xref: /linux/drivers/firmware/cirrus/cs_dsp.c (revision 47aab53331effedd3f5a6136854bd1da011f94b6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * cs_dsp.c  --  Cirrus Logic DSP firmware support
4  *
5  * Based on sound/soc/codecs/wm_adsp.c
6  *
7  * Copyright 2012 Wolfson Microelectronics plc
8  * Copyright (C) 2015-2021 Cirrus Logic, Inc. and
9  *                         Cirrus Logic International Semiconductor Ltd.
10  */
11 
12 #include <linux/ctype.h>
13 #include <linux/debugfs.h>
14 #include <linux/delay.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/seq_file.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 
21 #include <linux/firmware/cirrus/cs_dsp.h>
22 #include <linux/firmware/cirrus/wmfw.h>
23 
24 #define cs_dsp_err(_dsp, fmt, ...) \
25 	dev_err(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
26 #define cs_dsp_warn(_dsp, fmt, ...) \
27 	dev_warn(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
28 #define cs_dsp_info(_dsp, fmt, ...) \
29 	dev_info(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
30 #define cs_dsp_dbg(_dsp, fmt, ...) \
31 	dev_dbg(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
32 
33 #define ADSP1_CONTROL_1                   0x00
34 #define ADSP1_CONTROL_2                   0x02
35 #define ADSP1_CONTROL_3                   0x03
36 #define ADSP1_CONTROL_4                   0x04
37 #define ADSP1_CONTROL_5                   0x06
38 #define ADSP1_CONTROL_6                   0x07
39 #define ADSP1_CONTROL_7                   0x08
40 #define ADSP1_CONTROL_8                   0x09
41 #define ADSP1_CONTROL_9                   0x0A
42 #define ADSP1_CONTROL_10                  0x0B
43 #define ADSP1_CONTROL_11                  0x0C
44 #define ADSP1_CONTROL_12                  0x0D
45 #define ADSP1_CONTROL_13                  0x0F
46 #define ADSP1_CONTROL_14                  0x10
47 #define ADSP1_CONTROL_15                  0x11
48 #define ADSP1_CONTROL_16                  0x12
49 #define ADSP1_CONTROL_17                  0x13
50 #define ADSP1_CONTROL_18                  0x14
51 #define ADSP1_CONTROL_19                  0x16
52 #define ADSP1_CONTROL_20                  0x17
53 #define ADSP1_CONTROL_21                  0x18
54 #define ADSP1_CONTROL_22                  0x1A
55 #define ADSP1_CONTROL_23                  0x1B
56 #define ADSP1_CONTROL_24                  0x1C
57 #define ADSP1_CONTROL_25                  0x1E
58 #define ADSP1_CONTROL_26                  0x20
59 #define ADSP1_CONTROL_27                  0x21
60 #define ADSP1_CONTROL_28                  0x22
61 #define ADSP1_CONTROL_29                  0x23
62 #define ADSP1_CONTROL_30                  0x24
63 #define ADSP1_CONTROL_31                  0x26
64 
65 /*
66  * ADSP1 Control 19
67  */
68 #define ADSP1_WDMA_BUFFER_LENGTH_MASK     0x00FF  /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
69 #define ADSP1_WDMA_BUFFER_LENGTH_SHIFT         0  /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
70 #define ADSP1_WDMA_BUFFER_LENGTH_WIDTH         8  /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
71 
72 /*
73  * ADSP1 Control 30
74  */
75 #define ADSP1_DBG_CLK_ENA                 0x0008  /* DSP1_DBG_CLK_ENA */
76 #define ADSP1_DBG_CLK_ENA_MASK            0x0008  /* DSP1_DBG_CLK_ENA */
77 #define ADSP1_DBG_CLK_ENA_SHIFT                3  /* DSP1_DBG_CLK_ENA */
78 #define ADSP1_DBG_CLK_ENA_WIDTH                1  /* DSP1_DBG_CLK_ENA */
79 #define ADSP1_SYS_ENA                     0x0004  /* DSP1_SYS_ENA */
80 #define ADSP1_SYS_ENA_MASK                0x0004  /* DSP1_SYS_ENA */
81 #define ADSP1_SYS_ENA_SHIFT                    2  /* DSP1_SYS_ENA */
82 #define ADSP1_SYS_ENA_WIDTH                    1  /* DSP1_SYS_ENA */
83 #define ADSP1_CORE_ENA                    0x0002  /* DSP1_CORE_ENA */
84 #define ADSP1_CORE_ENA_MASK               0x0002  /* DSP1_CORE_ENA */
85 #define ADSP1_CORE_ENA_SHIFT                   1  /* DSP1_CORE_ENA */
86 #define ADSP1_CORE_ENA_WIDTH                   1  /* DSP1_CORE_ENA */
87 #define ADSP1_START                       0x0001  /* DSP1_START */
88 #define ADSP1_START_MASK                  0x0001  /* DSP1_START */
89 #define ADSP1_START_SHIFT                      0  /* DSP1_START */
90 #define ADSP1_START_WIDTH                      1  /* DSP1_START */
91 
92 /*
93  * ADSP1 Control 31
94  */
95 #define ADSP1_CLK_SEL_MASK                0x0007  /* CLK_SEL_ENA */
96 #define ADSP1_CLK_SEL_SHIFT                    0  /* CLK_SEL_ENA */
97 #define ADSP1_CLK_SEL_WIDTH                    3  /* CLK_SEL_ENA */
98 
99 #define ADSP2_CONTROL                     0x0
100 #define ADSP2_CLOCKING                    0x1
101 #define ADSP2V2_CLOCKING                  0x2
102 #define ADSP2_STATUS1                     0x4
103 #define ADSP2_WDMA_CONFIG_1               0x30
104 #define ADSP2_WDMA_CONFIG_2               0x31
105 #define ADSP2V2_WDMA_CONFIG_2             0x32
106 #define ADSP2_RDMA_CONFIG_1               0x34
107 
108 #define ADSP2_SCRATCH0                    0x40
109 #define ADSP2_SCRATCH1                    0x41
110 #define ADSP2_SCRATCH2                    0x42
111 #define ADSP2_SCRATCH3                    0x43
112 
113 #define ADSP2V2_SCRATCH0_1                0x40
114 #define ADSP2V2_SCRATCH2_3                0x42
115 
116 /*
117  * ADSP2 Control
118  */
119 #define ADSP2_MEM_ENA                     0x0010  /* DSP1_MEM_ENA */
120 #define ADSP2_MEM_ENA_MASK                0x0010  /* DSP1_MEM_ENA */
121 #define ADSP2_MEM_ENA_SHIFT                    4  /* DSP1_MEM_ENA */
122 #define ADSP2_MEM_ENA_WIDTH                    1  /* DSP1_MEM_ENA */
123 #define ADSP2_SYS_ENA                     0x0004  /* DSP1_SYS_ENA */
124 #define ADSP2_SYS_ENA_MASK                0x0004  /* DSP1_SYS_ENA */
125 #define ADSP2_SYS_ENA_SHIFT                    2  /* DSP1_SYS_ENA */
126 #define ADSP2_SYS_ENA_WIDTH                    1  /* DSP1_SYS_ENA */
127 #define ADSP2_CORE_ENA                    0x0002  /* DSP1_CORE_ENA */
128 #define ADSP2_CORE_ENA_MASK               0x0002  /* DSP1_CORE_ENA */
129 #define ADSP2_CORE_ENA_SHIFT                   1  /* DSP1_CORE_ENA */
130 #define ADSP2_CORE_ENA_WIDTH                   1  /* DSP1_CORE_ENA */
131 #define ADSP2_START                       0x0001  /* DSP1_START */
132 #define ADSP2_START_MASK                  0x0001  /* DSP1_START */
133 #define ADSP2_START_SHIFT                      0  /* DSP1_START */
134 #define ADSP2_START_WIDTH                      1  /* DSP1_START */
135 
136 /*
137  * ADSP2 clocking
138  */
139 #define ADSP2_CLK_SEL_MASK                0x0007  /* CLK_SEL_ENA */
140 #define ADSP2_CLK_SEL_SHIFT                    0  /* CLK_SEL_ENA */
141 #define ADSP2_CLK_SEL_WIDTH                    3  /* CLK_SEL_ENA */
142 
143 /*
144  * ADSP2V2 clocking
145  */
146 #define ADSP2V2_CLK_SEL_MASK             0x70000  /* CLK_SEL_ENA */
147 #define ADSP2V2_CLK_SEL_SHIFT                 16  /* CLK_SEL_ENA */
148 #define ADSP2V2_CLK_SEL_WIDTH                  3  /* CLK_SEL_ENA */
149 
150 #define ADSP2V2_RATE_MASK                 0x7800  /* DSP_RATE */
151 #define ADSP2V2_RATE_SHIFT                    11  /* DSP_RATE */
152 #define ADSP2V2_RATE_WIDTH                     4  /* DSP_RATE */
153 
154 /*
155  * ADSP2 Status 1
156  */
157 #define ADSP2_RAM_RDY                     0x0001
158 #define ADSP2_RAM_RDY_MASK                0x0001
159 #define ADSP2_RAM_RDY_SHIFT                    0
160 #define ADSP2_RAM_RDY_WIDTH                    1
161 
162 /*
163  * ADSP2 Lock support
164  */
165 #define ADSP2_LOCK_CODE_0                    0x5555
166 #define ADSP2_LOCK_CODE_1                    0xAAAA
167 
168 #define ADSP2_WATCHDOG                       0x0A
169 #define ADSP2_BUS_ERR_ADDR                   0x52
170 #define ADSP2_REGION_LOCK_STATUS             0x64
171 #define ADSP2_LOCK_REGION_1_LOCK_REGION_0    0x66
172 #define ADSP2_LOCK_REGION_3_LOCK_REGION_2    0x68
173 #define ADSP2_LOCK_REGION_5_LOCK_REGION_4    0x6A
174 #define ADSP2_LOCK_REGION_7_LOCK_REGION_6    0x6C
175 #define ADSP2_LOCK_REGION_9_LOCK_REGION_8    0x6E
176 #define ADSP2_LOCK_REGION_CTRL               0x7A
177 #define ADSP2_PMEM_ERR_ADDR_XMEM_ERR_ADDR    0x7C
178 
179 #define ADSP2_REGION_LOCK_ERR_MASK           0x8000
180 #define ADSP2_ADDR_ERR_MASK                  0x4000
181 #define ADSP2_WDT_TIMEOUT_STS_MASK           0x2000
182 #define ADSP2_CTRL_ERR_PAUSE_ENA             0x0002
183 #define ADSP2_CTRL_ERR_EINT                  0x0001
184 
185 #define ADSP2_BUS_ERR_ADDR_MASK              0x00FFFFFF
186 #define ADSP2_XMEM_ERR_ADDR_MASK             0x0000FFFF
187 #define ADSP2_PMEM_ERR_ADDR_MASK             0x7FFF0000
188 #define ADSP2_PMEM_ERR_ADDR_SHIFT            16
189 #define ADSP2_WDT_ENA_MASK                   0xFFFFFFFD
190 
191 #define ADSP2_LOCK_REGION_SHIFT              16
192 
193 /*
194  * Event control messages
195  */
196 #define CS_DSP_FW_EVENT_SHUTDOWN             0x000001
197 
198 /*
199  * HALO system info
200  */
201 #define HALO_AHBM_WINDOW_DEBUG_0             0x02040
202 #define HALO_AHBM_WINDOW_DEBUG_1             0x02044
203 
204 /*
205  * HALO core
206  */
207 #define HALO_SCRATCH1                        0x005c0
208 #define HALO_SCRATCH2                        0x005c8
209 #define HALO_SCRATCH3                        0x005d0
210 #define HALO_SCRATCH4                        0x005d8
211 #define HALO_CCM_CORE_CONTROL                0x41000
212 #define HALO_CORE_SOFT_RESET                 0x00010
213 #define HALO_WDT_CONTROL                     0x47000
214 
215 /*
216  * HALO MPU banks
217  */
218 #define HALO_MPU_XMEM_ACCESS_0               0x43000
219 #define HALO_MPU_YMEM_ACCESS_0               0x43004
220 #define HALO_MPU_WINDOW_ACCESS_0             0x43008
221 #define HALO_MPU_XREG_ACCESS_0               0x4300C
222 #define HALO_MPU_YREG_ACCESS_0               0x43014
223 #define HALO_MPU_XMEM_ACCESS_1               0x43018
224 #define HALO_MPU_YMEM_ACCESS_1               0x4301C
225 #define HALO_MPU_WINDOW_ACCESS_1             0x43020
226 #define HALO_MPU_XREG_ACCESS_1               0x43024
227 #define HALO_MPU_YREG_ACCESS_1               0x4302C
228 #define HALO_MPU_XMEM_ACCESS_2               0x43030
229 #define HALO_MPU_YMEM_ACCESS_2               0x43034
230 #define HALO_MPU_WINDOW_ACCESS_2             0x43038
231 #define HALO_MPU_XREG_ACCESS_2               0x4303C
232 #define HALO_MPU_YREG_ACCESS_2               0x43044
233 #define HALO_MPU_XMEM_ACCESS_3               0x43048
234 #define HALO_MPU_YMEM_ACCESS_3               0x4304C
235 #define HALO_MPU_WINDOW_ACCESS_3             0x43050
236 #define HALO_MPU_XREG_ACCESS_3               0x43054
237 #define HALO_MPU_YREG_ACCESS_3               0x4305C
238 #define HALO_MPU_XM_VIO_ADDR                 0x43100
239 #define HALO_MPU_XM_VIO_STATUS               0x43104
240 #define HALO_MPU_YM_VIO_ADDR                 0x43108
241 #define HALO_MPU_YM_VIO_STATUS               0x4310C
242 #define HALO_MPU_PM_VIO_ADDR                 0x43110
243 #define HALO_MPU_PM_VIO_STATUS               0x43114
244 #define HALO_MPU_LOCK_CONFIG                 0x43140
245 
246 /*
247  * HALO_AHBM_WINDOW_DEBUG_1
248  */
249 #define HALO_AHBM_CORE_ERR_ADDR_MASK         0x0fffff00
250 #define HALO_AHBM_CORE_ERR_ADDR_SHIFT                 8
251 #define HALO_AHBM_FLAGS_ERR_MASK             0x000000ff
252 
253 /*
254  * HALO_CCM_CORE_CONTROL
255  */
256 #define HALO_CORE_RESET                     0x00000200
257 #define HALO_CORE_EN                        0x00000001
258 
259 /*
260  * HALO_CORE_SOFT_RESET
261  */
262 #define HALO_CORE_SOFT_RESET_MASK           0x00000001
263 
264 /*
265  * HALO_WDT_CONTROL
266  */
267 #define HALO_WDT_EN_MASK                    0x00000001
268 
269 /*
270  * HALO_MPU_?M_VIO_STATUS
271  */
272 #define HALO_MPU_VIO_STS_MASK               0x007e0000
273 #define HALO_MPU_VIO_STS_SHIFT                      17
274 #define HALO_MPU_VIO_ERR_WR_MASK            0x00008000
275 #define HALO_MPU_VIO_ERR_SRC_MASK           0x00007fff
276 #define HALO_MPU_VIO_ERR_SRC_SHIFT                   0
277 
278 struct cs_dsp_ops {
279 	bool (*validate_version)(struct cs_dsp *dsp, unsigned int version);
280 	unsigned int (*parse_sizes)(struct cs_dsp *dsp,
281 				    const char * const file,
282 				    unsigned int pos,
283 				    const struct firmware *firmware);
284 	int (*setup_algs)(struct cs_dsp *dsp);
285 	unsigned int (*region_to_reg)(struct cs_dsp_region const *mem,
286 				      unsigned int offset);
287 
288 	void (*show_fw_status)(struct cs_dsp *dsp);
289 	void (*stop_watchdog)(struct cs_dsp *dsp);
290 
291 	int (*enable_memory)(struct cs_dsp *dsp);
292 	void (*disable_memory)(struct cs_dsp *dsp);
293 	int (*lock_memory)(struct cs_dsp *dsp, unsigned int lock_regions);
294 
295 	int (*enable_core)(struct cs_dsp *dsp);
296 	void (*disable_core)(struct cs_dsp *dsp);
297 
298 	int (*start_core)(struct cs_dsp *dsp);
299 	void (*stop_core)(struct cs_dsp *dsp);
300 };
301 
302 static const struct cs_dsp_ops cs_dsp_adsp1_ops;
303 static const struct cs_dsp_ops cs_dsp_adsp2_ops[];
304 static const struct cs_dsp_ops cs_dsp_halo_ops;
305 static const struct cs_dsp_ops cs_dsp_halo_ao_ops;
306 
307 struct cs_dsp_buf {
308 	struct list_head list;
309 	void *buf;
310 };
311 
312 static struct cs_dsp_buf *cs_dsp_buf_alloc(const void *src, size_t len,
313 					   struct list_head *list)
314 {
315 	struct cs_dsp_buf *buf = kzalloc(sizeof(*buf), GFP_KERNEL);
316 
317 	if (buf == NULL)
318 		return NULL;
319 
320 	buf->buf = vmalloc(len);
321 	if (!buf->buf) {
322 		kfree(buf);
323 		return NULL;
324 	}
325 	memcpy(buf->buf, src, len);
326 
327 	if (list)
328 		list_add_tail(&buf->list, list);
329 
330 	return buf;
331 }
332 
333 static void cs_dsp_buf_free(struct list_head *list)
334 {
335 	while (!list_empty(list)) {
336 		struct cs_dsp_buf *buf = list_first_entry(list,
337 							  struct cs_dsp_buf,
338 							  list);
339 		list_del(&buf->list);
340 		vfree(buf->buf);
341 		kfree(buf);
342 	}
343 }
344 
345 /**
346  * cs_dsp_mem_region_name() - Return a name string for a memory type
347  * @type: the memory type to match
348  *
349  * Return: A const string identifying the memory region.
