xref: /linux/drivers/firmware/cirrus/cs_dsp.c (revision 3ba84ac69b53e6ee07c31d54554e00793d7b144f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * cs_dsp.c  --  Cirrus Logic DSP firmware support
4  *
5  * Based on sound/soc/codecs/wm_adsp.c
6  *
7  * Copyright 2012 Wolfson Microelectronics plc
8  * Copyright (C) 2015-2021 Cirrus Logic, Inc. and
9  *                         Cirrus Logic International Semiconductor Ltd.
10  */
11 
12 #include <linux/ctype.h>
13 #include <linux/debugfs.h>
14 #include <linux/delay.h>
15 #include <linux/minmax.h>
16 #include <linux/module.h>
17 #include <linux/moduleparam.h>
18 #include <linux/seq_file.h>
19 #include <linux/slab.h>
20 #include <linux/vmalloc.h>
21 
22 #include <linux/firmware/cirrus/cs_dsp.h>
23 #include <linux/firmware/cirrus/wmfw.h>
24 
25 #define cs_dsp_err(_dsp, fmt, ...) \
26 	dev_err(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
27 #define cs_dsp_warn(_dsp, fmt, ...) \
28 	dev_warn(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
29 #define cs_dsp_info(_dsp, fmt, ...) \
30 	dev_info(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
31 #define cs_dsp_dbg(_dsp, fmt, ...) \
32 	dev_dbg(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
33 
34 #define ADSP1_CONTROL_1                   0x00
35 #define ADSP1_CONTROL_2                   0x02
36 #define ADSP1_CONTROL_3                   0x03
37 #define ADSP1_CONTROL_4                   0x04
38 #define ADSP1_CONTROL_5                   0x06
39 #define ADSP1_CONTROL_6                   0x07
40 #define ADSP1_CONTROL_7                   0x08
41 #define ADSP1_CONTROL_8                   0x09
42 #define ADSP1_CONTROL_9                   0x0A
43 #define ADSP1_CONTROL_10                  0x0B
44 #define ADSP1_CONTROL_11                  0x0C
45 #define ADSP1_CONTROL_12                  0x0D
46 #define ADSP1_CONTROL_13                  0x0F
47 #define ADSP1_CONTROL_14                  0x10
48 #define ADSP1_CONTROL_15                  0x11
49 #define ADSP1_CONTROL_16                  0x12
50 #define ADSP1_CONTROL_17                  0x13
51 #define ADSP1_CONTROL_18                  0x14
52 #define ADSP1_CONTROL_19                  0x16
53 #define ADSP1_CONTROL_20                  0x17
54 #define ADSP1_CONTROL_21                  0x18
55 #define ADSP1_CONTROL_22                  0x1A
56 #define ADSP1_CONTROL_23                  0x1B
57 #define ADSP1_CONTROL_24                  0x1C
58 #define ADSP1_CONTROL_25                  0x1E
59 #define ADSP1_CONTROL_26                  0x20
60 #define ADSP1_CONTROL_27                  0x21
61 #define ADSP1_CONTROL_28                  0x22
62 #define ADSP1_CONTROL_29                  0x23
63 #define ADSP1_CONTROL_30                  0x24
64 #define ADSP1_CONTROL_31                  0x26
65 
66 /*
67  * ADSP1 Control 19
68  */
69 #define ADSP1_WDMA_BUFFER_LENGTH_MASK     0x00FF  /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
70 #define ADSP1_WDMA_BUFFER_LENGTH_SHIFT         0  /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
71 #define ADSP1_WDMA_BUFFER_LENGTH_WIDTH         8  /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
72 
73 /*
74  * ADSP1 Control 30
75  */
76 #define ADSP1_DBG_CLK_ENA                 0x0008  /* DSP1_DBG_CLK_ENA */
77 #define ADSP1_DBG_CLK_ENA_MASK            0x0008  /* DSP1_DBG_CLK_ENA */
78 #define ADSP1_DBG_CLK_ENA_SHIFT                3  /* DSP1_DBG_CLK_ENA */
79 #define ADSP1_DBG_CLK_ENA_WIDTH                1  /* DSP1_DBG_CLK_ENA */
80 #define ADSP1_SYS_ENA                     0x0004  /* DSP1_SYS_ENA */
81 #define ADSP1_SYS_ENA_MASK                0x0004  /* DSP1_SYS_ENA */
82 #define ADSP1_SYS_ENA_SHIFT                    2  /* DSP1_SYS_ENA */
83 #define ADSP1_SYS_ENA_WIDTH                    1  /* DSP1_SYS_ENA */
84 #define ADSP1_CORE_ENA                    0x0002  /* DSP1_CORE_ENA */
85 #define ADSP1_CORE_ENA_MASK               0x0002  /* DSP1_CORE_ENA */
86 #define ADSP1_CORE_ENA_SHIFT                   1  /* DSP1_CORE_ENA */
87 #define ADSP1_CORE_ENA_WIDTH                   1  /* DSP1_CORE_ENA */
88 #define ADSP1_START                       0x0001  /* DSP1_START */
89 #define ADSP1_START_MASK                  0x0001  /* DSP1_START */
90 #define ADSP1_START_SHIFT                      0  /* DSP1_START */
91 #define ADSP1_START_WIDTH                      1  /* DSP1_START */
92 
93 /*
94  * ADSP1 Control 31
95  */
96 #define ADSP1_CLK_SEL_MASK                0x0007  /* CLK_SEL_ENA */
97 #define ADSP1_CLK_SEL_SHIFT                    0  /* CLK_SEL_ENA */
98 #define ADSP1_CLK_SEL_WIDTH                    3  /* CLK_SEL_ENA */
99 
100 #define ADSP2_CONTROL                     0x0
101 #define ADSP2_CLOCKING                    0x1
102 #define ADSP2V2_CLOCKING                  0x2
103 #define ADSP2_STATUS1                     0x4
104 #define ADSP2_WDMA_CONFIG_1               0x30
105 #define ADSP2_WDMA_CONFIG_2               0x31
106 #define ADSP2V2_WDMA_CONFIG_2             0x32
107 #define ADSP2_RDMA_CONFIG_1               0x34
108 
109 #define ADSP2_SCRATCH0                    0x40
110 #define ADSP2_SCRATCH1                    0x41
111 #define ADSP2_SCRATCH2                    0x42
112 #define ADSP2_SCRATCH3                    0x43
113 
114 #define ADSP2V2_SCRATCH0_1                0x40
115 #define ADSP2V2_SCRATCH2_3                0x42
116 
117 /*
118  * ADSP2 Control
119  */
120 #define ADSP2_MEM_ENA                     0x0010  /* DSP1_MEM_ENA */
121 #define ADSP2_MEM_ENA_MASK                0x0010  /* DSP1_MEM_ENA */
122 #define ADSP2_MEM_ENA_SHIFT                    4  /* DSP1_MEM_ENA */
123 #define ADSP2_MEM_ENA_WIDTH                    1  /* DSP1_MEM_ENA */
124 #define ADSP2_SYS_ENA                     0x0004  /* DSP1_SYS_ENA */
125 #define ADSP2_SYS_ENA_MASK                0x0004  /* DSP1_SYS_ENA */
126 #define ADSP2_SYS_ENA_SHIFT                    2  /* DSP1_SYS_ENA */
127 #define ADSP2_SYS_ENA_WIDTH                    1  /* DSP1_SYS_ENA */
