xref: /linux/drivers/firmware/cirrus/cs_dsp.c (revision 8e07e0e3964ca4e23ce7b68e2096fe660a888942)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * cs_dsp.c  --  Cirrus Logic DSP firmware support
4  *
5  * Based on sound/soc/codecs/wm_adsp.c
6  *
7  * Copyright 2012 Wolfson Microelectronics plc
8  * Copyright (C) 2015-2021 Cirrus Logic, Inc. and
9  *                         Cirrus Logic International Semiconductor Ltd.
10  */
11 
12 #include <linux/ctype.h>
13 #include <linux/debugfs.h>
14 #include <linux/delay.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/seq_file.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 
21 #include <linux/firmware/cirrus/cs_dsp.h>
22 #include <linux/firmware/cirrus/wmfw.h>
23 
24 #define cs_dsp_err(_dsp, fmt, ...) \
25 	dev_err(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
26 #define cs_dsp_warn(_dsp, fmt, ...) \
27 	dev_warn(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
28 #define cs_dsp_info(_dsp, fmt, ...) \
29 	dev_info(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
30 #define cs_dsp_dbg(_dsp, fmt, ...) \
31 	dev_dbg(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
32 
33 #define ADSP1_CONTROL_1                   0x00
34 #define ADSP1_CONTROL_2                   0x02
35 #define ADSP1_CONTROL_3                   0x03
36 #define ADSP1_CONTROL_4                   0x04
37 #define ADSP1_CONTROL_5                   0x06
38 #define ADSP1_CONTROL_6                   0x07
39 #define ADSP1_CONTROL_7                   0x08
40 #define ADSP1_CONTROL_8                   0x09
41 #define ADSP1_CONTROL_9                   0x0A
42 #define ADSP1_CONTROL_10                  0x0B
43 #define ADSP1_CONTROL_11                  0x0C
44 #define ADSP1_CONTROL_12                  0x0D
45 #define ADSP1_CONTROL_13                  0x0F
46 #define ADSP1_CONTROL_14                  0x10
47 #define ADSP1_CONTROL_15                  0x11
48 #define ADSP1_CONTROL_16                  0x12
49 #define ADSP1_CONTROL_17                  0x13
50 #define ADSP1_CONTROL_18                  0x14
51 #define ADSP1_CONTROL_19                  0x16
52 #define ADSP1_CONTROL_20                  0x17
53 #define ADSP1_CONTROL_21                  0x18
54 #define ADSP1_CONTROL_22                  0x1A
55 #define ADSP1_CONTROL_23                  0x1B
56 #define ADSP1_CONTROL_24                  0x1C
57 #define ADSP1_CONTROL_25                  0x1E
58 #define ADSP1_CONTROL_26                  0x20
59 #define ADSP1_CONTROL_27                  0x21
60 #define ADSP1_CONTROL_28                  0x22
61 #define ADSP1_CONTROL_29                  0x23
62 #define ADSP1_CONTROL_30                  0x24
63 #define ADSP1_CONTROL_31                  0x26
64 
65 /*
66  * ADSP1 Control 19
67  */
68 #define ADSP1_WDMA_BUFFER_LENGTH_MASK     0x00FF  /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
69 #define ADSP1_WDMA_BUFFER_LENGTH_SHIFT         0  /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
70 #define ADSP1_WDMA_BUFFER_LENGTH_WIDTH         8  /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
71 
72 /*
73  * ADSP1 Control 30
74  */
75 #define ADSP1_DBG_CLK_ENA                 0x0008  /* DSP1_DBG_CLK_ENA */
76 #define ADSP1_DBG_CLK_ENA_MASK            0x0008  /* DSP1_DBG_CLK_ENA */
77 #define ADSP1_DBG_CLK_ENA_SHIFT                3  /* DSP1_DBG_CLK_ENA */
78 #define ADSP1_DBG_CLK_ENA_WIDTH                1  /* DSP1_DBG_CLK_ENA */
79 #define ADSP1_SYS_ENA                     0x0004  /* DSP1_SYS_ENA */
80 #define ADSP1_SYS_ENA_MASK                0x0004  /* DSP1_SYS_ENA */
81 #define ADSP1_SYS_ENA_SHIFT                    2  /* DSP1_SYS_ENA */
82 #define ADSP1_SYS_ENA_WIDTH                    1  /* DSP1_SYS_ENA */
83 #define ADSP1_CORE_ENA                    0x0002  /* DSP1_CORE_ENA */
84 #define ADSP1_CORE_ENA_MASK               0x0002  /* DSP1_CORE_ENA */
85 #define ADSP1_CORE_ENA_SHIFT                   1  /* DSP1_CORE_ENA */
86 #define ADSP1_CORE_ENA_WIDTH                   1  /* DSP1_CORE_ENA */
87 #define ADSP1_START                       0x0001  /* DSP1_START */
88 #define ADSP1_START_MASK                  0x0001  /* DSP1_START */
89 #define ADSP1_START_SHIFT                      0  /* DSP1_START */
90 #define ADSP1_START_WIDTH                      1  /* DSP1_START */
91 
92 /*
93  * ADSP1 Control 31
94  */
95 #define ADSP1_CLK_SEL_MASK                0x0007  /* CLK_SEL_ENA */
96 #define ADSP1_CLK_SEL_SHIFT                    0  /* CLK_SEL_ENA */
97 #define ADSP1_CLK_SEL_WIDTH                    3  /* CLK_SEL_ENA */
98 
99 #define ADSP2_CONTROL                     0x0
100 #define ADSP2_CLOCKING                    0x1
101 #define ADSP2V2_CLOCKING                  0x2
102 #define ADSP2_STATUS1                     0x4
103 #define ADSP2_WDMA_CONFIG_1               0x30
104 #define ADSP2_WDMA_CONFIG_2               0x31
105 #define ADSP2V2_WDMA_CONFIG_2             0x32
106 #define ADSP2_RDMA_CONFIG_1               0x34
107 
108 #define ADSP2_SCRATCH0                    0x40
109 #define ADSP2_SCRATCH1                    0x41
110 #define ADSP2_SCRATCH2                    0x42
111 #define ADSP2_SCRATCH3                    0x43
112 
113 #define ADSP2V2_SCRATCH0_1                0x40
114 #define ADSP2V2_SCRATCH2_3                0x42
115 
116 /*
117  * ADSP2 Control
118  */
119 #define ADSP2_MEM_ENA                     0x0010  /* DSP1_MEM_ENA */
120 #define ADSP2_MEM_ENA_MASK                0x0010  /* DSP1_MEM_ENA */
121 #define ADSP2_MEM_ENA_SHIFT                    4  /* DSP1_MEM_ENA */
122 #define ADSP2_MEM_ENA_WIDTH                    1  /* DSP1_MEM_ENA */
123 #define ADSP2_SYS_ENA                     0x0004  /* DSP1_SYS_ENA */
124 #define ADSP2_SYS_ENA_MASK                0x0004  /* DSP1_SYS_ENA */
125 #define ADSP2_SYS_ENA_SHIFT                    2  /* DSP1_SYS_ENA */
126 #define ADSP2_SYS_ENA_WIDTH                    1  /* DSP1_SYS_ENA */
127 #define ADSP2_CORE_ENA                    0x0002  /* DSP1_CORE_ENA */
128 #define ADSP2_CORE_ENA_MASK               0x0002  /* DSP1_CORE_ENA */
129 #define ADSP2_CORE_ENA_SHIFT                   1  /* DSP1_CORE_ENA */
130 #define ADSP2_CORE_ENA_WIDTH                   1  /* DSP1_CORE_ENA */
131 #define ADSP2_START                       0x0001  /* DSP1_START */
132 #define ADSP2_START_MASK                  0x0001  /* DSP1_START */
133 #define ADSP2_START_SHIFT                      0  /* DSP1_START */
134 #define ADSP2_START_WIDTH                      1  /* DSP1_START */
135 
136 /*
137  * ADSP2 clocking
138  */
139 #define ADSP2_CLK_SEL_MASK                0x0007  /* CLK_SEL_ENA */
140 #define ADSP2_CLK_SEL_SHIFT                    0  /* CLK_SEL_ENA */
141 #define ADSP2_CLK_SEL_WIDTH                    3  /* CLK_SEL_ENA */
142 
143 /*
144  * ADSP2V2 clocking
145  */
146 #define ADSP2V2_CLK_SEL_MASK             0x70000  /* CLK_SEL_ENA */
147 #define ADSP2V2_CLK_SEL_SHIFT                 16  /* CLK_SEL_ENA */
148 #define ADSP2V2_CLK_SEL_WIDTH                  3  /* CLK_SEL_ENA */
149 
150 #define ADSP2V2_RATE_MASK                 0x7800  /* DSP_RATE */
151 #define ADSP2V2_RATE_SHIFT                    11  /* DSP_RATE */
152 #define ADSP2V2_RATE_WIDTH                     4  /* DSP_RATE */
153 
154 /*
155  * ADSP2 Status 1
156  */
157 #define ADSP2_RAM_RDY                     0x0001
158 #define ADSP2_RAM_RDY_MASK                0x0001
159 #define ADSP2_RAM_RDY_SHIFT                    0
160 #define ADSP2_RAM_RDY_WIDTH                    1
161 
162 /*
163  * ADSP2 Lock support
164  */
165 #define ADSP2_LOCK_CODE_0                    0x5555
166 #define ADSP2_LOCK_CODE_1                    0xAAAA
167 
168 #define ADSP2_WATCHDOG                       0x0A
169 #define ADSP2_BUS_ERR_ADDR                   0x52
170 #define ADSP2_REGION_LOCK_STATUS             0x64
171 #define ADSP2_LOCK_REGION_1_LOCK_REGION_0    0x66
172 #define ADSP2_LOCK_REGION_3_LOCK_REGION_2    0x68
173 #define ADSP2_LOCK_REGION_5_LOCK_REGION_4    0x6A
174 #define ADSP2_LOCK_REGION_7_LOCK_REGION_6    0x6C
175 #define ADSP2_LOCK_REGION_9_LOCK_REGION_8    0x6E
176 #define ADSP2_LOCK_REGION_CTRL               0x7A
177 #define ADSP2_PMEM_ERR_ADDR_XMEM_ERR_ADDR    0x7C
178 
179 #define ADSP2_REGION_LOCK_ERR_MASK           0x8000
180 #define ADSP2_ADDR_ERR_MASK                  0x4000
181 #define ADSP2_WDT_TIMEOUT_STS_MASK           0x2000
182 #define ADSP2_CTRL_ERR_PAUSE_ENA             0x0002
183 #define ADSP2_CTRL_ERR_EINT                  0x0001
184 
185 #define ADSP2_BUS_ERR_ADDR_MASK              0x00FFFFFF
186 #define ADSP2_XMEM_ERR_ADDR_MASK             0x0000FFFF
187 #define ADSP2_PMEM_ERR_ADDR_MASK             0x7FFF0000
188 #define ADSP2_PMEM_ERR_ADDR_SHIFT            16
189 #define ADSP2_WDT_ENA_MASK                   0xFFFFFFFD
190 
191 #define ADSP2_LOCK_REGION_SHIFT              16
192 
193 /*
194  * Event control messages
195  */
196 #define CS_DSP_FW_EVENT_SHUTDOWN             0x000001
197 
198 /*
199  * HALO system info
200  */
201 #define HALO_AHBM_WINDOW_DEBUG_0             0x02040
202 #define HALO_AHBM_WINDOW_DEBUG_1             0x02044
203 
204 /*
205  * HALO core
206  */
207 #define HALO_SCRATCH1                        0x005c0
208 #define HALO_SCRATCH2                        0x005c8
209 #define HALO_SCRATCH3                        0x005d0
210 #define HALO_SCRATCH4                        0x005d8
211 #define HALO_CCM_CORE_CONTROL                0x41000
212 #define HALO_CORE_SOFT_RESET                 0x00010
213 #define HALO_WDT_CONTROL                     0x47000
214 
215 /*
216  * HALO MPU banks
217  */
218 #define HALO_MPU_XMEM_ACCESS_0               0x43000
219 #define HALO_MPU_YMEM_ACCESS_0               0x43004
220 #define HALO_MPU_WINDOW_ACCESS_0             0x43008
221 #define HALO_MPU_XREG_ACCESS_0               0x4300C
222 #define HALO_MPU_YREG_ACCESS_0               0x43014
223 #define HALO_MPU_XMEM_ACCESS_1               0x43018
224 #define HALO_MPU_YMEM_ACCESS_1               0x4301C
225 #define HALO_MPU_WINDOW_ACCESS_1             0x43020
226 #define HALO_MPU_XREG_ACCESS_1               0x43024
227 #define HALO_MPU_YREG_ACCESS_1               0x4302C
228 #define HALO_MPU_XMEM_ACCESS_2               0x43030
229 #define HALO_MPU_YMEM_ACCESS_2               0x43034
230 #define HALO_MPU_WINDOW_ACCESS_2             0x43038
231 #define HALO_MPU_XREG_ACCESS_2               0x4303C
232 #define HALO_MPU_YREG_ACCESS_2               0x43044
233 #define HALO_MPU_XMEM_ACCESS_3               0x43048
234 #define HALO_MPU_YMEM_ACCESS_3               0x4304C
235 #define HALO_MPU_WINDOW_ACCESS_3             0x43050
236 #define HALO_MPU_XREG_ACCESS_3               0x43054
237 #define HALO_MPU_YREG_ACCESS_3               0x4305C
238 #define HALO_MPU_XM_VIO_ADDR                 0x43100
239 #define HALO_MPU_XM_VIO_STATUS               0x43104
240 #define HALO_MPU_YM_VIO_ADDR                 0x43108
241 #define HALO_MPU_YM_VIO_STATUS               0x4310C
242 #define HALO_MPU_PM_VIO_ADDR                 0x43110
243 #define HALO_MPU_PM_VIO_STATUS               0x43114
244 #define HALO_MPU_LOCK_CONFIG                 0x43140
245 
246 /*
247  * HALO_AHBM_WINDOW_DEBUG_1
248  */
249 #define HALO_AHBM_CORE_ERR_ADDR_MASK         0x0fffff00
250 #define HALO_AHBM_CORE_ERR_ADDR_SHIFT                 8
251 #define HALO_AHBM_FLAGS_ERR_MASK             0x000000ff
252 
253 /*
254  * HALO_CCM_CORE_CONTROL
255  */
256 #define HALO_CORE_RESET                     0x00000200
257 #define HALO_CORE_EN                        0x00000001
258 
259 /*
260  * HALO_CORE_SOFT_RESET
261  */
262 #define HALO_CORE_SOFT_RESET_MASK           0x00000001
263 
264 /*
265  * HALO_WDT_CONTROL
266  */
267 #define HALO_WDT_EN_MASK                    0x00000001
268 
269 /*
270  * HALO_MPU_?M_VIO_STATUS
271  */
272 #define HALO_MPU_VIO_STS_MASK               0x007e0000
273 #define HALO_MPU_VIO_STS_SHIFT                      17
274 #define HALO_MPU_VIO_ERR_WR_MASK            0x00008000
275 #define HALO_MPU_VIO_ERR_SRC_MASK           0x00007fff
276 #define HALO_MPU_VIO_ERR_SRC_SHIFT                   0
277 
278 struct cs_dsp_ops {
279 	bool (*validate_version)(struct cs_dsp *dsp, unsigned int version);
280 	unsigned int (*parse_sizes)(struct cs_dsp *dsp,
281 				    const char * const file,
282 				    unsigned int pos,
283 				    const struct firmware *firmware);
284 	int (*setup_algs)(struct cs_dsp *dsp);
285 	unsigned int (*region_to_reg)(struct cs_dsp_region const *mem,
286 				      unsigned int offset);
287 
288 	void (*show_fw_status)(struct cs_dsp *dsp);
289 	void (*stop_watchdog)(struct cs_dsp *dsp);
290 
291 	int (*enable_memory)(struct cs_dsp *dsp);
292 	void (*disable_memory)(struct cs_dsp *dsp);
293 	int (*lock_memory)(struct cs_dsp *dsp, unsigned int lock_regions);
294 
295 	int (*enable_core)(struct cs_dsp *dsp);
296 	void (*disable_core)(struct cs_dsp *dsp);
297 
298 	int (*start_core)(struct cs_dsp *dsp);
299 	void (*stop_core)(struct cs_dsp *dsp);
300 };
301 
302 static const struct cs_dsp_ops cs_dsp_adsp1_ops;
303 static const struct cs_dsp_ops cs_dsp_adsp2_ops[];
304 static const struct cs_dsp_ops cs_dsp_halo_ops;
305 static const struct cs_dsp_ops cs_dsp_halo_ao_ops;
306 
307 struct cs_dsp_buf {
308 	struct list_head list;
309 	void *buf;
310 };
311 
312 static struct cs_dsp_buf *cs_dsp_buf_alloc(const void *src, size_t len,
313 					   struct list_head *list)
314 {
315 	struct cs_dsp_buf *buf = kzalloc(sizeof(*buf), GFP_KERNEL);
316 
317 	if (buf == NULL)
318 		return NULL;
319 
320 	buf->buf = vmalloc(len);
321 	if (!buf->buf) {
322 		kfree(buf);
323 		return NULL;
324 	}
325 	memcpy(buf->buf, src, len);
326 
327 	if (list)
328 		list_add_tail(&buf->list, list);
329 
330 	return buf;
331 }
332 
333 static void cs_dsp_buf_free(struct list_head *list)
334 {
335 	while (!list_empty(list)) {
336 		struct cs_dsp_buf *buf = list_first_entry(list,
337 							  struct cs_dsp_buf,
338 							  list);
339 		list_del(&buf->list);
340 		vfree(buf->buf);
341 		kfree(buf);
342 	}
343 }
344 
345 /**
346  * cs_dsp_mem_region_name() - Return a name string for a memory type
347  * @type: the memory type to match
348  *
349  * Return: A const string identifying the memory region.
