer containing DSP words read from DSP memory
3142  * @nwords: number of words to convert
3143  *
3144  * DSP words from the register map have pad bytes and the data bytes
3145  * are in swapped order. This swaps to the native endian order and
3146  * strips the pad bytes.
3147  */
3148 void cs_dsp_remove_padding(u32 *buf, int nwords)
3149 {
3150 	const __be32 *pack_in = (__be32 *)buf;
3151 	u8 *pack_out = (u8 *)buf;
3152 	int i;
3153 
3154 	for (i = 0; i < nwords; i++) {
3155 		u32 word = be32_to_cpu(*pack_in++);
3156 		*pack_out++ = (u8)word;
3157 		*pack_out++ = (u8)(word >> 8);
3158 		*pack_out++ = (u8)(word >> 16);
3159 	}
3160 }
3161 EXPORT_SYMBOL_NS_GPL(cs_dsp_remove_padding, FW_CS_DSP);
3162 
3163 /**
3164  * cs_dsp_adsp2_bus_error() - Handle a DSP bus error interrupt
3165  * @dsp: pointer to DSP structure
3166  *
3167  * The firmware and DSP state will be logged for future analysis.
3168  */
3169 void cs_dsp_adsp2_bus_error(struct cs_dsp *dsp)
3170 {
3171 	unsigned int val;
3172 	struct regmap *regmap = dsp->regmap;
3173 	int ret = 0;
3174 
3175 	mutex_lock(&dsp->pwr_lock);
3176 
3177 	ret = regmap_read(regmap, dsp->base + ADSP2_LOCK_REGION_CTRL, &val);
3178 	if (ret) {
3179 		cs_dsp_err(dsp,
3180 			   "Failed to read Region Lock Ctrl register: %d\n", ret);
3181 		goto error;
3182 	}
3183 
3184 	if (val & ADSP2_WDT_TIMEOUT_STS_MASK) {
3185 		cs_dsp_err(dsp, "watchdog timeout error\n");
3186 		dsp->ops->stop_watchdog(dsp);
3187 		if (dsp->client_ops->watchdog_expired)
3188 			dsp->client_ops->watchdog_expired(dsp);
3189 	}
3190 
3191 	if (val & (ADSP2_ADDR_ERR_MASK | ADSP2_REGION_LOCK_ERR_MASK)) {
3192 		if (val & ADSP2_ADDR_ERR_MASK)
3193 			cs_dsp_err(dsp, "bus error: address error\n");
3194 		else
3195 			cs_dsp_err(dsp, "bus error: region lock error\n");
3196 
3197 		ret = regmap_read(regmap, dsp->base + ADSP2_BUS_ERR_ADDR, &val);
3198 		if (ret) {
3199 			cs_dsp_err(dsp,
3200 				   "Failed to read Bus Err Addr register: %d\n",
3201 				   ret);
3202 			goto error;
3203 		}
3204 
3205 		cs_dsp_err(dsp, "bus error address = 0x%x\n",
3206 			   val & ADSP2_BUS_ERR_ADDR_MASK);
3207 
3208 		ret = regmap_read(regmap,
3209 				  dsp->base + ADSP2_PMEM_ERR_ADDR_XMEM_ERR_ADDR,
3210 				  &val);
3211 		if (ret) {
3212 			cs_dsp_err(dsp,
3213 				   "Failed to read Pmem Xmem Err Addr register: %d\n",
3214 				   ret);
3215 			goto error;
3216 		}
3217 
3218 		cs_dsp_err(dsp, "xmem error address = 0x%x\n",
3219 			   val & ADSP2_XMEM_ERR_ADDR_MASK);
3220 		cs_dsp_err(dsp, "pmem error address = 0x%x\n",
3221 			   (val & ADSP2_PMEM_ERR_ADDR_MASK) >>
3222 			   ADSP2_PMEM_ERR_ADDR_SHIFT);
3223 	}
3224 
3225 	regmap_update_bits(regmap, dsp->base + ADSP2_LOCK_REGION_CTRL,
3226 			   ADSP2_CTRL_ERR_EINT, ADSP2_CTRL_ERR_EINT);
3227 
3228 error:
3229 	mutex_unlock(&dsp->pwr_lock);
3230 }
3231 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp2_bus_error, FW_CS_DSP);
3232 
3233 /**
3234  * cs_dsp_halo_bus_error() - Handle a DSP bus error interrupt
3235  * @dsp: pointer to DSP structure
3236  *
3237  * The firmware and DSP state will be logged for future analysis.