350  */
351 const char *cs_dsp_mem_region_name(unsigned int type)
352 {
353 	switch (type) {
354 	case WMFW_ADSP1_PM:
355 		return "PM";
356 	case WMFW_HALO_PM_PACKED:
357 		return "PM_PACKED";
358 	case WMFW_ADSP1_DM:
359 		return "DM";
360 	case WMFW_ADSP2_XM:
361 		return "XM";
362 	case WMFW_HALO_XM_PACKED:
363 		return "XM_PACKED";
364 	case WMFW_ADSP2_YM:
365 		return "YM";
366 	case WMFW_HALO_YM_PACKED:
367 		return "YM_PACKED";
368 	case WMFW_ADSP1_ZM:
369 		return "ZM";
370 	default:
371 		return NULL;
372 	}
373 }
374 EXPORT_SYMBOL_NS_GPL(cs_dsp_mem_region_name, FW_CS_DSP);
375 
376 #ifdef CONFIG_DEBUG_FS
377 static void cs_dsp_debugfs_save_wmfwname(struct cs_dsp *dsp, const char *s)
378 {
379 	char *tmp = kasprintf(GFP_KERNEL, "%s\n", s);
380 
381 	kfree(dsp->wmfw_file_name);
382 	dsp->wmfw_file_name = tmp;
383 }
384 
385 static void cs_dsp_debugfs_save_binname(struct cs_dsp *dsp, const char *s)
386 {
387 	char *tmp = kasprintf(GFP_KERNEL, "%s\n", s);
388 
389 	kfree(dsp->bin_file_name);
390 	dsp->bin_file_name = tmp;
391 }
392 
393 static void cs_dsp_debugfs_clear(struct cs_dsp *dsp)
394 {
395 	kfree(dsp->wmfw_file_name);
396 	kfree(dsp->bin_file_name);
397 	dsp->wmfw_file_name = NULL;
398 	dsp->bin_file_name = NULL;
399 }
400 
401 static ssize_t cs_dsp_debugfs_wmfw_read(struct file *file,
402 					char __user *user_buf,
403 					size_t count, loff_t *ppos)
404 {
405 	struct cs_dsp *dsp = file->private_data;
406 	ssize_t ret;
407 
408 	mutex_lock(&dsp->pwr_lock);
409 
410 	if (!dsp->wmfw_file_name || !dsp->booted)
411 		ret = 0;
412 	else
413 		ret = simple_read_from_buffer(user_buf, count, ppos,
414 					      dsp->wmfw_file_name,
415 					      strlen(dsp->wmfw_file_name));
416 
417 	mutex_unlock(&dsp->pwr_lock);
418 	return ret;
419 }
420 
421 static ssize_t cs_dsp_debugfs_bin_read(struct file *file,
422 				       char __user *user_buf,
423 				       size_t count, loff_t *ppos)
424 {
425 	struct cs_dsp *dsp = file->private_data;
426 	ssize_t ret;
427 
428 	mutex_lock(&dsp->pwr_lock);
429 
430 	if (!dsp->bin_file_name || !dsp->booted)
431 		ret = 0;
432 	else
433 		ret = simple_read_from_buffer(user_buf, count, ppos,
434 					      dsp->bin_file_name,
435 					      strlen(dsp->bin_file_name));
436 
437 	mutex_unlock(&dsp->pwr_lock);
438 	return ret;
439 }
440 
441 static const struct {
442 	const char *name;
443 	const struct file_operations fops;
444 } cs_dsp_debugfs_fops[] = {
445 	{
446 		.name = "wmfw_file_name",
447 		.fops = {
448 			.open = simple_open,
449 			.read = cs_dsp_debugfs_wmfw_read,
450 		},
451 	},
452 	{
453 		.name = "bin_file_name",
454 		.fops = {
455 			.open = simple_open,
456 			.read = cs_dsp_debugfs_bin_read,
457 		},
458 	},
459 };
460 
461 static int cs_dsp_coeff_base_reg(struct cs_dsp_coeff_ctl *ctl, unsigned int *reg,
462 				 unsigned int off);
463 
464 static int cs_dsp_debugfs_read_controls_show(struct seq_file *s, void *ignored)
465 {
466 	struct cs_dsp *dsp = s->private;
467 	struct cs_dsp_coeff_ctl *ctl;
468 	unsigned int reg;
469 
470 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
471 		cs_dsp_coeff_base_reg(ctl, &reg, 0);
472 		seq_printf(s, "%22.*s: %#8zx %s:%08x %#8x %s %#8x %#4x %c%c%c%c %s %s\n",
473 			   ctl->subname_len, ctl->subname, ctl->len,
474 			   cs_dsp_mem_region_name(ctl->alg_region.type),
475 			   ctl->offset, reg, ctl->fw_name, ctl->alg_region.alg, ctl->type,
476 			   ctl->flags & WMFW_CTL_FLAG_VOLATILE ? 'V' : '-',
477 			   ctl->flags & WMFW_CTL_FLAG_SYS ? 'S' : '-',
478 			   ctl->flags & WMFW_CTL_FLAG_READABLE ? 'R' : '-',
479 			   ctl->flags & WMFW_CTL_FLAG_WRITEABLE ? 'W' : '-',
480 			   ctl->enabled ? "enabled" : "disabled",
481 			   ctl->set ? "dirty" : "clean");
482 	}
483 
484 	return 0;
485 }
486 DEFINE_SHOW_ATTRIBUTE(cs_dsp_debugfs_read_controls);
487 
488 /**
489  * cs_dsp_init_debugfs() - Create and populate DSP representation in debugfs
490  * @dsp: pointer to DSP structure
491  * @debugfs_root: pointer to debugfs directory in which to create this DSP
492  *                representation
493  */
494 void cs_dsp_init_debugfs(struct cs_dsp *dsp, struct dentry *debugfs_root)
495 {
496 	struct dentry *root = NULL;
497 	int i;
498 
499 	root = debugfs_create_dir(dsp->name, debugfs_root);
500 
501 	debugfs_create_bool("booted", 0444, root, &dsp->booted);
502 	debugfs_create_bool("running", 0444, root, &dsp->running);
503 	debugfs_create_x32("fw_id", 0444, root, &dsp->fw_id);
504 	debugfs_create_x32("fw_version", 0444, root, &dsp->fw_id_version);
505 
506 	for (i = 0; i < ARRAY_SIZE(cs_dsp_debugfs_fops); ++i)
507 		debugfs_create_file(cs_dsp_debugfs_fops[i].name, 0444, root,
508 				    dsp, &cs_dsp_debugfs_fops[i].fops);
509 
510 	debugfs_create_file("controls", 0444, root, dsp,
511 			    &cs_dsp_debugfs_read_controls_fops);
512 
513 	dsp->debugfs_root = root;
514 }
515 EXPORT_SYMBOL_NS_GPL(cs_dsp_init_debugfs, FW_CS_DSP);
516 
517 /**
518  * cs_dsp_cleanup_debugfs() - Removes DSP representation from debugfs
519  * @dsp: pointer to DSP structure
520  */
521 void cs_dsp_cleanup_debugfs(struct cs_dsp *dsp)
522 {
523 	cs_dsp_debugfs_clear(dsp);
524 	debugfs_remove_recursive(dsp->debugfs_root);
525 	dsp->debugfs_root = NULL;
526 }
527 EXPORT_SYMBOL_NS_GPL(cs_dsp_cleanup_debugfs, FW_CS_DSP);
528 #else
529 void cs_dsp_init_debugfs(struct cs_dsp *dsp, struct dentry *debugfs_root)
530 {
531 }
532 EXPORT_SYMBOL_NS_GPL(cs_dsp_init_debugfs, FW_CS_DSP);
533 
534 void cs_dsp_cleanup_debugfs(struct cs_dsp *dsp)
535 {
536 }
537 EXPORT_SYMBOL_NS_GPL(cs_dsp_cleanup_debugfs, FW_CS_DSP);
538 
539 static inline void cs_dsp_debugfs_save_wmfwname(struct cs_dsp *dsp,
540 						const char *s)
541 {
542 }
543 
544 static inline void cs_dsp_debugfs_save_binname(struct cs_dsp *dsp,
545 					       const char *s)
546 {
547 }
548 
549 static inline void cs_dsp_debugfs_clear(struct cs_dsp *dsp)
550 {
551 }
552 #endif
553 
554 static const struct cs_dsp_region *cs_dsp_find_region(struct cs_dsp *dsp,
555 						      int type)
556 {
557 	int i;
558 
559 	for (i = 0; i < dsp->num_mems; i++)
560 		if (dsp->mem[i].type == type)
561 			return &dsp->mem[i];
562 
563 	return NULL;
564 }
565 
566 static unsigned int cs_dsp_region_to_reg(struct cs_dsp_region const *mem,
567 					 unsigned int offset)
568 {
569 	switch (mem->type) {
570 	case WMFW_ADSP1_PM:
571 		return mem->base + (offset * 3);
572 	case WMFW_ADSP1_DM:
573 	case WMFW_ADSP2_XM:
574 	case WMFW_ADSP2_YM:
575 	case WMFW_ADSP1_ZM:
576 		return mem->base + (offset * 2);
577 	default:
578 		WARN(1, "Unknown memory region type");
579 		return offset;
580 	}
581 }
582 
583 static unsigned int cs_dsp_halo_region_to_reg(struct cs_dsp_region const *mem,
584 					      unsigned int offset)
585 {
586 	switch (mem->type) {
587 	case WMFW_ADSP2_XM:
588 	case WMFW_ADSP2_YM:
589 		return mem->base + (offset * 4);
590 	case WMFW_HALO_XM_PACKED:
591 	case WMFW_HALO_YM_PACKED:
592 		return (mem->base + (offset * 3)) & ~0x3;
593 	case WMFW_HALO_PM_PACKED:
594 		return mem->base + (offset * 5);
595 	default:
596 		WARN(1, "Unknown memory region type");
597 		return offset;
598 	}
599 }
600 
601 static void cs_dsp_read_fw_status(struct cs_dsp *dsp,
602 				  int noffs, unsigned int *offs)
603 {
604 	unsigned int i;
605 	int ret;
606 
607 	for (i = 0; i < noffs; ++i) {
608 		ret = regmap_read(dsp->regmap, dsp->base + offs[i], &offs[i]);
609 		if (ret) {
610 			cs_dsp_err(dsp, "Failed to read SCRATCH%u: %d\n", i, ret);
611 			return;
612 		}
613 	}
614 }
615 
616 static void cs_dsp_adsp2_show_fw_status(struct cs_dsp *dsp)
617 {
618 	unsigned int offs[] = {
619 		ADSP2_SCRATCH0, ADSP2_SCRATCH1, ADSP2_SCRATCH2, ADSP2_SCRATCH3,
620 	};
621 
622 	cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
623 
624 	cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
625 		   offs[0], offs[1], offs[2], offs[3]);
626 }
627 
628 static void cs_dsp_adsp2v2_show_fw_status(struct cs_dsp *dsp)
629 {
630 	unsigned int offs[] = { ADSP2V2_SCRATCH0_1, ADSP2V2_SCRATCH2_3 };
631 
632 	cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
633 
634 	cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
635 		   offs[0] & 0xFFFF, offs[0] >> 16,
636 		   offs[1] & 0xFFFF, offs[1] >> 16);
637 }
638 
639 static void cs_dsp_halo_show_fw_status(struct cs_dsp *dsp)
640 {
641 	unsigned int offs[] = {
642 		HALO_SCRATCH1, HALO_SCRATCH2, HALO_SCRATCH3, HALO_SCRATCH4,
643 	};
644 
645 	cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
646 
647 	cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
648 		   offs[0], offs[1], offs[2], offs[3]);
649 }
650 
651 static int cs_dsp_coeff_base_reg(struct cs_dsp_coeff_ctl *ctl, unsigned int *reg,
652 				 unsigned int off)
653 {
654 	const struct cs_dsp_alg_region *alg_region = &ctl->alg_region;
655 	struct cs_dsp *dsp = ctl->dsp;
656 	const struct cs_dsp_region *mem;
657 
658 	mem = cs_dsp_find_region(dsp, alg_region->type);
659 	if (!mem) {
660 		cs_dsp_err(dsp, "No base for region %x\n",
661 			   alg_region->type);
662 		return -EINVAL;
663 	}
664 
665 	*reg = dsp->ops->region_to_reg(mem, ctl->alg_region.base + ctl->offset + off);
666 
667 	return 0;
668 }
669 
670 /**
671  * cs_dsp_coeff_write_acked_control() - Sends event_id to the acked control
672  * @ctl: pointer to acked coefficient control
673  * @event_id: the value to write to the given acked control
674  *
675  * Once the value has been written to the control the function shall block
676  * until the running firmware acknowledges the write or timeout is exceeded.
677  *
678  * Must be called with pwr_lock held.
679  *
680  * Return: Zero for success, a negative number on error.
681  */
682 int cs_dsp_coeff_write_acked_control(struct cs_dsp_coeff_ctl *ctl, unsigned int event_id)
683 {
684 	struct cs_dsp *dsp = ctl->dsp;
685 	__be32 val = cpu_to_be32(event_id);
686 	unsigned int reg;
687 	int i, ret;
688 
689 	lockdep_assert_held(&dsp->pwr_lock);
690 
691 	if (!dsp->running)
692 		return -EPERM;
693 
694 	ret = cs_dsp_coeff_base_reg(ctl, &reg, 0);
695 	if (ret)
696 		return ret;
697 
698 	cs_dsp_dbg(dsp, "Sending 0x%x to acked control alg 0x%x %s:0x%x\n",
699 		   event_id, ctl->alg_region.alg,
700 		   cs_dsp_mem_region_name(ctl->alg_region.type), ctl->offset);
701 
702 	ret = regmap_raw_write(dsp->regmap, reg, &val, sizeof(val));
703 	if (ret) {
704 		cs_dsp_err(dsp, "Failed to write %x: %d\n", reg, ret);
705 		return ret;
706 	}
707 
708 	/*
709 	 * Poll for ack, we initially poll at ~1ms intervals for firmwares
710 	 * that respond quickly, then go to ~10ms polls. A firmware is unlikely
711 	 * to ack instantly so we do the first 1ms delay before reading the
712 	 * control to avoid a pointless bus transaction
713 	 */
714 	for (i = 0; i < CS_DSP_ACKED_CTL_TIMEOUT_MS;) {
715 		switch (i) {
716 		case 0 ... CS_DSP_ACKED_CTL_N_QUICKPOLLS - 1:
717 			usleep_range(1000, 2000);
718 			i++;
719 			break;
720 		default:
721 			usleep_range(10000, 20000);
722 			i += 10;
723 			break;
724 		}
725 
726 		ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val));
727 		if (ret) {
728 			cs_dsp_err(dsp, "Failed to read %x: %d\n", reg, ret);
729 			return ret;
730 		}
731 
732 		if (val == 0) {
733 			cs_dsp_dbg(dsp, "Acked control ACKED at poll %u\n", i);
734 			return 0;
735 		}
736 	}
737 
738 	cs_dsp_warn(dsp, "Acked control @0x%x alg:0x%x %s:0x%x timed out\n",
739 		    reg, ctl->alg_region.alg,
740 		    cs_dsp_mem_region_name(ctl->alg_region.type),
741 		    ctl->offset);
742 
743 	return -ETIMEDOUT;
744 }
745 EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_write_acked_control, FW_CS_DSP);
746 
747 static int cs_dsp_coeff_write_ctrl_raw(struct cs_dsp_coeff_ctl *ctl,
748 				       unsigned int off, const void *buf, size_t len)
749 {
750 	struct cs_dsp *dsp = ctl->dsp;
751 	void *scratch;
752 	int ret;
753 	unsigned int reg;
754 
755 	ret = cs_dsp_coeff_base_reg(ctl, &reg, off);
756 	if (ret)
757 		return ret;
758 
759 	scratch = kmemdup(buf, len, GFP_KERNEL | GFP_DMA);
760 	if (!scratch)
761 		return -ENOMEM;
762 
763 	ret = regmap_raw_write(dsp->regmap, reg, scratch,
764 			       len);
765 	if (ret) {
766 		cs_dsp_err(dsp, "Failed to write %zu bytes to %x: %d\n",
767 			   len, reg, ret);
768 		kfree(scratch);
769 		return ret;
770 	}
771 	cs_dsp_dbg(dsp, "Wrote %zu bytes to %x\n", len, reg);
772 
773 	kfree(scratch);
774 
775 	return 0;
776 }
777 
778 /**
779  * cs_dsp_coeff_write_ctrl() - Writes the given buffer to the given coefficient control
780  * @ctl: pointer to coefficient control
781  * @off: word offset at which data should be written
782  * @buf: the buffer to write to the given control
783  * @len: the length of the buffer in bytes
784  *
785  * Must be called with pwr_lock held.
786  *
787  * Return: < 0 on error, 1 when the control value changed and 0 when it has not.