350  */
351 const char *cs_dsp_mem_region_name(unsigned int type)
352 {
353 	switch (type) {
354 	case WMFW_ADSP1_PM:
355 		return "PM";
356 	case WMFW_HALO_PM_PACKED:
357 		return "PM_PACKED";
358 	case WMFW_ADSP1_DM:
359 		return "DM";
360 	case WMFW_ADSP2_XM:
361 		return "XM";
362 	case WMFW_HALO_XM_PACKED:
363 		return "XM_PACKED";
364 	case WMFW_ADSP2_YM:
365 		return "YM";
366 	case WMFW_HALO_YM_PACKED:
367 		return "YM_PACKED";
368 	case WMFW_ADSP1_ZM:
369 		return "ZM";
370 	default:
371 		return NULL;
372 	}
373 }
374 EXPORT_SYMBOL_NS_GPL(cs_dsp_mem_region_name, FW_CS_DSP);
375 
376 #ifdef CONFIG_DEBUG_FS
377 static void cs_dsp_debugfs_save_wmfwname(struct cs_dsp *dsp, const char *s)
378 {
379 	char *tmp = kasprintf(GFP_KERNEL, "%s\n", s);
380 
381 	kfree(dsp->wmfw_file_name);
382 	dsp->wmfw_file_name = tmp;
383 }
384 
385 static void cs_dsp_debugfs_save_binname(struct cs_dsp *dsp, const char *s)
386 {
387 	char *tmp = kasprintf(GFP_KERNEL, "%s\n", s);
388 
389 	kfree(dsp->bin_file_name);
390 	dsp->bin_file_name = tmp;
391 }
392 
393 static void cs_dsp_debugfs_clear(struct cs_dsp *dsp)
394 {
395 	kfree(dsp->wmfw_file_name);
396 	kfree(dsp->bin_file_name);
397 	dsp->wmfw_file_name = NULL;
398 	dsp->bin_file_name = NULL;
399 }
400 
401 static ssize_t cs_dsp_debugfs_wmfw_read(struct file *file,
402 					char __user *user_buf,
403 					size_t count, loff_t *ppos)
404 {
405 	struct cs_dsp *dsp = file->private_data;
406 	ssize_t ret;
407 
408 	mutex_lock(&dsp->pwr_lock);
409 
410 	if (!dsp->wmfw_file_name || !dsp->booted)
411 		ret = 0;
412 	else
413 		ret = simple_read_from_buffer(user_buf, count, ppos,
414 					      dsp->wmfw_file_name,
415 					      strlen(dsp->wmfw_file_name));
416 
417 	mutex_unlock(&dsp->pwr_lock);
418 	return ret;
419 }
420 
421 static ssize_t cs_dsp_debugfs_bin_read(struct file *file,
422 				       char __user *user_buf,
423 				       size_t count, loff_t *ppos)
424 {
425 	struct cs_dsp *dsp = file->private_data;
426 	ssize_t ret;
427 
428 	mutex_lock(&dsp->pwr_lock);
429 
430 	if (!dsp->bin_file_name || !dsp->booted)
431 		ret = 0;
432 	else
433 		ret = simple_read_from_buffer(user_buf, count, ppos,
434 					      dsp->bin_file_name,
435 					      strlen(dsp->bin_file_name));
436 
437 	mutex_unlock(&dsp->pwr_lock);
438 	return ret;
439 }
440 
441 static const struct {
442 	const char *name;
443 	const struct file_operations fops;
444 } cs_dsp_debugfs_fops[] = {
445 	{
446 		.name = "wmfw_file_name",
447 		.fops = {
448 			.open = simple_open,
449 			.read = cs_dsp_debugfs_wmfw_read,
450 		},
451 	},
452 	{
453 		.name = "bin_file_name",
454 		.fops = {
455 			.open = simple_open,
456 			.read = cs_dsp_debugfs_bin_read,
457 		},
458 	},
459 };
460 
461 static int cs_dsp_coeff_base_reg(struct cs_dsp_coeff_ctl *ctl, unsigned int *reg,
462 				 unsigned int off);
463 
464 static int cs_dsp_debugfs_read_controls_show(struct seq_file *s, void *ignored)
465 {
466 	struct cs_dsp *dsp = s->private;
467 	struct cs_dsp_coeff_ctl *ctl;
468 	unsigned int reg;
469 
470 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
471 		cs_dsp_coeff_base_reg(ctl, &reg, 0);
472 		seq_printf(s, "%22.*s: %#8zx %s:%08x %#8x %s %#8x %#4x %c%c%c%c %s %s\n",
473 			   ctl->subname_len, ctl->subname, ctl->len,
474 			   cs_dsp_mem_region_name(ctl->alg_region.type),
475 			   ctl->offset, reg, ctl->fw_name, ctl->alg_region.alg, ctl->type,
476 			   ctl->flags & WMFW_CTL_FLAG_VOLATILE ? 'V' : '-',
477 			   ctl->flags & WMFW_CTL_FLAG_SYS ? 'S' : '-',
478 			   ctl->flags & WMFW_CTL_FLAG_READABLE ? 'R' : '-',
479 			   ctl->flags & WMFW_CTL_FLAG_WRITEABLE ? 'W' : '-',
480 			   ctl->enabled ? "enabled" : "disabled",
481 			   ctl->set ? "dirty" : "clean");
482 	}
483 
484 	return 0;
485 }
486 DEFINE_SHOW_ATTRIBUTE(cs_dsp_debugfs_read_controls);
487 
488 /**
489  * cs_dsp_init_debugfs() - Create and populate DSP representation in debugfs
490  * @dsp: pointer to DSP structure
491  * @debugfs_root: pointer to debugfs directory in which to create this DSP
492  *                representation
493  */
494 void cs_dsp_init_debugfs(struct cs_dsp *dsp, struct dentry *debugfs_root)
495 {
496 	struct dentry *root = NULL;
497 	int i;
498 
499 	root = debugfs_create_dir(dsp->name, debugfs_root);
500 
501 	debugfs_create_bool("booted", 0444, root, &dsp->booted);
502 	debugfs_create_bool("running", 0444, root, &dsp->running);
503 	debugfs_create_x32("fw_id", 0444, root, &dsp->fw_id);
504 	debugfs_create_x32("fw_version", 0444, root, &dsp->fw_id_version);
505 
506 	for (i = 0; i < ARRAY_SIZE(cs_dsp_debugfs_fops); ++i)
507 		debugfs_create_file(cs_dsp_debugfs_fops[i].name, 0444, root,
508 				    dsp, &cs_dsp_debugfs_fops[i].fops);
509 
510 	debugfs_create_file("controls", 0444, root, dsp,
511 			    &cs_dsp_debugfs_read_controls_fops);
512 
513 	dsp->debugfs_root = root;
514 }
515 EXPORT_SYMBOL_NS_GPL(cs_dsp_init_debugfs, FW_CS_DSP);
516 
517 /**
518  * cs_dsp_cleanup_debugfs() - Removes DSP representation from debugfs
519  * @dsp: pointer to DSP structure
520  */
521 void cs_dsp_cleanup_debugfs(struct cs_dsp *dsp)
522 {
523 	cs_dsp_debugfs_clear(dsp);
524 	debugfs_remove_recursive(dsp->debugfs_root);
525 	dsp->debugfs_root = NULL;
526 }
527 EXPORT_SYMBOL_NS_GPL(cs_dsp_cleanup_debugfs, FW_CS_DSP);
528 #else
529 void cs_dsp_init_debugfs(struct cs_dsp *dsp, struct dentry *debugfs_root)
530 {
531 }
532 EXPORT_SYMBOL_NS_GPL(cs_dsp_init_debugfs, FW_CS_DSP);
533 
534 void cs_dsp_cleanup_debugfs(struct cs_dsp *dsp)
535 {
536 }
537 EXPORT_SYMBOL_NS_GPL(cs_dsp_cleanup_debugfs, FW_CS_DSP);
538 
539 static inline void cs_dsp_debugfs_save_wmfwname(struct cs_dsp *dsp,
540 						const char *s)
541 {
542 }
543 
544 static inline void cs_dsp_debugfs_save_binname(struct cs_dsp *dsp,
545 					       const char *s)
546 {
547 }
548 
549 static inline void cs_dsp_debugfs_clear(struct cs_dsp *dsp)
550 {
551 }
552 #endif
553 
554 static const struct cs_dsp_region *cs_dsp_find_region(struct cs_dsp *dsp,
555 						      int type)
556 {
557 	int i;
558 
559 	for (i = 0; i < dsp->num_mems; i++)
560 		if (dsp->mem[i].type == type)
561 			return &dsp->mem[i];
562 
563 	return NULL;
564 }
565 
566 static unsigned int cs_dsp_region_to_reg(struct cs_dsp_region const *mem,
567 					 unsigned int offset)
568 {
569 	switch (mem->type) {
570 	case WMFW_ADSP1_PM:
571 		return mem->base + (offset * 3);
572 	case WMFW_ADSP1_DM:
573 	case WMFW_ADSP2_XM:
574 	case WMFW_ADSP2_YM:
575 	case WMFW_ADSP1_ZM:
576 		return mem->base + (offset * 2);
577 	default:
578 		WARN(1, "Unknown memory region type");
579 		return offset;
580 	}
581 }
582 
583 static unsigned int cs_dsp_halo_region_to_reg(struct cs_dsp_region const *mem,
584 					      unsigned int offset)
585 {
586 	switch (mem->type) {
587 	case WMFW_ADSP2_XM:
588 	case WMFW_ADSP2_YM:
589 		return mem->base + (offset * 4);
590 	case WMFW_HALO_XM_PACKED:
591 	case WMFW_HALO_YM_PACKED:
592 		return (mem->base + (offset * 3)) & ~0x3;
593 	case WMFW_HALO_PM_PACKED:
594 		return mem->base + (offset * 5);
595 	default:
596 		WARN(1, "Unknown memory region type");
597 		return offset;
598 	}
599 }
600 
601 static void cs_dsp_read_fw_status(struct cs_dsp *dsp,
602 				  int noffs, unsigned int *offs)
603 {
604 	unsigned int i;
605 	int ret;
606 
607 	for (i = 0; i < noffs; ++i) {
608 		ret = regmap_read(dsp->regmap, dsp->base + offs[i], &offs[i]);
609 		if (ret) {
610 			cs_dsp_err(dsp, "Failed to read SCRATCH%u: %d\n", i, ret);
611 			return;
612 		}
613 	}
614 }
615 
616 static void cs_dsp_adsp2_show_fw_status(struct cs_dsp *dsp)
617 {
618 	unsigned int offs[] = {
619 		ADSP2_SCRATCH0, ADSP2_SCRATCH1, ADSP2_SCRATCH2, ADSP2_SCRATCH3,
620 	};
621 
622 	cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
623 
624 	cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
625 		   offs[0], offs[1], offs[2], offs[3]);
626 }
627 
628 static void cs_dsp_adsp2v2_show_fw_status(struct cs_dsp *dsp)
629 {
630 	unsigned int offs[] = { ADSP2V2_SCRATCH0_1, ADSP2V2_SCRATCH2_3 };
631 
632 	cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
633 
634 	cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
635 		   offs[0] & 0xFFFF, offs[0] >> 16,
636 		   offs[1] & 0xFFFF, offs[1] >> 16);
637 }
638 
639 static void cs_dsp_halo_show_fw_status(struct cs_dsp *dsp)
640 {
641 	unsigned int offs[] = {
642 		HALO_SCRATCH1, HALO_SCRATCH2, HALO_SCRATCH3, HALO_SCRATCH4,
643 	};
644 
645 	cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
646 
647 	cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
648 		   offs[0], offs[1], offs[2], offs[3]);
649 }
650 
651 static int cs_dsp_coeff_base_reg(struct cs_dsp_coeff_ctl *ctl, unsigned int *reg,
652 				 unsigned int off)
653 {
654 	const struct cs_dsp_alg_region *alg_region = &ctl->alg_region;
655 	struct cs_dsp *dsp = ctl->dsp;
656 	const struct cs_dsp_region *mem;
657 
658 	mem = cs_dsp_find_region(dsp, alg_region->type);
659 	if (!mem) {
660 		cs_dsp_err(dsp, "No base for region %x\n",
661 			   alg_region->type);
662 		return -EINVAL;
663 	}
664 
665 	*reg = dsp->ops->region_to_reg(mem, ctl->alg_region.base + ctl->offset + off);
666 
667 	return 0;
668 }
669 
670 /**
671  * cs_dsp_coeff_write_acked_control() - Sends event_id to the acked control
672  * @ctl: pointer to acked coefficient control
673  * @event_id: the value to write to the given acked control
674  *
675  * Once the value has been written to the control the function shall block
676  * until the running firmware acknowledges the write or timeout is exceeded.
677  *
678  * Must be called with pwr_lock held.
679  *
680  * Return: Zero for success, a negative number on error.
681  */
682 int cs_dsp_coeff_write_acked_control(struct cs_dsp_coeff_ctl *ctl, unsigned int event_id)
683 {
684 	struct cs_dsp *dsp = ctl->dsp;
685 	__be32 val = cpu_to_be32(event_id);
686 	unsigned int reg;
687 	int i, ret;
688 
689 	lockdep_assert_held(&dsp->pwr_lock);
690 
691 	if (!dsp->running)
692 		return -EPERM;
693 
694 	ret = cs_dsp_coeff_base_reg(ctl, &reg, 0);
695 	if (ret)
696 		return ret;
697 
698 	cs_dsp_dbg(dsp, "Sending 0x%x to acked control alg 0x%x %s:0x%x\n",
699 		   event_id, ctl->alg_region.alg,
700 		   cs_dsp_mem_region_name(ctl->alg_region.type), ctl->offset);
701 
702 	ret = regmap_raw_write(dsp->regmap, reg, &val, sizeof(val));
703 	if (ret) {
704 		cs_dsp_err(dsp, "Failed to write %x: %d\n", reg, ret);
705 		return ret;
706 	}
707 
708 	/*
709 	 * Poll for ack, we initially poll at ~1ms intervals for firmwares
710 	 * that respond quickly, then go to ~10ms polls. A firmware is unlikely
711 	 * to ack instantly so we do the first 1ms delay before reading the
712 	 * control to avoid a pointless bus transaction
713 	 */
714 	for (i = 0; i < CS_DSP_ACKED_CTL_TIMEOUT_MS;) {
715 		switch (i) {
716 		case 0 ... CS_DSP_ACKED_CTL_N_QUICKPOLLS - 1:
717 			usleep_range(1000, 2000);
718 			i++;
719 			break;
720 		default:
721 			usleep_range(10000, 20000);
722 			i += 10;
723 			break;
724 		}
725 
726 		ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val));
727 		if (ret) {
728 			cs_dsp_err(dsp, "Failed to read %x: %d\n", reg, ret);
729 			return ret;
730 		}
731 
732 		if (val == 0) {
733 			cs_dsp_dbg(dsp, "Acked control ACKED at poll %u\n", i);
734 			return 0;
735 		}
736 	}
737 
738 	cs_dsp_warn(dsp, "Acked control @0x%x alg:0x%x %s:0x%x timed out\n",
739 		    reg, ctl->alg_region.alg,
740 		    cs_dsp_mem_region_name(ctl->alg_region.type),
741 		    ctl->offset);
742 
743 	return -ETIMEDOUT;
744 }
745 EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_write_acked_control, FW_CS_DSP);
746 
747 static int cs_dsp_coeff_write_ctrl_raw(struct cs_dsp_coeff_ctl *ctl,
748 				       unsigned int off, const void *buf, size_t len)
749 {
750 	struct cs_dsp *dsp = ctl->dsp;
751 	void *scratch;
752 	int ret;
753 	unsigned int reg;
754 
755 	ret = cs_dsp_coeff_base_reg(ctl, &reg, off);
756 	if (ret)
757 		return ret;
758 
759 	scratch = kmemdup(buf, len, GFP_KERNEL | GFP_DMA);
760 	if (!scratch)
761 		return -ENOMEM;
762 
763 	ret = regmap_raw_write(dsp->regmap, reg, scratch,
764 			       len);
765 	if (ret) {
766 		cs_dsp_err(dsp, "Failed to write %zu bytes to %x: %d\n",
767 			   len, reg, ret);
768 		kfree(scratch);
769 		return ret;
770 	}
771 	cs_dsp_dbg(dsp, "Wrote %zu bytes to %x\n", len, reg);
772 
773 	kfree(scratch);
774 
775 	return 0;
776 }
777 
778 /**
779  * cs_dsp_coeff_write_ctrl() - Writes the given buffer to the given coefficient control
780  * @ctl: pointer to coefficient control
781  * @off: word offset at which data should be written
782  * @buf: the buffer to write to the given control
783  * @len: the length of the buffer in bytes
784  *
785  * Must be called with pwr_lock held.
786  *
787  * Return: < 0 on error, 1 when the control value changed and 0 when it has not.