3238  */
3239 void cs_dsp_halo_bus_error(struct cs_dsp *dsp)
3240 {
3241 	struct regmap *regmap = dsp->regmap;
3242 	unsigned int fault[6];
3243 	struct reg_sequence clear[] = {
3244 		{ dsp->base + HALO_MPU_XM_VIO_STATUS,     0x0 },
3245 		{ dsp->base + HALO_MPU_YM_VIO_STATUS,     0x0 },
3246 		{ dsp->base + HALO_MPU_PM_VIO_STATUS,     0x0 },
3247 	};
3248 	int ret;
3249 
3250 	mutex_lock(&dsp->pwr_lock);
3251 
3252 	ret = regmap_read(regmap, dsp->base_sysinfo + HALO_AHBM_WINDOW_DEBUG_1,
3253 			  fault);
3254 	if (ret) {
3255 		cs_dsp_warn(dsp, "Failed to read AHB DEBUG_1: %d\n", ret);
3256 		goto exit_unlock;
3257 	}
3258 
3259 	cs_dsp_warn(dsp, "AHB: STATUS: 0x%x ADDR: 0x%x\n",
3260 		    *fault & HALO_AHBM_FLAGS_ERR_MASK,
3261 		    (*fault & HALO_AHBM_CORE_ERR_ADDR_MASK) >>
3262 		    HALO_AHBM_CORE_ERR_ADDR_SHIFT);
3263 
3264 	ret = regmap_read(regmap, dsp->base_sysinfo + HALO_AHBM_WINDOW_DEBUG_0,
3265 			  fault);
3266 	if (ret) {
3267 		cs_dsp_warn(dsp, "Failed to read AHB DEBUG_0: %d\n", ret);
3268 		goto exit_unlock;
3269 	}
3270 
3271 	cs_dsp_warn(dsp, "AHB: SYS_ADDR: 0x%x\n", *fault);
3272 
3273 	ret = regmap_bulk_read(regmap, dsp->base + HALO_MPU_XM_VIO_ADDR,
3274 			       fault, ARRAY_SIZE(fault));
3275 	if (ret) {
3276 		cs_dsp_warn(dsp, "Failed to read MPU fault info: %d\n", ret);
3277 		goto exit_unlock;
3278 	}
3279 
3280 	cs_dsp_warn(dsp, "XM: STATUS:0x%x ADDR:0x%x\n", fault[1], fault[0]);
3281 	cs_dsp_warn(dsp, "YM: STATUS:0x%x ADDR:0x%x\n", fault[3], fault[2]);
3282 	cs_dsp_warn(dsp, "PM: STATUS:0x%x ADDR:0x%x\n", fault[5], fault[4]);
3283 
3284 	ret = regmap_multi_reg_write(dsp->regmap, clear, ARRAY_SIZE(clear));
3285 	if (ret)
3286 		cs_dsp_warn(dsp, "Failed to clear MPU status: %d\n", ret);
3287 
3288 exit_unlock:
3289 	mutex_unlock(&dsp->pwr_lock);
3290 }
3291 EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_bus_error, FW_CS_DSP);
3292 
3293 /**
3294  * cs_dsp_halo_wdt_expire() - Handle DSP watchdog expiry
3295  * @dsp: pointer to DSP structure
3296  *
3297  * This is logged for future analysis.