128 #define ADSP2_CORE_ENA                    0x0002  /* DSP1_CORE_ENA */
129 #define ADSP2_CORE_ENA_MASK               0x0002  /* DSP1_CORE_ENA */
130 #define ADSP2_CORE_ENA_SHIFT                   1  /* DSP1_CORE_ENA */
131 #define ADSP2_CORE_ENA_WIDTH                   1  /* DSP1_CORE_ENA */
132 #define ADSP2_START                       0x0001  /* DSP1_START */
133 #define ADSP2_START_MASK                  0x0001  /* DSP1_START */
134 #define ADSP2_START_SHIFT                      0  /* DSP1_START */
135 #define ADSP2_START_WIDTH                      1  /* DSP1_START */
136 
137 /*
138  * ADSP2 clocking
139  */
140 #define ADSP2_CLK_SEL_MASK                0x0007  /* CLK_SEL_ENA */
141 #define ADSP2_CLK_SEL_SHIFT                    0  /* CLK_SEL_ENA */
142 #define ADSP2_CLK_SEL_WIDTH                    3  /* CLK_SEL_ENA */
143 
144 /*
145  * ADSP2V2 clocking
146  */
147 #define ADSP2V2_CLK_SEL_MASK             0x70000  /* CLK_SEL_ENA */
148 #define ADSP2V2_CLK_SEL_SHIFT                 16  /* CLK_SEL_ENA */
149 #define ADSP2V2_CLK_SEL_WIDTH                  3  /* CLK_SEL_ENA */
150 
151 #define ADSP2V2_RATE_MASK                 0x7800  /* DSP_RATE */
152 #define ADSP2V2_RATE_SHIFT                    11  /* DSP_RATE */
153 #define ADSP2V2_RATE_WIDTH                     4  /* DSP_RATE */
154 
155 /*
156  * ADSP2 Status 1
157  */
158 #define ADSP2_RAM_RDY                     0x0001
159 #define ADSP2_RAM_RDY_MASK                0x0001
160 #define ADSP2_RAM_RDY_SHIFT                    0
161 #define ADSP2_RAM_RDY_WIDTH                    1
162 
163 /*
164  * ADSP2 Lock support
165  */
166 #define ADSP2_LOCK_CODE_0                    0x5555
167 #define ADSP2_LOCK_CODE_1                    0xAAAA
168 
169 #define ADSP2_WATCHDOG                       0x0A
170 #define ADSP2_BUS_ERR_ADDR                   0x52
171 #define ADSP2_REGION_LOCK_STATUS             0x64
172 #define ADSP2_LOCK_REGION_1_LOCK_REGION_0    0x66
173 #define ADSP2_LOCK_REGION_3_LOCK_REGION_2    0x68
174 #define ADSP2_LOCK_REGION_5_LOCK_REGION_4    0x6A
175 #define ADSP2_LOCK_REGION_7_LOCK_REGION_6    0x6C
176 #define ADSP2_LOCK_REGION_9_LOCK_REGION_8    0x6E
177 #define ADSP2_LOCK_REGION_CTRL               0x7A
178 #define ADSP2_PMEM_ERR_ADDR_XMEM_ERR_ADDR    0x7C
179 
180 #define ADSP2_REGION_LOCK_ERR_MASK           0x8000
181 #define ADSP2_ADDR_ERR_MASK                  0x4000
182 #define ADSP2_WDT_TIMEOUT_STS_MASK           0x2000
183 #define ADSP2_CTRL_ERR_PAUSE_ENA             0x0002
184 #define ADSP2_CTRL_ERR_EINT                  0x0001
185 
186 #define ADSP2_BUS_ERR_ADDR_MASK              0x00FFFFFF
187 #define ADSP2_XMEM_ERR_ADDR_MASK             0x0000FFFF
188 #define ADSP2_PMEM_ERR_ADDR_MASK             0x7FFF0000
189 #define ADSP2_PMEM_ERR_ADDR_SHIFT            16
190 #define ADSP2_WDT_ENA_MASK                   0xFFFFFFFD
191 
192 #define ADSP2_LOCK_REGION_SHIFT              16
193 
194 /*
195  * Event control messages
196  */
197 #define CS_DSP_FW_EVENT_SHUTDOWN             0x000001
198 
199 /*
200  * HALO system info
201  */
202 #define HALO_AHBM_WINDOW_DEBUG_0             0x02040
203 #define HALO_AHBM_WINDOW_DEBUG_1             0x02044
204 
205 /*
206  * HALO core
207  */
208 #define HALO_SCRATCH1                        0x005c0
209 #define HALO_SCRATCH2                        0x005c8
210 #define HALO_SCRATCH3                        0x005d0
211 #define HALO_SCRATCH4                        0x005d8
212 #define HALO_CCM_CORE_CONTROL                0x41000
213 #define HALO_CORE_SOFT_RESET                 0x00010
214 #define HALO_WDT_CONTROL                     0x47000
215 
216 /*
217  * HALO MPU banks
218  */
219 #define HALO_MPU_XMEM_ACCESS_0               0x43000
220 #define HALO_MPU_YMEM_ACCESS_0               0x43004
221 #define HALO_MPU_WINDOW_ACCESS_0             0x43008
222 #define HALO_MPU_XREG_ACCESS_0               0x4300C
223 #define HALO_MPU_YREG_ACCESS_0               0x43014
224 #define HALO_MPU_XMEM_ACCESS_1               0x43018
225 #define HALO_MPU_YMEM_ACCESS_1               0x4301C
226 #define HALO_MPU_WINDOW_ACCESS_1             0x43020
227 #define HALO_MPU_XREG_ACCESS_1               0x43024
228 #define HALO_MPU_YREG_ACCESS_1               0x4302C
229 #define HALO_MPU_XMEM_ACCESS_2               0x43030
230 #define HALO_MPU_YMEM_ACCESS_2               0x43034
231 #define HALO_MPU_WINDOW_ACCESS_2             0x43038
232 #define HALO_MPU_XREG_ACCESS_2               0x4303C
233 #define HALO_MPU_YREG_ACCESS_2               0x43044
234 #define HALO_MPU_XMEM_ACCESS_3               0x43048
235 #define HALO_MPU_YMEM_ACCESS_3               0x4304C
236 #define HALO_MPU_WINDOW_ACCESS_3             0x43050
237 #define HALO_MPU_XREG_ACCESS_3               0x43054
238 #define HALO_MPU_YREG_ACCESS_3               0x4305C
239 #define HALO_MPU_XM_VIO_ADDR                 0x43100
240 #define HALO_MPU_XM_VIO_STATUS               0x43104
241 #define HALO_MPU_YM_VIO_ADDR                 0x43108
242 #define HALO_MPU_YM_VIO_STATUS               0x4310C
243 #define HALO_MPU_PM_VIO_ADDR                 0x43110
244 #define HALO_MPU_PM_VIO_STATUS               0x43114
245 #define HALO_MPU_LOCK_CONFIG                 0x43140
246 
247 /*
248  * HALO_AHBM_WINDOW_DEBUG_1
249  */
250 #define HALO_AHBM_CORE_ERR_ADDR_MASK         0x0fffff00
251 #define HALO_AHBM_CORE_ERR_ADDR_SHIFT                 8
252 #define HALO_AHBM_FLAGS_ERR_MASK             0x000000ff
253 
254 /*
255  * HALO_CCM_CORE_CONTROL
256  */
257 #define HALO_CORE_RESET                     0x00000200
258 #define HALO_CORE_EN                        0x00000001
259 
260 /*
261  * HALO_CORE_SOFT_RESET
262  */
263 #define HALO_CORE_SOFT_RESET_MASK           0x00000001
264 
265 /*
266  * HALO_WDT_CONTROL
267  */
268 #define HALO_WDT_EN_MASK                    0x00000001
269 
270 /*
271  * HALO_MPU_?M_VIO_STATUS
272  */
273 #define HALO_MPU_VIO_STS_MASK               0x007e0000
274 #define HALO_MPU_VIO_STS_SHIFT                      17