788  */
789 int cs_dsp_coeff_write_ctrl(struct cs_dsp_coeff_ctl *ctl,
790 			    unsigned int off, const void *buf, size_t len)
791 {
792 	int ret = 0;
793 
794 	if (!ctl)
795 		return -ENOENT;
796 
797 	lockdep_assert_held(&ctl->dsp->pwr_lock);
798 
799 	if (len + off * sizeof(u32) > ctl->len)
800 		return -EINVAL;
801 
802 	if (ctl->flags & WMFW_CTL_FLAG_VOLATILE) {
803 		ret = -EPERM;
804 	} else if (buf != ctl->cache) {
805 		if (memcmp(ctl->cache + off * sizeof(u32), buf, len))
806 			memcpy(ctl->cache + off * sizeof(u32), buf, len);
807 		else
808 			return 0;
809 	}
810 
811 	ctl->set = 1;
812 	if (ctl->enabled && ctl->dsp->running)
813 		ret = cs_dsp_coeff_write_ctrl_raw(ctl, off, buf, len);
814 
815 	if (ret < 0)
816 		return ret;
817 
818 	return 1;
819 }
820 EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_write_ctrl, FW_CS_DSP);
821 
822 static int cs_dsp_coeff_read_ctrl_raw(struct cs_dsp_coeff_ctl *ctl,
823 				      unsigned int off, void *buf, size_t len)
824 {
825 	struct cs_dsp *dsp = ctl->dsp;
826 	void *scratch;
827 	int ret;
828 	unsigned int reg;
829 
830 	ret = cs_dsp_coeff_base_reg(ctl, &reg, off);
831 	if (ret)
832 		return ret;
833 
834 	scratch = kmalloc(len, GFP_KERNEL | GFP_DMA);
835 	if (!scratch)
836 		return -ENOMEM;
837 
838 	ret = regmap_raw_read(dsp->regmap, reg, scratch, len);
839 	if (ret) {
840 		cs_dsp_err(dsp, "Failed to read %zu bytes from %x: %d\n",
841 			   len, reg, ret);
842 		kfree(scratch);
843 		return ret;
844 	}
845 	cs_dsp_dbg(dsp, "Read %zu bytes from %x\n", len, reg);
846 
847 	memcpy(buf, scratch, len);
848 	kfree(scratch);
849 
850 	return 0;
851 }
852 
853 /**
854  * cs_dsp_coeff_read_ctrl() - Reads the given coefficient control into the given buffer
855  * @ctl: pointer to coefficient control
856  * @off: word offset at which data should be read
857  * @buf: the buffer to store to the given control
858  * @len: the length of the buffer in bytes
859  *
860  * Must be called with pwr_lock held.
861  *
862  * Return: Zero for success, a negative number on error.
863  */
864 int cs_dsp_coeff_read_ctrl(struct cs_dsp_coeff_ctl *ctl,
865 			   unsigned int off, void *buf, size_t len)
866 {
867 	int ret = 0;
868 
869 	if (!ctl)
870 		return -ENOENT;
871 
872 	lockdep_assert_held(&ctl->dsp->pwr_lock);
873 
874 	if (len + off * sizeof(u32) > ctl->len)
875 		return -EINVAL;
876 
877 	if (ctl->flags & WMFW_CTL_FLAG_VOLATILE) {
878 		if (ctl->enabled && ctl->dsp->running)
879 			return cs_dsp_coeff_read_ctrl_raw(ctl, off, buf, len);
880 		else
881 			return -EPERM;
882 	} else {
883 		if (!ctl->flags && ctl->enabled && ctl->dsp->running)
884 			ret = cs_dsp_coeff_read_ctrl_raw(ctl, 0, ctl->cache, ctl->len);
885 
886 		if (buf != ctl->cache)
887 			memcpy(buf, ctl->cache + off * sizeof(u32), len);
888 	}
889 
890 	return ret;
891 }
892 EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_read_ctrl, FW_CS_DSP);
893 
894 static int cs_dsp_coeff_init_control_caches(struct cs_dsp *dsp)
895 {
896 	struct cs_dsp_coeff_ctl *ctl;
897 	int ret;
898 
899 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
900 		if (!ctl->enabled || ctl->set)
901 			continue;
902 		if (ctl->flags & WMFW_CTL_FLAG_VOLATILE)
903 			continue;
904 
905 		/*
906 		 * For readable controls populate the cache from the DSP memory.
907 		 * For non-readable controls the cache was zero-filled when
908 		 * created so we don't need to do anything.
909 		 */
910 		if (!ctl->flags || (ctl->flags & WMFW_CTL_FLAG_READABLE)) {
911 			ret = cs_dsp_coeff_read_ctrl_raw(ctl, 0, ctl->cache, ctl->len);
912 			if (ret < 0)
913 				return ret;
914 		}
915 	}
916 
917 	return 0;
918 }
919 
920 static int cs_dsp_coeff_sync_controls(struct cs_dsp *dsp)
921 {
922 	struct cs_dsp_coeff_ctl *ctl;
923 	int ret;
924 
925 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
926 		if (!ctl->enabled)
927 			continue;
928 		if (ctl->set && !(ctl->flags & WMFW_CTL_FLAG_VOLATILE)) {
929 			ret = cs_dsp_coeff_write_ctrl_raw(ctl, 0, ctl->cache,
930 							  ctl->len);
931 			if (ret < 0)
932 				return ret;
933 		}
934 	}
935 
936 	return 0;
937 }
938 
939 static void cs_dsp_signal_event_controls(struct cs_dsp *dsp,
940 					 unsigned int event)
941 {
942 	struct cs_dsp_coeff_ctl *ctl;
943 	int ret;
944 
945 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
946 		if (ctl->type != WMFW_CTL_TYPE_HOSTEVENT)
947 			continue;
948 
949 		if (!ctl->enabled)
950 			continue;
951 
952 		ret = cs_dsp_coeff_write_acked_control(ctl, event);
953 		if (ret)
954 			cs_dsp_warn(dsp,
955 				    "Failed to send 0x%x event to alg 0x%x (%d)\n",
956 				    event, ctl->alg_region.alg, ret);
957 	}
958 }
959 
960 static void cs_dsp_free_ctl_blk(struct cs_dsp_coeff_ctl *ctl)
961 {
962 	kfree(ctl->cache);
963 	kfree(ctl->subname);
964 	kfree(ctl);
965 }
966 
967 static int cs_dsp_create_control(struct cs_dsp *dsp,
968 				 const struct cs_dsp_alg_region *alg_region,
969 				 unsigned int offset, unsigned int len,
970 				 const char *subname, unsigned int subname_len,
971 				 unsigned int flags, unsigned int type)
972 {
973 	struct cs_dsp_coeff_ctl *ctl;
974 	int ret;
975 
976 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
977 		if (ctl->fw_name == dsp->fw_name &&
978 		    ctl->alg_region.alg == alg_region->alg &&
979 		    ctl->alg_region.type == alg_region->type) {
980 			if ((!subname && !ctl->subname) ||
981 			    (subname && !strncmp(ctl->subname, subname, ctl->subname_len))) {
982 				if (!ctl->enabled)
983 					ctl->enabled = 1;
984 				return 0;
985 			}
986 		}
987 	}
988 
989 	ctl = kzalloc(sizeof(*ctl), GFP_KERNEL);
990 	if (!ctl)
991 		return -ENOMEM;
992 
993 	ctl->fw_name = dsp->fw_name;
994 	ctl->alg_region = *alg_region;
995 	if (subname && dsp->fw_ver >= 2) {
996 		ctl->subname_len = subname_len;
997 		ctl->subname = kasprintf(GFP_KERNEL, "%.*s", subname_len, subname);
998 		if (!ctl->subname) {
999 			ret = -ENOMEM;
1000 			goto err_ctl;
1001 		}
1002 	}
1003 	ctl->enabled = 1;
1004 	ctl->set = 0;
1005 	ctl->dsp = dsp;
1006 
1007 	ctl->flags = flags;
1008 	ctl->type = type;
1009 	ctl->offset = offset;
1010 	ctl->len = len;
1011 	ctl->cache = kzalloc(ctl->len, GFP_KERNEL);
1012 	if (!ctl->cache) {
1013 		ret = -ENOMEM;
1014 		goto err_ctl_subname;
1015 	}
1016 
1017 	list_add(&ctl->list, &dsp->ctl_list);
1018 
1019 	if (dsp->client_ops->control_add) {
1020 		ret = dsp->client_ops->control_add(ctl);
1021 		if (ret)
1022 			goto err_list_del;
1023 	}
1024 
1025 	return 0;
1026 
1027 err_list_del:
1028 	list_del(&ctl->list);
1029 	kfree(ctl->cache);
1030 err_ctl_subname:
1031 	kfree(ctl->subname);
1032 err_ctl:
1033 	kfree(ctl);
1034 
1035 	return ret;
1036 }
1037 
1038 struct cs_dsp_coeff_parsed_alg {
1039 	int id;
1040 	const u8 *name;
1041 	int name_len;
1042 	int ncoeff;
1043 };
1044 
1045 struct cs_dsp_coeff_parsed_coeff {
1046 	int offset;
1047 	int mem_type;
1048 	const u8 *name;
1049 	int name_len;
1050 	unsigned int ctl_type;
1051 	int flags;
1052 	int len;
1053 };
1054 
1055 static int cs_dsp_coeff_parse_string(int bytes, const u8 **pos, const u8 **str)
1056 {
1057 	int length;
1058 
1059 	switch (bytes) {
1060 	case 1:
1061 		length = **pos;
1062 		break;
1063 	case 2:
1064 		length = le16_to_cpu(*((__le16 *)*pos));
1065 		break;
1066 	default:
1067 		return 0;
1068 	}
1069 
1070 	if (str)
1071 		*str = *pos + bytes;
1072 
1073 	*pos += ((length + bytes) + 3) & ~0x03;
1074 
1075 	return length;
1076 }
1077 
1078 static int cs_dsp_coeff_parse_int(int bytes, const u8 **pos)
1079 {
1080 	int val = 0;
1081 
1082 	switch (bytes) {
1083 	case 2:
1084 		val = le16_to_cpu(*((__le16 *)*pos));
1085 		break;
1086 	case 4:
1087 		val = le32_to_cpu(*((__le32 *)*pos));
1088 		break;
1089 	default:
1090 		break;
1091 	}
1092 
1093 	*pos += bytes;
1094 
1095 	return val;
1096 }
1097 
1098 static inline void cs_dsp_coeff_parse_alg(struct cs_dsp *dsp, const u8 **data,
1099 					  struct cs_dsp_coeff_parsed_alg *blk)
1100 {
1101 	const struct wmfw_adsp_alg_data *raw;
1102 
1103 	switch (dsp->fw_ver) {
1104 	case 0:
1105 	case 1:
1106 		raw = (const struct wmfw_adsp_alg_data *)*data;
1107 		*data = raw->data;
1108 
1109 		blk->id = le32_to_cpu(raw->id);
1110 		blk->name = raw->name;
1111 		blk->name_len = strlen(raw->name);
1112 		blk->ncoeff = le32_to_cpu(raw->ncoeff);
1113 		break;
1114 	default:
1115 		blk->id = cs_dsp_coeff_parse_int(sizeof(raw->id), data);
1116 		blk->name_len = cs_dsp_coeff_parse_string(sizeof(u8), data,
1117 							  &blk->name);
1118 		cs_dsp_coeff_parse_string(sizeof(u16), data, NULL);
1119 		blk->ncoeff = cs_dsp_coeff_parse_int(sizeof(raw->ncoeff), data);
1120 		break;
1121 	}
1122 
1123 	cs_dsp_dbg(dsp, "Algorithm ID: %#x\n", blk->id);
1124 	cs_dsp_dbg(dsp, "Algorithm name: %.*s\n", blk->name_len, blk->name);
1125 	cs_dsp_dbg(dsp, "# of coefficient descriptors: %#x\n", blk->ncoeff);
1126 }
1127 
1128 static inline void cs_dsp_coeff_parse_coeff(struct cs_dsp *dsp, const u8 **data,
1129 					    struct cs_dsp_coeff_parsed_coeff *blk)
1130 {
1131 	const struct wmfw_adsp_coeff_data *raw;
1132 	const u8 *tmp;
1133 	int length;
1134 
1135 	switch (dsp->fw_ver) {
1136 	case 0:
1137 	case 1:
1138 		raw = (const struct wmfw_adsp_coeff_data *)*data;
1139 		*data = *data + sizeof(raw->hdr) + le32_to_cpu(raw->hdr.size);
1140 
1141 		blk->offset = le16_to_cpu(raw->hdr.offset);
1142 		blk->mem_type = le16_to_cpu(raw->hdr.type);
1143 		blk->name = raw->name;
1144 		blk->name_len = strlen(raw->name);
1145 		blk->ctl_type = le16_to_cpu(raw->ctl_type);
1146 		blk->flags = le16_to_cpu(raw->flags);
1147 		blk->len = le32_to_cpu(raw->len);
1148 		break;
1149 	default:
1150 		tmp = *data;
1151 		blk->offset = cs_dsp_coeff_parse_int(sizeof(raw->hdr.offset), &tmp);
1152 		blk->mem_type = cs_dsp_coeff_parse_int(sizeof(raw->hdr.type), &tmp);
1153 		length = cs_dsp_coeff_parse_int(sizeof(raw->hdr.size), &tmp);
1154 		blk->name_len = cs_dsp_coeff_parse_string(sizeof(u8), &tmp,
1155 							  &blk->name);
1156 		cs_dsp_coeff_parse_string(sizeof(u8), &tmp, NULL);
1157 		cs_dsp_coeff_parse_string(sizeof(u16), &tmp, NULL);
1158 		blk->ctl_type = cs_dsp_coeff_parse_int(sizeof(raw->ctl_type), &tmp);
1159 		blk->flags = cs_dsp_coeff_parse_int(sizeof(raw->flags), &tmp);
1160 		blk->len = cs_dsp_coeff_parse_int(sizeof(raw->len), &tmp);
1161 
1162 		*data = *data + sizeof(raw->hdr) + length;
1163 		break;
1164 	}
1165 
1166 	cs_dsp_dbg(dsp, "\tCoefficient type: %#x\n", blk->mem_type);
1167 	cs_dsp_dbg(dsp, "\tCoefficient offset: %#x\n", blk->offset);
1168 	cs_dsp_dbg(dsp, "\tCoefficient name: %.*s\n", blk->name_len, blk->name);
1169 	cs_dsp_dbg(dsp, "\tCoefficient flags: %#x\n", blk->flags);
1170 	cs_dsp_dbg(dsp, "\tALSA control type: %#x\n", blk->ctl_type);
1171 	cs_dsp_dbg(dsp, "\tALSA control len: %#x\n", blk->len);
1172 }
1173 
1174 static int cs_dsp_check_coeff_flags(struct cs_dsp *dsp,
1175 				    const struct cs_dsp_coeff_parsed_coeff *coeff_blk,
1176 				    unsigned int f_required,
1177 				    unsigned int f_illegal)
1178 {
1179 	if ((coeff_blk->flags & f_illegal) ||
1180 	    ((coeff_blk->flags & f_required) != f_required)) {
1181 		cs_dsp_err(dsp, "Illegal flags 0x%x for control type 0x%x\n",
1182 			   coeff_blk->flags, coeff_blk->ctl_type);
1183 		return -EINVAL;
1184 	}
1185 
1186 	return 0;
1187 }
1188 
1189 static int cs_dsp_parse_coeff(struct cs_dsp *dsp,
1190 			      const struct wmfw_region *region)
1191 {
1192 	struct cs_dsp_alg_region alg_region = {};
1193 	struct cs_dsp_coeff_parsed_alg alg_blk;
1194 	struct cs_dsp_coeff_parsed_coeff coeff_blk;
1195 	const u8 *data = region->data;
1196 	int i, ret;
1197 
1198 	cs_dsp_coeff_parse_alg(dsp, &data, &alg_blk);
1199 	for (i = 0; i < alg_blk.ncoeff; i++) {
1200 		cs_dsp_coeff_parse_coeff(dsp, &data, &coeff_blk);
1201 
1202 		switch (coeff_blk.ctl_type) {
1203 		case WMFW_CTL_TYPE_BYTES:
1204 			break;
1205 		case WMFW_CTL_TYPE_ACKED:
1206 			if (coeff_blk.flags & WMFW_CTL_FLAG_SYS)
1207 				continue;	/* ignore */
1208 
1209 			ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1210 						       WMFW_CTL_FLAG_VOLATILE |