3298  */
3299 void cs_dsp_halo_wdt_expire(struct cs_dsp *dsp)
3300 {
3301 	mutex_lock(&dsp->pwr_lock);
3302 
3303 	cs_dsp_warn(dsp, "WDT Expiry Fault\n");
3304 
3305 	dsp->ops->stop_watchdog(dsp);
3306 	if (dsp->client_ops->watchdog_expired)
3307 		dsp->client_ops->watchdog_expired(dsp);
3308 
3309 	mutex_unlock(&dsp->pwr_lock);
3310 }
3311 EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_wdt_expire, FW_CS_DSP);
3312 
3313 static const struct cs_dsp_ops cs_dsp_adsp1_ops = {
3314 	.validate_version = cs_dsp_validate_version,
3315 	.parse_sizes = cs_dsp_adsp1_parse_sizes,
3316 	.region_to_reg = cs_dsp_region_to_reg,
3317 };
3318 
3319 static const struct cs_dsp_ops cs_dsp_adsp2_ops[] = {
3320 	{
3321 		.parse_sizes = cs_dsp_adsp2_parse_sizes,
3322 		.validate_version = cs_dsp_validate_version,
3323 		.setup_algs = cs_dsp_adsp2_setup_algs,
3324 		.region_to_reg = cs_dsp_region_to_reg,
3325 
3326 		.show_fw_status = cs_dsp_adsp2_show_fw_status,
3327 
3328 		.enable_memory = cs_dsp_adsp2_enable_memory,
3329 		.disable_memory = cs_dsp_adsp2_disable_memory,
3330 
3331 		.enable_core = cs_dsp_adsp2_enable_core,
3332 		.disable_core = cs_dsp_adsp2_disable_core,
3333 
3334 		.start_core = cs_dsp_adsp2_start_core,
3335 		.stop_core = cs_dsp_adsp2_stop_core,
3336 
3337 	},
3338 	{
3339 		.parse_sizes = cs_dsp_adsp2_parse_sizes,
3340 		.validate_version = cs_dsp_validate_version,
3341 		.setup_algs = cs_dsp_adsp2_setup_algs,
3342 		.region_to_reg = cs_dsp_region_to_reg,
3343 
3344 		.show_fw_status = cs_dsp_adsp2v2_show_fw_status,
3345 
3346 		.enable_memory = cs_dsp_adsp2_enable_memory,
3347 		.disable_memory = cs_dsp_adsp2_disable_memory,
3348 		.lock_memory = cs_dsp_adsp2_lock,
3349 
3350 		.enable_core = cs_dsp_adsp2v2_enable_core,
3351 		.disable_core = cs_dsp_adsp2v2_disable_core,
3352 
3353 		.start_core = cs_dsp_adsp2_start_core,
3354 		.stop_core = cs_dsp_adsp2_stop_core,
3355 	},
3356 	{
3357 		.parse_sizes = cs_dsp_adsp2_parse_sizes,
3358 		.validate_version = cs_dsp_validate_version,
3359 		.setup_algs = cs_dsp_adsp2_setup_algs,
3360 		.region_to_reg = cs_dsp_region_to_reg,
3361 
3362 		.show_fw_status = cs_dsp_adsp2v2_show_fw_status,
3363 		.stop_watchdog = cs_dsp_stop_watchdog,
3364 
3365 		.enable_memory = cs_dsp_adsp2_enable_memory,
3366 		.disable_memory = cs_dsp_adsp2_disable_memory,
3367 		.lock_memory = cs_dsp_adsp2_lock,
3368 
3369 		.enable_core = cs_dsp_adsp2v2_enable_core,
3370 		.disable_core = cs_dsp_adsp2v2_disable_core,
3371 
3372 		.start_core = cs_dsp_adsp2_start_core,
3373 		.stop_core = cs_dsp_adsp2_stop_core,
3374 	},
3375 };
3376 
3377 static const struct cs_dsp_ops cs_dsp_halo_ops = {
3378 	.parse_sizes = cs_dsp_adsp2_parse_sizes,
3379 	.validate_version = cs_dsp_halo_validate_version,
3380 	.setup_algs = cs_dsp_halo_setup_algs,
3381 	.region_to_reg = cs_dsp_halo_region_to_reg,
3382 
3383 	.show_fw_status = cs_dsp_halo_show_fw_status,
3384 	.stop_watchdog = cs_dsp_halo_stop_watchdog,
3385 
3386 	.lock_memory = cs_dsp_halo_configure_mpu,
3387 
3388 	.start_core = cs_dsp_halo_start_core,
3389 	.stop_core = cs_dsp_halo_stop_core,
3390 };
3391 
3392 static const struct cs_dsp_ops cs_dsp_halo_ao_ops = {
3393 	.parse_sizes = cs_dsp_adsp2_parse_sizes,
3394 	.validate_version = cs_dsp_halo_validate_version,
3395 	.setup_algs = cs_dsp_halo_setup_algs,
3396 	.region_to_reg = cs_dsp_halo_region_to_reg,
3397 	.show_fw_status = cs_dsp_halo_show_fw_status,
3398 };
3399 
3400 /**
3401  * cs_dsp_chunk_write() - Format data to a DSP memory chunk
3402  * @ch: Pointer to the chunk structure
3403  * @nbits: Number of bits to write
3404  * @val: Value to write
3405  *
3406  * This function sequentially writes values into the format required for DSP
3407  * memory, it handles both inserting of the padding bytes and converting to
3408  * big endian. Note that data is only committed to the chunk when a whole DSP
3409  * words worth of data is available.