275 #define HALO_MPU_VIO_ERR_WR_MASK            0x00008000
276 #define HALO_MPU_VIO_ERR_SRC_MASK           0x00007fff
277 #define HALO_MPU_VIO_ERR_SRC_SHIFT                   0
278 
279 /*
280  * Write Sequence
281  */
282 #define WSEQ_OP_MAX_WORDS	3
283 #define WSEQ_END_OF_SCRIPT	0xFFFFFF
284 
285 struct cs_dsp_ops {
286 	bool (*validate_version)(struct cs_dsp *dsp, unsigned int version);
287 	unsigned int (*parse_sizes)(struct cs_dsp *dsp,
288 				    const char * const file,
289 				    unsigned int pos,
290 				    const struct firmware *firmware);
291 	int (*setup_algs)(struct cs_dsp *dsp);
292 	unsigned int (*region_to_reg)(struct cs_dsp_region const *mem,
293 				      unsigned int offset);
294 
295 	void (*show_fw_status)(struct cs_dsp *dsp);
296 	void (*stop_watchdog)(struct cs_dsp *dsp);
297 
298 	int (*enable_memory)(struct cs_dsp *dsp);
299 	void (*disable_memory)(struct cs_dsp *dsp);
300 	int (*lock_memory)(struct cs_dsp *dsp, unsigned int lock_regions);
301 
302 	int (*enable_core)(struct cs_dsp *dsp);
303 	void (*disable_core)(struct cs_dsp *dsp);
304 
305 	int (*start_core)(struct cs_dsp *dsp);
306 	void (*stop_core)(struct cs_dsp *dsp);
307 };
308 
309 static const struct cs_dsp_ops cs_dsp_adsp1_ops;
310 static const struct cs_dsp_ops cs_dsp_adsp2_ops[];
311 static const struct cs_dsp_ops cs_dsp_halo_ops;
312 static const struct cs_dsp_ops cs_dsp_halo_ao_ops;
313 
314 struct cs_dsp_buf {
315 	struct list_head list;
316 	void *buf;
317 };
318 
319 static struct cs_dsp_buf *cs_dsp_buf_alloc(const void *src, size_t len,
320 					   struct list_head *list)
321 {
322 	struct cs_dsp_buf *buf = kzalloc(sizeof(*buf), GFP_KERNEL);
323 
324 	if (buf == NULL)
325 		return NULL;
326 
327 	buf->buf = vmalloc(len);
328 	if (!buf->buf) {
329 		kfree(buf);
330 		return NULL;
331 	}
332 	memcpy(buf->buf, src, len);
333 
334 	if (list)
335 		list_add_tail(&buf->list, list);
336 
337 	return buf;
338 }
339 
340 static void cs_dsp_buf_free(struct list_head *list)
341 {
342 	while (!list_empty(list)) {
343 		struct cs_dsp_buf *buf = list_first_entry(list,
344 							  struct cs_dsp_buf,
345 							  list);
346 		list_del(&buf->list);
347 		vfree(buf->buf);
348 		kfree(buf);
349 	}
350 }
351 
352 /**
353  * cs_dsp_mem_region_name() - Return a name string for a memory type
354  * @type: the memory type to match
355  *
356  * Return: A const string identifying the memory region.
357  */
358 const char *cs_dsp_mem_region_name(unsigned int type)
359 {
360 	switch (type) {
361 	case WMFW_ADSP1_PM:
362 		return "PM";
363 	case WMFW_HALO_PM_PACKED:
364 		return "PM_PACKED";
365 	case WMFW_ADSP1_DM:
366 		return "DM";
367 	case WMFW_ADSP2_XM:
368 		return "XM";
369 	case WMFW_HALO_XM_PACKED:
370 		return "XM_PACKED";
371 	case WMFW_ADSP2_YM:
372 		return "YM";
373 	case WMFW_HALO_YM_PACKED:
374 		return "YM_PACKED";
375 	case WMFW_ADSP1_ZM:
376 		return "ZM";
377 	default:
378 		return NULL;
379 	}
380 }
381 EXPORT_SYMBOL_NS_GPL(cs_dsp_mem_region_name, FW_CS_DSP);
382 
383 #ifdef CONFIG_DEBUG_FS
384 static void cs_dsp_debugfs_save_wmfwname(struct cs_dsp *dsp, const char *s)
385 {
386 	char *tmp = kasprintf(GFP_KERNEL, "%s\n", s);
387 
388 	kfree(dsp->wmfw_file_name);
389 	dsp->wmfw_file_name = tmp;
390 }
391 
392 static void cs_dsp_debugfs_save_binname(struct cs_dsp *dsp, const char *s)
393 {
394 	char *tmp = kasprintf(GFP_KERNEL, "%s\n", s);
395 
396 	kfree(dsp->bin_file_name);
397 	dsp->bin_file_name = tmp;
398 }
399 
400 static void cs_dsp_debugfs_clear(struct cs_dsp *dsp)
401 {
402 	kfree(dsp->wmfw_file_name);
403 	kfree(dsp->bin_file_name);
404 	dsp->wmfw_file_name = NULL;
405 	dsp->bin_file_name = NULL;
406 }
407 
408 static ssize_t cs_dsp_debugfs_wmfw_read(struct file *file,
409 					char __user *user_buf,
410 					size_t count, loff_t *ppos)
411 {
412 	struct cs_dsp *dsp = file->private_data;
413 	ssize_t ret;
414 
415 	mutex_lock(&dsp->pwr_lock);
416 
417 	if (!dsp->wmfw_file_name || !dsp->booted)
418 		ret = 0;
419 	else
420 		ret = simple_read_from_buffer(user_buf, count, ppos,
421 					      dsp->wmfw_file_name,
422 					      strlen(dsp->wmfw_file_name));
423 
424 	mutex_unlock(&dsp->pwr_lock);
425 	return ret;
426 }
427 
428 static ssize_t cs_dsp_debugfs_bin_read(struct file *file,
429 				       char __user *user_buf,
430 				       size_t count, loff_t *ppos)
431 {
432 	struct cs_dsp *dsp = file->private_data;
433 	ssize_t ret;
434 
435 	mutex_lock(&dsp->pwr_lock);
436 
437 	if (!dsp->bin_file_name || !dsp->booted)
438 		ret = 0;
439 	else
440 		ret = simple_read_from_buffer(user_buf, count, ppos,
441 					      dsp->bin_file_name,
442 					      strlen(dsp->bin_file_name));
443 
444 	mutex_unlock(&dsp->pwr_lock);
445 	return ret;
446 }
447 
448 static const struct {
449 	const char *name;
450 	const struct file_operations fops;
451 } cs_dsp_debugfs_fops[] = {
452 	{
453 		.name = "wmfw_file_name",
454 		.fops = {
455 			.open = simple_open,
456 			.read = cs_dsp_debugfs_wmfw_read,
457 		},
458 	},
459 	{
460 		.name = "bin_file_name",
461 		.fops = {
462 			.open = simple_open,
463 			.read = cs_dsp_debugfs_bin_read,
464 		},
465 	},
466 };
467 
468 static int cs_dsp_coeff_base_reg(struct cs_dsp_coeff_ctl *ctl, unsigned int *reg,
469 				 unsigned int off);
470 
471 static int cs_dsp_debugfs_read_controls_show(struct seq_file *s, void *ignored)
472 {
473 	struct cs_dsp *dsp = s->private;
474 	struct cs_dsp_coeff_ctl *ctl;
475 	unsigned int reg;
476 
477 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
478 		cs_dsp_coeff_base_reg(ctl, &reg, 0);
479 		seq_printf(s, "%22.*s: %#8zx %s:%08x %#8x %s %#8x %#4x %c%c%c%c %s %s\n",
480 			   ctl->subname_len, ctl->subname, ctl->len,
481 			   cs_dsp_mem_region_name(ctl->alg_region.type),
482 			   ctl->offset, reg, ctl->fw_name, ctl->alg_region.alg, ctl->type,
483 			   ctl->flags & WMFW_CTL_FLAG_VOLATILE ? 'V' : '-',
484 			   ctl->flags & WMFW_CTL_FLAG_SYS ? 'S' : '-',
485 			   ctl->flags & WMFW_CTL_FLAG_READABLE ? 'R' : '-',