1211 						       WMFW_CTL_FLAG_WRITEABLE |
1212 						       WMFW_CTL_FLAG_READABLE,
1213 						       0);
1214 			if (ret)
1215 				return -EINVAL;
1216 			break;
1217 		case WMFW_CTL_TYPE_HOSTEVENT:
1218 		case WMFW_CTL_TYPE_FWEVENT:
1219 			ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1220 						       WMFW_CTL_FLAG_SYS |
1221 						       WMFW_CTL_FLAG_VOLATILE |
1222 						       WMFW_CTL_FLAG_WRITEABLE |
1223 						       WMFW_CTL_FLAG_READABLE,
1224 						       0);
1225 			if (ret)
1226 				return -EINVAL;
1227 			break;
1228 		case WMFW_CTL_TYPE_HOST_BUFFER:
1229 			ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1230 						       WMFW_CTL_FLAG_SYS |
1231 						       WMFW_CTL_FLAG_VOLATILE |
1232 						       WMFW_CTL_FLAG_READABLE,
1233 						       0);
1234 			if (ret)
1235 				return -EINVAL;
1236 			break;
1237 		default:
1238 			cs_dsp_err(dsp, "Unknown control type: %d\n",
1239 				   coeff_blk.ctl_type);
1240 			return -EINVAL;
1241 		}
1242 
1243 		alg_region.type = coeff_blk.mem_type;
1244 		alg_region.alg = alg_blk.id;
1245 
1246 		ret = cs_dsp_create_control(dsp, &alg_region,
1247 					    coeff_blk.offset,
1248 					    coeff_blk.len,
1249 					    coeff_blk.name,
1250 					    coeff_blk.name_len,
1251 					    coeff_blk.flags,
1252 					    coeff_blk.ctl_type);
1253 		if (ret < 0)
1254 			cs_dsp_err(dsp, "Failed to create control: %.*s, %d\n",
1255 				   coeff_blk.name_len, coeff_blk.name, ret);
1256 	}
1257 
1258 	return 0;
1259 }
1260 
1261 static unsigned int cs_dsp_adsp1_parse_sizes(struct cs_dsp *dsp,
1262 					     const char * const file,
1263 					     unsigned int pos,
1264 					     const struct firmware *firmware)
1265 {
1266 	const struct wmfw_adsp1_sizes *adsp1_sizes;
1267 
1268 	adsp1_sizes = (void *)&firmware->data[pos];
1269 
1270 	cs_dsp_dbg(dsp, "%s: %d DM, %d PM, %d ZM\n", file,
1271 		   le32_to_cpu(adsp1_sizes->dm), le32_to_cpu(adsp1_sizes->pm),
1272 		   le32_to_cpu(adsp1_sizes->zm));
1273 
1274 	return pos + sizeof(*adsp1_sizes);
1275 }
1276 
1277 static unsigned int cs_dsp_adsp2_parse_sizes(struct cs_dsp *dsp,
1278 					     const char * const file,
1279 					     unsigned int pos,
1280 					     const struct firmware *firmware)
1281 {
1282 	const struct wmfw_adsp2_sizes *adsp2_sizes;
1283 
1284 	adsp2_sizes = (void *)&firmware->data[pos];
1285 
1286 	cs_dsp_dbg(dsp, "%s: %d XM, %d YM %d PM, %d ZM\n", file,
1287 		   le32_to_cpu(adsp2_sizes->xm), le32_to_cpu(adsp2_sizes->ym),
1288 		   le32_to_cpu(adsp2_sizes->pm), le32_to_cpu(adsp2_sizes->zm));
1289 
1290 	return pos + sizeof(*adsp2_sizes);
1291 }
1292 
1293 static bool cs_dsp_validate_version(struct cs_dsp *dsp, unsigned int version)
1294 {
1295 	switch (version) {
1296 	case 0:
1297 		cs_dsp_warn(dsp, "Deprecated file format %d\n", version);
1298 		return true;
1299 	case 1:
1300 	case 2:
1301 		return true;
1302 	default:
1303 		return false;
1304 	}
1305 }
1306 
1307 static bool cs_dsp_halo_validate_version(struct cs_dsp *dsp, unsigned int version)
1308 {
1309 	switch (version) {
1310 	case 3:
1311 		return true;
1312 	default:
1313 		return false;
1314 	}
1315 }
1316 
1317 static int cs_dsp_load(struct cs_dsp *dsp, const struct firmware *firmware,
1318 		       const char *file)
1319 {
1320 	LIST_HEAD(buf_list);
1321 	struct regmap *regmap = dsp->regmap;
1322 	unsigned int pos = 0;
1323 	const struct wmfw_header *header;
1324 	const struct wmfw_adsp1_sizes *adsp1_sizes;
1325 	const struct wmfw_footer *footer;
1326 	const struct wmfw_region *region;
1327 	const struct cs_dsp_region *mem;
1328 	const char *region_name;
1329 	char *text = NULL;
1330 	struct cs_dsp_buf *buf;
1331 	unsigned int reg;
1332 	int regions = 0;
1333 	int ret, offset, type;
1334 
1335 	if (!firmware)
1336 		return 0;
1337 
1338 	ret = -EINVAL;
1339 
1340 	pos = sizeof(*header) + sizeof(*adsp1_sizes) + sizeof(*footer);
1341 	if (pos >= firmware->size) {
1342 		cs_dsp_err(dsp, "%s: file too short, %zu bytes\n",
1343 			   file, firmware->size);
1344 		goto out_fw;
1345 	}
1346 
1347 	header = (void *)&firmware->data[0];
1348 
1349 	if (memcmp(&header->magic[0], "WMFW", 4) != 0) {
1350 		cs_dsp_err(dsp, "%s: invalid magic\n", file);
1351 		goto out_fw;
1352 	}
1353 
1354 	if (!dsp->ops->validate_version(dsp, header->ver)) {
1355 		cs_dsp_err(dsp, "%s: unknown file format %d\n",
1356 			   file, header->ver);
1357 		goto out_fw;
1358 	}
1359 
1360 	cs_dsp_info(dsp, "Firmware version: %d\n", header->ver);
1361 	dsp->fw_ver = header->ver;
1362 
1363 	if (header->core != dsp->type) {
1364 		cs_dsp_err(dsp, "%s: invalid core %d != %d\n",
1365 			   file, header->core, dsp->type);
1366 		goto out_fw;
1367 	}
1368 
1369 	pos = sizeof(*header);
1370 	pos = dsp->ops->parse_sizes(dsp, file, pos, firmware);
1371 
1372 	footer = (void *)&firmware->data[pos];
1373 	pos += sizeof(*footer);
1374 
1375 	if (le32_to_cpu(header->len) != pos) {
1376 		cs_dsp_err(dsp, "%s: unexpected header length %d\n",
1377 			   file, le32_to_cpu(header->len));
1378 		goto out_fw;
1379 	}
1380 
1381 	cs_dsp_dbg(dsp, "%s: timestamp %llu\n", file,
1382 		   le64_to_cpu(footer->timestamp));
1383 
1384 	while (pos < firmware->size &&
1385 	       sizeof(*region) < firmware->size - pos) {
1386 		region = (void *)&(firmware->data[pos]);
1387 		region_name = "Unknown";
1388 		reg = 0;
1389 		text = NULL;
1390 		offset = le32_to_cpu(region->offset) & 0xffffff;
1391 		type = be32_to_cpu(region->type) & 0xff;
1392 
1393 		switch (type) {
1394 		case WMFW_NAME_TEXT:
1395 			region_name = "Firmware name";
1396 			text = kzalloc(le32_to_cpu(region->len) + 1,
1397 				       GFP_KERNEL);
1398 			break;
1399 		case WMFW_ALGORITHM_DATA:
1400 			region_name = "Algorithm";
1401 			ret = cs_dsp_parse_coeff(dsp, region);
1402 			if (ret != 0)
1403 				goto out_fw;
1404 			break;
1405 		case WMFW_INFO_TEXT:
1406 			region_name = "Information";
1407 			text = kzalloc(le32_to_cpu(region->len) + 1,
1408 				       GFP_KERNEL);
1409 			break;
1410 		case WMFW_ABSOLUTE:
1411 			region_name = "Absolute";
1412 			reg = offset;
1413 			break;
1414 		case WMFW_ADSP1_PM:
1415 		case WMFW_ADSP1_DM:
1416 		case WMFW_ADSP2_XM:
1417 		case WMFW_ADSP2_YM:
1418 		case WMFW_ADSP1_ZM:
1419 		case WMFW_HALO_PM_PACKED:
1420 		case WMFW_HALO_XM_PACKED:
1421 		case WMFW_HALO_YM_PACKED:
1422 			mem = cs_dsp_find_region(dsp, type);
1423 			if (!mem) {
1424 				cs_dsp_err(dsp, "No region of type: %x\n", type);
1425 				ret = -EINVAL;
1426 				goto out_fw;
1427 			}
1428 
1429 			region_name = cs_dsp_mem_region_name(type);
1430 			reg = dsp->ops->region_to_reg(mem, offset);
1431 			break;
1432 		default:
1433 			cs_dsp_warn(dsp,
1434 				    "%s.%d: Unknown region type %x at %d(%x)\n",
1435 				    file, regions, type, pos, pos);
1436 			break;
1437 		}
1438 
1439 		cs_dsp_dbg(dsp, "%s.%d: %d bytes at %d in %s\n", file,
1440 			   regions, le32_to_cpu(region->len), offset,
1441 			   region_name);
1442 
1443 		if (le32_to_cpu(region->len) >
1444 		    firmware->size - pos - sizeof(*region)) {
1445 			cs_dsp_err(dsp,
1446 				   "%s.%d: %s region len %d bytes exceeds file length %zu\n",
1447 				   file, regions, region_name,
1448 				   le32_to_cpu(region->len), firmware->size);
1449 			ret = -EINVAL;
1450 			goto out_fw;
1451 		}
1452 
1453 		if (text) {
1454 			memcpy(text, region->data, le32_to_cpu(region->len));
1455 			cs_dsp_info(dsp, "%s: %s\n", file, text);
1456 			kfree(text);
1457 			text = NULL;
1458 		}
1459 
1460 		if (reg) {
1461 			buf = cs_dsp_buf_alloc(region->data,
1462 					       le32_to_cpu(region->len),
1463 					       &buf_list);
1464 			if (!buf) {
1465 				cs_dsp_err(dsp, "Out of memory\n");
1466 				ret = -ENOMEM;
1467 				goto out_fw;
1468 			}
1469 
1470 			ret = regmap_raw_write_async(regmap, reg, buf->buf,
1471 						     le32_to_cpu(region->len));
1472 			if (ret != 0) {
1473 				cs_dsp_err(dsp,
1474 					   "%s.%d: Failed to write %d bytes at %d in %s: %d\n",
1475 					   file, regions,
1476 					   le32_to_cpu(region->len), offset,
1477 					   region_name, ret);
1478 				goto out_fw;
1479 			}
1480 		}
1481 
1482 		pos += le32_to_cpu(region->len) + sizeof(*region);
1483 		regions++;
1484 	}
1485 
1486 	ret = regmap_async_complete(regmap);
1487 	if (ret != 0) {
1488 		cs_dsp_err(dsp, "Failed to complete async write: %d\n", ret);
1489 		goto out_fw;
1490 	}
1491 
1492 	if (pos > firmware->size)
1493 		cs_dsp_warn(dsp, "%s.%d: %zu bytes at end of file\n",
1494 			    file, regions, pos - firmware->size);
1495 
1496 	cs_dsp_debugfs_save_wmfwname(dsp, file);
1497 
1498 out_fw:
1499 	regmap_async_complete(regmap);
1500 	cs_dsp_buf_free(&buf_list);
1501 	kfree(text);
1502 
1503 	return ret;
1504 }
1505 
1506 /**
1507  * cs_dsp_get_ctl() - Finds a matching coefficient control
1508  * @dsp: pointer to DSP structure
1509  * @name: pointer to string to match with a control's subname
1510  * @type: the algorithm type to match
1511  * @alg: the algorithm id to match
1512  *
1513  * Find cs_dsp_coeff_ctl with input name as its subname
1514  *
1515  * Return: pointer to the control on success, NULL if not found
1516  */
1517 struct cs_dsp_coeff_ctl *cs_dsp_get_ctl(struct cs_dsp *dsp, const char *name, int type,
1518 					unsigned int alg)
1519 {
1520 	struct cs_dsp_coeff_ctl *pos, *rslt = NULL;
1521 
1522 	lockdep_assert_held(&dsp->pwr_lock);
1523 
1524 	list_for_each_entry(pos, &dsp->ctl_list, list) {
1525 		if (!pos->subname)
1526 			continue;
1527 		if (strncmp(pos->subname, name, pos->subname_len) == 0 &&
1528 		    pos->fw_name == dsp->fw_name &&
1529 		    pos->alg_region.alg == alg &&
1530 		    pos->alg_region.type == type) {
1531 			rslt = pos;
1532 			break;
1533 		}
1534 	}
1535 
1536 	return rslt;
1537 }
1538 EXPORT_SYMBOL_NS_GPL(cs_dsp_get_ctl, FW_CS_DSP);
1539 
1540 static void cs_dsp_ctl_fixup_base(struct cs_dsp *dsp,
1541 				  const struct cs_dsp_alg_region *alg_region)
1542 {
1543 	struct cs_dsp_coeff_ctl *ctl;
1544 
1545 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
1546 		if (ctl->fw_name == dsp->fw_name &&
1547 		    alg_region->alg == ctl->alg_region.alg &&
1548 		    alg_region->type == ctl->alg_region.type) {
1549 			ctl->alg_region.base = alg_region->base;
1550 		}
1551 	}
1552 }
1553 
1554 static void *cs_dsp_read_algs(struct cs_dsp *dsp, size_t n_algs,
1555 			      const struct cs_dsp_region *mem,
1556 			      unsigned int pos, unsigned int len)
1557 {
1558 	void *alg;
1559 	unsigned int reg;
1560 	int ret;
1561 	__be32 val;
1562 
1563 	if (n_algs == 0) {
1564 		cs_dsp_err(dsp, "No algorithms\n");
1565 		return ERR_PTR(-EINVAL);
1566 	}
1567 
1568 	if (n_algs > 1024) {
1569 		cs_dsp_err(dsp, "Algorithm count %zx excessive\n", n_algs);
1570 		return ERR_PTR(-EINVAL);
1571 	}
1572 
1573 	/* Read the terminator first to validate the length */
1574 	reg = dsp->ops->region_to_reg(mem, pos + len);
1575 
1576 	ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val));
1577 	if (ret != 0) {
1578 		cs_dsp_err(dsp, "Failed to read algorithm list end: %d\n",
1579 			   ret);
1580 		return ERR_PTR(ret);
1581 	}
1582 
1583 	if (be32_to_cpu(val) != 0xbedead)
1584 		cs_dsp_warn(dsp, "Algorithm list end %x 0x%x != 0xbedead\n",
1585 			    reg, be32_to_cpu(val));
1586 
1587 	/* Convert length from DSP words to bytes */
1588 	len *= sizeof(u32);
1589 
1590 	alg = kzalloc(len, GFP_KERNEL | GFP_DMA);
1591 	if (!alg)
1592 		return ERR_PTR(-ENOMEM);
1593 
1594 	reg = dsp->ops->region_to_reg(mem, pos);
1595 
1596 	ret = regmap_raw_read(dsp->regmap, reg, alg, len);
1597 	if (ret != 0) {
1598 		cs_dsp_err(dsp, "Failed to read algorithm list: %d\n", ret);
1599 		kfree(alg);
1600 		return ERR_PTR(ret);
1601 	}
1602 
1603 	return alg;
1604 }
1605 
1606 /**
1607  * cs_dsp_find_alg_region() - Finds a matching algorithm region
1608  * @dsp: pointer to DSP structure
1609  * @type: the algorithm type to match
1610  * @id: the algorithm id to match
1611  *
1612  * Return: Pointer to matching algorithm region, or NULL if not found.