3410  *
3411  * Return: Zero for success, a negative number on error.
3412  */
3413 int cs_dsp_chunk_write(struct cs_dsp_chunk *ch, int nbits, u32 val)
3414 {
3415 	int nwrite, i;
3416 
3417 	nwrite = min(CS_DSP_DATA_WORD_BITS - ch->cachebits, nbits);
3418 
3419 	ch->cache <<= nwrite;
3420 	ch->cache |= val >> (nbits - nwrite);
3421 	ch->cachebits += nwrite;
3422 	nbits -= nwrite;
3423 
3424 	if (ch->cachebits == CS_DSP_DATA_WORD_BITS) {
3425 		if (cs_dsp_chunk_end(ch))
3426 			return -ENOSPC;
3427 
3428 		ch->cache &= 0xFFFFFF;
3429 		for (i = 0; i < sizeof(ch->cache); i++, ch->cache <<= BITS_PER_BYTE)
3430 			*ch->data++ = (ch->cache & 0xFF000000) >> CS_DSP_DATA_WORD_BITS;
3431 
3432 		ch->bytes += sizeof(ch->cache);
3433 		ch->cachebits = 0;
3434 	}
3435 
3436 	if (nbits)
3437 		return cs_dsp_chunk_write(ch, nbits, val);
3438 
3439 	return 0;
3440 }
3441 EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_write, FW_CS_DSP);
3442 
3443 /**
3444  * cs_dsp_chunk_flush() - Pad remaining data with zero and commit to chunk
3445  * @ch: Pointer to the chunk structure
3446  *
3447  * As cs_dsp_chunk_write only writes data when a whole DSP word is ready to
3448  * be written out it is possible that some data will remain in the cache, this
3449  * function will pad that data with zeros upto a whole DSP word and write out.
3450  *
3451  * Return: Zero for success, a negative number on error.
3452  */
3453 int cs_dsp_chunk_flush(struct cs_dsp_chunk *ch)
3454 {
3455 	if (!ch->cachebits)
3456 		return 0;
3457 
3458 	return cs_dsp_chunk_write(ch, CS_DSP_DATA_WORD_BITS - ch->cachebits, 0);
3459 }
3460 EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_flush, FW_CS_DSP);
3461 
3462 /**
3463  * cs_dsp_chunk_read() - Parse data from a DSP memory chunk
3464  * @ch: Pointer to the chunk structure
3465  * @nbits: Number of bits to read
3466  *
3467  * This function sequentially reads values from a DSP memory formatted buffer,
3468  * it handles both removing of the padding bytes and converting from big endian.
3469  *
3470  * Return: A negative number is returned on error, otherwise the read value.