486 			   ctl->flags & WMFW_CTL_FLAG_WRITEABLE ? 'W' : '-',
487 			   ctl->enabled ? "enabled" : "disabled",
488 			   ctl->set ? "dirty" : "clean");
489 	}
490 
491 	return 0;
492 }
493 DEFINE_SHOW_ATTRIBUTE(cs_dsp_debugfs_read_controls);
494 
495 /**
496  * cs_dsp_init_debugfs() - Create and populate DSP representation in debugfs
497  * @dsp: pointer to DSP structure
498  * @debugfs_root: pointer to debugfs directory in which to create this DSP
499  *                representation
500  */
501 void cs_dsp_init_debugfs(struct cs_dsp *dsp, struct dentry *debugfs_root)
502 {
503 	struct dentry *root = NULL;
504 	int i;
505 
506 	root = debugfs_create_dir(dsp->name, debugfs_root);
507 
508 	debugfs_create_bool("booted", 0444, root, &dsp->booted);
509 	debugfs_create_bool("running", 0444, root, &dsp->running);
510 	debugfs_create_x32("fw_id", 0444, root, &dsp->fw_id);
511 	debugfs_create_x32("fw_version", 0444, root, &dsp->fw_id_version);
512 
513 	for (i = 0; i < ARRAY_SIZE(cs_dsp_debugfs_fops); ++i)
514 		debugfs_create_file(cs_dsp_debugfs_fops[i].name, 0444, root,
515 				    dsp, &cs_dsp_debugfs_fops[i].fops);
516 
517 	debugfs_create_file("controls", 0444, root, dsp,
518 			    &cs_dsp_debugfs_read_controls_fops);
519 
520 	dsp->debugfs_root = root;
521 }
522 EXPORT_SYMBOL_NS_GPL(cs_dsp_init_debugfs, FW_CS_DSP);
523 
524 /**
525  * cs_dsp_cleanup_debugfs() - Removes DSP representation from debugfs
526  * @dsp: pointer to DSP structure
527  */
528 void cs_dsp_cleanup_debugfs(struct cs_dsp *dsp)
529 {
530 	cs_dsp_debugfs_clear(dsp);
531 	debugfs_remove_recursive(dsp->debugfs_root);
532 	dsp->debugfs_root = ERR_PTR(-ENODEV);
533 }
534 EXPORT_SYMBOL_NS_GPL(cs_dsp_cleanup_debugfs, FW_CS_DSP);
535 #else
536 void cs_dsp_init_debugfs(struct cs_dsp *dsp, struct dentry *debugfs_root)
537 {
538 }
539 EXPORT_SYMBOL_NS_GPL(cs_dsp_init_debugfs, FW_CS_DSP);
540 
541 void cs_dsp_cleanup_debugfs(struct cs_dsp *dsp)
542 {
543 }
544 EXPORT_SYMBOL_NS_GPL(cs_dsp_cleanup_debugfs, FW_CS_DSP);
545 
546 static inline void cs_dsp_debugfs_save_wmfwname(struct cs_dsp *dsp,
547 						const char *s)
548 {
549 }
550 
551 static inline void cs_dsp_debugfs_save_binname(struct cs_dsp *dsp,
552 					       const char *s)
553 {
554 }
555 
556 static inline void cs_dsp_debugfs_clear(struct cs_dsp *dsp)
557 {
558 }
559 #endif
560 
561 static const struct cs_dsp_region *cs_dsp_find_region(struct cs_dsp *dsp,
562 						      int type)
563 {
564 	int i;
565 
566 	for (i = 0; i < dsp->num_mems; i++)
567 		if (dsp->mem[i].type == type)
568 			return &dsp->mem[i];
569 
570 	return NULL;
571 }
572 
573 static unsigned int cs_dsp_region_to_reg(struct cs_dsp_region const *mem,
574 					 unsigned int offset)
575 {
576 	switch (mem->type) {
577 	case WMFW_ADSP1_PM:
578 		return mem->base + (offset * 3);
579 	case WMFW_ADSP1_DM:
580 	case WMFW_ADSP2_XM:
581 	case WMFW_ADSP2_YM:
582 	case WMFW_ADSP1_ZM:
583 		return mem->base + (offset * 2);
584 	default:
585 		WARN(1, "Unknown memory region type");
586 		return offset;
587 	}
588 }
589 
590 static unsigned int cs_dsp_halo_region_to_reg(struct cs_dsp_region const *mem,
591 					      unsigned int offset)
592 {
593 	switch (mem->type) {
594 	case WMFW_ADSP2_XM:
595 	case WMFW_ADSP2_YM:
596 		return mem->base + (offset * 4);
597 	case WMFW_HALO_XM_PACKED:
598 	case WMFW_HALO_YM_PACKED:
599 		return (mem->base + (offset * 3)) & ~0x3;
600 	case WMFW_HALO_PM_PACKED:
601 		return mem->base + (offset * 5);
602 	default:
603 		WARN(1, "Unknown memory region type");
604 		return offset;
605 	}
606 }
607 
608 static void cs_dsp_read_fw_status(struct cs_dsp *dsp,
609 				  int noffs, unsigned int *offs)
610 {
611 	unsigned int i;
612 	int ret;
613 
614 	for (i = 0; i < noffs; ++i) {
615 		ret = regmap_read(dsp->regmap, dsp->base + offs[i], &offs[i]);
616 		if (ret) {
617 			cs_dsp_err(dsp, "Failed to read SCRATCH%u: %d\n", i, ret);
618 			return;
619 		}
620 	}
621 }
622 
623 static void cs_dsp_adsp2_show_fw_status(struct cs_dsp *dsp)
624 {
625 	unsigned int offs[] = {
626 		ADSP2_SCRATCH0, ADSP2_SCRATCH1, ADSP2_SCRATCH2, ADSP2_SCRATCH3,
627 	};
628 
629 	cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
630 
631 	cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
632 		   offs[0], offs[1], offs[2], offs[3]);
633 }
634 
635 static void cs_dsp_adsp2v2_show_fw_status(struct cs_dsp *dsp)
636 {
637 	unsigned int offs[] = { ADSP2V2_SCRATCH0_1, ADSP2V2_SCRATCH2_3 };
638 
639 	cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
640 
641 	cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
642 		   offs[0] & 0xFFFF, offs[0] >> 16,
643 		   offs[1] & 0xFFFF, offs[1] >> 16);
644 }
645 
646 static void cs_dsp_halo_show_fw_status(struct cs_dsp *dsp)
647 {
648 	unsigned int offs[] = {
649 		HALO_SCRATCH1, HALO_SCRATCH2, HALO_SCRATCH3, HALO_SCRATCH4,
650 	};
651 
652 	cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
653 
654 	cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
655 		   offs[0], offs[1], offs[2], offs[3]);
656 }
657 
658 static int cs_dsp_coeff_base_reg(struct cs_dsp_coeff_ctl *ctl, unsigned int *reg,
659 				 unsigned int off)
660 {
661 	const struct cs_dsp_alg_region *alg_region = &ctl->alg_region;
662 	struct cs_dsp *dsp = ctl->dsp;
663 	const struct cs_dsp_region *mem;
664 
665 	mem = cs_dsp_find_region(dsp, alg_region->type);
666 	if (!mem) {
667 		cs_dsp_err(dsp, "No base for region %x\n",
668 			   alg_region->type);
669 		return -EINVAL;
670 	}
671 
672 	*reg = dsp->ops->region_to_reg(mem, ctl->alg_region.base + ctl->offset + off);
673 
674 	return 0;
675 }
676 
677 /**
678  * cs_dsp_coeff_write_acked_control() - Sends event_id to the acked control
679  * @ctl: pointer to acked coefficient control
680  * @event_id: the value to write to the given acked control
681  *
682  * Once the value has been written to the control the function shall block
683  * until the running firmware acknowledges the write or timeout is exceeded.