788  */
789 int cs_dsp_coeff_write_ctrl(struct cs_dsp_coeff_ctl *ctl,
790 			    unsigned int off, const void *buf, size_t len)
791 {
792 	int ret = 0;
793 
794 	if (!ctl)
795 		return -ENOENT;
796 
797 	lockdep_assert_held(&ctl->dsp->pwr_lock);
798 
799 	if (len + off * sizeof(u32) > ctl->len)
800 		return -EINVAL;
801 
802 	if (ctl->flags & WMFW_CTL_FLAG_VOLATILE) {
803 		ret = -EPERM;
804 	} else if (buf != ctl->cache) {
805 		if (memcmp(ctl->cache + off * sizeof(u32), buf, len))
806 			memcpy(ctl->cache + off * sizeof(u32), buf, len);
807 		else
808 			return 0;
809 	}
810 
811 	ctl->set = 1;
812 	if (ctl->enabled && ctl->dsp->running)
813 		ret = cs_dsp_coeff_write_ctrl_raw(ctl, off, buf, len);
814 
815 	if (ret < 0)
816 		return ret;
817 
818 	return 1;
819 }
820 EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_write_ctrl, FW_CS_DSP);
821 
822 static int cs_dsp_coeff_read_ctrl_raw(struct cs_dsp_coeff_ctl *ctl,
823 				      unsigned int off, void *buf, size_t len)
824 {
825 	struct cs_dsp *dsp = ctl->dsp;
826 	void *scratch;
827 	int ret;
828 	unsigned int reg;
829 
830 	ret = cs_dsp_coeff_base_reg(ctl, &reg, off);
831 	if (ret)
832 		return ret;
833 
834 	scratch = kmalloc(len, GFP_KERNEL | GFP_DMA);
835 	if (!scratch)
836 		return -ENOMEM;
837 
838 	ret = regmap_raw_read(dsp->regmap, reg, scratch, len);
839 	if (ret) {
840 		cs_dsp_err(dsp, "Failed to read %zu bytes from %x: %d\n",
841 			   len, reg, ret);
842 		kfree(scratch);
843 		return ret;
844 	}
845 	cs_dsp_dbg(dsp, "Read %zu bytes from %x\n", len, reg);
846 
847 	memcpy(buf, scratch, len);
848 	kfree(scratch);
849 
850 	return 0;
851 }
852 
853 /**
854  * cs_dsp_coeff_read_ctrl() - Reads the given coefficient control into the given buffer
855  * @ctl: pointer to coefficient control
856  * @off: word offset at which data should be read
857  * @buf: the buffer to store to the given control
858  * @len: the length of the buffer in bytes
859  *
860  * Must be called with pwr_lock held.
861  *
862  * Return: Zero for success, a negative number on error.
863  */
864 int cs_dsp_coeff_read_ctrl(struct cs_dsp_coeff_ctl *ctl,
865 			   unsigned int off, void *buf, size_t len)
866 {
867 	int ret = 0;
868 
869 	if (!ctl)
870 		return -ENOENT;
871 
872 	lockdep_assert_held(&ctl->dsp->pwr_lock);
873 
874 	if (len + off * sizeof(u32) > ctl->len)
875 		return -EINVAL;
876 
877 	if (ctl->flags & WMFW_CTL_FLAG_VOLATILE) {
878 		if (ctl->enabled && ctl->dsp->running)
879 			return cs_dsp_coeff_read_ctrl_raw(ctl, off, buf, len);
880 		else
881 			return -EPERM;
882 	} else {
883 		if (!ctl->flags && ctl->enabled && ctl->dsp->running)
884 			ret = cs_dsp_coeff_read_ctrl_raw(ctl, 0, ctl->cache, ctl->len);
885 
886 		if (buf != ctl->cache)
887 			memcpy(buf, ctl->cache + off * sizeof(u32), len);
888 	}
889 
890 	return ret;
891 }
892 EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_read_ctrl, FW_CS_DSP);
893 
894 static int cs_dsp_coeff_init_control_caches(struct cs_dsp *dsp)
895 {
896 	struct cs_dsp_coeff_ctl *ctl;
897 	int ret;
898 
899 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
900 		if (!ctl->enabled || ctl->set)
901 			continue;
902 		if (ctl->flags & WMFW_CTL_FLAG_VOLATILE)
903 			continue;
904 
905 		/*
906 		 * For readable controls populate the cache from the DSP memory.
907 		 * For non-readable controls the cache was zero-filled when
908 		 * created so we don't need to do anything.
909 		 */
910 		if (!ctl->flags || (ctl->flags & WMFW_CTL_FLAG_READABLE)) {
911 			ret = cs_dsp_coeff_read_ctrl_raw(ctl, 0, ctl->cache, ctl->len);
912 			if (ret < 0)
913 				return ret;
914 		}
915 	}
916 
917 	return 0;
918 }
919 
920 static int cs_dsp_coeff_sync_controls(struct cs_dsp *dsp)
921 {
922 	struct cs_dsp_coeff_ctl *ctl;
923 	int ret;
924 
925 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
926 		if (!ctl->enabled)
927 			continue;
928 		if (ctl->set && !(ctl->flags & WMFW_CTL_FLAG_VOLATILE)) {
929 			ret = cs_dsp_coeff_write_ctrl_raw(ctl, 0, ctl->cache,
930 							  ctl->len);
931 			if (ret < 0)
932 				return ret;
933 		}
934 	}
935 
936 	return 0;
937 }
938 
939 static void cs_dsp_signal_event_controls(struct cs_dsp *dsp,
940 					 unsigned int event)
941 {
942 	struct cs_dsp_coeff_ctl *ctl;
943 	int ret;
944 
945 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
946 		if (ctl->type != WMFW_CTL_TYPE_HOSTEVENT)
947 			continue;
948 
949 		if (!ctl->enabled)
950 			continue;
951 
952 		ret = cs_dsp_coeff_write_acked_control(ctl, event);
953 		if (ret)
954 			cs_dsp_warn(dsp,
955 				    "Failed to send 0x%x event to alg 0x%x (%d)\n",
956 				    event, ctl->alg_region.alg, ret);
957 	}
958 }
959 
960 static void cs_dsp_free_ctl_blk(struct cs_dsp_coeff_ctl *ctl)
961 {
962 	kfree(ctl->cache);
963 	kfree(ctl->subname);
964 	kfree(ctl);
965 }
966 
967 static int cs_dsp_create_control(struct cs_dsp *dsp,
968 				 const struct cs_dsp_alg_region *alg_region,
969 				 unsigned int offset, unsigned int len,
970 				 const char *subname, unsigned int subname_len,
971 				 unsigned int flags, unsigned int type)
972 {
973 	struct cs_dsp_coeff_ctl *ctl;
974 	int ret;
975 
976 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
977 		if (ctl->fw_name == dsp->fw_name &&
978 		    ctl->alg_region.alg == alg_region->alg &&
979 		    ctl->alg_region.type == alg_region->type) {
980 			if ((!subname && !ctl->subname) ||
981 			    (subname && (ctl->subname_len == subname_len) &&
982 			     !strncmp(ctl->subname, subname, ctl->subname_len))) {
983 				if (!ctl->enabled)
984 					ctl->enabled = 1;
985 				return 0;
986 			}
987 		}
988 	}
989 
990 	ctl = kzalloc(sizeof(*ctl), GFP_KERNEL);
991 	if (!ctl)
992 		return -ENOMEM;
993 
994 	ctl->fw_name = dsp->fw_name;
995 	ctl->alg_region = *alg_region;
996 	if (subname && dsp->fw_ver >= 2) {
997 		ctl->subname_len = subname_len;
998 		ctl->subname = kasprintf(GFP_KERNEL, "%.*s", subname_len, subname);
999 		if (!ctl->subname) {
1000 			ret = -ENOMEM;
1001 			goto err_ctl;
1002 		}
1003 	}
1004 	ctl->enabled = 1;
1005 	ctl->set = 0;
1006 	ctl->dsp = dsp;
1007 
1008 	ctl->flags = flags;
1009 	ctl->type = type;
1010 	ctl->offset = offset;
1011 	ctl->len = len;
1012 	ctl->cache = kzalloc(ctl->len, GFP_KERNEL);
1013 	if (!ctl->cache) {
1014 		ret = -ENOMEM;
1015 		goto err_ctl_subname;
1016 	}
1017 
1018 	list_add(&ctl->list, &dsp->ctl_list);
1019 
1020 	if (dsp->client_ops->control_add) {
1021 		ret = dsp->client_ops->control_add(ctl);
1022 		if (ret)
1023 			goto err_list_del;
1024 	}
1025 
1026 	return 0;
1027 
1028 err_list_del:
1029 	list_del(&ctl->list);
1030 	kfree(ctl->cache);
1031 err_ctl_subname:
1032 	kfree(ctl->subname);
1033 err_ctl:
1034 	kfree(ctl);
1035 
1036 	return ret;
1037 }
1038 
1039 struct cs_dsp_coeff_parsed_alg {
1040 	int id;
1041 	const u8 *name;
1042 	int name_len;
1043 	int ncoeff;
1044 };
1045 
1046 struct cs_dsp_coeff_parsed_coeff {
1047 	int offset;
1048 	int mem_type;
1049 	const u8 *name;
1050 	int name_len;
1051 	unsigned int ctl_type;
1052 	int flags;
1053 	int len;
1054 };
1055 
1056 static int cs_dsp_coeff_parse_string(int bytes, const u8 **pos, const u8 **str)
1057 {
1058 	int length;
1059 
1060 	switch (bytes) {
1061 	case 1:
1062 		length = **pos;
1063 		break;
1064 	case 2:
1065 		length = le16_to_cpu(*((__le16 *)*pos));
1066 		break;
1067 	default:
1068 		return 0;
1069 	}
1070 
1071 	if (str)
1072 		*str = *pos + bytes;
1073 
1074 	*pos += ((length + bytes) + 3) & ~0x03;
1075 
1076 	return length;
1077 }
1078 
1079 static int cs_dsp_coeff_parse_int(int bytes, const u8 **pos)
1080 {
1081 	int val = 0;
1082 
1083 	switch (bytes) {
1084 	case 2:
1085 		val = le16_to_cpu(*((__le16 *)*pos));
1086 		break;
1087 	case 4:
1088 		val = le32_to_cpu(*((__le32 *)*pos));
1089 		break;
1090 	default:
1091 		break;
1092 	}
1093 
1094 	*pos += bytes;
1095 
1096 	return val;
1097 }
1098 
1099 static inline void cs_dsp_coeff_parse_alg(struct cs_dsp *dsp, const u8 **data,
1100 					  struct cs_dsp_coeff_parsed_alg *blk)
1101 {
1102 	const struct wmfw_adsp_alg_data *raw;
1103 
1104 	switch (dsp->fw_ver) {
1105 	case 0:
1106 	case 1:
1107 		raw = (const struct wmfw_adsp_alg_data *)*data;
1108 		*data = raw->data;
1109 
1110 		blk->id = le32_to_cpu(raw->id);
1111 		blk->name = raw->name;
1112 		blk->name_len = strlen(raw->name);
1113 		blk->ncoeff = le32_to_cpu(raw->ncoeff);
1114 		break;
1115 	default:
1116 		blk->id = cs_dsp_coeff_parse_int(sizeof(raw->id), data);
1117 		blk->name_len = cs_dsp_coeff_parse_string(sizeof(u8), data,
1118 							  &blk->name);
1119 		cs_dsp_coeff_parse_string(sizeof(u16), data, NULL);
1120 		blk->ncoeff = cs_dsp_coeff_parse_int(sizeof(raw->ncoeff), data);
1121 		break;
1122 	}
1123 
1124 	cs_dsp_dbg(dsp, "Algorithm ID: %#x\n", blk->id);
1125 	cs_dsp_dbg(dsp, "Algorithm name: %.*s\n", blk->name_len, blk->name);
1126 	cs_dsp_dbg(dsp, "# of coefficient descriptors: %#x\n", blk->ncoeff);
1127 }
1128 
1129 static inline void cs_dsp_coeff_parse_coeff(struct cs_dsp *dsp, const u8 **data,
1130 					    struct cs_dsp_coeff_parsed_coeff *blk)
1131 {
1132 	const struct wmfw_adsp_coeff_data *raw;
1133 	const u8 *tmp;
1134 	int length;
1135 
1136 	switch (dsp->fw_ver) {
1137 	case 0:
1138 	case 1:
1139 		raw = (const struct wmfw_adsp_coeff_data *)*data;
1140 		*data = *data + sizeof(raw->hdr) + le32_to_cpu(raw->hdr.size);
1141 
1142 		blk->offset = le16_to_cpu(raw->hdr.offset);
1143 		blk->mem_type = le16_to_cpu(raw->hdr.type);
1144 		blk->name = raw->name;
1145 		blk->name_len = strlen(raw->name);
1146 		blk->ctl_type = le16_to_cpu(raw->ctl_type);
1147 		blk->flags = le16_to_cpu(raw->flags);
1148 		blk->len = le32_to_cpu(raw->len);
1149 		break;
1150 	default:
1151 		tmp = *data;
1152 		blk->offset = cs_dsp_coeff_parse_int(sizeof(raw->hdr.offset), &tmp);
1153 		blk->mem_type = cs_dsp_coeff_parse_int(sizeof(raw->hdr.type), &tmp);
1154 		length = cs_dsp_coeff_parse_int(sizeof(raw->hdr.size), &tmp);
1155 		blk->name_len = cs_dsp_coeff_parse_string(sizeof(u8), &tmp,
1156 							  &blk->name);
1157 		cs_dsp_coeff_parse_string(sizeof(u8), &tmp, NULL);
1158 		cs_dsp_coeff_parse_string(sizeof(u16), &tmp, NULL);
1159 		blk->ctl_type = cs_dsp_coeff_parse_int(sizeof(raw->ctl_type), &tmp);
1160 		blk->flags = cs_dsp_coeff_parse_int(sizeof(raw->flags), &tmp);
1161 		blk->len = cs_dsp_coeff_parse_int(sizeof(raw->len), &tmp);
1162 
1163 		*data = *data + sizeof(raw->hdr) + length;
1164 		break;
1165 	}
1166 
1167 	cs_dsp_dbg(dsp, "\tCoefficient type: %#x\n", blk->mem_type);
1168 	cs_dsp_dbg(dsp, "\tCoefficient offset: %#x\n", blk->offset);
1169 	cs_dsp_dbg(dsp, "\tCoefficient name: %.*s\n", blk->name_len, blk->name);
1170 	cs_dsp_dbg(dsp, "\tCoefficient flags: %#x\n", blk->flags);
1171 	cs_dsp_dbg(dsp, "\tALSA control type: %#x\n", blk->ctl_type);
1172 	cs_dsp_dbg(dsp, "\tALSA control len: %#x\n", blk->len);
1173 }
1174 
1175 static int cs_dsp_check_coeff_flags(struct cs_dsp *dsp,
1176 				    const struct cs_dsp_coeff_parsed_coeff *coeff_blk,
1177 				    unsigned int f_required,
1178 				    unsigned int f_illegal)
1179 {
1180 	if ((coeff_blk->flags & f_illegal) ||
1181 	    ((coeff_blk->flags & f_required) != f_required)) {
1182 		cs_dsp_err(dsp, "Illegal flags 0x%x for control type 0x%x\n",
1183 			   coeff_blk->flags, coeff_blk->ctl_type);
1184 		return -EINVAL;
1185 	}
1186 
1187 	return 0;
1188 }
1189 
1190 static int cs_dsp_parse_coeff(struct cs_dsp *dsp,
1191 			      const struct wmfw_region *region)
1192 {
1193 	struct cs_dsp_alg_region alg_region = {};
1194 	struct cs_dsp_coeff_parsed_alg alg_blk;
1195 	struct cs_dsp_coeff_parsed_coeff coeff_blk;
1196 	const u8 *data = region->data;
1197 	int i, ret;
1198 
1199 	cs_dsp_coeff_parse_alg(dsp, &data, &alg_blk);
1200 	for (i = 0; i < alg_blk.ncoeff; i++) {
1201 		cs_dsp_coeff_parse_coeff(dsp, &data, &coeff_blk);
1202 
1203 		switch (coeff_blk.ctl_type) {
1204 		case WMFW_CTL_TYPE_BYTES:
1205 			break;
1206 		case WMFW_CTL_TYPE_ACKED:
1207 			if (coeff_blk.flags & WMFW_CTL_FLAG_SYS)
1208 				continue;	/* ignore */
1209 