3471  */
3472 int cs_dsp_chunk_read(struct cs_dsp_chunk *ch, int nbits)
3473 {
3474 	int nread, i;
3475 	u32 result;
3476 
3477 	if (!ch->cachebits) {
3478 		if (cs_dsp_chunk_end(ch))
3479 			return -ENOSPC;
3480 
3481 		ch->cache = 0;
3482 		ch->cachebits = CS_DSP_DATA_WORD_BITS;
3483 
3484 		for (i = 0; i < sizeof(ch->cache); i++, ch->cache <<= BITS_PER_BYTE)
3485 			ch->cache |= *ch->data++;
3486 
3487 		ch->bytes += sizeof(ch->cache);
3488 	}
3489 
3490 	nread = min(ch->cachebits, nbits);
3491 	nbits -= nread;
3492 
3493 	result = ch->cache >> ((sizeof(ch->cache) * BITS_PER_BYTE) - nread);
3494 	ch->cache <<= nread;
3495 	ch->cachebits -= nread;
3496 
3497 	if (nbits)
3498 		result = (result << nbits) | cs_dsp_chunk_read(ch, nbits);
3499 
3500 	return result;
3501 }
3502 EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_read, FW_CS_DSP);
3503 
3504 
3505 struct cs_dsp_wseq_op {
3506 	struct list_head list;
3507 	u32 address;
3508 	u32 data;
3509 	u16 offset;
3510 	u8 operation;
3511 };
3512 
3513 static void cs_dsp_wseq_clear(struct cs_dsp *dsp, struct cs_dsp_wseq *wseq)
3514 {
3515 	struct cs_dsp_wseq_op *op, *op_tmp;
3516 
3517 	list_for_each_entry_safe(op, op_tmp, &wseq->ops, list) {
3518 		list_del(&op->list);
3519 		devm_kfree(dsp->dev, op);
3520 	}
3521 }
3522 
3523 static int cs_dsp_populate_wseq(struct cs_dsp *dsp, struct cs_dsp_wseq *wseq)
3524 {
3525 	struct cs_dsp_wseq_op *op = NULL;
3526 	struct cs_dsp_chunk chunk;
3527 	u8 *words;
3528 	int ret;
3529 
3530 	if (!wseq->ctl) {
3531 		cs_dsp_err(dsp, "No control for write sequence\n");
3532 		return -EINVAL;
3533 	}
3534 
3535 	words = kzalloc(wseq->ctl->len, GFP_KERNEL);
3536 	if (!words)
3537 		return -ENOMEM;
3538 
3539 	ret = cs_dsp_coeff_read_ctrl(wseq->ctl, 0, words, wseq->ctl->len);
3540 	if (ret) {
3541 		cs_dsp_err(dsp, "Failed to read %s: %d\n", wseq->ctl->subname, ret);
3542 		goto err_free;
3543 	}
3544 
3545 	INIT_LIST_HEAD(&wseq->ops);
3546 
3547 	chunk = cs_dsp_chunk(words, wseq->ctl->len);
3548 
3549 	while (!cs_dsp_chunk_end(&chunk)) {
3550 		op = devm_kzalloc(dsp->dev, sizeof(*op), GFP_KERNEL);
3551 		if (!op) {
3552 			ret = -ENOMEM;
3553 			goto err_free;
3554 		}
3555 
3556 		op->offset = cs_dsp_chunk_bytes(&chunk);
3557 		op->operation = cs_dsp_chunk_read(&chunk, 8);
3558 
3559 		switch (op->operation) {
3560 		case CS_DSP_WSEQ_END:
3561 			op->data = WSEQ_END_OF_SCRIPT;
3562 			break;
3563 		case CS_DSP_WSEQ_UNLOCK:
3564 			op->data = cs_dsp_chunk_read(&chunk, 16);
3565 			break;
3566 		case CS_DSP_WSEQ_ADDR8:
3567 			op->address = cs_dsp_chunk_read(&chunk, 8);
3568 			op->data = cs_dsp_chunk_read(&chunk, 32);
3569 			break;
3570 		case CS_DSP_WSEQ_H16:
3571 		case CS_DSP_WSEQ_L16:
3572 			op->address = cs_dsp_chunk_read(&chunk, 24);
3573 			op->data = cs_dsp_chunk_read(&chunk, 16);
3574 			break;
3575 		case CS_DSP_WSEQ_FULL:
3576 			op->address = cs_dsp_chunk_read(&chunk, 32);
3577 			op->data = cs_dsp_chunk_read(&chunk, 32);
3578 			break;
3579 		default:
3580 			ret = -EINVAL;
3581 			cs_dsp_err(dsp, "Unsupported op: %X\n", op->operation);
3582 			devm_kfree(dsp->dev, op);
3583 			goto err_free;
3584 		}
3585 
3586 		list_add_tail(&op->list, &wseq->ops);
3587 
3588 		if (op->operation == CS_DSP_WSEQ_END)
3589 			break;
3590 	}
3591 
3592 	if (op && op->operation != CS_DSP_WSEQ_END) {
3593 		cs_dsp_err(dsp, "%s missing end terminator\n", wseq->ctl->subname);
3594 		ret = -ENOENT;
3595 	}
3596 
3597 err_free:
3598 	kfree(words);
3599 
3600 	return ret;
3601 }
3602 
3603 /**
3604  * cs_dsp_wseq_init() - Initialize write sequences contained within the loaded DSP firmware
3605  * @dsp: Pointer to DSP structure
3606  * @wseqs: List of write sequences to initialize
3607  * @num_wseqs: Number of write sequences to initialize
3608  *
3609  * Return: Zero for success, a negative number on error.