684  *
685  * Must be called with pwr_lock held.
686  *
687  * Return: Zero for success, a negative number on error.
688  */
689 int cs_dsp_coeff_write_acked_control(struct cs_dsp_coeff_ctl *ctl, unsigned int event_id)
690 {
691 	struct cs_dsp *dsp = ctl->dsp;
692 	__be32 val = cpu_to_be32(event_id);
693 	unsigned int reg;
694 	int i, ret;
695 
696 	lockdep_assert_held(&dsp->pwr_lock);
697 
698 	if (!dsp->running)
699 		return -EPERM;
700 
701 	ret = cs_dsp_coeff_base_reg(ctl, &reg, 0);
702 	if (ret)
703 		return ret;
704 
705 	cs_dsp_dbg(dsp, "Sending 0x%x to acked control alg 0x%x %s:0x%x\n",
706 		   event_id, ctl->alg_region.alg,
707 		   cs_dsp_mem_region_name(ctl->alg_region.type), ctl->offset);
708 
709 	ret = regmap_raw_write(dsp->regmap, reg, &val, sizeof(val));
710 	if (ret) {
711 		cs_dsp_err(dsp, "Failed to write %x: %d\n", reg, ret);
712 		return ret;
713 	}
714 
715 	/*
716 	 * Poll for ack, we initially poll at ~1ms intervals for firmwares
717 	 * that respond quickly, then go to ~10ms polls. A firmware is unlikely
718 	 * to ack instantly so we do the first 1ms delay before reading the
719 	 * control to avoid a pointless bus transaction
720 	 */
721 	for (i = 0; i < CS_DSP_ACKED_CTL_TIMEOUT_MS;) {
722 		switch (i) {
723 		case 0 ... CS_DSP_ACKED_CTL_N_QUICKPOLLS - 1:
724 			usleep_range(1000, 2000);
725 			i++;
726 			break;
727 		default:
728 			usleep_range(10000, 20000);
729 			i += 10;
730 			break;
731 		}
732 
733 		ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val));
734 		if (ret) {
735 			cs_dsp_err(dsp, "Failed to read %x: %d\n", reg, ret);
736 			return ret;
737 		}
738 
739 		if (val == 0) {
740 			cs_dsp_dbg(dsp, "Acked control ACKED at poll %u\n", i);
741 			return 0;
742 		}
743 	}
744 
745 	cs_dsp_warn(dsp, "Acked control @0x%x alg:0x%x %s:0x%x timed out\n",
746 		    reg, ctl->alg_region.alg,
747 		    cs_dsp_mem_region_name(ctl->alg_region.type),
748 		    ctl->offset);
749 
750 	return -ETIMEDOUT;
751 }
752 EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_write_acked_control, FW_CS_DSP);
753 
754 static int cs_dsp_coeff_write_ctrl_raw(struct cs_dsp_coeff_ctl *ctl,
755 				       unsigned int off, const void *buf, size_t len)
756 {
757 	struct cs_dsp *dsp = ctl->dsp;
758 	void *scratch;
759 	int ret;
760 	unsigned int reg;
761 
762 	ret = cs_dsp_coeff_base_reg(ctl, &reg, off);
763 	if (ret)
764 		return ret;
765 
766 	scratch = kmemdup(buf, len, GFP_KERNEL | GFP_DMA);
767 	if (!scratch)
768 		return -ENOMEM;
769 
770 	ret = regmap_raw_write(dsp->regmap, reg, scratch,
771 			       len);
772 	if (ret) {
773 		cs_dsp_err(dsp, "Failed to write %zu bytes to %x: %d\n",
774 			   len, reg, ret);
775 		kfree(scratch);
776 		return ret;
777 	}
778 	cs_dsp_dbg(dsp, "Wrote %zu bytes to %x\n", len, reg);
779 
780 	kfree(scratch);
781 
782 	return 0;
783 }
784 
785 /**
786  * cs_dsp_coeff_write_ctrl() - Writes the given buffer to the given coefficient control
787  * @ctl: pointer to coefficient control
788  * @off: word offset at which data should be written
789  * @buf: the buffer to write to the given control
790  * @len: the length of the buffer in bytes
791  *
792  * Must be called with pwr_lock held.
793  *
794  * Return: < 0 on error, 1 when the control value changed and 0 when it has not.
795  */
796 int cs_dsp_coeff_write_ctrl(struct cs_dsp_coeff_ctl *ctl,
797 			    unsigned int off, const void *buf, size_t len)
798 {
799 	int ret = 0;
800 
801 	if (!ctl)
802 		return -ENOENT;
803 
804 	lockdep_assert_held(&ctl->dsp->pwr_lock);
805 
806 	if (ctl->flags && !(ctl->flags & WMFW_CTL_FLAG_WRITEABLE))
807 		return -EPERM;
808 
809 	if (len + off * sizeof(u32) > ctl->len)
810 		return -EINVAL;
811 
812 	if (ctl->flags & WMFW_CTL_FLAG_VOLATILE) {
813 		ret = -EPERM;
814 	} else if (buf != ctl->cache) {
815 		if (memcmp(ctl->cache + off * sizeof(u32), buf, len))
816 			memcpy(ctl->cache + off * sizeof(u32), buf, len);
817 		else
818 			return 0;
819 	}
820 
821 	ctl->set = 1;
822 	if (ctl->enabled && ctl->dsp->running)
823 		ret = cs_dsp_coeff_write_ctrl_raw(ctl, off, buf, len);
824 
825 	if (ret < 0)
826 		return ret;
827 
828 	return 1;
829 }
830 EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_write_ctrl, FW_CS_DSP);
831 
832 /**
833  * cs_dsp_coeff_lock_and_write_ctrl() - Writes the given buffer to the given coefficient control
834  * @ctl: pointer to coefficient control
835  * @off: word offset at which data should be written
836  * @buf: the buffer to write to the given control
837  * @len: the length of the buffer in bytes
838  *
839  * Same as cs_dsp_coeff_write_ctrl() but takes pwr_lock.