1613  */
1614 struct cs_dsp_alg_region *cs_dsp_find_alg_region(struct cs_dsp *dsp,
1615 						 int type, unsigned int id)
1616 {
1617 	struct cs_dsp_alg_region *alg_region;
1618 
1619 	lockdep_assert_held(&dsp->pwr_lock);
1620 
1621 	list_for_each_entry(alg_region, &dsp->alg_regions, list) {
1622 		if (id == alg_region->alg && type == alg_region->type)
1623 			return alg_region;
1624 	}
1625 
1626 	return NULL;
1627 }
1628 EXPORT_SYMBOL_NS_GPL(cs_dsp_find_alg_region, FW_CS_DSP);
1629 
1630 static struct cs_dsp_alg_region *cs_dsp_create_region(struct cs_dsp *dsp,
1631 						      int type, __be32 id,
1632 						      __be32 ver, __be32 base)
1633 {
1634 	struct cs_dsp_alg_region *alg_region;
1635 
1636 	alg_region = kzalloc(sizeof(*alg_region), GFP_KERNEL);
1637 	if (!alg_region)
1638 		return ERR_PTR(-ENOMEM);
1639 
1640 	alg_region->type = type;
1641 	alg_region->alg = be32_to_cpu(id);
1642 	alg_region->ver = be32_to_cpu(ver);
1643 	alg_region->base = be32_to_cpu(base);
1644 
1645 	list_add_tail(&alg_region->list, &dsp->alg_regions);
1646 
1647 	if (dsp->fw_ver > 0)
1648 		cs_dsp_ctl_fixup_base(dsp, alg_region);
1649 
1650 	return alg_region;
1651 }
1652 
1653 static void cs_dsp_free_alg_regions(struct cs_dsp *dsp)
1654 {
1655 	struct cs_dsp_alg_region *alg_region;
1656 
1657 	while (!list_empty(&dsp->alg_regions)) {
1658 		alg_region = list_first_entry(&dsp->alg_regions,
1659 					      struct cs_dsp_alg_region,
1660 					      list);
1661 		list_del(&alg_region->list);
1662 		kfree(alg_region);
1663 	}
1664 }
1665 
1666 static void cs_dsp_parse_wmfw_id_header(struct cs_dsp *dsp,
1667 					struct wmfw_id_hdr *fw, int nalgs)
1668 {
1669 	dsp->fw_id = be32_to_cpu(fw->id);
1670 	dsp->fw_id_version = be32_to_cpu(fw->ver);
1671 
1672 	cs_dsp_info(dsp, "Firmware: %x v%d.%d.%d, %d algorithms\n",
1673 		    dsp->fw_id, (dsp->fw_id_version & 0xff0000) >> 16,
1674 		    (dsp->fw_id_version & 0xff00) >> 8, dsp->fw_id_version & 0xff,
1675 		    nalgs);
1676 }
1677 
1678 static void cs_dsp_parse_wmfw_v3_id_header(struct cs_dsp *dsp,
1679 					   struct wmfw_v3_id_hdr *fw, int nalgs)
1680 {
1681 	dsp->fw_id = be32_to_cpu(fw->id);
1682 	dsp->fw_id_version = be32_to_cpu(fw->ver);
1683 	dsp->fw_vendor_id = be32_to_cpu(fw->vendor_id);
1684 
1685 	cs_dsp_info(dsp, "Firmware: %x vendor: 0x%x v%d.%d.%d, %d algorithms\n",
1686 		    dsp->fw_id, dsp->fw_vendor_id,
1687 		    (dsp->fw_id_version & 0xff0000) >> 16,
1688 		    (dsp->fw_id_version & 0xff00) >> 8, dsp->fw_id_version & 0xff,
1689 		    nalgs);
1690 }
1691 
1692 static int cs_dsp_create_regions(struct cs_dsp *dsp, __be32 id, __be32 ver,
1693 				 int nregions, const int *type, __be32 *base)
1694 {
1695 	struct cs_dsp_alg_region *alg_region;
1696 	int i;
1697 
1698 	for (i = 0; i < nregions; i++) {
1699 		alg_region = cs_dsp_create_region(dsp, type[i], id, ver, base[i]);
1700 		if (IS_ERR(alg_region))
1701 			return PTR_ERR(alg_region);
1702 	}
1703 
1704 	return 0;
1705 }
1706 
1707 static int cs_dsp_adsp1_setup_algs(struct cs_dsp *dsp)
1708 {
1709 	struct wmfw_adsp1_id_hdr adsp1_id;
1710 	struct wmfw_adsp1_alg_hdr *adsp1_alg;
1711 	struct cs_dsp_alg_region *alg_region;
1712 	const struct cs_dsp_region *mem;
1713 	unsigned int pos, len;
1714 	size_t n_algs;
1715 	int i, ret;
1716 
1717 	mem = cs_dsp_find_region(dsp, WMFW_ADSP1_DM);
1718 	if (WARN_ON(!mem))
1719 		return -EINVAL;
1720 
1721 	ret = regmap_raw_read(dsp->regmap, mem->base, &adsp1_id,
1722 			      sizeof(adsp1_id));
1723 	if (ret != 0) {
1724 		cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
1725 			   ret);
1726 		return ret;
1727 	}
1728 
1729 	n_algs = be32_to_cpu(adsp1_id.n_algs);
1730 
1731 	cs_dsp_parse_wmfw_id_header(dsp, &adsp1_id.fw, n_algs);
1732 
1733 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_ZM,
1734 					  adsp1_id.fw.id, adsp1_id.fw.ver,
1735 					  adsp1_id.zm);
1736 	if (IS_ERR(alg_region))
1737 		return PTR_ERR(alg_region);
1738 
1739 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_DM,
1740 					  adsp1_id.fw.id, adsp1_id.fw.ver,
1741 					  adsp1_id.dm);
1742 	if (IS_ERR(alg_region))
1743 		return PTR_ERR(alg_region);
1744 
1745 	/* Calculate offset and length in DSP words */
1746 	pos = sizeof(adsp1_id) / sizeof(u32);
1747 	len = (sizeof(*adsp1_alg) * n_algs) / sizeof(u32);
1748 
1749 	adsp1_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
1750 	if (IS_ERR(adsp1_alg))
1751 		return PTR_ERR(adsp1_alg);
1752 
1753 	for (i = 0; i < n_algs; i++) {
1754 		cs_dsp_info(dsp, "%d: ID %x v%d.%d.%d DM@%x ZM@%x\n",
1755 			    i, be32_to_cpu(adsp1_alg[i].alg.id),
1756 			    (be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff0000) >> 16,
1757 			    (be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff00) >> 8,
1758 			    be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff,
1759 			    be32_to_cpu(adsp1_alg[i].dm),
1760 			    be32_to_cpu(adsp1_alg[i].zm));
1761 
1762 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_DM,
1763 						  adsp1_alg[i].alg.id,
1764 						  adsp1_alg[i].alg.ver,
1765 						  adsp1_alg[i].dm);
1766 		if (IS_ERR(alg_region)) {
1767 			ret = PTR_ERR(alg_region);
1768 			goto out;
1769 		}
1770 		if (dsp->fw_ver == 0) {
1771 			if (i + 1 < n_algs) {
1772 				len = be32_to_cpu(adsp1_alg[i + 1].dm);
1773 				len -= be32_to_cpu(adsp1_alg[i].dm);
1774 				len *= 4;
1775 				cs_dsp_create_control(dsp, alg_region, 0,
1776 						      len, NULL, 0, 0,
1777 						      WMFW_CTL_TYPE_BYTES);
1778 			} else {
1779 				cs_dsp_warn(dsp, "Missing length info for region DM with ID %x\n",
1780 					    be32_to_cpu(adsp1_alg[i].alg.id));
1781 			}
1782 		}
1783 
1784 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_ZM,
1785 						  adsp1_alg[i].alg.id,
1786 						  adsp1_alg[i].alg.ver,
1787 						  adsp1_alg[i].zm);
1788 		if (IS_ERR(alg_region)) {
1789 			ret = PTR_ERR(alg_region);
1790 			goto out;
1791 		}
1792 		if (dsp->fw_ver == 0) {
1793 			if (i + 1 < n_algs) {
1794 				len = be32_to_cpu(adsp1_alg[i + 1].zm);
1795 				len -= be32_to_cpu(adsp1_alg[i].zm);
1796 				len *= 4;
1797 				cs_dsp_create_control(dsp, alg_region, 0,
1798 						      len, NULL, 0, 0,
1799 						      WMFW_CTL_TYPE_BYTES);
1800 			} else {
1801 				cs_dsp_warn(dsp, "Missing length info for region ZM with ID %x\n",
1802 					    be32_to_cpu(adsp1_alg[i].alg.id));
1803 			}
1804 		}
1805 	}
1806 
1807 out:
1808 	kfree(adsp1_alg);
1809 	return ret;
1810 }
1811 
1812 static int cs_dsp_adsp2_setup_algs(struct cs_dsp *dsp)
1813 {
1814 	struct wmfw_adsp2_id_hdr adsp2_id;
1815 	struct wmfw_adsp2_alg_hdr *adsp2_alg;
1816 	struct cs_dsp_alg_region *alg_region;
1817 	const struct cs_dsp_region *mem;
1818 	unsigned int pos, len;
1819 	size_t n_algs;
1820 	int i, ret;
1821 
1822 	mem = cs_dsp_find_region(dsp, WMFW_ADSP2_XM);
1823 	if (WARN_ON(!mem))
1824 		return -EINVAL;
1825 
1826 	ret = regmap_raw_read(dsp->regmap, mem->base, &adsp2_id,
1827 			      sizeof(adsp2_id));
1828 	if (ret != 0) {
1829 		cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
1830 			   ret);
1831 		return ret;
1832 	}
1833 
1834 	n_algs = be32_to_cpu(adsp2_id.n_algs);
1835 
1836 	cs_dsp_parse_wmfw_id_header(dsp, &adsp2_id.fw, n_algs);
1837 
1838 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_XM,
1839 					  adsp2_id.fw.id, adsp2_id.fw.ver,
1840 					  adsp2_id.xm);
1841 	if (IS_ERR(alg_region))
1842 		return PTR_ERR(alg_region);
1843 
1844 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_YM,
1845 					  adsp2_id.fw.id, adsp2_id.fw.ver,
1846 					  adsp2_id.ym);
1847 	if (IS_ERR(alg_region))
1848 		return PTR_ERR(alg_region);
1849 
1850 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_ZM,
1851 					  adsp2_id.fw.id, adsp2_id.fw.ver,
1852 					  adsp2_id.zm);
1853 	if (IS_ERR(alg_region))
1854 		return PTR_ERR(alg_region);
1855 
1856 	/* Calculate offset and length in DSP words */
1857 	pos = sizeof(adsp2_id) / sizeof(u32);
1858 	len = (sizeof(*adsp2_alg) * n_algs) / sizeof(u32);
1859 
1860 	adsp2_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
1861 	if (IS_ERR(adsp2_alg))
1862 		return PTR_ERR(adsp2_alg);
1863 
1864 	for (i = 0; i < n_algs; i++) {
1865 		cs_dsp_info(dsp,
1866 			    "%d: ID %x v%d.%d.%d XM@%x YM@%x ZM@%x\n",
1867 			    i, be32_to_cpu(adsp2_alg[i].alg.id),
1868 			    (be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff0000) >> 16,
1869 			    (be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff00) >> 8,
1870 			    be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff,
1871 			    be32_to_cpu(adsp2_alg[i].xm),
1872 			    be32_to_cpu(adsp2_alg[i].ym),
1873 			    be32_to_cpu(adsp2_alg[i].zm));
1874 
1875 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_XM,
1876 						  adsp2_alg[i].alg.id,
1877 						  adsp2_alg[i].alg.ver,
1878 						  adsp2_alg[i].xm);
1879 		if (IS_ERR(alg_region)) {
1880 			ret = PTR_ERR(alg_region);
1881 			goto out;
1882 		}
1883 		if (dsp->fw_ver == 0) {
1884 			if (i + 1 < n_algs) {
1885 				len = be32_to_cpu(adsp2_alg[i + 1].xm);
1886 				len -= be32_to_cpu(adsp2_alg[i].xm);
1887 				len *= 4;
1888 				cs_dsp_create_control(dsp, alg_region, 0,
1889 						      len, NULL, 0, 0,
1890 						      WMFW_CTL_TYPE_BYTES);
1891 			} else {
1892 				cs_dsp_warn(dsp, "Missing length info for region XM with ID %x\n",
1893 					    be32_to_cpu(adsp2_alg[i].alg.id));
1894 			}
1895 		}
1896 
1897 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_YM,
1898 						  adsp2_alg[i].alg.id,
1899 						  adsp2_alg[i].alg.ver,
1900 						  adsp2_alg[i].ym);
1901 		if (IS_ERR(alg_region)) {
1902 			ret = PTR_ERR(alg_region);
1903 			goto out;
1904 		}
1905 		if (dsp->fw_ver == 0) {
1906 			if (i + 1 < n_algs) {
1907 				len = be32_to_cpu(adsp2_alg[i + 1].ym);
1908 				len -= be32_to_cpu(adsp2_alg[i].ym);
1909 				len *= 4;
1910 				cs_dsp_create_control(dsp, alg_region, 0,
1911 						      len, NULL, 0, 0,
1912 						      WMFW_CTL_TYPE_BYTES);
1913 			} else {
1914 				cs_dsp_warn(dsp, "Missing length info for region YM with ID %x\n",
1915 					    be32_to_cpu(adsp2_alg[i].alg.id));
1916 			}
1917 		}
1918 
1919 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_ZM,
1920 						  adsp2_alg[i].alg.id,
1921 						  adsp2_alg[i].alg.ver,
1922 						  adsp2_alg[i].zm);
1923 		if (IS_ERR(alg_region)) {
1924 			ret = PTR_ERR(alg_region);
1925 			goto out;
1926 		}
1927 		if (dsp->fw_ver == 0) {
1928 			if (i + 1 < n_algs) {
1929 				len = be32_to_cpu(adsp2_alg[i + 1].zm);
1930 				len -= be32_to_cpu(adsp2_alg[i].zm);
1931 				len *= 4;
1932 				cs_dsp_create_control(dsp, alg_region, 0,
1933 						      len, NULL, 0, 0,
1934 						      WMFW_CTL_TYPE_BYTES);
1935 			} else {
1936 				cs_dsp_warn(dsp, "Missing length info for region ZM with ID %x\n",
1937 					    be32_to_cpu(adsp2_alg[i].alg.id));
1938 			}
1939 		}
1940 	}
1941 
1942 out:
1943 	kfree(adsp2_alg);
1944 	return ret;
1945 }
1946 
1947 static int cs_dsp_halo_create_regions(struct cs_dsp *dsp, __be32 id, __be32 ver,
1948 				      __be32 xm_base, __be32 ym_base)
1949 {
1950 	static const int types[] = {
1951 		WMFW_ADSP2_XM, WMFW_HALO_XM_PACKED,
1952 		WMFW_ADSP2_YM, WMFW_HALO_YM_PACKED
1953 	};
1954 	__be32 bases[] = { xm_base, xm_base, ym_base, ym_base };
1955 
1956 	return cs_dsp_create_regions(dsp, id, ver, ARRAY_SIZE(types), types, bases);
1957 }
1958 
1959 static int cs_dsp_halo_setup_algs(struct cs_dsp *dsp)
1960 {
1961 	struct wmfw_halo_id_hdr halo_id;
1962 	struct wmfw_halo_alg_hdr *halo_alg;
1963 	const struct cs_dsp_region *mem;
1964 	unsigned int pos, len;
1965 	size_t n_algs;
1966 	int i, ret;
1967 
1968 	mem = cs_dsp_find_region(dsp, WMFW_ADSP2_XM);
1969 	if (WARN_ON(!mem))
1970 		return -EINVAL;
1971 
1972 	ret = regmap_raw_read(dsp->regmap, mem->base, &halo_id,
1973 			      sizeof(halo_id));
1974 	if (ret != 0) {
1975 		cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
1976 			   ret);
1977 		return ret;
1978 	}
1979 
1980 	n_algs = be32_to_cpu(halo_id.n_algs);
1981 
1982 	cs_dsp_parse_wmfw_v3_id_header(dsp, &halo_id.fw, n_algs);
1983 
1984 	ret = cs_dsp_halo_create_regions(dsp, halo_id.fw.id, halo_id.fw.ver,
1985 					 halo_id.xm_base, halo_id.ym_base);
1986 	if (ret)
1987 		return ret;
1988 
1989 	/* Calculate offset and length in DSP words */
1990 	pos = sizeof(halo_id) / sizeof(u32);
1991 	len = (sizeof(*halo_alg) * n_algs) / sizeof(u32);
1992 
1993 	halo_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
1994 	if (IS_ERR(halo_alg))
1995 		return PTR_ERR(halo_alg);
1996 
1997 	for (i = 0; i < n_algs; i++) {
1998 		cs_dsp_info(dsp,
1999 			    "%d: ID %x v%d.%d.%d XM@%x YM@%x\n",
2000 			    i, be32_to_cpu(halo_alg[i].alg.id),
2001 			    (be32_to_cpu(halo_alg[i].alg.ver) & 0xff0000) >> 16,
2002 			    (be32_to_cpu(halo_alg[i].alg.ver) & 0xff00) >> 8,
2003 			    be32_to_cpu(halo_alg[i].alg.ver) & 0xff,
2004 			    be32_to_cpu(halo_alg[i].xm_base),
2005 			    be32_to_cpu(halo_alg[i].ym_base));
2006 
2007 		ret = cs_dsp_halo_create_regions(dsp, halo_alg[i].alg.id,
2008 						 halo_alg[i].alg.ver,
2009 						 halo_alg[i].xm_base,
2010 						 halo_alg[i].ym_base);
2011 		if (ret)
2012 			goto out;
2013 	}
2014 
2015 out:
2016 	kfree(halo_alg);
2017 	return ret;
2018 }
2019 
2020 static int cs_dsp_load_coeff(struct cs_dsp *dsp, const struct firmware *firmware,
2021 			     const char *file)
2022 {
2023 	LIST_HEAD(buf_list);
2024 	struct regmap *regmap = dsp->regmap;
2025 	struct wmfw_coeff_hdr *hdr;
2026 	struct wmfw_coeff_item *blk;
2027 	const struct cs_dsp_region *mem;
2028 	struct cs_dsp_alg_region *alg_region;
2029 	const char *region_name;
2030 	int ret, pos, blocks, type, offset, reg, version;
2031 	char *text = NULL;
2032 	struct cs_dsp_buf *buf;
2033 
2034 	if (!firmware)
2035 		return 0;
2036 
2037 	ret = -EINVAL;
2038 
2039 	if (sizeof(*hdr) >= firmware->size) {
2040 		cs_dsp_err(dsp, "%s: coefficient file too short, %zu bytes\n",
2041 			   file, firmware->size);
2042 		goto out_fw;
2043 	}
2044 
2045 	hdr = (void *)&firmware->data[0];
2046 	if (memcmp(hdr->magic, "WMDR", 4) != 0) {
2047 		cs_dsp_err(dsp, "%s: invalid coefficient magic\n", file);
2048 		goto out_fw;
2049 	}
2050 
2051 	switch (be32_to_cpu(hdr->rev) & 0xff) {
2052 	case 1:
2053 	case 2:
2054 		break;
2055 	default:
2056 		cs_dsp_err(dsp, "%s: Unsupported coefficient file format %d\n",
2057 			   file, be32_to_cpu(hdr->rev) & 0xff);
2058 		ret = -EINVAL;
2059 		goto out_fw;
2060 	}
2061 
2062 	cs_dsp_info(dsp, "%s: v%d.%d.%d\n", file,
2063 		    (le32_to_cpu(hdr->ver) >> 16) & 0xff,
2064 		    (le32_to_cpu(hdr->ver) >>  8) & 0xff,
2065 		    le32_to_cpu(hdr->ver) & 0xff);
2066 
2067 	pos = le32_to_cpu(hdr->len);
2068 
2069 	blocks = 0;
2070 	while (pos < firmware->size &&
2071 	       sizeof(*blk) < firmware->size - pos) {
2072 		blk = (void *)(&firmware->data[pos]);
2073 
2074 		type = le16_to_cpu(blk->type);
2075 		offset = le16_to_cpu(blk->offset);
2076 		version = le32_to_cpu(blk->ver) >> 8;
2077 
2078 		cs_dsp_dbg(dsp, "%s.%d: %x v%d.%d.%d\n",
2079 			   file, blocks, le32_to_cpu(blk->id),
2080 			   (le32_to_cpu(blk->ver) >> 16) & 0xff,
2081 			   (le32_to_cpu(blk->ver) >>  8) & 0xff,
2082 			   le32_to_cpu(blk->ver) & 0xff);
2083 		cs_dsp_dbg(dsp, "%s.%d: %d bytes at 0x%x in %x\n",
2084 			   file, blocks, le32_to_cpu(blk->len), offset, type);
2085 
2086 		reg = 0;
2087 		region_name = "Unknown";
2088 		switch (type) {
2089 		case (WMFW_NAME_TEXT << 8):
2090 			text = kzalloc(le32_to_cpu(blk->len) + 1, GFP_KERNEL);
2091 			break;
2092 		case (WMFW_INFO_TEXT << 8):
2093 		case (WMFW_METADATA << 8):
2094 			break;
2095 		case (WMFW_ABSOLUTE << 8):
2096 			/*
2097 			 * Old files may use this for global
2098 			 * coefficients.