1210 			ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1211 						       WMFW_CTL_FLAG_VOLATILE |
1212 						       WMFW_CTL_FLAG_WRITEABLE |
1213 						       WMFW_CTL_FLAG_READABLE,
1214 						       0);
1215 			if (ret)
1216 				return -EINVAL;
1217 			break;
1218 		case WMFW_CTL_TYPE_HOSTEVENT:
1219 		case WMFW_CTL_TYPE_FWEVENT:
1220 			ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1221 						       WMFW_CTL_FLAG_SYS |
1222 						       WMFW_CTL_FLAG_VOLATILE |
1223 						       WMFW_CTL_FLAG_WRITEABLE |
1224 						       WMFW_CTL_FLAG_READABLE,
1225 						       0);
1226 			if (ret)
1227 				return -EINVAL;
1228 			break;
1229 		case WMFW_CTL_TYPE_HOST_BUFFER:
1230 			ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1231 						       WMFW_CTL_FLAG_SYS |
1232 						       WMFW_CTL_FLAG_VOLATILE |
1233 						       WMFW_CTL_FLAG_READABLE,
1234 						       0);
1235 			if (ret)
1236 				return -EINVAL;
1237 			break;
1238 		default:
1239 			cs_dsp_err(dsp, "Unknown control type: %d\n",
1240 				   coeff_blk.ctl_type);
1241 			return -EINVAL;
1242 		}
1243 
1244 		alg_region.type = coeff_blk.mem_type;
1245 		alg_region.alg = alg_blk.id;
1246 
1247 		ret = cs_dsp_create_control(dsp, &alg_region,
1248 					    coeff_blk.offset,
1249 					    coeff_blk.len,
1250 					    coeff_blk.name,
1251 					    coeff_blk.name_len,
1252 					    coeff_blk.flags,
1253 					    coeff_blk.ctl_type);
1254 		if (ret < 0)
1255 			cs_dsp_err(dsp, "Failed to create control: %.*s, %d\n",
1256 				   coeff_blk.name_len, coeff_blk.name, ret);
1257 	}
1258 
1259 	return 0;
1260 }
1261 
1262 static unsigned int cs_dsp_adsp1_parse_sizes(struct cs_dsp *dsp,
1263 					     const char * const file,
1264 					     unsigned int pos,
1265 					     const struct firmware *firmware)
1266 {
1267 	const struct wmfw_adsp1_sizes *adsp1_sizes;
1268 
1269 	adsp1_sizes = (void *)&firmware->data[pos];
1270 
1271 	cs_dsp_dbg(dsp, "%s: %d DM, %d PM, %d ZM\n", file,
1272 		   le32_to_cpu(adsp1_sizes->dm), le32_to_cpu(adsp1_sizes->pm),
1273 		   le32_to_cpu(adsp1_sizes->zm));
1274 
1275 	return pos + sizeof(*adsp1_sizes);
1276 }
1277 
1278 static unsigned int cs_dsp_adsp2_parse_sizes(struct cs_dsp *dsp,
1279 					     const char * const file,
1280 					     unsigned int pos,
1281 					     const struct firmware *firmware)
1282 {
1283 	const struct wmfw_adsp2_sizes *adsp2_sizes;
1284 
1285 	adsp2_sizes = (void *)&firmware->data[pos];
1286 
1287 	cs_dsp_dbg(dsp, "%s: %d XM, %d YM %d PM, %d ZM\n", file,
1288 		   le32_to_cpu(adsp2_sizes->xm), le32_to_cpu(adsp2_sizes->ym),
1289 		   le32_to_cpu(adsp2_sizes->pm), le32_to_cpu(adsp2_sizes->zm));
1290 
1291 	return pos + sizeof(*adsp2_sizes);
1292 }
1293 
1294 static bool cs_dsp_validate_version(struct cs_dsp *dsp, unsigned int version)
1295 {
1296 	switch (version) {
1297 	case 0:
1298 		cs_dsp_warn(dsp, "Deprecated file format %d\n", version);
1299 		return true;
1300 	case 1:
1301 	case 2:
1302 		return true;
1303 	default:
1304 		return false;
1305 	}
1306 }
1307 
1308 static bool cs_dsp_halo_validate_version(struct cs_dsp *dsp, unsigned int version)
1309 {
1310 	switch (version) {
1311 	case 3:
1312 		return true;
1313 	default:
1314 		return false;
1315 	}
1316 }
1317 
1318 static int cs_dsp_load(struct cs_dsp *dsp, const struct firmware *firmware,
1319 		       const char *file)
1320 {
1321 	LIST_HEAD(buf_list);
1322 	struct regmap *regmap = dsp->regmap;
1323 	unsigned int pos = 0;
1324 	const struct wmfw_header *header;
1325 	const struct wmfw_adsp1_sizes *adsp1_sizes;
1326 	const struct wmfw_footer *footer;
1327 	const struct wmfw_region *region;
1328 	const struct cs_dsp_region *mem;
1329 	const char *region_name;
1330 	char *text = NULL;
1331 	struct cs_dsp_buf *buf;
1332 	unsigned int reg;
1333 	int regions = 0;
1334 	int ret, offset, type;
1335 
1336 	if (!firmware)
1337 		return 0;
1338 
1339 	ret = -EINVAL;
1340 
1341 	pos = sizeof(*header) + sizeof(*adsp1_sizes) + sizeof(*footer);
1342 	if (pos >= firmware->size) {
1343 		cs_dsp_err(dsp, "%s: file too short, %zu bytes\n",
1344 			   file, firmware->size);
1345 		goto out_fw;
1346 	}
1347 
1348 	header = (void *)&firmware->data[0];
1349 
1350 	if (memcmp(&header->magic[0], "WMFW", 4) != 0) {
1351 		cs_dsp_err(dsp, "%s: invalid magic\n", file);
1352 		goto out_fw;
1353 	}
1354 
1355 	if (!dsp->ops->validate_version(dsp, header->ver)) {
1356 		cs_dsp_err(dsp, "%s: unknown file format %d\n",
1357 			   file, header->ver);
1358 		goto out_fw;
1359 	}
1360 
1361 	cs_dsp_info(dsp, "Firmware version: %d\n", header->ver);
1362 	dsp->fw_ver = header->ver;
1363 
1364 	if (header->core != dsp->type) {
1365 		cs_dsp_err(dsp, "%s: invalid core %d != %d\n",
1366 			   file, header->core, dsp->type);
1367 		goto out_fw;
1368 	}
1369 
1370 	pos = sizeof(*header);
1371 	pos = dsp->ops->parse_sizes(dsp, file, pos, firmware);
1372 
1373 	footer = (void *)&firmware->data[pos];
1374 	pos += sizeof(*footer);
1375 
1376 	if (le32_to_cpu(header->len) != pos) {
1377 		cs_dsp_err(dsp, "%s: unexpected header length %d\n",
1378 			   file, le32_to_cpu(header->len));
1379 		goto out_fw;
1380 	}
1381 
1382 	cs_dsp_dbg(dsp, "%s: timestamp %llu\n", file,
1383 		   le64_to_cpu(footer->timestamp));
1384 
1385 	while (pos < firmware->size &&
1386 	       sizeof(*region) < firmware->size - pos) {
1387 		region = (void *)&(firmware->data[pos]);
1388 		region_name = "Unknown";
1389 		reg = 0;
1390 		text = NULL;
1391 		offset = le32_to_cpu(region->offset) & 0xffffff;
1392 		type = be32_to_cpu(region->type) & 0xff;
1393 
1394 		switch (type) {
1395 		case WMFW_NAME_TEXT:
1396 			region_name = "Firmware name";
1397 			text = kzalloc(le32_to_cpu(region->len) + 1,
1398 				       GFP_KERNEL);
1399 			break;
1400 		case WMFW_ALGORITHM_DATA:
1401 			region_name = "Algorithm";
1402 			ret = cs_dsp_parse_coeff(dsp, region);
1403 			if (ret != 0)
1404 				goto out_fw;
1405 			break;
1406 		case WMFW_INFO_TEXT:
1407 			region_name = "Information";
1408 			text = kzalloc(le32_to_cpu(region->len) + 1,
1409 				       GFP_KERNEL);
1410 			break;
1411 		case WMFW_ABSOLUTE:
1412 			region_name = "Absolute";
1413 			reg = offset;
1414 			break;
1415 		case WMFW_ADSP1_PM:
1416 		case WMFW_ADSP1_DM:
1417 		case WMFW_ADSP2_XM:
1418 		case WMFW_ADSP2_YM:
1419 		case WMFW_ADSP1_ZM:
1420 		case WMFW_HALO_PM_PACKED:
1421 		case WMFW_HALO_XM_PACKED:
1422 		case WMFW_HALO_YM_PACKED:
1423 			mem = cs_dsp_find_region(dsp, type);
1424 			if (!mem) {
1425 				cs_dsp_err(dsp, "No region of type: %x\n", type);
1426 				ret = -EINVAL;
1427 				goto out_fw;
1428 			}
1429 
1430 			region_name = cs_dsp_mem_region_name(type);
1431 			reg = dsp->ops->region_to_reg(mem, offset);
1432 			break;
1433 		default:
1434 			cs_dsp_warn(dsp,
1435 				    "%s.%d: Unknown region type %x at %d(%x)\n",
1436 				    file, regions, type, pos, pos);
1437 			break;
1438 		}
1439 
1440 		cs_dsp_dbg(dsp, "%s.%d: %d bytes at %d in %s\n", file,
1441 			   regions, le32_to_cpu(region->len), offset,
1442 			   region_name);
1443 
1444 		if (le32_to_cpu(region->len) >
1445 		    firmware->size - pos - sizeof(*region)) {
1446 			cs_dsp_err(dsp,
1447 				   "%s.%d: %s region len %d bytes exceeds file length %zu\n",
1448 				   file, regions, region_name,
1449 				   le32_to_cpu(region->len), firmware->size);
1450 			ret = -EINVAL;
1451 			goto out_fw;
1452 		}
1453 
1454 		if (text) {
1455 			memcpy(text, region->data, le32_to_cpu(region->len));
1456 			cs_dsp_info(dsp, "%s: %s\n", file, text);
1457 			kfree(text);
1458 			text = NULL;
1459 		}
1460 
1461 		if (reg) {
1462 			buf = cs_dsp_buf_alloc(region->data,
1463 					       le32_to_cpu(region->len),
1464 					       &buf_list);
1465 			if (!buf) {
1466 				cs_dsp_err(dsp, "Out of memory\n");
1467 				ret = -ENOMEM;
1468 				goto out_fw;
1469 			}
1470 
1471 			ret = regmap_raw_write_async(regmap, reg, buf->buf,
1472 						     le32_to_cpu(region->len));
1473 			if (ret != 0) {
1474 				cs_dsp_err(dsp,
1475 					   "%s.%d: Failed to write %d bytes at %d in %s: %d\n",
1476 					   file, regions,
1477 					   le32_to_cpu(region->len), offset,
1478 					   region_name, ret);
1479 				goto out_fw;
1480 			}
1481 		}
1482 
1483 		pos += le32_to_cpu(region->len) + sizeof(*region);
1484 		regions++;
1485 	}
1486 
1487 	ret = regmap_async_complete(regmap);
1488 	if (ret != 0) {
1489 		cs_dsp_err(dsp, "Failed to complete async write: %d\n", ret);
1490 		goto out_fw;
1491 	}
1492 
1493 	if (pos > firmware->size)
1494 		cs_dsp_warn(dsp, "%s.%d: %zu bytes at end of file\n",
1495 			    file, regions, pos - firmware->size);
1496 
1497 	cs_dsp_debugfs_save_wmfwname(dsp, file);
1498 
1499 out_fw:
1500 	regmap_async_complete(regmap);
1501 	cs_dsp_buf_free(&buf_list);
1502 	kfree(text);
1503 
1504 	return ret;
1505 }
1506 
1507 /**
1508  * cs_dsp_get_ctl() - Finds a matching coefficient control
1509  * @dsp: pointer to DSP structure
1510  * @name: pointer to string to match with a control's subname
1511  * @type: the algorithm type to match
1512  * @alg: the algorithm id to match
1513  *
1514  * Find cs_dsp_coeff_ctl with input name as its subname
1515  *
1516  * Return: pointer to the control on success, NULL if not found
1517  */
1518 struct cs_dsp_coeff_ctl *cs_dsp_get_ctl(struct cs_dsp *dsp, const char *name, int type,
1519 					unsigned int alg)
1520 {
1521 	struct cs_dsp_coeff_ctl *pos, *rslt = NULL;
1522 
1523 	lockdep_assert_held(&dsp->pwr_lock);
1524 
1525 	list_for_each_entry(pos, &dsp->ctl_list, list) {
1526 		if (!pos->subname)
1527 			continue;
1528 		if (strncmp(pos->subname, name, pos->subname_len) == 0 &&
1529 		    pos->fw_name == dsp->fw_name &&
1530 		    pos->alg_region.alg == alg &&
1531 		    pos->alg_region.type == type) {
1532 			rslt = pos;
1533 			break;
1534 		}
1535 	}
1536 
1537 	return rslt;
1538 }
1539 EXPORT_SYMBOL_NS_GPL(cs_dsp_get_ctl, FW_CS_DSP);
1540 
1541 static void cs_dsp_ctl_fixup_base(struct cs_dsp *dsp,
1542 				  const struct cs_dsp_alg_region *alg_region)
1543 {
1544 	struct cs_dsp_coeff_ctl *ctl;
1545 
1546 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
1547 		if (ctl->fw_name == dsp->fw_name &&
1548 		    alg_region->alg == ctl->alg_region.alg &&
1549 		    alg_region->type == ctl->alg_region.type) {
1550 			ctl->alg_region.base = alg_region->base;
1551 		}
1552 	}
1553 }
1554 
1555 static void *cs_dsp_read_algs(struct cs_dsp *dsp, size_t n_algs,
1556 			      const struct cs_dsp_region *mem,
1557 			      unsigned int pos, unsigned int len)
1558 {
1559 	void *alg;
1560 	unsigned int reg;
1561 	int ret;
1562 	__be32 val;
1563 
1564 	if (n_algs == 0) {
1565 		cs_dsp_err(dsp, "No algorithms\n");
1566 		return ERR_PTR(-EINVAL);
1567 	}
1568 
1569 	if (n_algs > 1024) {
1570 		cs_dsp_err(dsp, "Algorithm count %zx excessive\n", n_algs);
1571 		return ERR_PTR(-EINVAL);
1572 	}
1573 
1574 	/* Read the terminator first to validate the length */
1575 	reg = dsp->ops->region_to_reg(mem, pos + len);
1576 
1577 	ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val));
1578 	if (ret != 0) {
1579 		cs_dsp_err(dsp, "Failed to read algorithm list end: %d\n",
1580 			   ret);
1581 		return ERR_PTR(ret);
1582 	}
1583 
1584 	if (be32_to_cpu(val) != 0xbedead)
1585 		cs_dsp_warn(dsp, "Algorithm list end %x 0x%x != 0xbedead\n",
1586 			    reg, be32_to_cpu(val));
1587 
1588 	/* Convert length from DSP words to bytes */
1589 	len *= sizeof(u32);
1590 
1591 	alg = kzalloc(len, GFP_KERNEL | GFP_DMA);
1592 	if (!alg)
1593 		return ERR_PTR(-ENOMEM);
1594 
1595 	reg = dsp->ops->region_to_reg(mem, pos);
1596 
1597 	ret = regmap_raw_read(dsp->regmap, reg, alg, len);
1598 	if (ret != 0) {
1599 		cs_dsp_err(dsp, "Failed to read algorithm list: %d\n", ret);
1600 		kfree(alg);
1601 		return ERR_PTR(ret);
1602 	}
1603 
1604 	return alg;
1605 }
1606 
1607 /**
1608  * cs_dsp_find_alg_region() - Finds a matching algorithm region
1609  * @dsp: pointer to DSP structure
1610  * @type: the algorithm type to match
1611  * @id: the algorithm id to match
1612  *
1613  * Return: Pointer to matching algorithm region, or NULL if not found.