3610  */
3611 int cs_dsp_wseq_init(struct cs_dsp *dsp, struct cs_dsp_wseq *wseqs, unsigned int num_wseqs)
3612 {
3613 	int i, ret;
3614 
3615 	lockdep_assert_held(&dsp->pwr_lock);
3616 
3617 	for (i = 0; i < num_wseqs; i++) {
3618 		ret = cs_dsp_populate_wseq(dsp, &wseqs[i]);
3619 		if (ret) {
3620 			cs_dsp_wseq_clear(dsp, &wseqs[i]);
3621 			return ret;
3622 		}
3623 	}
3624 
3625 	return 0;
3626 }
3627 EXPORT_SYMBOL_NS_GPL(cs_dsp_wseq_init, FW_CS_DSP);
3628 
3629 static struct cs_dsp_wseq_op *cs_dsp_wseq_find_op(u32 addr, u8 op_code,
3630 						  struct list_head *wseq_ops)
3631 {
3632 	struct cs_dsp_wseq_op *op;
3633 
3634 	list_for_each_entry(op, wseq_ops, list) {
3635 		if (op->operation == op_code && op->address == addr)
3636 			return op;
3637 	}
3638 
3639 	return NULL;
3640 }
3641 
3642 /**
3643  * cs_dsp_wseq_write() - Add or update an entry in a write sequence
3644  * @dsp: Pointer to a DSP structure
3645  * @wseq: Write sequence to write to
3646  * @addr: Address of the register to be written to
3647  * @data: Data to be written
3648  * @op_code: The type of operation of the new entry
3649  * @update: If true, searches for the first entry in the write sequence with
3650  * the same address and op_code, and replaces it. If false, creates a new entry
3651  * at the tail
3652  *
3653  * This function formats register address and value pairs into the format
3654  * required for write sequence entries, and either updates or adds the
3655  * new entry into the write sequence.
3656  *
3657  * If update is set to true and no matching entry is found, it will add a new entry.
3658  *
3659  * Return: Zero for success, a negative number on error.