2099 			 */
2100 			if (le32_to_cpu(blk->id) == dsp->fw_id &&
2101 			    offset == 0) {
2102 				region_name = "global coefficients";
2103 				mem = cs_dsp_find_region(dsp, type);
2104 				if (!mem) {
2105 					cs_dsp_err(dsp, "No ZM\n");
2106 					break;
2107 				}
2108 				reg = dsp->ops->region_to_reg(mem, 0);
2109 
2110 			} else {
2111 				region_name = "register";
2112 				reg = offset;
2113 			}
2114 			break;
2115 
2116 		case WMFW_ADSP1_DM:
2117 		case WMFW_ADSP1_ZM:
2118 		case WMFW_ADSP2_XM:
2119 		case WMFW_ADSP2_YM:
2120 		case WMFW_HALO_XM_PACKED:
2121 		case WMFW_HALO_YM_PACKED:
2122 		case WMFW_HALO_PM_PACKED:
2123 			cs_dsp_dbg(dsp, "%s.%d: %d bytes in %x for %x\n",
2124 				   file, blocks, le32_to_cpu(blk->len),
2125 				   type, le32_to_cpu(blk->id));
2126 
2127 			region_name = cs_dsp_mem_region_name(type);
2128 			mem = cs_dsp_find_region(dsp, type);
2129 			if (!mem) {
2130 				cs_dsp_err(dsp, "No base for region %x\n", type);
2131 				break;
2132 			}
2133 
2134 			alg_region = cs_dsp_find_alg_region(dsp, type,
2135 							    le32_to_cpu(blk->id));
2136 			if (alg_region) {
2137 				if (version != alg_region->ver)
2138 					cs_dsp_warn(dsp,
2139 						    "Algorithm coefficient version %d.%d.%d but expected %d.%d.%d\n",
2140 						   (version >> 16) & 0xFF,
2141 						   (version >> 8) & 0xFF,
2142 						   version & 0xFF,
2143 						   (alg_region->ver >> 16) & 0xFF,
2144 						   (alg_region->ver >> 8) & 0xFF,
2145 						   alg_region->ver & 0xFF);
2146 
2147 				reg = alg_region->base;
2148 				reg = dsp->ops->region_to_reg(mem, reg);
2149 				reg += offset;
2150 			} else {
2151 				cs_dsp_err(dsp, "No %s for algorithm %x\n",
2152 					   region_name, le32_to_cpu(blk->id));
2153 			}
2154 			break;
2155 
2156 		default:
2157 			cs_dsp_err(dsp, "%s.%d: Unknown region type %x at %d\n",
2158 				   file, blocks, type, pos);
2159 			break;
2160 		}
2161 
2162 		if (text) {
2163 			memcpy(text, blk->data, le32_to_cpu(blk->len));
2164 			cs_dsp_info(dsp, "%s: %s\n", dsp->fw_name, text);
2165 			kfree(text);
2166 			text = NULL;
2167 		}
2168 
2169 		if (reg) {
2170 			if (le32_to_cpu(blk->len) >
2171 			    firmware->size - pos - sizeof(*blk)) {
2172 				cs_dsp_err(dsp,
2173 					   "%s.%d: %s region len %d bytes exceeds file length %zu\n",
2174 					   file, blocks, region_name,
2175 					   le32_to_cpu(blk->len),
2176 					   firmware->size);
2177 				ret = -EINVAL;
2178 				goto out_fw;
2179 			}
2180 
2181 			buf = cs_dsp_buf_alloc(blk->data,
2182 					       le32_to_cpu(blk->len),
2183 					       &buf_list);
2184 			if (!buf) {
2185 				cs_dsp_err(dsp, "Out of memory\n");
2186 				ret = -ENOMEM;
2187 				goto out_fw;
2188 			}
2189 
2190 			cs_dsp_dbg(dsp, "%s.%d: Writing %d bytes at %x\n",
2191 				   file, blocks, le32_to_cpu(blk->len),
2192 				   reg);
2193 			ret = regmap_raw_write_async(regmap, reg, buf->buf,
2194 						     le32_to_cpu(blk->len));
2195 			if (ret != 0) {
2196 				cs_dsp_err(dsp,
2197 					   "%s.%d: Failed to write to %x in %s: %d\n",
2198 					   file, blocks, reg, region_name, ret);
2199 			}
2200 		}
2201 
2202 		pos += (le32_to_cpu(blk->len) + sizeof(*blk) + 3) & ~0x03;
2203 		blocks++;
2204 	}
2205 
2206 	ret = regmap_async_complete(regmap);
2207 	if (ret != 0)
2208 		cs_dsp_err(dsp, "Failed to complete async write: %d\n", ret);
2209 
2210 	if (pos > firmware->size)
2211 		cs_dsp_warn(dsp, "%s.%d: %zu bytes at end of file\n",
2212 			    file, blocks, pos - firmware->size);
2213 
2214 	cs_dsp_debugfs_save_binname(dsp, file);
2215 
2216 out_fw:
2217 	regmap_async_complete(regmap);
2218 	cs_dsp_buf_free(&buf_list);
2219 	kfree(text);
2220 	return ret;
2221 }
2222 
2223 static int cs_dsp_create_name(struct cs_dsp *dsp)
2224 {
2225 	if (!dsp->name) {
2226 		dsp->name = devm_kasprintf(dsp->dev, GFP_KERNEL, "DSP%d",
2227 					   dsp->num);
2228 		if (!dsp->name)
2229 			return -ENOMEM;
2230 	}
2231 
2232 	return 0;
2233 }
2234 
2235 static int cs_dsp_common_init(struct cs_dsp *dsp)
2236 {
2237 	int ret;
2238 
2239 	ret = cs_dsp_create_name(dsp);
2240 	if (ret)
2241 		return ret;
2242 
2243 	INIT_LIST_HEAD(&dsp->alg_regions);
2244 	INIT_LIST_HEAD(&dsp->ctl_list);
2245 
2246 	mutex_init(&dsp->pwr_lock);
2247 
2248 	return 0;
2249 }
2250 
2251 /**
2252  * cs_dsp_adsp1_init() - Initialise a cs_dsp structure representing a ADSP1 device
2253  * @dsp: pointer to DSP structure
2254  *
2255  * Return: Zero for success, a negative number on error.
2256  */
2257 int cs_dsp_adsp1_init(struct cs_dsp *dsp)
2258 {
2259 	dsp->ops = &cs_dsp_adsp1_ops;
2260 
2261 	return cs_dsp_common_init(dsp);
2262 }
2263 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_init, FW_CS_DSP);
2264 
2265 /**
2266  * cs_dsp_adsp1_power_up() - Load and start the named firmware
2267  * @dsp: pointer to DSP structure
2268  * @wmfw_firmware: the firmware to be sent
2269  * @wmfw_filename: file name of firmware to be sent
2270  * @coeff_firmware: the coefficient data to be sent
2271  * @coeff_filename: file name of coefficient to data be sent
2272  * @fw_name: the user-friendly firmware name
2273  *
2274  * Return: Zero for success, a negative number on error.
2275  */
2276 int cs_dsp_adsp1_power_up(struct cs_dsp *dsp,
2277 			  const struct firmware *wmfw_firmware, char *wmfw_filename,
2278 			  const struct firmware *coeff_firmware, char *coeff_filename,
2279 			  const char *fw_name)
2280 {
2281 	unsigned int val;
2282 	int ret;
2283 
2284 	mutex_lock(&dsp->pwr_lock);
2285 
2286 	dsp->fw_name = fw_name;
2287 
2288 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2289 			   ADSP1_SYS_ENA, ADSP1_SYS_ENA);
2290 
2291 	/*
2292 	 * For simplicity set the DSP clock rate to be the
2293 	 * SYSCLK rate rather than making it configurable.
2294 	 */
2295 	if (dsp->sysclk_reg) {
2296 		ret = regmap_read(dsp->regmap, dsp->sysclk_reg, &val);
2297 		if (ret != 0) {
2298 			cs_dsp_err(dsp, "Failed to read SYSCLK state: %d\n", ret);
2299 			goto err_mutex;
2300 		}
2301 
2302 		val = (val & dsp->sysclk_mask) >> dsp->sysclk_shift;
2303 
2304 		ret = regmap_update_bits(dsp->regmap,
2305 					 dsp->base + ADSP1_CONTROL_31,
2306 					 ADSP1_CLK_SEL_MASK, val);
2307 		if (ret != 0) {
2308 			cs_dsp_err(dsp, "Failed to set clock rate: %d\n", ret);
2309 			goto err_mutex;
2310 		}
2311 	}
2312 
2313 	ret = cs_dsp_load(dsp, wmfw_firmware, wmfw_filename);
2314 	if (ret != 0)
2315 		goto err_ena;
2316 
2317 	ret = cs_dsp_adsp1_setup_algs(dsp);
2318 	if (ret != 0)
2319 		goto err_ena;
2320 
2321 	ret = cs_dsp_load_coeff(dsp, coeff_firmware, coeff_filename);
2322 	if (ret != 0)
2323 		goto err_ena;
2324 
2325 	/* Initialize caches for enabled and unset controls */
2326 	ret = cs_dsp_coeff_init_control_caches(dsp);
2327 	if (ret != 0)
2328 		goto err_ena;
2329 
2330 	/* Sync set controls */
2331 	ret = cs_dsp_coeff_sync_controls(dsp);
2332 	if (ret != 0)
2333 		goto err_ena;
2334 
2335 	dsp->booted = true;
2336 
2337 	/* Start the core running */
2338 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2339 			   ADSP1_CORE_ENA | ADSP1_START,
2340 			   ADSP1_CORE_ENA | ADSP1_START);
2341 
2342 	dsp->running = true;
2343 
2344 	mutex_unlock(&dsp->pwr_lock);
2345 
2346 	return 0;
2347 
2348 err_ena:
2349 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2350 			   ADSP1_SYS_ENA, 0);
2351 err_mutex:
2352 	mutex_unlock(&dsp->pwr_lock);
2353 	return ret;
2354 }
2355 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_power_up, FW_CS_DSP);
2356 
2357 /**
2358  * cs_dsp_adsp1_power_down() - Halts the DSP
2359  * @dsp: pointer to DSP structure
2360  */
2361 void cs_dsp_adsp1_power_down(struct cs_dsp *dsp)
2362 {
2363 	struct cs_dsp_coeff_ctl *ctl;
2364 
2365 	mutex_lock(&dsp->pwr_lock);
2366 
2367 	dsp->running = false;
2368 	dsp->booted = false;
2369 
2370 	/* Halt the core */
2371 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2372 			   ADSP1_CORE_ENA | ADSP1_START, 0);
2373 
2374 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_19,
2375 			   ADSP1_WDMA_BUFFER_LENGTH_MASK, 0);
2376 
2377 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2378 			   ADSP1_SYS_ENA, 0);
2379 
2380 	list_for_each_entry(ctl, &dsp->ctl_list, list)
2381 		ctl->enabled = 0;
2382 
2383 	cs_dsp_free_alg_regions(dsp);
2384 
2385 	mutex_unlock(&dsp->pwr_lock);
2386 }
2387 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_power_down, FW_CS_DSP);
2388 
2389 static int cs_dsp_adsp2v2_enable_core(struct cs_dsp *dsp)
2390 {
2391 	unsigned int val;
2392 	int ret, count;
2393 
2394 	/* Wait for the RAM to start, should be near instantaneous */
2395 	for (count = 0; count < 10; ++count) {
2396 		ret = regmap_read(dsp->regmap, dsp->base + ADSP2_STATUS1, &val);
2397 		if (ret != 0)
2398 			return ret;
2399 
2400 		if (val & ADSP2_RAM_RDY)
2401 			break;
2402 
2403 		usleep_range(250, 500);
2404 	}
2405 
2406 	if (!(val & ADSP2_RAM_RDY)) {
2407 		cs_dsp_err(dsp, "Failed to start DSP RAM\n");
2408 		return -EBUSY;
2409 	}
2410 
2411 	cs_dsp_dbg(dsp, "RAM ready after %d polls\n", count);
2412 
2413 	return 0;
2414 }
2415 
2416 static int cs_dsp_adsp2_enable_core(struct cs_dsp *dsp)
2417 {
2418 	int ret;
2419 
2420 	ret = regmap_update_bits_async(dsp->regmap, dsp->base + ADSP2_CONTROL,
2421 				       ADSP2_SYS_ENA, ADSP2_SYS_ENA);
2422 	if (ret != 0)
2423 		return ret;
2424 
2425 	return cs_dsp_adsp2v2_enable_core(dsp);
2426 }
2427 
2428 static int cs_dsp_adsp2_lock(struct cs_dsp *dsp, unsigned int lock_regions)
2429 {
2430 	struct regmap *regmap = dsp->regmap;
2431 	unsigned int code0, code1, lock_reg;
2432 
2433 	if (!(lock_regions & CS_ADSP2_REGION_ALL))
2434 		return 0;
2435 
2436 	lock_regions &= CS_ADSP2_REGION_ALL;
2437 	lock_reg = dsp->base + ADSP2_LOCK_REGION_1_LOCK_REGION_0;
2438 
2439 	while (lock_regions) {
2440 		code0 = code1 = 0;
2441 		if (lock_regions & BIT(0)) {
2442 			code0 = ADSP2_LOCK_CODE_0;
2443 			code1 = ADSP2_LOCK_CODE_1;
2444 		}
2445 		if (lock_regions & BIT(1)) {
2446 			code0 |= ADSP2_LOCK_CODE_0 << ADSP2_LOCK_REGION_SHIFT;
2447 			code1 |= ADSP2_LOCK_CODE_1 << ADSP2_LOCK_REGION_SHIFT;
2448 		}
2449 		regmap_write(regmap, lock_reg, code0);
2450 		regmap_write(regmap, lock_reg, code1);
2451 		lock_regions >>= 2;
2452 		lock_reg += 2;
2453 	}
2454 
2455 	return 0;
2456 }
2457 
2458 static int cs_dsp_adsp2_enable_memory(struct cs_dsp *dsp)
2459 {
2460 	return regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2461 				  ADSP2_MEM_ENA, ADSP2_MEM_ENA);
2462 }
2463 
2464 static void cs_dsp_adsp2_disable_memory(struct cs_dsp *dsp)
2465 {
2466 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2467 			   ADSP2_MEM_ENA, 0);
2468 }
2469 
2470 static void cs_dsp_adsp2_disable_core(struct cs_dsp *dsp)
2471 {
2472 	regmap_write(dsp->regmap, dsp->base + ADSP2_RDMA_CONFIG_1, 0);
2473 	regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_1, 0);
2474 	regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_2, 0);
2475 
2476 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2477 			   ADSP2_SYS_ENA, 0);
2478 }
2479 
2480 static void cs_dsp_adsp2v2_disable_core(struct cs_dsp *dsp)
2481 {
2482 	regmap_write(dsp->regmap, dsp->base + ADSP2_RDMA_CONFIG_1, 0);
2483 	regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_1, 0);
2484 	regmap_write(dsp->regmap, dsp->base + ADSP2V2_WDMA_CONFIG_2, 0);
2485 }
2486 
2487 static int cs_dsp_halo_configure_mpu(struct cs_dsp *dsp, unsigned int lock_regions)
2488 {
2489 	struct reg_sequence config[] = {
2490 		{ dsp->base + HALO_MPU_LOCK_CONFIG,     0x5555 },
2491 		{ dsp->base + HALO_MPU_LOCK_CONFIG,     0xAAAA },
2492 		{ dsp->base + HALO_MPU_XMEM_ACCESS_0,   0xFFFFFFFF },
2493 		{ dsp->base + HALO_MPU_YMEM_ACCESS_0,   0xFFFFFFFF },
2494 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_0, lock_regions },
2495 		{ dsp->base + HALO_MPU_XREG_ACCESS_0,   lock_regions },
2496 		{ dsp->base + HALO_MPU_YREG_ACCESS_0,   lock_regions },
2497 		{ dsp->base + HALO_MPU_XMEM_ACCESS_1,   0xFFFFFFFF },
2498 		{ dsp->base + HALO_MPU_YMEM_ACCESS_1,   0xFFFFFFFF },
2499 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_1, lock_regions },
2500 		{ dsp->base + HALO_MPU_XREG_ACCESS_1,   lock_regions },
2501 		{ dsp->base + HALO_MPU_YREG_ACCESS_1,   lock_regions },
2502 		{ dsp->base + HALO_MPU_XMEM_ACCESS_2,   0xFFFFFFFF },
2503 		{ dsp->base + HALO_MPU_YMEM_ACCESS_2,   0xFFFFFFFF },
2504 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_2, lock_regions },
2505 		{ dsp->base + HALO_MPU_XREG_ACCESS_2,   lock_regions },
2506 		{ dsp->base + HALO_MPU_YREG_ACCESS_2,   lock_regions },
2507 		{ dsp->base + HALO_MPU_XMEM_ACCESS_3,   0xFFFFFFFF },
2508 		{ dsp->base + HALO_MPU_YMEM_ACCESS_3,   0xFFFFFFFF },
2509 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_3, lock_regions },
2510 		{ dsp->base + HALO_MPU_XREG_ACCESS_3,   lock_regions },
2511 		{ dsp->base + HALO_MPU_YREG_ACCESS_3,   lock_regions },
2512 		{ dsp->base + HALO_MPU_LOCK_CONFIG,     0 },
2513 	};
2514 
2515 	return regmap_multi_reg_write(dsp->regmap, config, ARRAY_SIZE(config));
2516 }
2517 
2518 /**
2519  * cs_dsp_set_dspclk() - Applies the given frequency to the given cs_dsp
2520  * @dsp: pointer to DSP structure
2521  * @freq: clock rate to set
2522  *
2523  * This is only for use on ADSP2 cores.