1614  */
1615 struct cs_dsp_alg_region *cs_dsp_find_alg_region(struct cs_dsp *dsp,
1616 						 int type, unsigned int id)
1617 {
1618 	struct cs_dsp_alg_region *alg_region;
1619 
1620 	lockdep_assert_held(&dsp->pwr_lock);
1621 
1622 	list_for_each_entry(alg_region, &dsp->alg_regions, list) {
1623 		if (id == alg_region->alg && type == alg_region->type)
1624 			return alg_region;
1625 	}
1626 
1627 	return NULL;
1628 }
1629 EXPORT_SYMBOL_NS_GPL(cs_dsp_find_alg_region, FW_CS_DSP);
1630 
1631 static struct cs_dsp_alg_region *cs_dsp_create_region(struct cs_dsp *dsp,
1632 						      int type, __be32 id,
1633 						      __be32 ver, __be32 base)
1634 {
1635 	struct cs_dsp_alg_region *alg_region;
1636 
1637 	alg_region = kzalloc(sizeof(*alg_region), GFP_KERNEL);
1638 	if (!alg_region)
1639 		return ERR_PTR(-ENOMEM);
1640 
1641 	alg_region->type = type;
1642 	alg_region->alg = be32_to_cpu(id);
1643 	alg_region->ver = be32_to_cpu(ver);
1644 	alg_region->base = be32_to_cpu(base);
1645 
1646 	list_add_tail(&alg_region->list, &dsp->alg_regions);
1647 
1648 	if (dsp->fw_ver > 0)
1649 		cs_dsp_ctl_fixup_base(dsp, alg_region);
1650 
1651 	return alg_region;
1652 }
1653 
1654 static void cs_dsp_free_alg_regions(struct cs_dsp *dsp)
1655 {
1656 	struct cs_dsp_alg_region *alg_region;
1657 
1658 	while (!list_empty(&dsp->alg_regions)) {
1659 		alg_region = list_first_entry(&dsp->alg_regions,
1660 					      struct cs_dsp_alg_region,
1661 					      list);
1662 		list_del(&alg_region->list);
1663 		kfree(alg_region);
1664 	}
1665 }
1666 
1667 static void cs_dsp_parse_wmfw_id_header(struct cs_dsp *dsp,
1668 					struct wmfw_id_hdr *fw, int nalgs)
1669 {
1670 	dsp->fw_id = be32_to_cpu(fw->id);
1671 	dsp->fw_id_version = be32_to_cpu(fw->ver);
1672 
1673 	cs_dsp_info(dsp, "Firmware: %x v%d.%d.%d, %d algorithms\n",
1674 		    dsp->fw_id, (dsp->fw_id_version & 0xff0000) >> 16,
1675 		    (dsp->fw_id_version & 0xff00) >> 8, dsp->fw_id_version & 0xff,
1676 		    nalgs);
1677 }
1678 
1679 static void cs_dsp_parse_wmfw_v3_id_header(struct cs_dsp *dsp,
1680 					   struct wmfw_v3_id_hdr *fw, int nalgs)
1681 {
1682 	dsp->fw_id = be32_to_cpu(fw->id);
1683 	dsp->fw_id_version = be32_to_cpu(fw->ver);
1684 	dsp->fw_vendor_id = be32_to_cpu(fw->vendor_id);
1685 
1686 	cs_dsp_info(dsp, "Firmware: %x vendor: 0x%x v%d.%d.%d, %d algorithms\n",
1687 		    dsp->fw_id, dsp->fw_vendor_id,
1688 		    (dsp->fw_id_version & 0xff0000) >> 16,
1689 		    (dsp->fw_id_version & 0xff00) >> 8, dsp->fw_id_version & 0xff,
1690 		    nalgs);
1691 }
1692 
1693 static int cs_dsp_create_regions(struct cs_dsp *dsp, __be32 id, __be32 ver,
1694 				 int nregions, const int *type, __be32 *base)
1695 {
1696 	struct cs_dsp_alg_region *alg_region;
1697 	int i;
1698 
1699 	for (i = 0; i < nregions; i++) {
1700 		alg_region = cs_dsp_create_region(dsp, type[i], id, ver, base[i]);
1701 		if (IS_ERR(alg_region))
1702 			return PTR_ERR(alg_region);
1703 	}
1704 
1705 	return 0;
1706 }
1707 
1708 static int cs_dsp_adsp1_setup_algs(struct cs_dsp *dsp)
1709 {
1710 	struct wmfw_adsp1_id_hdr adsp1_id;
1711 	struct wmfw_adsp1_alg_hdr *adsp1_alg;
1712 	struct cs_dsp_alg_region *alg_region;
1713 	const struct cs_dsp_region *mem;
1714 	unsigned int pos, len;
1715 	size_t n_algs;
1716 	int i, ret;
1717 
1718 	mem = cs_dsp_find_region(dsp, WMFW_ADSP1_DM);
1719 	if (WARN_ON(!mem))
1720 		return -EINVAL;
1721 
1722 	ret = regmap_raw_read(dsp->regmap, mem->base, &adsp1_id,
1723 			      sizeof(adsp1_id));
1724 	if (ret != 0) {
1725 		cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
1726 			   ret);
1727 		return ret;
1728 	}
1729 
1730 	n_algs = be32_to_cpu(adsp1_id.n_algs);
1731 
1732 	cs_dsp_parse_wmfw_id_header(dsp, &adsp1_id.fw, n_algs);
1733 
1734 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_ZM,
1735 					  adsp1_id.fw.id, adsp1_id.fw.ver,
1736 					  adsp1_id.zm);
1737 	if (IS_ERR(alg_region))
1738 		return PTR_ERR(alg_region);
1739 
1740 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_DM,
1741 					  adsp1_id.fw.id, adsp1_id.fw.ver,
1742 					  adsp1_id.dm);
1743 	if (IS_ERR(alg_region))
1744 		return PTR_ERR(alg_region);
1745 
1746 	/* Calculate offset and length in DSP words */
1747 	pos = sizeof(adsp1_id) / sizeof(u32);
1748 	len = (sizeof(*adsp1_alg) * n_algs) / sizeof(u32);
1749 
1750 	adsp1_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
1751 	if (IS_ERR(adsp1_alg))
1752 		return PTR_ERR(adsp1_alg);
1753 
1754 	for (i = 0; i < n_algs; i++) {
1755 		cs_dsp_info(dsp, "%d: ID %x v%d.%d.%d DM@%x ZM@%x\n",
1756 			    i, be32_to_cpu(adsp1_alg[i].alg.id),
1757 			    (be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff0000) >> 16,
1758 			    (be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff00) >> 8,
1759 			    be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff,
1760 			    be32_to_cpu(adsp1_alg[i].dm),
1761 			    be32_to_cpu(adsp1_alg[i].zm));
1762 
1763 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_DM,
1764 						  adsp1_alg[i].alg.id,
1765 						  adsp1_alg[i].alg.ver,
1766 						  adsp1_alg[i].dm);
1767 		if (IS_ERR(alg_region)) {
1768 			ret = PTR_ERR(alg_region);
1769 			goto out;
1770 		}
1771 		if (dsp->fw_ver == 0) {
1772 			if (i + 1 < n_algs) {
1773 				len = be32_to_cpu(adsp1_alg[i + 1].dm);
1774 				len -= be32_to_cpu(adsp1_alg[i].dm);
1775 				len *= 4;
1776 				cs_dsp_create_control(dsp, alg_region, 0,
1777 						      len, NULL, 0, 0,
1778 						      WMFW_CTL_TYPE_BYTES);
1779 			} else {
1780 				cs_dsp_warn(dsp, "Missing length info for region DM with ID %x\n",
1781 					    be32_to_cpu(adsp1_alg[i].alg.id));
1782 			}
1783 		}
1784 
1785 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_ZM,
1786 						  adsp1_alg[i].alg.id,
1787 						  adsp1_alg[i].alg.ver,
1788 						  adsp1_alg[i].zm);
1789 		if (IS_ERR(alg_region)) {
1790 			ret = PTR_ERR(alg_region);
1791 			goto out;
1792 		}
1793 		if (dsp->fw_ver == 0) {
1794 			if (i + 1 < n_algs) {
1795 				len = be32_to_cpu(adsp1_alg[i + 1].zm);
1796 				len -= be32_to_cpu(adsp1_alg[i].zm);
1797 				len *= 4;
1798 				cs_dsp_create_control(dsp, alg_region, 0,
1799 						      len, NULL, 0, 0,
1800 						      WMFW_CTL_TYPE_BYTES);
1801 			} else {
1802 				cs_dsp_warn(dsp, "Missing length info for region ZM with ID %x\n",
1803 					    be32_to_cpu(adsp1_alg[i].alg.id));
1804 			}
1805 		}
1806 	}
1807 
1808 out:
1809 	kfree(adsp1_alg);
1810 	return ret;
1811 }
1812 
1813 static int cs_dsp_adsp2_setup_algs(struct cs_dsp *dsp)
1814 {
1815 	struct wmfw_adsp2_id_hdr adsp2_id;
1816 	struct wmfw_adsp2_alg_hdr *adsp2_alg;
1817 	struct cs_dsp_alg_region *alg_region;
1818 	const struct cs_dsp_region *mem;
1819 	unsigned int pos, len;
1820 	size_t n_algs;
1821 	int i, ret;
1822 
1823 	mem = cs_dsp_find_region(dsp, WMFW_ADSP2_XM);
1824 	if (WARN_ON(!mem))
1825 		return -EINVAL;
1826 
1827 	ret = regmap_raw_read(dsp->regmap, mem->base, &adsp2_id,
1828 			      sizeof(adsp2_id));
1829 	if (ret != 0) {
1830 		cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
1831 			   ret);
1832 		return ret;
1833 	}
1834 
1835 	n_algs = be32_to_cpu(adsp2_id.n_algs);
1836 
1837 	cs_dsp_parse_wmfw_id_header(dsp, &adsp2_id.fw, n_algs);
1838 
1839 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_XM,
1840 					  adsp2_id.fw.id, adsp2_id.fw.ver,
1841 					  adsp2_id.xm);
1842 	if (IS_ERR(alg_region))
1843 		return PTR_ERR(alg_region);
1844 
1845 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_YM,
1846 					  adsp2_id.fw.id, adsp2_id.fw.ver,
1847 					  adsp2_id.ym);
1848 	if (IS_ERR(alg_region))
1849 		return PTR_ERR(alg_region);
1850 
1851 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_ZM,
1852 					  adsp2_id.fw.id, adsp2_id.fw.ver,
1853 					  adsp2_id.zm);
1854 	if (IS_ERR(alg_region))
1855 		return PTR_ERR(alg_region);
1856 
1857 	/* Calculate offset and length in DSP words */
1858 	pos = sizeof(adsp2_id) / sizeof(u32);
1859 	len = (sizeof(*adsp2_alg) * n_algs) / sizeof(u32);
1860 
1861 	adsp2_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
1862 	if (IS_ERR(adsp2_alg))
1863 		return PTR_ERR(adsp2_alg);
1864 
1865 	for (i = 0; i < n_algs; i++) {
1866 		cs_dsp_dbg(dsp,
1867 			   "%d: ID %x v%d.%d.%d XM@%x YM@%x ZM@%x\n",
1868 			   i, be32_to_cpu(adsp2_alg[i].alg.id),
1869 			   (be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff0000) >> 16,
1870 			   (be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff00) >> 8,
1871 			   be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff,
1872 			   be32_to_cpu(adsp2_alg[i].xm),
1873 			   be32_to_cpu(adsp2_alg[i].ym),
1874 			   be32_to_cpu(adsp2_alg[i].zm));
1875 
1876 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_XM,
1877 						  adsp2_alg[i].alg.id,
1878 						  adsp2_alg[i].alg.ver,
1879 						  adsp2_alg[i].xm);
1880 		if (IS_ERR(alg_region)) {
1881 			ret = PTR_ERR(alg_region);
1882 			goto out;
1883 		}
1884 		if (dsp->fw_ver == 0) {
1885 			if (i + 1 < n_algs) {
1886 				len = be32_to_cpu(adsp2_alg[i + 1].xm);
1887 				len -= be32_to_cpu(adsp2_alg[i].xm);
1888 				len *= 4;
1889 				cs_dsp_create_control(dsp, alg_region, 0,
1890 						      len, NULL, 0, 0,
1891 						      WMFW_CTL_TYPE_BYTES);
1892 			} else {
1893 				cs_dsp_warn(dsp, "Missing length info for region XM with ID %x\n",
1894 					    be32_to_cpu(adsp2_alg[i].alg.id));
1895 			}
1896 		}
1897 
1898 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_YM,
1899 						  adsp2_alg[i].alg.id,
1900 						  adsp2_alg[i].alg.ver,
1901 						  adsp2_alg[i].ym);
1902 		if (IS_ERR(alg_region)) {
1903 			ret = PTR_ERR(alg_region);
1904 			goto out;
1905 		}
1906 		if (dsp->fw_ver == 0) {
1907 			if (i + 1 < n_algs) {
1908 				len = be32_to_cpu(adsp2_alg[i + 1].ym);
1909 				len -= be32_to_cpu(adsp2_alg[i].ym);
1910 				len *= 4;
1911 				cs_dsp_create_control(dsp, alg_region, 0,
1912 						      len, NULL, 0, 0,
1913 						      WMFW_CTL_TYPE_BYTES);
1914 			} else {
1915 				cs_dsp_warn(dsp, "Missing length info for region YM with ID %x\n",
1916 					    be32_to_cpu(adsp2_alg[i].alg.id));
1917 			}
1918 		}
1919 
1920 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_ZM,
1921 						  adsp2_alg[i].alg.id,
1922 						  adsp2_alg[i].alg.ver,
1923 						  adsp2_alg[i].zm);
1924 		if (IS_ERR(alg_region)) {
1925 			ret = PTR_ERR(alg_region);
1926 			goto out;
1927 		}
1928 		if (dsp->fw_ver == 0) {
1929 			if (i + 1 < n_algs) {
1930 				len = be32_to_cpu(adsp2_alg[i + 1].zm);
1931 				len -= be32_to_cpu(adsp2_alg[i].zm);
1932 				len *= 4;
1933 				cs_dsp_create_control(dsp, alg_region, 0,
1934 						      len, NULL, 0, 0,
1935 						      WMFW_CTL_TYPE_BYTES);
1936 			} else {
1937 				cs_dsp_warn(dsp, "Missing length info for region ZM with ID %x\n",
1938 					    be32_to_cpu(adsp2_alg[i].alg.id));
1939 			}
1940 		}
1941 	}
1942 
1943 out:
1944 	kfree(adsp2_alg);
1945 	return ret;
1946 }
1947 
1948 static int cs_dsp_halo_create_regions(struct cs_dsp *dsp, __be32 id, __be32 ver,
1949 				      __be32 xm_base, __be32 ym_base)
1950 {
1951 	static const int types[] = {
1952 		WMFW_ADSP2_XM, WMFW_HALO_XM_PACKED,
1953 		WMFW_ADSP2_YM, WMFW_HALO_YM_PACKED
1954 	};
1955 	__be32 bases[] = { xm_base, xm_base, ym_base, ym_base };
1956 
1957 	return cs_dsp_create_regions(dsp, id, ver, ARRAY_SIZE(types), types, bases);
1958 }
1959 
1960 static int cs_dsp_halo_setup_algs(struct cs_dsp *dsp)
1961 {
1962 	struct wmfw_halo_id_hdr halo_id;
1963 	struct wmfw_halo_alg_hdr *halo_alg;
1964 	const struct cs_dsp_region *mem;
1965 	unsigned int pos, len;
1966 	size_t n_algs;
1967 	int i, ret;
1968 
1969 	mem = cs_dsp_find_region(dsp, WMFW_ADSP2_XM);
1970 	if (WARN_ON(!mem))
1971 		return -EINVAL;
1972 
1973 	ret = regmap_raw_read(dsp->regmap, mem->base, &halo_id,
1974 			      sizeof(halo_id));
1975 	if (ret != 0) {
1976 		cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
1977 			   ret);
1978 		return ret;
1979 	}
1980 
1981 	n_algs = be32_to_cpu(halo_id.n_algs);
1982 
1983 	cs_dsp_parse_wmfw_v3_id_header(dsp, &halo_id.fw, n_algs);
1984 
1985 	ret = cs_dsp_halo_create_regions(dsp, halo_id.fw.id, halo_id.fw.ver,
1986 					 halo_id.xm_base, halo_id.ym_base);
1987 	if (ret)
1988 		return ret;
1989 
1990 	/* Calculate offset and length in DSP words */
1991 	pos = sizeof(halo_id) / sizeof(u32);
1992 	len = (sizeof(*halo_alg) * n_algs) / sizeof(u32);
1993 
1994 	halo_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
1995 	if (IS_ERR(halo_alg))
1996 		return PTR_ERR(halo_alg);
1997 
1998 	for (i = 0; i < n_algs; i++) {
1999 		cs_dsp_dbg(dsp,
2000 			   "%d: ID %x v%d.%d.%d XM@%x YM@%x\n",
2001 			   i, be32_to_cpu(halo_alg[i].alg.id),
2002 			   (be32_to_cpu(halo_alg[i].alg.ver) & 0xff0000) >> 16,
2003 			   (be32_to_cpu(halo_alg[i].alg.ver) & 0xff00) >> 8,
2004 			   be32_to_cpu(halo_alg[i].alg.ver) & 0xff,
2005 			   be32_to_cpu(halo_alg[i].xm_base),
2006 			   be32_to_cpu(halo_alg[i].ym_base));
2007 
2008 		ret = cs_dsp_halo_create_regions(dsp, halo_alg[i].alg.id,
2009 						 halo_alg[i].alg.ver,
2010 						 halo_alg[i].xm_base,
2011 						 halo_alg[i].ym_base);
2012 		if (ret)
2013 			goto out;
2014 	}
2015 
2016 out:
2017 	kfree(halo_alg);
2018 	return ret;
2019 }
2020 
2021 static int cs_dsp_load_coeff(struct cs_dsp *dsp, const struct firmware *firmware,
2022 			     const char *file)
2023 {
2024 	LIST_HEAD(buf_list);
2025 	struct regmap *regmap = dsp->regmap;
2026 	struct wmfw_coeff_hdr *hdr;
2027 	struct wmfw_coeff_item *blk;
2028 	const struct cs_dsp_region *mem;
2029 	struct cs_dsp_alg_region *alg_region;
2030 	const char *region_name;
2031 	int ret, pos, blocks, type, offset, reg, version;
2032 	char *text = NULL;
2033 	struct cs_dsp_buf *buf;
2034 
2035 	if (!firmware)
2036 		return 0;
2037 
2038 	ret = -EINVAL;
2039 
2040 	if (sizeof(*hdr) >= firmware->size) {
2041 		cs_dsp_err(dsp, "%s: coefficient file too short, %zu bytes\n",
2042 			   file, firmware->size);
2043 		goto out_fw;
2044 	}
2045 
2046 	hdr = (void *)&firmware->data[0];
2047 	if (memcmp(hdr->magic, "WMDR", 4) != 0) {
2048 		cs_dsp_err(dsp, "%s: invalid coefficient magic\n", file);
2049 		goto out_fw;
2050 	}
2051 
2052 	switch (be32_to_cpu(hdr->rev) & 0xff) {
2053 	case 1:
2054 	case 2:
2055 		break;
2056 	default:
2057 		cs_dsp_err(dsp, "%s: Unsupported coefficient file format %d\n",
2058 			   file, be32_to_cpu(hdr->rev) & 0xff);
2059 		ret = -EINVAL;
2060 		goto out_fw;
2061 	}
2062 
2063 	cs_dsp_info(dsp, "%s: v%d.%d.%d\n", file,
2064 		    (le32_to_cpu(hdr->ver) >> 16) & 0xff,
2065 		    (le32_to_cpu(hdr->ver) >>  8) & 0xff,
2066 		    le32_to_cpu(hdr->ver) & 0xff);
2067 
2068 	pos = le32_to_cpu(hdr->len);
2069 
2070 	blocks = 0;
2071 	while (pos < firmware->size &&
2072 	       sizeof(*blk) < firmware->size - pos) {
2073 		blk = (void *)(&firmware->data[pos]);
2074 
2075 		type = le16_to_cpu(blk->type);
2076 		offset = le16_to_cpu(blk->offset);
2077 		version = le32_to_cpu(blk->ver) >> 8;
2078 
2079 		cs_dsp_dbg(dsp, "%s.%d: %x v%d.%d.%d\n",
2080 			   file, blocks, le32_to_cpu(blk->id),
2081 			   (le32_to_cpu(blk->ver) >> 16) & 0xff,
2082 			   (le32_to_cpu(blk->ver) >>  8) & 0xff,
2083 			   le32_to_cpu(blk->ver) & 0xff);
2084 		cs_dsp_dbg(dsp, "%s.%d: %d bytes at 0x%x in %x\n",
2085 			   file, blocks, le32_to_cpu(blk->len), offset, type);
2086 
2087 		reg = 0;
2088 		region_name = "Unknown";
2089 		switch (type) {
2090 		case (WMFW_NAME_TEXT << 8):
2091 			text = kzalloc(le32_to_cpu(blk->len) + 1, GFP_KERNEL);
2092 			break;
2093 		case (WMFW_INFO_TEXT << 8):
2094 		case (WMFW_METADATA << 8):
2095 			break;
2096 		case (WMFW_ABSOLUTE << 8):
2097 			/*
2098 			 * Old files may use this for global
2099 			 * coefficients.