840  *
841  * Return: A negative number on error, 1 when the control value changed and 0 when it has not.
842  */
843 int cs_dsp_coeff_lock_and_write_ctrl(struct cs_dsp_coeff_ctl *ctl,
844 				     unsigned int off, const void *buf, size_t len)
845 {
846 	struct cs_dsp *dsp = ctl->dsp;
847 	int ret;
848 
849 	lockdep_assert_not_held(&dsp->pwr_lock);
850 
851 	mutex_lock(&dsp->pwr_lock);
852 	ret = cs_dsp_coeff_write_ctrl(ctl, off, buf, len);
853 	mutex_unlock(&dsp->pwr_lock);
854 
855 	return ret;
856 }
857 EXPORT_SYMBOL_GPL(cs_dsp_coeff_lock_and_write_ctrl);
858 
859 static int cs_dsp_coeff_read_ctrl_raw(struct cs_dsp_coeff_ctl *ctl,
860 				      unsigned int off, void *buf, size_t len)
861 {
862 	struct cs_dsp *dsp = ctl->dsp;
863 	void *scratch;
864 	int ret;
865 	unsigned int reg;
866 
867 	ret = cs_dsp_coeff_base_reg(ctl, &reg, off);
868 	if (ret)
869 		return ret;
870 
871 	scratch = kmalloc(len, GFP_KERNEL | GFP_DMA);
872 	if (!scratch)
873 		return -ENOMEM;
874 
875 	ret = regmap_raw_read(dsp->regmap, reg, scratch, len);
876 	if (ret) {
877 		cs_dsp_err(dsp, "Failed to read %zu bytes from %x: %d\n",
878 			   len, reg, ret);
879 		kfree(scratch);
880 		return ret;
881 	}
882 	cs_dsp_dbg(dsp, "Read %zu bytes from %x\n", len, reg);
883 
884 	memcpy(buf, scratch, len);
885 	kfree(scratch);
886 
887 	return 0;
888 }
889 
890 /**
891  * cs_dsp_coeff_read_ctrl() - Reads the given coefficient control into the given buffer
892  * @ctl: pointer to coefficient control
893  * @off: word offset at which data should be read
894  * @buf: the buffer to store to the given control
895  * @len: the length of the buffer in bytes
896  *
897  * Must be called with pwr_lock held.
898  *
899  * Return: Zero for success, a negative number on error.
900  */
901 int cs_dsp_coeff_read_ctrl(struct cs_dsp_coeff_ctl *ctl,
902 			   unsigned int off, void *buf, size_t len)
903 {
904 	int ret = 0;
905 
906 	if (!ctl)
907 		return -ENOENT;
908 
909 	lockdep_assert_held(&ctl->dsp->pwr_lock);
910 
911 	if (len + off * sizeof(u32) > ctl->len)
912 		return -EINVAL;
913 
914 	if (ctl->flags & WMFW_CTL_FLAG_VOLATILE) {
915 		if (ctl->enabled && ctl->dsp->running)
916 			return cs_dsp_coeff_read_ctrl_raw(ctl, off, buf, len);
917 		else
918 			return -EPERM;
919 	} else {
920 		if (!ctl->flags && ctl->enabled && ctl->dsp->running)
921 			ret = cs_dsp_coeff_read_ctrl_raw(ctl, 0, ctl->cache, ctl->len);
922 
923 		if (buf != ctl->cache)
924 			memcpy(buf, ctl->cache + off * sizeof(u32), len);
925 	}
926 
927 	return ret;
928 }
929 EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_read_ctrl, FW_CS_DSP);
930 
931 /**
932  * cs_dsp_coeff_lock_and_read_ctrl() - Reads the given coefficient control into the given buffer
933  * @ctl: pointer to coefficient control
934  * @off: word offset at which data should be read
935  * @buf: the buffer to store to the given control
936  * @len: the length of the buffer in bytes
937  *
938  * Same as cs_dsp_coeff_read_ctrl() but takes pwr_lock.
939  *
940  * Return: Zero for success, a negative number on error.
941  */
942 int cs_dsp_coeff_lock_and_read_ctrl(struct cs_dsp_coeff_ctl *ctl,
943 				    unsigned int off, void *buf, size_t len)
944 {
945 	struct cs_dsp *dsp = ctl->dsp;
946 	int ret;
947 
948 	lockdep_assert_not_held(&dsp->pwr_lock);
949 
950 	mutex_lock(&dsp->pwr_lock);
951 	ret = cs_dsp_coeff_read_ctrl(ctl, off, buf, len);
952 	mutex_unlock(&dsp->pwr_lock);
953 
954 	return ret;
955 }
956 EXPORT_SYMBOL_GPL(cs_dsp_coeff_lock_and_read_ctrl);
957 
958 static int cs_dsp_coeff_init_control_caches(struct cs_dsp *dsp)
959 {
960 	struct cs_dsp_coeff_ctl *ctl;
961 	int ret;
962 
963 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
964 		if (!ctl->enabled || ctl->set)
965 			continue;
966 		if (ctl->flags & WMFW_CTL_FLAG_VOLATILE)
967 			continue;
968 
969 		/*
970 		 * For readable controls populate the cache from the DSP memory.
971 		 * For non-readable controls the cache was zero-filled when
972 		 * created so we don't need to do anything.