2524  *
2525  * Return: Zero for success, a negative number on error.
2526  */
2527 int cs_dsp_set_dspclk(struct cs_dsp *dsp, unsigned int freq)
2528 {
2529 	int ret;
2530 
2531 	ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CLOCKING,
2532 				 ADSP2_CLK_SEL_MASK,
2533 				 freq << ADSP2_CLK_SEL_SHIFT);
2534 	if (ret)
2535 		cs_dsp_err(dsp, "Failed to set clock rate: %d\n", ret);
2536 
2537 	return ret;
2538 }
2539 EXPORT_SYMBOL_NS_GPL(cs_dsp_set_dspclk, FW_CS_DSP);
2540 
2541 static void cs_dsp_stop_watchdog(struct cs_dsp *dsp)
2542 {
2543 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_WATCHDOG,
2544 			   ADSP2_WDT_ENA_MASK, 0);
2545 }
2546 
2547 static void cs_dsp_halo_stop_watchdog(struct cs_dsp *dsp)
2548 {
2549 	regmap_update_bits(dsp->regmap, dsp->base + HALO_WDT_CONTROL,
2550 			   HALO_WDT_EN_MASK, 0);
2551 }
2552 
2553 /**
2554  * cs_dsp_power_up() - Downloads firmware to the DSP
2555  * @dsp: pointer to DSP structure
2556  * @wmfw_firmware: the firmware to be sent
2557  * @wmfw_filename: file name of firmware to be sent
2558  * @coeff_firmware: the coefficient data to be sent
2559  * @coeff_filename: file name of coefficient to data be sent
2560  * @fw_name: the user-friendly firmware name
2561  *
2562  * This function is used on ADSP2 and Halo DSP cores, it powers-up the DSP core
2563  * and downloads the firmware but does not start the firmware running. The
2564  * cs_dsp booted flag will be set once completed and if the core has a low-power
2565  * memory retention mode it will be put into this state after the firmware is
2566  * downloaded.
2567  *
2568  * Return: Zero for success, a negative number on error.
2569  */
2570 int cs_dsp_power_up(struct cs_dsp *dsp,
2571 		    const struct firmware *wmfw_firmware, char *wmfw_filename,
2572 		    const struct firmware *coeff_firmware, char *coeff_filename,
2573 		    const char *fw_name)
2574 {
2575 	int ret;
2576 
2577 	mutex_lock(&dsp->pwr_lock);
2578 
2579 	dsp->fw_name = fw_name;
2580 
2581 	if (dsp->ops->enable_memory) {
2582 		ret = dsp->ops->enable_memory(dsp);
2583 		if (ret != 0)
2584 			goto err_mutex;
2585 	}
2586 
2587 	if (dsp->ops->enable_core) {
2588 		ret = dsp->ops->enable_core(dsp);
2589 		if (ret != 0)
2590 			goto err_mem;
2591 	}
2592 
2593 	ret = cs_dsp_load(dsp, wmfw_firmware, wmfw_filename);
2594 	if (ret != 0)
2595 		goto err_ena;
2596 
2597 	ret = dsp->ops->setup_algs(dsp);
2598 	if (ret != 0)
2599 		goto err_ena;
2600 
2601 	ret = cs_dsp_load_coeff(dsp, coeff_firmware, coeff_filename);
2602 	if (ret != 0)
2603 		goto err_ena;
2604 
2605 	/* Initialize caches for enabled and unset controls */
2606 	ret = cs_dsp_coeff_init_control_caches(dsp);
2607 	if (ret != 0)
2608 		goto err_ena;
2609 
2610 	if (dsp->ops->disable_core)
2611 		dsp->ops->disable_core(dsp);
2612 
2613 	dsp->booted = true;
2614 
2615 	mutex_unlock(&dsp->pwr_lock);
2616 
2617 	return 0;
2618 err_ena:
2619 	if (dsp->ops->disable_core)
2620 		dsp->ops->disable_core(dsp);
2621 err_mem:
2622 	if (dsp->ops->disable_memory)
2623 		dsp->ops->disable_memory(dsp);
2624 err_mutex:
2625 	mutex_unlock(&dsp->pwr_lock);
2626 
2627 	return ret;
2628 }
2629 EXPORT_SYMBOL_NS_GPL(cs_dsp_power_up, FW_CS_DSP);
2630 
2631 /**
2632  * cs_dsp_power_down() - Powers-down the DSP
2633  * @dsp: pointer to DSP structure
2634  *
2635  * cs_dsp_stop() must have been called before this function. The core will be
2636  * fully powered down and so the memory will not be retained.
2637  */
2638 void cs_dsp_power_down(struct cs_dsp *dsp)
2639 {
2640 	struct cs_dsp_coeff_ctl *ctl;
2641 
2642 	mutex_lock(&dsp->pwr_lock);
2643 
2644 	cs_dsp_debugfs_clear(dsp);
2645 
2646 	dsp->fw_id = 0;
2647 	dsp->fw_id_version = 0;
2648 
2649 	dsp->booted = false;
2650 
2651 	if (dsp->ops->disable_memory)
2652 		dsp->ops->disable_memory(dsp);
2653 
2654 	list_for_each_entry(ctl, &dsp->ctl_list, list)
2655 		ctl->enabled = 0;
2656 
2657 	cs_dsp_free_alg_regions(dsp);
2658 
2659 	mutex_unlock(&dsp->pwr_lock);
2660 
2661 	cs_dsp_dbg(dsp, "Shutdown complete\n");
2662 }
2663 EXPORT_SYMBOL_NS_GPL(cs_dsp_power_down, FW_CS_DSP);
2664 
2665 static int cs_dsp_adsp2_start_core(struct cs_dsp *dsp)
2666 {
2667 	return regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2668 				  ADSP2_CORE_ENA | ADSP2_START,
2669 				  ADSP2_CORE_ENA | ADSP2_START);
2670 }
2671 
2672 static void cs_dsp_adsp2_stop_core(struct cs_dsp *dsp)
2673 {
2674 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2675 			   ADSP2_CORE_ENA | ADSP2_START, 0);
2676 }
2677 
2678 /**
2679  * cs_dsp_run() - Starts the firmware running
2680  * @dsp: pointer to DSP structure
2681  *
2682  * cs_dsp_power_up() must have previously been called successfully.
2683  *
2684  * Return: Zero for success, a negative number on error.
2685  */
2686 int cs_dsp_run(struct cs_dsp *dsp)
2687 {
2688 	int ret;
2689 
2690 	mutex_lock(&dsp->pwr_lock);
2691 
2692 	if (!dsp->booted) {
2693 		ret = -EIO;
2694 		goto err;
2695 	}
2696 
2697 	if (dsp->ops->enable_core) {
2698 		ret = dsp->ops->enable_core(dsp);
2699 		if (ret != 0)
2700 			goto err;
2701 	}
2702 
2703 	if (dsp->client_ops->pre_run) {
2704 		ret = dsp->client_ops->pre_run(dsp);
2705 		if (ret)
2706 			goto err;
2707 	}
2708 
2709 	/* Sync set controls */
2710 	ret = cs_dsp_coeff_sync_controls(dsp);
2711 	if (ret != 0)
2712 		goto err;
2713 
2714 	if (dsp->ops->lock_memory) {
2715 		ret = dsp->ops->lock_memory(dsp, dsp->lock_regions);
2716 		if (ret != 0) {
2717 			cs_dsp_err(dsp, "Error configuring MPU: %d\n", ret);
2718 			goto err;
2719 		}
2720 	}
2721 
2722 	if (dsp->ops->start_core) {
2723 		ret = dsp->ops->start_core(dsp);
2724 		if (ret != 0)
2725 			goto err;
2726 	}
2727 
2728 	dsp->running = true;
2729 
2730 	if (dsp->client_ops->post_run) {
2731 		ret = dsp->client_ops->post_run(dsp);
2732 		if (ret)
2733 			goto err;
2734 	}
2735 
2736 	mutex_unlock(&dsp->pwr_lock);
2737 
2738 	return 0;
2739 
2740 err:
2741 	if (dsp->ops->stop_core)
2742 		dsp->ops->stop_core(dsp);
2743 	if (dsp->ops->disable_core)
2744 		dsp->ops->disable_core(dsp);
2745 	mutex_unlock(&dsp->pwr_lock);
2746 
2747 	return ret;
2748 }
2749 EXPORT_SYMBOL_NS_GPL(cs_dsp_run, FW_CS_DSP);
2750 
2751 /**
2752  * cs_dsp_stop() - Stops the firmware
2753  * @dsp: pointer to DSP structure
2754  *
2755  * Memory will not be disabled so firmware will remain loaded.
2756  */
2757 void cs_dsp_stop(struct cs_dsp *dsp)
2758 {
2759 	/* Tell the firmware to cleanup */
2760 	cs_dsp_signal_event_controls(dsp, CS_DSP_FW_EVENT_SHUTDOWN);
2761 
2762 	if (dsp->ops->stop_watchdog)
2763 		dsp->ops->stop_watchdog(dsp);
2764 
2765 	/* Log firmware state, it can be useful for analysis */
2766 	if (dsp->ops->show_fw_status)
2767 		dsp->ops->show_fw_status(dsp);
2768 
2769 	mutex_lock(&dsp->pwr_lock);
2770 
2771 	if (dsp->client_ops->pre_stop)
2772 		dsp->client_ops->pre_stop(dsp);
2773 
2774 	dsp->running = false;
2775 
2776 	if (dsp->ops->stop_core)
2777 		dsp->ops->stop_core(dsp);
2778 	if (dsp->ops->disable_core)
2779 		dsp->ops->disable_core(dsp);
2780 
2781 	if (dsp->client_ops->post_stop)
2782 		dsp->client_ops->post_stop(dsp);
2783 
2784 	mutex_unlock(&dsp->pwr_lock);
2785 
2786 	cs_dsp_dbg(dsp, "Execution stopped\n");
2787 }
2788 EXPORT_SYMBOL_NS_GPL(cs_dsp_stop, FW_CS_DSP);
2789 
2790 static int cs_dsp_halo_start_core(struct cs_dsp *dsp)
2791 {
2792 	int ret;
2793 
2794 	ret = regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2795 				 HALO_CORE_RESET | HALO_CORE_EN,
2796 				 HALO_CORE_RESET | HALO_CORE_EN);
2797 	if (ret)
2798 		return ret;
2799 
2800 	return regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2801 				  HALO_CORE_RESET, 0);
2802 }
2803 
2804 static void cs_dsp_halo_stop_core(struct cs_dsp *dsp)
2805 {
2806 	regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2807 			   HALO_CORE_EN, 0);
2808 
2809 	/* reset halo core with CORE_SOFT_RESET */
2810 	regmap_update_bits(dsp->regmap, dsp->base + HALO_CORE_SOFT_RESET,
2811 			   HALO_CORE_SOFT_RESET_MASK, 1);
2812 }
2813 
2814 /**
2815  * cs_dsp_adsp2_init() - Initialise a cs_dsp structure representing a ADSP2 core
2816  * @dsp: pointer to DSP structure
2817  *
2818  * Return: Zero for success, a negative number on error.
2819  */
2820 int cs_dsp_adsp2_init(struct cs_dsp *dsp)
2821 {
2822 	int ret;
2823 
2824 	switch (dsp->rev) {
2825 	case 0:
2826 		/*
2827 		 * Disable the DSP memory by default when in reset for a small
2828 		 * power saving.
2829 		 */
2830 		ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2831 					 ADSP2_MEM_ENA, 0);
2832 		if (ret) {
2833 			cs_dsp_err(dsp,
2834 				   "Failed to clear memory retention: %d\n", ret);
2835 			return ret;
2836 		}
2837 
2838 		dsp->ops = &cs_dsp_adsp2_ops[0];
2839 		break;
2840 	case 1:
2841 		dsp->ops = &cs_dsp_adsp2_ops[1];
2842 		break;
2843 	default:
2844 		dsp->ops = &cs_dsp_adsp2_ops[2];
2845 		break;
2846 	}
2847 
2848 	return cs_dsp_common_init(dsp);
2849 }
2850 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp2_init, FW_CS_DSP);
2851 
2852 /**
2853  * cs_dsp_halo_init() - Initialise a cs_dsp structure representing a HALO Core DSP
2854  * @dsp: pointer to DSP structure
2855  *
2856  * Return: Zero for success, a negative number on error.
2857  */
2858 int cs_dsp_halo_init(struct cs_dsp *dsp)
2859 {
2860 	if (dsp->no_core_startstop)
2861 		dsp->ops = &cs_dsp_halo_ao_ops;
2862 	else
2863 		dsp->ops = &cs_dsp_halo_ops;
2864 
2865 	return cs_dsp_common_init(dsp);
2866 }
2867 EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_init, FW_CS_DSP);
2868 
2869 /**
2870  * cs_dsp_remove() - Clean a cs_dsp before deletion
2871  * @dsp: pointer to DSP structure
2872  */
2873 void cs_dsp_remove(struct cs_dsp *dsp)
2874 {
2875 	struct cs_dsp_coeff_ctl *ctl;
2876 
2877 	while (!list_empty(&dsp->ctl_list)) {
2878 		ctl = list_first_entry(&dsp->ctl_list, struct cs_dsp_coeff_ctl, list);
2879 
2880 		if (dsp->client_ops->control_remove)
2881 			dsp->client_ops->control_remove(ctl);
2882 
2883 		list_del(&ctl->list);
2884 		cs_dsp_free_ctl_blk(ctl);
2885 	}
2886 }
2887 EXPORT_SYMBOL_NS_GPL(cs_dsp_remove, FW_CS_DSP);
2888 
2889 /**
2890  * cs_dsp_read_raw_data_block() - Reads a block of data from DSP memory
2891  * @dsp: pointer to DSP structure
2892  * @mem_type: the type of DSP memory containing the data to be read
2893  * @mem_addr: the address of the data within the memory region
2894  * @num_words: the length of the data to read
2895  * @data: a buffer to store the fetched data
2896  *
2897  * If this is used to read unpacked 24-bit memory, each 24-bit DSP word will
2898  * occupy 32-bits in data (MSbyte will be 0). This padding can be removed using
2899  * cs_dsp_remove_padding()
2900  *
2901  * Return: Zero for success, a negative number on error.
2902  */
2903 int cs_dsp_read_raw_data_block(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr,
2904 			       unsigned int num_words, __be32 *data)
2905 {
2906 	struct cs_dsp_region const *mem = cs_dsp_find_region(dsp, mem_type);
2907 	unsigned int reg;
2908 	int ret;
2909 
2910 	lockdep_assert_held(&dsp->pwr_lock);
2911 
2912 	if (!mem)
2913 		return -EINVAL;
2914 
2915 	reg = dsp->ops->region_to_reg(mem, mem_addr);
2916 
2917 	ret = regmap_raw_read(dsp->regmap, reg, data,
2918 			      sizeof(*data) * num_words);
2919 	if (ret < 0)
2920 		return ret;
2921 
2922 	return 0;
2923 }
2924 EXPORT_SYMBOL_NS_GPL(cs_dsp_read_raw_data_block, FW_CS_DSP);
2925 
2926 /**
2927  * cs_dsp_read_data_word() - Reads a word from DSP memory
2928  * @dsp: pointer to DSP structure
2929  * @mem_type: the type of DSP memory containing the data to be read
2930  * @mem_addr: the address of the data within the memory region
2931  * @data: a buffer to store the fetched data
2932  *
2933  * Return: Zero for success, a negative number on error.
2934  */
2935 int cs_dsp_read_data_word(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr, u32 *data)
2936 {
2937 	__be32 raw;
2938 	int ret;
2939 
2940 	ret = cs_dsp_read_raw_data_block(dsp, mem_type, mem_addr, 1, &raw);
2941 	if (ret < 0)
2942 		return ret;
2943 
2944 	*data = be32_to_cpu(raw) & 0x00ffffffu;
2945 
2946 	return 0;
2947 }
2948 EXPORT_SYMBOL_NS_GPL(cs_dsp_read_data_word, FW_CS_DSP);
2949 
2950 /**
2951  * cs_dsp_write_data_word() - Writes a word to DSP memory
2952  * @dsp: pointer to DSP structure
2953  * @mem_type: the type of DSP memory containing the data to be written
2954  * @mem_addr: the address of the data within the memory region
2955  * @data: the data to be written
2956  *
2957  * Return: Zero for success, a negative number on error.