2100 			 */
2101 			if (le32_to_cpu(blk->id) == dsp->fw_id &&
2102 			    offset == 0) {
2103 				region_name = "global coefficients";
2104 				mem = cs_dsp_find_region(dsp, type);
2105 				if (!mem) {
2106 					cs_dsp_err(dsp, "No ZM\n");
2107 					break;
2108 				}
2109 				reg = dsp->ops->region_to_reg(mem, 0);
2110 
2111 			} else {
2112 				region_name = "register";
2113 				reg = offset;
2114 			}
2115 			break;
2116 
2117 		case WMFW_ADSP1_DM:
2118 		case WMFW_ADSP1_ZM:
2119 		case WMFW_ADSP2_XM:
2120 		case WMFW_ADSP2_YM:
2121 		case WMFW_HALO_XM_PACKED:
2122 		case WMFW_HALO_YM_PACKED:
2123 		case WMFW_HALO_PM_PACKED:
2124 			cs_dsp_dbg(dsp, "%s.%d: %d bytes in %x for %x\n",
2125 				   file, blocks, le32_to_cpu(blk->len),
2126 				   type, le32_to_cpu(blk->id));
2127 
2128 			region_name = cs_dsp_mem_region_name(type);
2129 			mem = cs_dsp_find_region(dsp, type);
2130 			if (!mem) {
2131 				cs_dsp_err(dsp, "No base for region %x\n", type);
2132 				break;
2133 			}
2134 
2135 			alg_region = cs_dsp_find_alg_region(dsp, type,
2136 							    le32_to_cpu(blk->id));
2137 			if (alg_region) {
2138 				if (version != alg_region->ver)
2139 					cs_dsp_warn(dsp,
2140 						    "Algorithm coefficient version %d.%d.%d but expected %d.%d.%d\n",
2141 						   (version >> 16) & 0xFF,
2142 						   (version >> 8) & 0xFF,
2143 						   version & 0xFF,
2144 						   (alg_region->ver >> 16) & 0xFF,
2145 						   (alg_region->ver >> 8) & 0xFF,
2146 						   alg_region->ver & 0xFF);
2147 
2148 				reg = alg_region->base;
2149 				reg = dsp->ops->region_to_reg(mem, reg);
2150 				reg += offset;
2151 			} else {
2152 				cs_dsp_err(dsp, "No %s for algorithm %x\n",
2153 					   region_name, le32_to_cpu(blk->id));
2154 			}
2155 			break;
2156 
2157 		default:
2158 			cs_dsp_err(dsp, "%s.%d: Unknown region type %x at %d\n",
2159 				   file, blocks, type, pos);
2160 			break;
2161 		}
2162 
2163 		if (text) {
2164 			memcpy(text, blk->data, le32_to_cpu(blk->len));
2165 			cs_dsp_info(dsp, "%s: %s\n", dsp->fw_name, text);
2166 			kfree(text);
2167 			text = NULL;
2168 		}
2169 
2170 		if (reg) {
2171 			if (le32_to_cpu(blk->len) >
2172 			    firmware->size - pos - sizeof(*blk)) {
2173 				cs_dsp_err(dsp,
2174 					   "%s.%d: %s region len %d bytes exceeds file length %zu\n",
2175 					   file, blocks, region_name,
2176 					   le32_to_cpu(blk->len),
2177 					   firmware->size);
2178 				ret = -EINVAL;
2179 				goto out_fw;
2180 			}
2181 
2182 			buf = cs_dsp_buf_alloc(blk->data,
2183 					       le32_to_cpu(blk->len),
2184 					       &buf_list);
2185 			if (!buf) {
2186 				cs_dsp_err(dsp, "Out of memory\n");
2187 				ret = -ENOMEM;
2188 				goto out_fw;
2189 			}
2190 
2191 			cs_dsp_dbg(dsp, "%s.%d: Writing %d bytes at %x\n",
2192 				   file, blocks, le32_to_cpu(blk->len),
2193 				   reg);
2194 			ret = regmap_raw_write_async(regmap, reg, buf->buf,
2195 						     le32_to_cpu(blk->len));
2196 			if (ret != 0) {
2197 				cs_dsp_err(dsp,
2198 					   "%s.%d: Failed to write to %x in %s: %d\n",
2199 					   file, blocks, reg, region_name, ret);
2200 			}
2201 		}
2202 
2203 		pos += (le32_to_cpu(blk->len) + sizeof(*blk) + 3) & ~0x03;
2204 		blocks++;
2205 	}
2206 
2207 	ret = regmap_async_complete(regmap);
2208 	if (ret != 0)
2209 		cs_dsp_err(dsp, "Failed to complete async write: %d\n", ret);
2210 
2211 	if (pos > firmware->size)
2212 		cs_dsp_warn(dsp, "%s.%d: %zu bytes at end of file\n",
2213 			    file, blocks, pos - firmware->size);
2214 
2215 	cs_dsp_debugfs_save_binname(dsp, file);
2216 
2217 out_fw:
2218 	regmap_async_complete(regmap);
2219 	cs_dsp_buf_free(&buf_list);
2220 	kfree(text);
2221 	return ret;
2222 }
2223 
2224 static int cs_dsp_create_name(struct cs_dsp *dsp)
2225 {
2226 	if (!dsp->name) {
2227 		dsp->name = devm_kasprintf(dsp->dev, GFP_KERNEL, "DSP%d",
2228 					   dsp->num);
2229 		if (!dsp->name)
2230 			return -ENOMEM;
2231 	}
2232 
2233 	return 0;
2234 }
2235 
2236 static int cs_dsp_common_init(struct cs_dsp *dsp)
2237 {
2238 	int ret;
2239 
2240 	ret = cs_dsp_create_name(dsp);
2241 	if (ret)
2242 		return ret;
2243 
2244 	INIT_LIST_HEAD(&dsp->alg_regions);
2245 	INIT_LIST_HEAD(&dsp->ctl_list);
2246 
2247 	mutex_init(&dsp->pwr_lock);
2248 
2249 	return 0;
2250 }
2251 
2252 /**
2253  * cs_dsp_adsp1_init() - Initialise a cs_dsp structure representing a ADSP1 device
2254  * @dsp: pointer to DSP structure
2255  *
2256  * Return: Zero for success, a negative number on error.
2257  */
2258 int cs_dsp_adsp1_init(struct cs_dsp *dsp)
2259 {
2260 	dsp->ops = &cs_dsp_adsp1_ops;
2261 
2262 	return cs_dsp_common_init(dsp);
2263 }
2264 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_init, FW_CS_DSP);
2265 
2266 /**
2267  * cs_dsp_adsp1_power_up() - Load and start the named firmware
2268  * @dsp: pointer to DSP structure
2269  * @wmfw_firmware: the firmware to be sent
2270  * @wmfw_filename: file name of firmware to be sent
2271  * @coeff_firmware: the coefficient data to be sent
2272  * @coeff_filename: file name of coefficient to data be sent
2273  * @fw_name: the user-friendly firmware name
2274  *
2275  * Return: Zero for success, a negative number on error.
2276  */
2277 int cs_dsp_adsp1_power_up(struct cs_dsp *dsp,
2278 			  const struct firmware *wmfw_firmware, char *wmfw_filename,
2279 			  const struct firmware *coeff_firmware, char *coeff_filename,
2280 			  const char *fw_name)
2281 {
2282 	unsigned int val;
2283 	int ret;
2284 
2285 	mutex_lock(&dsp->pwr_lock);
2286 
2287 	dsp->fw_name = fw_name;
2288 
2289 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2290 			   ADSP1_SYS_ENA, ADSP1_SYS_ENA);
2291 
2292 	/*
2293 	 * For simplicity set the DSP clock rate to be the
2294 	 * SYSCLK rate rather than making it configurable.
2295 	 */
2296 	if (dsp->sysclk_reg) {
2297 		ret = regmap_read(dsp->regmap, dsp->sysclk_reg, &val);
2298 		if (ret != 0) {
2299 			cs_dsp_err(dsp, "Failed to read SYSCLK state: %d\n", ret);
2300 			goto err_mutex;
2301 		}
2302 
2303 		val = (val & dsp->sysclk_mask) >> dsp->sysclk_shift;
2304 
2305 		ret = regmap_update_bits(dsp->regmap,
2306 					 dsp->base + ADSP1_CONTROL_31,
2307 					 ADSP1_CLK_SEL_MASK, val);
2308 		if (ret != 0) {
2309 			cs_dsp_err(dsp, "Failed to set clock rate: %d\n", ret);
2310 			goto err_mutex;
2311 		}
2312 	}
2313 
2314 	ret = cs_dsp_load(dsp, wmfw_firmware, wmfw_filename);
2315 	if (ret != 0)
2316 		goto err_ena;
2317 
2318 	ret = cs_dsp_adsp1_setup_algs(dsp);
2319 	if (ret != 0)
2320 		goto err_ena;
2321 
2322 	ret = cs_dsp_load_coeff(dsp, coeff_firmware, coeff_filename);
2323 	if (ret != 0)
2324 		goto err_ena;
2325 
2326 	/* Initialize caches for enabled and unset controls */
2327 	ret = cs_dsp_coeff_init_control_caches(dsp);
2328 	if (ret != 0)
2329 		goto err_ena;
2330 
2331 	/* Sync set controls */
2332 	ret = cs_dsp_coeff_sync_controls(dsp);
2333 	if (ret != 0)
2334 		goto err_ena;
2335 
2336 	dsp->booted = true;
2337 
2338 	/* Start the core running */
2339 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2340 			   ADSP1_CORE_ENA | ADSP1_START,
2341 			   ADSP1_CORE_ENA | ADSP1_START);
2342 
2343 	dsp->running = true;
2344 
2345 	mutex_unlock(&dsp->pwr_lock);
2346 
2347 	return 0;
2348 
2349 err_ena:
2350 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2351 			   ADSP1_SYS_ENA, 0);
2352 err_mutex:
2353 	mutex_unlock(&dsp->pwr_lock);
2354 	return ret;
2355 }
2356 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_power_up, FW_CS_DSP);
2357 
2358 /**
2359  * cs_dsp_adsp1_power_down() - Halts the DSP
2360  * @dsp: pointer to DSP structure
2361  */
2362 void cs_dsp_adsp1_power_down(struct cs_dsp *dsp)
2363 {
2364 	struct cs_dsp_coeff_ctl *ctl;
2365 
2366 	mutex_lock(&dsp->pwr_lock);
2367 
2368 	dsp->running = false;
2369 	dsp->booted = false;
2370 
2371 	/* Halt the core */
2372 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2373 			   ADSP1_CORE_ENA | ADSP1_START, 0);
2374 
2375 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_19,
2376 			   ADSP1_WDMA_BUFFER_LENGTH_MASK, 0);
2377 
2378 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2379 			   ADSP1_SYS_ENA, 0);
2380 
2381 	list_for_each_entry(ctl, &dsp->ctl_list, list)
2382 		ctl->enabled = 0;
2383 
2384 	cs_dsp_free_alg_regions(dsp);
2385 
2386 	mutex_unlock(&dsp->pwr_lock);
2387 }
2388 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_power_down, FW_CS_DSP);
2389 
2390 static int cs_dsp_adsp2v2_enable_core(struct cs_dsp *dsp)
2391 {
2392 	unsigned int val;
2393 	int ret, count;
2394 
2395 	/* Wait for the RAM to start, should be near instantaneous */
2396 	for (count = 0; count < 10; ++count) {
2397 		ret = regmap_read(dsp->regmap, dsp->base + ADSP2_STATUS1, &val);
2398 		if (ret != 0)
2399 			return ret;
2400 
2401 		if (val & ADSP2_RAM_RDY)
2402 			break;
2403 
2404 		usleep_range(250, 500);
2405 	}
2406 
2407 	if (!(val & ADSP2_RAM_RDY)) {
2408 		cs_dsp_err(dsp, "Failed to start DSP RAM\n");
2409 		return -EBUSY;
2410 	}
2411 
2412 	cs_dsp_dbg(dsp, "RAM ready after %d polls\n", count);
2413 
2414 	return 0;
2415 }
2416 
2417 static int cs_dsp_adsp2_enable_core(struct cs_dsp *dsp)
2418 {
2419 	int ret;
2420 
2421 	ret = regmap_update_bits_async(dsp->regmap, dsp->base + ADSP2_CONTROL,
2422 				       ADSP2_SYS_ENA, ADSP2_SYS_ENA);
2423 	if (ret != 0)
2424 		return ret;
2425 
2426 	return cs_dsp_adsp2v2_enable_core(dsp);
2427 }
2428 
2429 static int cs_dsp_adsp2_lock(struct cs_dsp *dsp, unsigned int lock_regions)
2430 {
2431 	struct regmap *regmap = dsp->regmap;
2432 	unsigned int code0, code1, lock_reg;
2433 
2434 	if (!(lock_regions & CS_ADSP2_REGION_ALL))
2435 		return 0;
2436 
2437 	lock_regions &= CS_ADSP2_REGION_ALL;
2438 	lock_reg = dsp->base + ADSP2_LOCK_REGION_1_LOCK_REGION_0;
2439 
2440 	while (lock_regions) {
2441 		code0 = code1 = 0;
2442 		if (lock_regions & BIT(0)) {
2443 			code0 = ADSP2_LOCK_CODE_0;
2444 			code1 = ADSP2_LOCK_CODE_1;
2445 		}
2446 		if (lock_regions & BIT(1)) {
2447 			code0 |= ADSP2_LOCK_CODE_0 << ADSP2_LOCK_REGION_SHIFT;
2448 			code1 |= ADSP2_LOCK_CODE_1 << ADSP2_LOCK_REGION_SHIFT;
2449 		}
2450 		regmap_write(regmap, lock_reg, code0);
2451 		regmap_write(regmap, lock_reg, code1);
2452 		lock_regions >>= 2;
2453 		lock_reg += 2;
2454 	}
2455 
2456 	return 0;
2457 }
2458 
2459 static int cs_dsp_adsp2_enable_memory(struct cs_dsp *dsp)
2460 {
2461 	return regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2462 				  ADSP2_MEM_ENA, ADSP2_MEM_ENA);
2463 }
2464 
2465 static void cs_dsp_adsp2_disable_memory(struct cs_dsp *dsp)
2466 {
2467 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2468 			   ADSP2_MEM_ENA, 0);
2469 }
2470 
2471 static void cs_dsp_adsp2_disable_core(struct cs_dsp *dsp)
2472 {
2473 	regmap_write(dsp->regmap, dsp->base + ADSP2_RDMA_CONFIG_1, 0);
2474 	regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_1, 0);
2475 	regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_2, 0);
2476 
2477 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2478 			   ADSP2_SYS_ENA, 0);
2479 }
2480 
2481 static void cs_dsp_adsp2v2_disable_core(struct cs_dsp *dsp)
2482 {
2483 	regmap_write(dsp->regmap, dsp->base + ADSP2_RDMA_CONFIG_1, 0);
2484 	regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_1, 0);
2485 	regmap_write(dsp->regmap, dsp->base + ADSP2V2_WDMA_CONFIG_2, 0);
2486 }
2487 
2488 static int cs_dsp_halo_configure_mpu(struct cs_dsp *dsp, unsigned int lock_regions)
2489 {
2490 	struct reg_sequence config[] = {
2491 		{ dsp->base + HALO_MPU_LOCK_CONFIG,     0x5555 },
2492 		{ dsp->base + HALO_MPU_LOCK_CONFIG,     0xAAAA },
2493 		{ dsp->base + HALO_MPU_XMEM_ACCESS_0,   0xFFFFFFFF },
2494 		{ dsp->base + HALO_MPU_YMEM_ACCESS_0,   0xFFFFFFFF },
2495 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_0, lock_regions },
2496 		{ dsp->base + HALO_MPU_XREG_ACCESS_0,   lock_regions },
2497 		{ dsp->base + HALO_MPU_YREG_ACCESS_0,   lock_regions },
2498 		{ dsp->base + HALO_MPU_XMEM_ACCESS_1,   0xFFFFFFFF },
2499 		{ dsp->base + HALO_MPU_YMEM_ACCESS_1,   0xFFFFFFFF },
2500 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_1, lock_regions },
2501 		{ dsp->base + HALO_MPU_XREG_ACCESS_1,   lock_regions },
2502 		{ dsp->base + HALO_MPU_YREG_ACCESS_1,   lock_regions },
2503 		{ dsp->base + HALO_MPU_XMEM_ACCESS_2,   0xFFFFFFFF },
2504 		{ dsp->base + HALO_MPU_YMEM_ACCESS_2,   0xFFFFFFFF },
2505 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_2, lock_regions },
2506 		{ dsp->base + HALO_MPU_XREG_ACCESS_2,   lock_regions },
2507 		{ dsp->base + HALO_MPU_YREG_ACCESS_2,   lock_regions },
2508 		{ dsp->base + HALO_MPU_XMEM_ACCESS_3,   0xFFFFFFFF },
2509 		{ dsp->base + HALO_MPU_YMEM_ACCESS_3,   0xFFFFFFFF },
2510 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_3, lock_regions },
2511 		{ dsp->base + HALO_MPU_XREG_ACCESS_3,   lock_regions },
2512 		{ dsp->base + HALO_MPU_YREG_ACCESS_3,   lock_regions },
2513 		{ dsp->base + HALO_MPU_LOCK_CONFIG,     0 },
2514 	};
2515 
2516 	return regmap_multi_reg_write(dsp->regmap, config, ARRAY_SIZE(config));
2517 }
2518 
2519 /**
2520  * cs_dsp_set_dspclk() - Applies the given frequency to the given cs_dsp
2521  * @dsp: pointer to DSP structure
2522  * @freq: clock rate to set
2523  *
2524  * This is only for use on ADSP2 cores.