973 		 */
974 		if (!ctl->flags || (ctl->flags & WMFW_CTL_FLAG_READABLE)) {
975 			ret = cs_dsp_coeff_read_ctrl_raw(ctl, 0, ctl->cache, ctl->len);
976 			if (ret < 0)
977 				return ret;
978 		}
979 	}
980 
981 	return 0;
982 }
983 
984 static int cs_dsp_coeff_sync_controls(struct cs_dsp *dsp)
985 {
986 	struct cs_dsp_coeff_ctl *ctl;
987 	int ret;
988 
989 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
990 		if (!ctl->enabled)
991 			continue;
992 		if (ctl->set && !(ctl->flags & WMFW_CTL_FLAG_VOLATILE)) {
993 			ret = cs_dsp_coeff_write_ctrl_raw(ctl, 0, ctl->cache,
994 							  ctl->len);
995 			if (ret < 0)
996 				return ret;
997 		}
998 	}
999 
1000 	return 0;
1001 }
1002 
1003 static void cs_dsp_signal_event_controls(struct cs_dsp *dsp,
1004 					 unsigned int event)
1005 {
1006 	struct cs_dsp_coeff_ctl *ctl;
1007 	int ret;
1008 
1009 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
1010 		if (ctl->type != WMFW_CTL_TYPE_HOSTEVENT)
1011 			continue;
1012 
1013 		if (!ctl->enabled)
1014 			continue;
1015 
1016 		ret = cs_dsp_coeff_write_acked_control(ctl, event);
1017 		if (ret)
1018 			cs_dsp_warn(dsp,
1019 				    "Failed to send 0x%x event to alg 0x%x (%d)\n",
1020 				    event, ctl->alg_region.alg, ret);
1021 	}
1022 }
1023 
1024 static void cs_dsp_free_ctl_blk(struct cs_dsp_coeff_ctl *ctl)
1025 {
1026 	kfree(ctl->cache);
1027 	kfree(ctl->subname);
1028 	kfree(ctl);
1029 }
1030 
1031 static int cs_dsp_create_control(struct cs_dsp *dsp,
1032 				 const struct cs_dsp_alg_region *alg_region,
1033 				 unsigned int offset, unsigned int len,
1034 				 const char *subname, unsigned int subname_len,
1035 				 unsigned int flags, unsigned int type)
1036 {
1037 	struct cs_dsp_coeff_ctl *ctl;
1038 	int ret;
1039 
1040 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
1041 		if (ctl->fw_name == dsp->fw_name &&
1042 		    ctl->alg_region.alg == alg_region->alg &&
1043 		    ctl->alg_region.type == alg_region->type) {
1044 			if ((!subname && !ctl->subname) ||
1045 			    (subname && (ctl->subname_len == subname_len) &&
1046 			     !strncmp(ctl->subname, subname, ctl->subname_len))) {
1047 				if (!ctl->enabled)
1048 					ctl->enabled = 1;
1049 				return 0;
1050 			}
1051 		}
1052 	}
1053 
1054 	ctl = kzalloc(sizeof(*ctl), GFP_KERNEL);
1055 	if (!ctl)
1056 		return -ENOMEM;
1057 
1058 	ctl->fw_name = dsp->fw_name;
1059 	ctl->alg_region = *alg_region;
1060 	if (subname && dsp->wmfw_ver >= 2) {
1061 		ctl->subname_len = subname_len;
1062 		ctl->subname = kasprintf(GFP_KERNEL, "%.*s", subname_len, subname);
1063 		if (!ctl->subname) {
1064 			ret = -ENOMEM;
1065 			goto err_ctl;
1066 		}
1067 	}
1068 	ctl->enabled = 1;
1069 	ctl->set = 0;
1070 	ctl->dsp = dsp;
1071 
1072 	ctl->flags = flags;
1073 	ctl->type = type;
1074 	ctl->offset = offset;
1075 	ctl->len = len;
1076 	ctl->cache = kzalloc(ctl->len, GFP_KERNEL);
1077 	if (!ctl->cache) {
1078 		ret = -ENOMEM;
1079 		goto err_ctl_subname;
1080 	}
1081 
1082 	list_add(&ctl->list, &dsp->ctl_list);
1083 
1084 	if (dsp->client_ops->control_add) {
1085 		ret = dsp->client_ops->control_add(ctl);
1086 		if (ret)
1087 			goto err_list_del;
1088 	}
1089 
1090 	return 0;
1091 
1092 err_list_del:
1093 	list_del(&ctl->list);
1094 	kfree(ctl->cache);
1095 err_ctl_subname:
1096 	kfree(ctl->subname);
1097 err_ctl:
1098 	kfree(ctl);
1099 
1100 	return ret;
1101 }
1102 
1103 struct cs_dsp_coeff_parsed_alg {
1104 	int id;
1105 	const u8 *name;
1106 	int name_len;
1107 	int ncoeff;
1108 };
1109 
1110 struct cs_dsp_coeff_parsed_coeff {
1111 	int offset;
1112 	int mem_type;
1113 	const u8 *name;
1114 	int name_len;
1115 	unsigned int ctl_type;
1116 	int flags;
1117 	int len;
1118 };
1119 
1120 static int cs_dsp_coeff_parse_string(int bytes, const u8 **pos, unsigned int avail,
1121 				     const u8 **str)
1122 {
1123 	int length, total_field_len;
1124 
1125 	/* String fields are at least one __le32 */
1126 	if (sizeof(__le32) > avail) {
1127 		*pos = NULL;
1128 		return 0;
1129 	}
1130 
1131 	switch (bytes) {
1132 	case 1:
1133 		length = **pos;
1134 		break;
1135 	case 2:
1136 		length = le16_to_cpu(*((__le16 *)*pos));
1137 		break;
1138 	default:
1139 		return 0;
1140 	}
1141 
1142 	total_field_len = ((length + bytes) + 3) & ~0x03;
1143 	if ((unsigned int)total_field_len > avail) {
1144 		*pos = NULL;
1145 		return 0;
1146 	}
1147 
1148 	if (str)
1149 		*str = *pos + bytes;
1150 
1151 	*pos += total_field_len;
1152 
1153 	return length;
1154 }
1155 
1156 static int cs_dsp_coeff_parse_int(int bytes, const u8 **pos)
1157 {
1158 	int val = 0;
1159 
1160 	switch (bytes) {
1161 	case 2:
1162 		val = le16_to_cpu(*((__le16 *)*pos));
1163 		break;
1164 	case 4:
1165 		val = le32_to_cpu(*((__le32 *)*pos));
1166 		break;
1167 	default:
1168 		break;
1169 	}
1170 
1171 	*pos += bytes;
1172 
1173 	return val;
1174 }
1175 
1176 static int cs_dsp_coeff_parse_alg(struct cs_dsp *dsp,
1177 				  const struct wmfw_region *region,
1178 				  struct cs_dsp_coeff_parsed_alg *blk)
1179 {
1180 	const struct wmfw_adsp_alg_data *raw;
1181 	unsigned int data_len = le32_to_cpu(region->len);
1182 	unsigned int pos;
1183 	const u8 *tmp;
1184 
1185 	raw = (const struct wmfw_adsp_alg_data *)region->data;
1186 
1187 	switch (dsp->wmfw_ver) {
1188 	case 0:
1189 	case 1:
1190 		if (sizeof(*raw) > data_len)
1191 			return -EOVERFLOW;
1192 
1193 		blk->id = le32_to_cpu(raw->id);
1194 		blk->name = raw->name;
1195 		blk->name_len = strnlen(raw->name, ARRAY_SIZE(raw->name));
1196 		blk->ncoeff = le32_to_cpu(raw->ncoeff);
1197 
1198 		pos = sizeof(*raw);
1199 		break;
1200 	default:
1201 		if (sizeof(raw->id) > data_len)
1202 			return -EOVERFLOW;
1203 
1204 		tmp = region->data;
1205 		blk->id = cs_dsp_coeff_parse_int(sizeof(raw->id), &tmp);
1206 		pos = tmp - region->data;