2958  */
2959 int cs_dsp_write_data_word(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr, u32 data)
2960 {
2961 	struct cs_dsp_region const *mem = cs_dsp_find_region(dsp, mem_type);
2962 	__be32 val = cpu_to_be32(data & 0x00ffffffu);
2963 	unsigned int reg;
2964 
2965 	lockdep_assert_held(&dsp->pwr_lock);
2966 
2967 	if (!mem)
2968 		return -EINVAL;
2969 
2970 	reg = dsp->ops->region_to_reg(mem, mem_addr);
2971 
2972 	return regmap_raw_write(dsp->regmap, reg, &val, sizeof(val));
2973 }
2974 EXPORT_SYMBOL_NS_GPL(cs_dsp_write_data_word, FW_CS_DSP);
2975 
2976 /**
2977  * cs_dsp_remove_padding() - Convert unpacked words to packed bytes
2978  * @buf: buffer containing DSP words read from DSP memory
2979  * @nwords: number of words to convert
2980  *
2981  * DSP words from the register map have pad bytes and the data bytes
2982  * are in swapped order. This swaps to the native endian order and
2983  * strips the pad bytes.
2984  */
2985 void cs_dsp_remove_padding(u32 *buf, int nwords)
2986 {
2987 	const __be32 *pack_in = (__be32 *)buf;
2988 	u8 *pack_out = (u8 *)buf;
2989 	int i;
2990 
2991 	for (i = 0; i < nwords; i++) {
2992 		u32 word = be32_to_cpu(*pack_in++);
2993 		*pack_out++ = (u8)word;
2994 		*pack_out++ = (u8)(word >> 8);
2995 		*pack_out++ = (u8)(word >> 16);
2996 	}
2997 }
2998 EXPORT_SYMBOL_NS_GPL(cs_dsp_remove_padding, FW_CS_DSP);
2999 
3000 /**
3001  * cs_dsp_adsp2_bus_error() - Handle a DSP bus error interrupt
3002  * @dsp: pointer to DSP structure
3003  *
3004  * The firmware and DSP state will be logged for future analysis.
3005  */
3006 void cs_dsp_adsp2_bus_error(struct cs_dsp *dsp)
3007 {
3008 	unsigned int val;
3009 	struct regmap *regmap = dsp->regmap;
3010 	int ret = 0;
3011 
3012 	mutex_lock(&dsp->pwr_lock);
3013 
3014 	ret = regmap_read(regmap, dsp->base + ADSP2_LOCK_REGION_CTRL, &val);
3015 	if (ret) {
3016 		cs_dsp_err(dsp,
3017 			   "Failed to read Region Lock Ctrl register: %d\n", ret);
3018 		goto error;
3019 	}
3020 
3021 	if (val & ADSP2_WDT_TIMEOUT_STS_MASK) {
3022 		cs_dsp_err(dsp, "watchdog timeout error\n");
3023 		dsp->ops->stop_watchdog(dsp);
3024 		if (dsp->client_ops->watchdog_expired)
3025 			dsp->client_ops->watchdog_expired(dsp);
3026 	}
3027 
3028 	if (val & (ADSP2_ADDR_ERR_MASK | ADSP2_REGION_LOCK_ERR_MASK)) {
3029 		if (val & ADSP2_ADDR_ERR_MASK)
3030 			cs_dsp_err(dsp, "bus error: address error\n");
3031 		else
3032 			cs_dsp_err(dsp, "bus error: region lock error\n");
3033 
3034 		ret = regmap_read(regmap, dsp->base + ADSP2_BUS_ERR_ADDR, &val);
3035 		if (ret) {
3036 			cs_dsp_err(dsp,
3037 				   "Failed to read Bus Err Addr register: %d\n",
3038 				   ret);
3039 			goto error;
3040 		}
3041 
3042 		cs_dsp_err(dsp, "bus error address = 0x%x\n",
3043 			   val & ADSP2_BUS_ERR_ADDR_MASK);
3044 
3045 		ret = regmap_read(regmap,
3046 				  dsp->base + ADSP2_PMEM_ERR_ADDR_XMEM_ERR_ADDR,
3047 				  &val);
3048 		if (ret) {
3049 			cs_dsp_err(dsp,
3050 				   "Failed to read Pmem Xmem Err Addr register: %d\n",
3051 				   ret);
3052 			goto error;
3053 		}
3054 
3055 		cs_dsp_err(dsp, "xmem error address = 0x%x\n",
3056 			   val & ADSP2_XMEM_ERR_ADDR_MASK);
3057 		cs_dsp_err(dsp, "pmem error address = 0x%x\n",
3058 			   (val & ADSP2_PMEM_ERR_ADDR_MASK) >>
3059 			   ADSP2_PMEM_ERR_ADDR_SHIFT);
3060 	}
3061 
3062 	regmap_update_bits(regmap, dsp->base + ADSP2_LOCK_REGION_CTRL,
3063 			   ADSP2_CTRL_ERR_EINT, ADSP2_CTRL_ERR_EINT);
3064 
3065 error:
3066 	mutex_unlock(&dsp->pwr_lock);
3067 }
3068 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp2_bus_error, FW_CS_DSP);
3069 
3070 /**
3071  * cs_dsp_halo_bus_error() - Handle a DSP bus error interrupt
3072  * @dsp: pointer to DSP structure
3073  *
3074  * The firmware and DSP state will be logged for future analysis.
3075  */
3076 void cs_dsp_halo_bus_error(struct cs_dsp *dsp)
3077 {
3078 	struct regmap *regmap = dsp->regmap;
3079 	unsigned int fault[6];
3080 	struct reg_sequence clear[] = {
3081 		{ dsp->base + HALO_MPU_XM_VIO_STATUS,     0x0 },
3082 		{ dsp->base + HALO_MPU_YM_VIO_STATUS,     0x0 },
3083 		{ dsp->base + HALO_MPU_PM_VIO_STATUS,     0x0 },
3084 	};
3085 	int ret;
3086 
3087 	mutex_lock(&dsp->pwr_lock);
3088 
3089 	ret = regmap_read(regmap, dsp->base_sysinfo + HALO_AHBM_WINDOW_DEBUG_1,
3090 			  fault);
3091 	if (ret) {
3092 		cs_dsp_warn(dsp, "Failed to read AHB DEBUG_1: %d\n", ret);
3093 		goto exit_unlock;
3094 	}
3095 
3096 	cs_dsp_warn(dsp, "AHB: STATUS: 0x%x ADDR: 0x%x\n",
3097 		    *fault & HALO_AHBM_FLAGS_ERR_MASK,
3098 		    (*fault & HALO_AHBM_CORE_ERR_ADDR_MASK) >>
3099 		    HALO_AHBM_CORE_ERR_ADDR_SHIFT);
3100 
3101 	ret = regmap_read(regmap, dsp->base_sysinfo + HALO_AHBM_WINDOW_DEBUG_0,
3102 			  fault);
3103 	if (ret) {
3104 		cs_dsp_warn(dsp, "Failed to read AHB DEBUG_0: %d\n", ret);
3105 		goto exit_unlock;
3106 	}
3107 
3108 	cs_dsp_warn(dsp, "AHB: SYS_ADDR: 0x%x\n", *fault);
3109 
3110 	ret = regmap_bulk_read(regmap, dsp->base + HALO_MPU_XM_VIO_ADDR,
3111 			       fault, ARRAY_SIZE(fault));
3112 	if (ret) {
3113 		cs_dsp_warn(dsp, "Failed to read MPU fault info: %d\n", ret);
3114 		goto exit_unlock;
3115 	}
3116 
3117 	cs_dsp_warn(dsp, "XM: STATUS:0x%x ADDR:0x%x\n", fault[1], fault[0]);
3118 	cs_dsp_warn(dsp, "YM: STATUS:0x%x ADDR:0x%x\n", fault[3], fault[2]);
3119 	cs_dsp_warn(dsp, "PM: STATUS:0x%x ADDR:0x%x\n", fault[5], fault[4]);
3120 
3121 	ret = regmap_multi_reg_write(dsp->regmap, clear, ARRAY_SIZE(clear));
3122 	if (ret)
3123 		cs_dsp_warn(dsp, "Failed to clear MPU status: %d\n", ret);
3124 
3125 exit_unlock:
3126 	mutex_unlock(&dsp->pwr_lock);
3127 }
3128 EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_bus_error, FW_CS_DSP);
3129 
3130 /**
3131  * cs_dsp_halo_wdt_expire() - Handle DSP watchdog expiry
3132  * @dsp: pointer to DSP structure
3133  *
3134  * This is logged for future analysis.
3135  */
3136 void cs_dsp_halo_wdt_expire(struct cs_dsp *dsp)
3137 {
3138 	mutex_lock(&dsp->pwr_lock);
3139 
3140 	cs_dsp_warn(dsp, "WDT Expiry Fault\n");
3141 
3142 	dsp->ops->stop_watchdog(dsp);
3143 	if (dsp->client_ops->watchdog_expired)
3144 		dsp->client_ops->watchdog_expired(dsp);
3145 
3146 	mutex_unlock(&dsp->pwr_lock);
3147 }
3148 EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_wdt_expire, FW_CS_DSP);
3149 
3150 static const struct cs_dsp_ops cs_dsp_adsp1_ops = {
3151 	.validate_version = cs_dsp_validate_version,
3152 	.parse_sizes = cs_dsp_adsp1_parse_sizes,
3153 	.region_to_reg = cs_dsp_region_to_reg,
3154 };
3155 
3156 static const struct cs_dsp_ops cs_dsp_adsp2_ops[] = {
3157 	{
3158 		.parse_sizes = cs_dsp_adsp2_parse_sizes,
3159 		.validate_version = cs_dsp_validate_version,
3160 		.setup_algs = cs_dsp_adsp2_setup_algs,
3161 		.region_to_reg = cs_dsp_region_to_reg,
3162 
3163 		.show_fw_status = cs_dsp_adsp2_show_fw_status,
3164 
3165 		.enable_memory = cs_dsp_adsp2_enable_memory,
3166 		.disable_memory = cs_dsp_adsp2_disable_memory,
3167 
3168 		.enable_core = cs_dsp_adsp2_enable_core,
3169 		.disable_core = cs_dsp_adsp2_disable_core,
3170 
3171 		.start_core = cs_dsp_adsp2_start_core,
3172 		.stop_core = cs_dsp_adsp2_stop_core,
3173 
3174 	},
3175 	{
3176 		.parse_sizes = cs_dsp_adsp2_parse_sizes,
3177 		.validate_version = cs_dsp_validate_version,
3178 		.setup_algs = cs_dsp_adsp2_setup_algs,
3179 		.region_to_reg = cs_dsp_region_to_reg,
3180 
3181 		.show_fw_status = cs_dsp_adsp2v2_show_fw_status,
3182 
3183 		.enable_memory = cs_dsp_adsp2_enable_memory,
3184 		.disable_memory = cs_dsp_adsp2_disable_memory,
3185 		.lock_memory = cs_dsp_adsp2_lock,
3186 
3187 		.enable_core = cs_dsp_adsp2v2_enable_core,
3188 		.disable_core = cs_dsp_adsp2v2_disable_core,
3189 
3190 		.start_core = cs_dsp_adsp2_start_core,
3191 		.stop_core = cs_dsp_adsp2_stop_core,
3192 	},
3193 	{
3194 		.parse_sizes = cs_dsp_adsp2_parse_sizes,
3195 		.validate_version = cs_dsp_validate_version,
3196 		.setup_algs = cs_dsp_adsp2_setup_algs,
3197 		.region_to_reg = cs_dsp_region_to_reg,
3198 
3199 		.show_fw_status = cs_dsp_adsp2v2_show_fw_status,
3200 		.stop_watchdog = cs_dsp_stop_watchdog,
3201 
3202 		.enable_memory = cs_dsp_adsp2_enable_memory,
3203 		.disable_memory = cs_dsp_adsp2_disable_memory,
3204 		.lock_memory = cs_dsp_adsp2_lock,
3205 
3206 		.enable_core = cs_dsp_adsp2v2_enable_core,
3207 		.disable_core = cs_dsp_adsp2v2_disable_core,
3208 
3209 		.start_core = cs_dsp_adsp2_start_core,
3210 		.stop_core = cs_dsp_adsp2_stop_core,
3211 	},
3212 };
3213 
3214 static const struct cs_dsp_ops cs_dsp_halo_ops = {
3215 	.parse_sizes = cs_dsp_adsp2_parse_sizes,
3216 	.validate_version = cs_dsp_halo_validate_version,
3217 	.setup_algs = cs_dsp_halo_setup_algs,
3218 	.region_to_reg = cs_dsp_halo_region_to_reg,
3219 
3220 	.show_fw_status = cs_dsp_halo_show_fw_status,
3221 	.stop_watchdog = cs_dsp_halo_stop_watchdog,
3222 
3223 	.lock_memory = cs_dsp_halo_configure_mpu,
3224 
3225 	.start_core = cs_dsp_halo_start_core,
3226 	.stop_core = cs_dsp_halo_stop_core,
3227 };
3228 
3229 static const struct cs_dsp_ops cs_dsp_halo_ao_ops = {
3230 	.parse_sizes = cs_dsp_adsp2_parse_sizes,
3231 	.validate_version = cs_dsp_halo_validate_version,
3232 	.setup_algs = cs_dsp_halo_setup_algs,
3233 	.region_to_reg = cs_dsp_halo_region_to_reg,
3234 	.show_fw_status = cs_dsp_halo_show_fw_status,
3235 };
3236 
3237 /**
3238  * cs_dsp_chunk_write() - Format data to a DSP memory chunk
3239  * @ch: Pointer to the chunk structure
3240  * @nbits: Number of bits to write
3241  * @val: Value to write
3242  *
3243  * This function sequentially writes values into the format required for DSP
3244  * memory, it handles both inserting of the padding bytes and converting to
3245  * big endian. Note that data is only committed to the chunk when a whole DSP
3246  * words worth of data is available.
3247  *
3248  * Return: Zero for success, a negative number on error.
3249  */
3250 int cs_dsp_chunk_write(struct cs_dsp_chunk *ch, int nbits, u32 val)
3251 {
3252 	int nwrite, i;
3253 
3254 	nwrite = min(CS_DSP_DATA_WORD_BITS - ch->cachebits, nbits);
3255 
3256 	ch->cache <<= nwrite;
3257 	ch->cache |= val >> (nbits - nwrite);
3258 	ch->cachebits += nwrite;
3259 	nbits -= nwrite;
3260 
3261 	if (ch->cachebits == CS_DSP_DATA_WORD_BITS) {
3262 		if (cs_dsp_chunk_end(ch))
3263 			return -ENOSPC;
3264 
3265 		ch->cache &= 0xFFFFFF;
3266 		for (i = 0; i < sizeof(ch->cache); i++, ch->cache <<= BITS_PER_BYTE)
3267 			*ch->data++ = (ch->cache & 0xFF000000) >> CS_DSP_DATA_WORD_BITS;
3268 
3269 		ch->bytes += sizeof(ch->cache);
3270 		ch->cachebits = 0;
3271 	}
3272 
3273 	if (nbits)
3274 		return cs_dsp_chunk_write(ch, nbits, val);
3275 
3276 	return 0;
3277 }
3278 EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_write, FW_CS_DSP);
3279 
3280 /**
3281  * cs_dsp_chunk_flush() - Pad remaining data with zero and commit to chunk
3282  * @ch: Pointer to the chunk structure
3283  *
3284  * As cs_dsp_chunk_write only writes data when a whole DSP word is ready to
3285  * be written out it is possible that some data will remain in the cache, this
3286  * function will pad that data with zeros upto a whole DSP word and write out.
3287  *
3288  * Return: Zero for success, a negative number on error.
3289  */
3290 int cs_dsp_chunk_flush(struct cs_dsp_chunk *ch)
3291 {
3292 	if (!ch->cachebits)
3293 		return 0;
3294 
3295 	return cs_dsp_chunk_write(ch, CS_DSP_DATA_WORD_BITS - ch->cachebits, 0);
3296 }
3297 EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_flush, FW_CS_DSP);
3298 
3299 /**
3300  * cs_dsp_chunk_read() - Parse data from a DSP memory chunk
3301  * @ch: Pointer to the chunk structure
3302  * @nbits: Number of bits to read
3303  *
3304  * This function sequentially reads values from a DSP memory formatted buffer,
3305  * it handles both removing of the padding bytes and converting from big endian.
3306  *
3307  * Return: A negative number is returned on error, otherwise the read value.
3308  */
3309 int cs_dsp_chunk_read(struct cs_dsp_chunk *ch, int nbits)
3310 {
3311 	int nread, i;
3312 	u32 result;
3313 
3314 	if (!ch->cachebits) {
3315 		if (cs_dsp_chunk_end(ch))
3316 			return -ENOSPC;
3317 
3318 		ch->cache = 0;
3319 		ch->cachebits = CS_DSP_DATA_WORD_BITS;
3320 
3321 		for (i = 0; i < sizeof(ch->cache); i++, ch->cache <<= BITS_PER_BYTE)
3322 			ch->cache |= *ch->data++;
3323 
3324 		ch->bytes += sizeof(ch->cache);
3325 	}
3326 
3327 	nread = min(ch->cachebits, nbits);
3328 	nbits -= nread;
3329 
3330 	result = ch->cache >> ((sizeof(ch->cache) * BITS_PER_BYTE) - nread);
3331 	ch->cache <<= nread;
3332 	ch->cachebits -= nread;
3333 
3334 	if (nbits)
3335 		result = (result << nbits) | cs_dsp_chunk_read(ch, nbits);
3336 
3337 	return result;
3338 }
3339 EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_read, FW_CS_DSP);
3340 
3341 MODULE_DESCRIPTION("Cirrus Logic DSP Support");
3342 MODULE_AUTHOR("Simon Trimmer <simont@opensource.cirrus.com>");
3343 MODULE_LICENSE("GPL v2");
3344