2525  *
2526  * Return: Zero for success, a negative number on error.
2527  */
2528 int cs_dsp_set_dspclk(struct cs_dsp *dsp, unsigned int freq)
2529 {
2530 	int ret;
2531 
2532 	ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CLOCKING,
2533 				 ADSP2_CLK_SEL_MASK,
2534 				 freq << ADSP2_CLK_SEL_SHIFT);
2535 	if (ret)
2536 		cs_dsp_err(dsp, "Failed to set clock rate: %d\n", ret);
2537 
2538 	return ret;
2539 }
2540 EXPORT_SYMBOL_NS_GPL(cs_dsp_set_dspclk, FW_CS_DSP);
2541 
2542 static void cs_dsp_stop_watchdog(struct cs_dsp *dsp)
2543 {
2544 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_WATCHDOG,
2545 			   ADSP2_WDT_ENA_MASK, 0);
2546 }
2547 
2548 static void cs_dsp_halo_stop_watchdog(struct cs_dsp *dsp)
2549 {
2550 	regmap_update_bits(dsp->regmap, dsp->base + HALO_WDT_CONTROL,
2551 			   HALO_WDT_EN_MASK, 0);
2552 }
2553 
2554 /**
2555  * cs_dsp_power_up() - Downloads firmware to the DSP
2556  * @dsp: pointer to DSP structure
2557  * @wmfw_firmware: the firmware to be sent
2558  * @wmfw_filename: file name of firmware to be sent
2559  * @coeff_firmware: the coefficient data to be sent
2560  * @coeff_filename: file name of coefficient to data be sent
2561  * @fw_name: the user-friendly firmware name
2562  *
2563  * This function is used on ADSP2 and Halo DSP cores, it powers-up the DSP core
2564  * and downloads the firmware but does not start the firmware running. The
2565  * cs_dsp booted flag will be set once completed and if the core has a low-power
2566  * memory retention mode it will be put into this state after the firmware is
2567  * downloaded.
2568  *
2569  * Return: Zero for success, a negative number on error.
2570  */
2571 int cs_dsp_power_up(struct cs_dsp *dsp,
2572 		    const struct firmware *wmfw_firmware, char *wmfw_filename,
2573 		    const struct firmware *coeff_firmware, char *coeff_filename,
2574 		    const char *fw_name)
2575 {
2576 	int ret;
2577 
2578 	mutex_lock(&dsp->pwr_lock);
2579 
2580 	dsp->fw_name = fw_name;
2581 
2582 	if (dsp->ops->enable_memory) {
2583 		ret = dsp->ops->enable_memory(dsp);
2584 		if (ret != 0)
2585 			goto err_mutex;
2586 	}
2587 
2588 	if (dsp->ops->enable_core) {
2589 		ret = dsp->ops->enable_core(dsp);
2590 		if (ret != 0)
2591 			goto err_mem;
2592 	}
2593 
2594 	ret = cs_dsp_load(dsp, wmfw_firmware, wmfw_filename);
2595 	if (ret != 0)
2596 		goto err_ena;
2597 
2598 	ret = dsp->ops->setup_algs(dsp);
2599 	if (ret != 0)
2600 		goto err_ena;
2601 
2602 	ret = cs_dsp_load_coeff(dsp, coeff_firmware, coeff_filename);
2603 	if (ret != 0)
2604 		goto err_ena;
2605 
2606 	/* Initialize caches for enabled and unset controls */
2607 	ret = cs_dsp_coeff_init_control_caches(dsp);
2608 	if (ret != 0)
2609 		goto err_ena;
2610 
2611 	if (dsp->ops->disable_core)
2612 		dsp->ops->disable_core(dsp);
2613 
2614 	dsp->booted = true;
2615 
2616 	mutex_unlock(&dsp->pwr_lock);
2617 
2618 	return 0;
2619 err_ena:
2620 	if (dsp->ops->disable_core)
2621 		dsp->ops->disable_core(dsp);
2622 err_mem:
2623 	if (dsp->ops->disable_memory)
2624 		dsp->ops->disable_memory(dsp);
2625 err_mutex:
2626 	mutex_unlock(&dsp->pwr_lock);
2627 
2628 	return ret;
2629 }
2630 EXPORT_SYMBOL_NS_GPL(cs_dsp_power_up, FW_CS_DSP);
2631 
2632 /**
2633  * cs_dsp_power_down() - Powers-down the DSP
2634  * @dsp: pointer to DSP structure
2635  *
2636  * cs_dsp_stop() must have been called before this function. The core will be
2637  * fully powered down and so the memory will not be retained.
2638  */
2639 void cs_dsp_power_down(struct cs_dsp *dsp)
2640 {
2641 	struct cs_dsp_coeff_ctl *ctl;
2642 
2643 	mutex_lock(&dsp->pwr_lock);
2644 
2645 	cs_dsp_debugfs_clear(dsp);
2646 
2647 	dsp->fw_id = 0;
2648 	dsp->fw_id_version = 0;
2649 
2650 	dsp->booted = false;
2651 
2652 	if (dsp->ops->disable_memory)
2653 		dsp->ops->disable_memory(dsp);
2654 
2655 	list_for_each_entry(ctl, &dsp->ctl_list, list)
2656 		ctl->enabled = 0;
2657 
2658 	cs_dsp_free_alg_regions(dsp);
2659 
2660 	mutex_unlock(&dsp->pwr_lock);
2661 
2662 	cs_dsp_dbg(dsp, "Shutdown complete\n");
2663 }
2664 EXPORT_SYMBOL_NS_GPL(cs_dsp_power_down, FW_CS_DSP);
2665 
2666 static int cs_dsp_adsp2_start_core(struct cs_dsp *dsp)
2667 {
2668 	return regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2669 				  ADSP2_CORE_ENA | ADSP2_START,
2670 				  ADSP2_CORE_ENA | ADSP2_START);
2671 }
2672 
2673 static void cs_dsp_adsp2_stop_core(struct cs_dsp *dsp)
2674 {
2675 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2676 			   ADSP2_CORE_ENA | ADSP2_START, 0);
2677 }
2678 
2679 /**
2680  * cs_dsp_run() - Starts the firmware running
2681  * @dsp: pointer to DSP structure
2682  *
2683  * cs_dsp_power_up() must have previously been called successfully.
2684  *
2685  * Return: Zero for success, a negative number on error.
2686  */
2687 int cs_dsp_run(struct cs_dsp *dsp)
2688 {
2689 	int ret;
2690 
2691 	mutex_lock(&dsp->pwr_lock);
2692 
2693 	if (!dsp->booted) {
2694 		ret = -EIO;
2695 		goto err;
2696 	}
2697 
2698 	if (dsp->ops->enable_core) {
2699 		ret = dsp->ops->enable_core(dsp);
2700 		if (ret != 0)
2701 			goto err;
2702 	}
2703 
2704 	if (dsp->client_ops->pre_run) {
2705 		ret = dsp->client_ops->pre_run(dsp);
2706 		if (ret)
2707 			goto err;
2708 	}
2709 
2710 	/* Sync set controls */
2711 	ret = cs_dsp_coeff_sync_controls(dsp);
2712 	if (ret != 0)
2713 		goto err;
2714 
2715 	if (dsp->ops->lock_memory) {
2716 		ret = dsp->ops->lock_memory(dsp, dsp->lock_regions);
2717 		if (ret != 0) {
2718 			cs_dsp_err(dsp, "Error configuring MPU: %d\n", ret);
2719 			goto err;
2720 		}
2721 	}
2722 
2723 	if (dsp->ops->start_core) {
2724 		ret = dsp->ops->start_core(dsp);
2725 		if (ret != 0)
2726 			goto err;
2727 	}
2728 
2729 	dsp->running = true;
2730 
2731 	if (dsp->client_ops->post_run) {
2732 		ret = dsp->client_ops->post_run(dsp);
2733 		if (ret)
2734 			goto err;
2735 	}
2736 
2737 	mutex_unlock(&dsp->pwr_lock);
2738 
2739 	return 0;
2740 
2741 err:
2742 	if (dsp->ops->stop_core)
2743 		dsp->ops->stop_core(dsp);
2744 	if (dsp->ops->disable_core)
2745 		dsp->ops->disable_core(dsp);
2746 	mutex_unlock(&dsp->pwr_lock);
2747 
2748 	return ret;
2749 }
2750 EXPORT_SYMBOL_NS_GPL(cs_dsp_run, FW_CS_DSP);
2751 
2752 /**
2753  * cs_dsp_stop() - Stops the firmware
2754  * @dsp: pointer to DSP structure
2755  *
2756  * Memory will not be disabled so firmware will remain loaded.
2757  */
2758 void cs_dsp_stop(struct cs_dsp *dsp)
2759 {
2760 	/* Tell the firmware to cleanup */
2761 	cs_dsp_signal_event_controls(dsp, CS_DSP_FW_EVENT_SHUTDOWN);
2762 
2763 	if (dsp->ops->stop_watchdog)
2764 		dsp->ops->stop_watchdog(dsp);
2765 
2766 	/* Log firmware state, it can be useful for analysis */
2767 	if (dsp->ops->show_fw_status)
2768 		dsp->ops->show_fw_status(dsp);
2769 
2770 	mutex_lock(&dsp->pwr_lock);
2771 
2772 	if (dsp->client_ops->pre_stop)
2773 		dsp->client_ops->pre_stop(dsp);
2774 
2775 	dsp->running = false;
2776 
2777 	if (dsp->ops->stop_core)
2778 		dsp->ops->stop_core(dsp);
2779 	if (dsp->ops->disable_core)
2780 		dsp->ops->disable_core(dsp);
2781 
2782 	if (dsp->client_ops->post_stop)
2783 		dsp->client_ops->post_stop(dsp);
2784 
2785 	mutex_unlock(&dsp->pwr_lock);
2786 
2787 	cs_dsp_dbg(dsp, "Execution stopped\n");
2788 }
2789 EXPORT_SYMBOL_NS_GPL(cs_dsp_stop, FW_CS_DSP);
2790 
2791 static int cs_dsp_halo_start_core(struct cs_dsp *dsp)
2792 {
2793 	int ret;
2794 
2795 	ret = regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2796 				 HALO_CORE_RESET | HALO_CORE_EN,
2797 				 HALO_CORE_RESET | HALO_CORE_EN);
2798 	if (ret)
2799 		return ret;
2800 
2801 	return regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2802 				  HALO_CORE_RESET, 0);
2803 }
2804 
2805 static void cs_dsp_halo_stop_core(struct cs_dsp *dsp)
2806 {
2807 	regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2808 			   HALO_CORE_EN, 0);
2809 
2810 	/* reset halo core with CORE_SOFT_RESET */
2811 	regmap_update_bits(dsp->regmap, dsp->base + HALO_CORE_SOFT_RESET,
2812 			   HALO_CORE_SOFT_RESET_MASK, 1);
2813 }
2814 
2815 /**
2816  * cs_dsp_adsp2_init() - Initialise a cs_dsp structure representing a ADSP2 core
2817  * @dsp: pointer to DSP structure
2818  *
2819  * Return: Zero for success, a negative number on error.
2820  */
2821 int cs_dsp_adsp2_init(struct cs_dsp *dsp)
2822 {
2823 	int ret;
2824 
2825 	switch (dsp->rev) {
2826 	case 0:
2827 		/*
2828 		 * Disable the DSP memory by default when in reset for a small
2829 		 * power saving.
2830 		 */
2831 		ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2832 					 ADSP2_MEM_ENA, 0);
2833 		if (ret) {
2834 			cs_dsp_err(dsp,
2835 				   "Failed to clear memory retention: %d\n", ret);
2836 			return ret;
2837 		}
2838 
2839 		dsp->ops = &cs_dsp_adsp2_ops[0];
2840 		break;
2841 	case 1:
2842 		dsp->ops = &cs_dsp_adsp2_ops[1];
2843 		break;
2844 	default:
2845 		dsp->ops = &cs_dsp_adsp2_ops[2];
2846 		break;
2847 	}
2848 
2849 	return cs_dsp_common_init(dsp);
2850 }
2851 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp2_init, FW_CS_DSP);
2852 
2853 /**
2854  * cs_dsp_halo_init() - Initialise a cs_dsp structure representing a HALO Core DSP
2855  * @dsp: pointer to DSP structure
2856  *
2857  * Return: Zero for success, a negative number on error.
2858  */
2859 int cs_dsp_halo_init(struct cs_dsp *dsp)
2860 {
2861 	if (dsp->no_core_startstop)
2862 		dsp->ops = &cs_dsp_halo_ao_ops;
2863 	else
2864 		dsp->ops = &cs_dsp_halo_ops;
2865 
2866 	return cs_dsp_common_init(dsp);
2867 }
2868 EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_init, FW_CS_DSP);
2869 
2870 /**
2871  * cs_dsp_remove() - Clean a cs_dsp before deletion
2872  * @dsp: pointer to DSP structure
2873  */
2874 void cs_dsp_remove(struct cs_dsp *dsp)
2875 {
2876 	struct cs_dsp_coeff_ctl *ctl;
2877 
2878 	while (!list_empty(&dsp->ctl_list)) {
2879 		ctl = list_first_entry(&dsp->ctl_list, struct cs_dsp_coeff_ctl, list);
2880 
2881 		if (dsp->client_ops->control_remove)
2882 			dsp->client_ops->control_remove(ctl);
2883 
2884 		list_del(&ctl->list);
2885 		cs_dsp_free_ctl_blk(ctl);
2886 	}
2887 }
2888 EXPORT_SYMBOL_NS_GPL(cs_dsp_remove, FW_CS_DSP);
2889 
2890 /**
2891  * cs_dsp_read_raw_data_block() - Reads a block of data from DSP memory
2892  * @dsp: pointer to DSP structure
2893  * @mem_type: the type of DSP memory containing the data to be read
2894  * @mem_addr: the address of the data within the memory region
2895  * @num_words: the length of the data to read
2896  * @data: a buffer to store the fetched data
2897  *
2898  * If this is used to read unpacked 24-bit memory, each 24-bit DSP word will
2899  * occupy 32-bits in data (MSbyte will be 0). This padding can be removed using
2900  * cs_dsp_remove_padding()
2901  *
2902  * Return: Zero for success, a negative number on error.
2903  */
2904 int cs_dsp_read_raw_data_block(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr,
2905 			       unsigned int num_words, __be32 *data)
2906 {
2907 	struct cs_dsp_region const *mem = cs_dsp_find_region(dsp, mem_type);
2908 	unsigned int reg;
2909 	int ret;
2910 
2911 	lockdep_assert_held(&dsp->pwr_lock);
2912 
2913 	if (!mem)
2914 		return -EINVAL;
2915 
2916 	reg = dsp->ops->region_to_reg(mem, mem_addr);
2917 
2918 	ret = regmap_raw_read(dsp->regmap, reg, data,
2919 			      sizeof(*data) * num_words);
2920 	if (ret < 0)
2921 		return ret;
2922 
2923 	return 0;
2924 }
2925 EXPORT_SYMBOL_NS_GPL(cs_dsp_read_raw_data_block, FW_CS_DSP);
2926 
2927 /**
2928  * cs_dsp_read_data_word() - Reads a word from DSP memory
2929  * @dsp: pointer to DSP structure
2930  * @mem_type: the type of DSP memory containing the data to be read
2931  * @mem_addr: the address of the data within the memory region
2932  * @data: a buffer to store the fetched data
2933  *
2934  * Return: Zero for success, a negative number on error.
2935  */
2936 int cs_dsp_read_data_word(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr, u32 *data)
2937 {
2938 	__be32 raw;
2939 	int ret;
2940 
2941 	ret = cs_dsp_read_raw_data_block(dsp, mem_type, mem_addr, 1, &raw);
2942 	if (ret < 0)
2943 		return ret;
2944 
2945 	*data = be32_to_cpu(raw) & 0x00ffffffu;
2946 
2947 	return 0;
2948 }
2949 EXPORT_SYMBOL_NS_GPL(cs_dsp_read_data_word, FW_CS_DSP);
2950 
2951 /**
2952  * cs_dsp_write_data_word() - Writes a word to DSP memory
2953  * @dsp: pointer to DSP structure
2954  * @mem_type: the type of DSP memory containing the data to be written
2955  * @mem_addr: the address of the data within the memory region
2956  * @data: the data to be written
2957  *
2958  * Return: Zero for success, a negative number on error.