3660  */
3661 int cs_dsp_wseq_write(struct cs_dsp *dsp, struct cs_dsp_wseq *wseq,
3662 		      u32 addr, u32 data, u8 op_code, bool update)
3663 {
3664 	struct cs_dsp_wseq_op *op_end, *op_new = NULL;
3665 	u32 words[WSEQ_OP_MAX_WORDS];
3666 	struct cs_dsp_chunk chunk;
3667 	int new_op_size, ret;
3668 
3669 	if (update)
3670 		op_new = cs_dsp_wseq_find_op(addr, op_code, &wseq->ops);
3671 
3672 	/* If entry to update is not found, treat it as a new operation */
3673 	if (!op_new) {
3674 		op_end = cs_dsp_wseq_find_op(0, CS_DSP_WSEQ_END, &wseq->ops);
3675 		if (!op_end) {
3676 			cs_dsp_err(dsp, "Missing terminator for %s\n", wseq->ctl->subname);
3677 			return -EINVAL;
3678 		}
3679 
3680 		op_new = devm_kzalloc(dsp->dev, sizeof(*op_new), GFP_KERNEL);
3681 		if (!op_new)
3682 			return -ENOMEM;
3683 
3684 		op_new->operation = op_code;
3685 		op_new->address = addr;
3686 		op_new->offset = op_end->offset;
3687 		update = false;
3688 	}
3689 
3690 	op_new->data = data;
3691 
3692 	chunk = cs_dsp_chunk(words, sizeof(words));
3693 	cs_dsp_chunk_write(&chunk, 8, op_new->operation);
3694 
3695 	switch (op_code) {
3696 	case CS_DSP_WSEQ_FULL:
3697 		cs_dsp_chunk_write(&chunk, 32, op_new->address);
3698 		cs_dsp_chunk_write(&chunk, 32, op_new->data);
3699 		break;
3700 	case CS_DSP_WSEQ_L16:
3701 	case CS_DSP_WSEQ_H16:
3702 		cs_dsp_chunk_write(&chunk, 24, op_new->address);
3703 		cs_dsp_chunk_write(&chunk, 16, op_new->data);
3704 		break;
3705 	default:
3706 		ret = -EINVAL;
3707 		cs_dsp_err(dsp, "Operation %X not supported\n", op_code);
3708 		goto op_new_free;
3709 	}
3710 
3711 	new_op_size = cs_dsp_chunk_bytes(&chunk);
3712 
3713 	if (!update) {
3714 		if (wseq->ctl->len - op_end->offset < new_op_size) {
3715 			cs_dsp_err(dsp, "Not enough memory in %s for entry\n", wseq->ctl->subname);
3716 			ret = -E2BIG;
3717 			goto op_new_free;
3718 		}
3719 
3720 		op_end->offset += new_op_size;
3721 
3722 		ret = cs_dsp_coeff_write_ctrl(wseq->ctl, op_end->offset / sizeof(u32),
3723 					      &op_end->data, sizeof(u32));
3724 		if (ret)
3725 			goto op_new_free;
3726 
3727 		list_add_tail(&op_new->list, &op_end->list);
3728 	}
3729 
3730 	ret = cs_dsp_coeff_write_ctrl(wseq->ctl, op_new->offset / sizeof(u32),
3731 				      words, new_op_size);
3732 	if (ret)
3733 		goto op_new_free;
3734 
3735 	return 0;
3736 
3737 op_new_free:
3738 	devm_kfree(dsp->dev, op_new);
3739 
3740 	return ret;
3741 }
3742 EXPORT_SYMBOL_NS_GPL(cs_dsp_wseq_write, FW_CS_DSP);
3743 
3744 /**
3745  * cs_dsp_wseq_multi_write() - Add or update multiple entries in a write sequence
3746  * @dsp: Pointer to a DSP structure
3747  * @wseq: Write sequence to write to
3748  * @reg_seq: List of address-data pairs
3749  * @num_regs: Number of address-data pairs
3750  * @op_code: The types of operations of the new entries
3751  * @update: If true, searches for the first entry in the write sequence with
3752  * the same address and op_code, and replaces it. If false, creates a new entry
3753  * at the tail
3754  *
3755  * This function calls cs_dsp_wseq_write() for multiple address-data pairs.
3756  *
3757  * Return: Zero for success, a negative number on error.
3758  */
3759 int cs_dsp_wseq_multi_write(struct cs_dsp *dsp, struct cs_dsp_wseq *wseq,
3760 			    const struct reg_sequence *reg_seq, int num_regs,
3761 			    u8 op_code, bool update)
3762 {
3763 	int i, ret;
3764 
3765 	for (i = 0; i < num_regs; i++) {
3766 		ret = cs_dsp_wseq_write(dsp, wseq, reg_seq[i].reg,
3767 					reg_seq[i].def, op_code, update);
3768 		if (ret)
3769 			return ret;
3770 	}
3771 
3772 	return 0;
3773 }
3774 EXPORT_SYMBOL_NS_GPL(cs_dsp_wseq_multi_write, FW_CS_DSP);
3775 
3776 MODULE_DESCRIPTION("Cirrus Logic DSP Support");
3777 MODULE_AUTHOR("Simon Trimmer <simont@opensource.cirrus.com>");
3778 MODULE_LICENSE("GPL v2");
3779