2959  */
2960 int cs_dsp_write_data_word(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr, u32 data)
2961 {
2962 	struct cs_dsp_region const *mem = cs_dsp_find_region(dsp, mem_type);
2963 	__be32 val = cpu_to_be32(data & 0x00ffffffu);
2964 	unsigned int reg;
2965 
2966 	lockdep_assert_held(&dsp->pwr_lock);
2967 
2968 	if (!mem)
2969 		return -EINVAL;
2970 
2971 	reg = dsp->ops->region_to_reg(mem, mem_addr);
2972 
2973 	return regmap_raw_write(dsp->regmap, reg, &val, sizeof(val));
2974 }
2975 EXPORT_SYMBOL_NS_GPL(cs_dsp_write_data_word, FW_CS_DSP);
2976 
2977 /**
2978  * cs_dsp_remove_padding() - Convert unpacked words to packed bytes
2979  * @buf: buffer containing DSP words read from DSP memory
2980  * @nwords: number of words to convert
2981  *
2982  * DSP words from the register map have pad bytes and the data bytes
2983  * are in swapped order. This swaps to the native endian order and
2984  * strips the pad bytes.
2985  */
2986 void cs_dsp_remove_padding(u32 *buf, int nwords)
2987 {
2988 	const __be32 *pack_in = (__be32 *)buf;
2989 	u8 *pack_out = (u8 *)buf;
2990 	int i;
2991 
2992 	for (i = 0; i < nwords; i++) {
2993 		u32 word = be32_to_cpu(*pack_in++);
2994 		*pack_out++ = (u8)word;
2995 		*pack_out++ = (u8)(word >> 8);
2996 		*pack_out++ = (u8)(word >> 16);
2997 	}
2998 }
2999 EXPORT_SYMBOL_NS_GPL(cs_dsp_remove_padding, FW_CS_DSP);
3000 
3001 /**
3002  * cs_dsp_adsp2_bus_error() - Handle a DSP bus error interrupt
3003  * @dsp: pointer to DSP structure
3004  *
3005  * The firmware and DSP state will be logged for future analysis.
3006  */
3007 void cs_dsp_adsp2_bus_error(struct cs_dsp *dsp)
3008 {
3009 	unsigned int val;
3010 	struct regmap *regmap = dsp->regmap;
3011 	int ret = 0;
3012 
3013 	mutex_lock(&dsp->pwr_lock);
3014 
3015 	ret = regmap_read(regmap, dsp->base + ADSP2_LOCK_REGION_CTRL, &val);
3016 	if (ret) {
3017 		cs_dsp_err(dsp,
3018 			   "Failed to read Region Lock Ctrl register: %d\n", ret);
3019 		goto error;
3020 	}
3021 
3022 	if (val & ADSP2_WDT_TIMEOUT_STS_MASK) {
3023 		cs_dsp_err(dsp, "watchdog timeout error\n");
3024 		dsp->ops->stop_watchdog(dsp);
3025 		if (dsp->client_ops->watchdog_expired)
3026 			dsp->client_ops->watchdog_expired(dsp);
3027 	}
3028 
3029 	if (val & (ADSP2_ADDR_ERR_MASK | ADSP2_REGION_LOCK_ERR_MASK)) {
3030 		if (val & ADSP2_ADDR_ERR_MASK)
3031 			cs_dsp_err(dsp, "bus error: address error\n");
3032 		else
3033 			cs_dsp_err(dsp, "bus error: region lock error\n");
3034 
3035 		ret = regmap_read(regmap, dsp->base + ADSP2_BUS_ERR_ADDR, &val);
3036 		if (ret) {
3037 			cs_dsp_err(dsp,
3038 				   "Failed to read Bus Err Addr register: %d\n",
3039 				   ret);
3040 			goto error;
3041 		}
3042 
3043 		cs_dsp_err(dsp, "bus error address = 0x%x\n",
3044 			   val & ADSP2_BUS_ERR_ADDR_MASK);
3045 
3046 		ret = regmap_read(regmap,
3047 				  dsp->base + ADSP2_PMEM_ERR_ADDR_XMEM_ERR_ADDR,
3048 				  &val);
3049 		if (ret) {
3050 			cs_dsp_err(dsp,
3051 				   "Failed to read Pmem Xmem Err Addr register: %d\n",
3052 				   ret);
3053 			goto error;
3054 		}
3055 
3056 		cs_dsp_err(dsp, "xmem error address = 0x%x\n",
3057 			   val & ADSP2_XMEM_ERR_ADDR_MASK);
3058 		cs_dsp_err(dsp, "pmem error address = 0x%x\n",
3059 			   (val & ADSP2_PMEM_ERR_ADDR_MASK) >>
3060 			   ADSP2_PMEM_ERR_ADDR_SHIFT);
3061 	}
3062 
3063 	regmap_update_bits(regmap, dsp->base + ADSP2_LOCK_REGION_CTRL,
3064 			   ADSP2_CTRL_ERR_EINT, ADSP2_CTRL_ERR_EINT);
3065 
3066 error:
3067 	mutex_unlock(&dsp->pwr_lock);
3068 }
3069 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp2_bus_error, FW_CS_DSP);
3070 
3071 /**
3072  * cs_dsp_halo_bus_error() - Handle a DSP bus error interrupt
3073  * @dsp: pointer to DSP structure
3074  *
3075  * The firmware and DSP state will be logged for future analysis.
3076  */
3077 void cs_dsp_halo_bus_error(struct cs_dsp *dsp)
3078 {
3079 	struct regmap *regmap = dsp->regmap;
3080 	unsigned int fault[6];
3081 	struct reg_sequence clear[] = {
3082 		{ dsp->base + HALO_MPU_XM_VIO_STATUS,     0x0 },
3083 		{ dsp->base + HALO_MPU_YM_VIO_STATUS,     0x0 },
3084 		{ dsp->base + HALO_MPU_PM_VIO_STATUS,     0x0 },
3085 	};
3086 	int ret;
3087 
3088 	mutex_lock(&dsp->pwr_lock);
3089 
3090 	ret = regmap_read(regmap, dsp->base_sysinfo + HALO_AHBM_WINDOW_DEBUG_1,
3091 			  fault);
3092 	if (ret) {
3093 		cs_dsp_warn(dsp, "Failed to read AHB DEBUG_1: %d\n", ret);
3094 		goto exit_unlock;
3095 	}
3096 
3097 	cs_dsp_warn(dsp, "AHB: STATUS: 0x%x ADDR: 0x%x\n",
3098 		    *fault & HALO_AHBM_FLAGS_ERR_MASK,
3099 		    (*fault & HALO_AHBM_CORE_ERR_ADDR_MASK) >>
3100 		    HALO_AHBM_CORE_ERR_ADDR_SHIFT);
3101 
3102 	ret = regmap_read(regmap, dsp->base_sysinfo + HALO_AHBM_WINDOW_DEBUG_0,
3103 			  fault);
3104 	if (ret) {
3105 		cs_dsp_warn(dsp, "Failed to read AHB DEBUG_0: %d\n", ret);
3106 		goto exit_unlock;
3107 	}
3108 
3109 	cs_dsp_warn(dsp, "AHB: SYS_ADDR: 0x%x\n", *fault);
3110 
3111 	ret = regmap_bulk_read(regmap, dsp->base + HALO_MPU_XM_VIO_ADDR,
3112 			       fault, ARRAY_SIZE(fault));
3113 	if (ret) {
3114 		cs_dsp_warn(dsp, "Failed to read MPU fault info: %d\n", ret);
3115 		goto exit_unlock;
3116 	}
3117 
3118 	cs_dsp_warn(dsp, "XM: STATUS:0x%x ADDR:0x%x\n", fault[1], fault[0]);
3119 	cs_dsp_warn(dsp, "YM: STATUS:0x%x ADDR:0x%x\n", fault[3], fault[2]);
3120 	cs_dsp_warn(dsp, "PM: STATUS:0x%x ADDR:0x%x\n", fault[5], fault[4]);
3121 
3122 	ret = regmap_multi_reg_write(dsp->regmap, clear, ARRAY_SIZE(clear));
3123 	if (ret)
3124 		cs_dsp_warn(dsp, "Failed to clear MPU status: %d\n", ret);
3125 
3126 exit_unlock:
3127 	mutex_unlock(&dsp->pwr_lock);
3128 }
3129 EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_bus_error, FW_CS_DSP);
3130 
3131 /**
3132  * cs_dsp_halo_wdt_expire() - Handle DSP watchdog expiry
3133  * @dsp: pointer to DSP structure
3134  *
3135  * This is logged for future analysis.
3136  */
3137 void cs_dsp_halo_wdt_expire(struct cs_dsp *dsp)
3138 {
3139 	mutex_lock(&dsp->pwr_lock);
3140 
3141 	cs_dsp_warn(dsp, "WDT Expiry Fault\n");
3142 
3143 	dsp->ops->stop_watchdog(dsp);
3144 	if (dsp->client_ops->watchdog_expired)
3145 		dsp->client_ops->watchdog_expired(dsp);
3146 
3147 	mutex_unlock(&dsp->pwr_lock);
3148 }
3149 EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_wdt_expire, FW_CS_DSP);
3150 
3151 static const struct cs_dsp_ops cs_dsp_adsp1_ops = {
3152 	.validate_version = cs_dsp_validate_version,
3153 	.parse_sizes = cs_dsp_adsp1_parse_sizes,
3154 	.region_to_reg = cs_dsp_region_to_reg,
3155 };
3156 
3157 static const struct cs_dsp_ops cs_dsp_adsp2_ops[] = {
3158 	{
3159 		.parse_sizes = cs_dsp_adsp2_parse_sizes,
3160 		.validate_version = cs_dsp_validate_version,
3161 		.setup_algs = cs_dsp_adsp2_setup_algs,
3162 		.region_to_reg = cs_dsp_region_to_reg,
3163 
3164 		.show_fw_status = cs_dsp_adsp2_show_fw_status,
3165 
3166 		.enable_memory = cs_dsp_adsp2_enable_memory,
3167 		.disable_memory = cs_dsp_adsp2_disable_memory,
3168 
3169 		.enable_core = cs_dsp_adsp2_enable_core,
3170 		.disable_core = cs_dsp_adsp2_disable_core,
3171 
3172 		.start_core = cs_dsp_adsp2_start_core,
3173 		.stop_core = cs_dsp_adsp2_stop_core,
3174 
3175 	},
3176 	{
3177 		.parse_sizes = cs_dsp_adsp2_parse_sizes,
3178 		.validate_version = cs_dsp_validate_version,
3179 		.setup_algs = cs_dsp_adsp2_setup_algs,
3180 		.region_to_reg = cs_dsp_region_to_reg,
3181 
3182 		.show_fw_status = cs_dsp_adsp2v2_show_fw_status,
3183 
3184 		.enable_memory = cs_dsp_adsp2_enable_memory,
3185 		.disable_memory = cs_dsp_adsp2_disable_memory,
3186 		.lock_memory = cs_dsp_adsp2_lock,
3187 
3188 		.enable_core = cs_dsp_adsp2v2_enable_core,
3189 		.disable_core = cs_dsp_adsp2v2_disable_core,
3190 
3191 		.start_core = cs_dsp_adsp2_start_core,
3192 		.stop_core = cs_dsp_adsp2_stop_core,
3193 	},
3194 	{
3195 		.parse_sizes = cs_dsp_adsp2_parse_sizes,
3196 		.validate_version = cs_dsp_validate_version,
3197 		.setup_algs = cs_dsp_adsp2_setup_algs,
3198 		.region_to_reg = cs_dsp_region_to_reg,
3199 
3200 		.show_fw_status = cs_dsp_adsp2v2_show_fw_status,
3201 		.stop_watchdog = cs_dsp_stop_watchdog,
3202 
3203 		.enable_memory = cs_dsp_adsp2_enable_memory,
3204 		.disable_memory = cs_dsp_adsp2_disable_memory,
3205 		.lock_memory = cs_dsp_adsp2_lock,
3206 
3207 		.enable_core = cs_dsp_adsp2v2_enable_core,
3208 		.disable_core = cs_dsp_adsp2v2_disable_core,
3209 
3210 		.start_core = cs_dsp_adsp2_start_core,
3211 		.stop_core = cs_dsp_adsp2_stop_core,
3212 	},
3213 };
3214 
3215 static const struct cs_dsp_ops cs_dsp_halo_ops = {
3216 	.parse_sizes = cs_dsp_adsp2_parse_sizes,
3217 	.validate_version = cs_dsp_halo_validate_version,
3218 	.setup_algs = cs_dsp_halo_setup_algs,
3219 	.region_to_reg = cs_dsp_halo_region_to_reg,
3220 
3221 	.show_fw_status = cs_dsp_halo_show_fw_status,
3222 	.stop_watchdog = cs_dsp_halo_stop_watchdog,
3223 
3224 	.lock_memory = cs_dsp_halo_configure_mpu,
3225 
3226 	.start_core = cs_dsp_halo_start_core,
3227 	.stop_core = cs_dsp_halo_stop_core,
3228 };
3229 
3230 static const struct cs_dsp_ops cs_dsp_halo_ao_ops = {
3231 	.parse_sizes = cs_dsp_adsp2_parse_sizes,
3232 	.validate_version = cs_dsp_halo_validate_version,
3233 	.setup_algs = cs_dsp_halo_setup_algs,
3234 	.region_to_reg = cs_dsp_halo_region_to_reg,
3235 	.show_fw_status = cs_dsp_halo_show_fw_status,
3236 };
3237 
3238 /**
3239  * cs_dsp_chunk_write() - Format data to a DSP memory chunk
3240  * @ch: Pointer to the chunk structure
3241  * @nbits: Number of bits to write
3242  * @val: Value to write
3243  *
3244  * This function sequentially writes values into the format required for DSP
3245  * memory, it handles both inserting of the padding bytes and converting to
3246  * big endian. Note that data is only committed to the chunk when a whole DSP
3247  * words worth of data is available.
3248  *
3249  * Return: Zero for success, a negative number on error.
3250  */
3251 int cs_dsp_chunk_write(struct cs_dsp_chunk *ch, int nbits, u32 val)
3252 {
3253 	int nwrite, i;
3254 
3255 	nwrite = min(CS_DSP_DATA_WORD_BITS - ch->cachebits, nbits);
3256 
3257 	ch->cache <<= nwrite;
3258 	ch->cache |= val >> (nbits - nwrite);
3259 	ch->cachebits += nwrite;
3260 	nbits -= nwrite;
3261 
3262 	if (ch->cachebits == CS_DSP_DATA_WORD_BITS) {
3263 		if (cs_dsp_chunk_end(ch))
3264 			return -ENOSPC;
3265 
3266 		ch->cache &= 0xFFFFFF;
3267 		for (i = 0; i < sizeof(ch->cache); i++, ch->cache <<= BITS_PER_BYTE)
3268 			*ch->data++ = (ch->cache & 0xFF000000) >> CS_DSP_DATA_WORD_BITS;
3269 
3270 		ch->bytes += sizeof(ch->cache);
3271 		ch->cachebits = 0;
3272 	}
3273 
3274 	if (nbits)
3275 		return cs_dsp_chunk_write(ch, nbits, val);
3276 
3277 	return 0;
3278 }
3279 EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_write, FW_CS_DSP);
3280 
3281 /**
3282  * cs_dsp_chunk_flush() - Pad remaining data with zero and commit to chunk
3283  * @ch: Pointer to the chunk structure
3284  *
3285  * As cs_dsp_chunk_write only writes data when a whole DSP word is ready to
3286  * be written out it is possible that some data will remain in the cache, this
3287  * function will pad that data with zeros upto a whole DSP word and write out.
3288  *
3289  * Return: Zero for success, a negative number on error.
3290  */
3291 int cs_dsp_chunk_flush(struct cs_dsp_chunk *ch)
3292 {
3293 	if (!ch->cachebits)
3294 		return 0;
3295 
3296 	return cs_dsp_chunk_write(ch, CS_DSP_DATA_WORD_BITS - ch->cachebits, 0);
3297 }
3298 EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_flush, FW_CS_DSP);
3299 
3300 /**
3301  * cs_dsp_chunk_read() - Parse data from a DSP memory chunk
3302  * @ch: Pointer to the chunk structure
3303  * @nbits: Number of bits to read
3304  *
3305  * This function sequentially reads values from a DSP memory formatted buffer,
3306  * it handles both removing of the padding bytes and converting from big endian.
3307  *
3308  * Return: A negative number is returned on error, otherwise the read value.
3309  */
3310 int cs_dsp_chunk_read(struct cs_dsp_chunk *ch, int nbits)
3311 {
3312 	int nread, i;
3313 	u32 result;
3314 
3315 	if (!ch->cachebits) {
3316 		if (cs_dsp_chunk_end(ch))
3317 			return -ENOSPC;
3318 
3319 		ch->cache = 0;
3320 		ch->cachebits = CS_DSP_DATA_WORD_BITS;
3321 
3322 		for (i = 0; i < sizeof(ch->cache); i++, ch->cache <<= BITS_PER_BYTE)
3323 			ch->cache |= *ch->data++;
3324 
3325 		ch->bytes += sizeof(ch->cache);
3326 	}
3327 
3328 	nread = min(ch->cachebits, nbits);
3329 	nbits -= nread;
3330 
3331 	result = ch->cache >> ((sizeof(ch->cache) * BITS_PER_BYTE) - nread);
3332 	ch->cache <<= nread;
3333 	ch->cachebits -= nread;
3334 
3335 	if (nbits)
3336 		result = (result << nbits) | cs_dsp_chunk_read(ch, nbits);
3337 
3338 	return result;
3339 }
3340 EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_read, FW_CS_DSP);
3341 
3342 MODULE_DESCRIPTION("Cirrus Logic DSP Support");
3343 MODULE_AUTHOR("Simon Trimmer <simont@opensource.cirrus.com>");
3344 MODULE_LICENSE("GPL v2");
3345