1207 
1208 		tmp = &region->data[pos];
1209 		blk->name_len = cs_dsp_coeff_parse_string(sizeof(u8), &tmp, data_len - pos,
1210 							  &blk->name);
1211 		if (!tmp)
1212 			return -EOVERFLOW;
1213 
1214 		pos = tmp - region->data;
1215 		cs_dsp_coeff_parse_string(sizeof(u16), &tmp, data_len - pos, NULL);
1216 		if (!tmp)
1217 			return -EOVERFLOW;
1218 
1219 		pos = tmp - region->data;
1220 		if (sizeof(raw->ncoeff) > (data_len - pos))
1221 			return -EOVERFLOW;
1222 
1223 		blk->ncoeff = cs_dsp_coeff_parse_int(sizeof(raw->ncoeff), &tmp);
1224 		pos += sizeof(raw->ncoeff);
1225 		break;
1226 	}
1227 
1228 	if ((int)blk->ncoeff < 0)
1229 		return -EOVERFLOW;
1230 
1231 	cs_dsp_dbg(dsp, "Algorithm ID: %#x\n", blk->id);
1232 	cs_dsp_dbg(dsp, "Algorithm name: %.*s\n", blk->name_len, blk->name);
1233 	cs_dsp_dbg(dsp, "# of coefficient descriptors: %#x\n", blk->ncoeff);
1234 
1235 	return pos;
1236 }
1237 
1238 static int cs_dsp_coeff_parse_coeff(struct cs_dsp *dsp,
1239 				    const struct wmfw_region *region,
1240 				    unsigned int pos,
1241 				    struct cs_dsp_coeff_parsed_coeff *blk)
1242 {
1243 	const struct wmfw_adsp_coeff_data *raw;
1244 	unsigned int data_len = le32_to_cpu(region->len);
1245 	unsigned int blk_len, blk_end_pos;
1246 	const u8 *tmp;
1247 
1248 	raw = (const struct wmfw_adsp_coeff_data *)&region->data[pos];
1249 	if (sizeof(raw->hdr) > (data_len - pos))
1250 		return -EOVERFLOW;
1251 
1252 	blk_len = le32_to_cpu(raw->hdr.size);
1253 	if (blk_len > S32_MAX)
1254 		return -EOVERFLOW;
1255 
1256 	if (blk_len > (data_len - pos - sizeof(raw->hdr)))
1257 		return -EOVERFLOW;
1258 
1259 	blk_end_pos = pos + sizeof(raw->hdr) + blk_len;
1260 
1261 	blk->offset = le16_to_cpu(raw->hdr.offset);
1262 	blk->mem_type = le16_to_cpu(raw->hdr.type);
1263 
1264 	switch (dsp->wmfw_ver) {
1265 	case 0:
1266 	case 1:
1267 		if (sizeof(*raw) > (data_len - pos))
1268 			return -EOVERFLOW;
1269 
1270 		blk->name = raw->name;
1271 		blk->name_len = strnlen(raw->name, ARRAY_SIZE(raw->name));
1272 		blk->ctl_type = le16_to_cpu(raw->ctl_type);
1273 		blk->flags = le16_to_cpu(raw->flags);
1274 		blk->len = le32_to_cpu(raw->len);
1275 		break;
1276 	default:
1277 		pos += sizeof(raw->hdr);
1278 		tmp = &region->data[pos];
1279 		blk->name_len = cs_dsp_coeff_parse_string(sizeof(u8), &tmp, data_len - pos,
1280 							  &blk->name);
1281 		if (!tmp)
1282 			return -EOVERFLOW;
1283 
1284 		pos = tmp - region->data;
1285 		cs_dsp_coeff_parse_string(sizeof(u8), &tmp, data_len - pos, NULL);
1286 		if (!tmp)
1287 			return -EOVERFLOW;
1288 
1289 		pos = tmp - region->data;
1290 		cs_dsp_coeff_parse_string(sizeof(u16), &tmp, data_len - pos, NULL);
1291 		if (!tmp)
1292 			return -EOVERFLOW;
1293 
1294 		pos = tmp - region->data;
1295 		if (sizeof(raw->ctl_type) + sizeof(raw->flags) + sizeof(raw->len) >
1296 		    (data_len - pos))
1297 			return -EOVERFLOW;
1298 
1299 		blk->ctl_type = cs_dsp_coeff_parse_int(sizeof(raw->ctl_type), &tmp);
1300 		pos += sizeof(raw->ctl_type);
1301 		blk->flags = cs_dsp_coeff_parse_int(sizeof(raw->flags), &tmp);
1302 		pos += sizeof(raw->flags);
1303 		blk->len = cs_dsp_coeff_parse_int(sizeof(raw->len), &tmp);
1304 		break;
1305 	}
1306 
1307 	cs_dsp_dbg(dsp, "\tCoefficient type: %#x\n", blk->mem_type);
1308 	cs_dsp_dbg(dsp, "\tCoefficient offset: %#x\n", blk->offset);
1309 	cs_dsp_dbg(dsp, "\tCoefficient name: %.*s\n", blk->name_len, blk->name);
1310 	cs_dsp_dbg(dsp, "\tCoefficient flags: %#x\n", blk->flags);
1311 	cs_dsp_dbg(dsp, "\tALSA control type: %#x\n", blk->ctl_type);
1312 	cs_dsp_dbg(dsp, "\tALSA control len: %#x\n", blk->len);
1313 
1314 	return blk_end_pos;
1315 }
1316 
1317 static int cs_dsp_check_coeff_flags(struct cs_dsp *dsp,
1318 				    const struct cs_dsp_coeff_parsed_coeff *coeff_blk,
1319 				    unsigned int f_required,
1320 				    unsigned int f_illegal)
1321 {
1322 	if ((coeff_blk->flags & f_illegal) ||
1323 	    ((coeff_blk->flags & f_required) != f_required)) {
1324 		cs_dsp_err(dsp, "Illegal flags 0x%x for control type 0x%x\n",
1325 			   coeff_blk->flags, coeff_blk->ctl_type);
1326 		return -EINVAL;
1327 	}
1328 
1329 	return 0;
1330 }
1331 
1332 static int cs_dsp_parse_coeff(struct cs_dsp *dsp,
1333 			      const struct wmfw_region *region)
1334 {
1335 	struct cs_dsp_alg_region alg_region = {};
1336 	struct cs_dsp_coeff_parsed_alg alg_blk;
1337 	struct cs_dsp_coeff_parsed_coeff coeff_blk;
1338 	int i, pos, ret;
1339 
1340 	pos = cs_dsp_coeff_parse_alg(dsp, region, &alg_blk);
1341 	if (pos < 0)
1342 		return pos;
1343 
1344 	for (i = 0; i < alg_blk.ncoeff; i++) {
1345 		pos = cs_dsp_coeff_parse_coeff(dsp, region, pos, &coeff_blk);
1346 		if (pos < 0)
1347 			return pos;
1348 
1349 		switch (coeff_blk.ctl_type) {
1350 		case WMFW_CTL_TYPE_BYTES:
1351 			break;
1352 		case WMFW_CTL_TYPE_ACKED:
1353 			if (coeff_blk.flags & WMFW_CTL_FLAG_SYS)
1354 				continue;	/* ignore */
1355 
1356 			ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1357 						       WMFW_CTL_FLAG_VOLATILE |
1358 						       WMFW_CTL_FLAG_WRITEABLE |
1359 						       WMFW_CTL_FLAG_READABLE,
1360 						       0);
1361 			if (ret)
1362 				return -EINVAL;
1363 			break;
1364 		case WMFW_CTL_TYPE_HOSTEVENT:
1365 		case WMFW_CTL_TYPE_FWEVENT:
1366 			ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1367 						       WMFW_CTL_FLAG_SYS |
1368 						       WMFW_CTL_FLAG_VOLATILE |
1369 						       WMFW_CTL_FLAG_WRITEABLE |
1370 						       WMFW_CTL_FLAG_READABLE,
1371 						       0);
1372 			if (ret)
1373 				return -EINVAL;
1374 			break;
1375 		case WMFW_CTL_TYPE_HOST_BUFFER:
1376 			ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1377 						       WMFW_CTL_FLAG_SYS |
1378 						       WMFW_CTL_FLAG_VOLATILE |
1379 						       WMFW_CTL_FLAG_READABLE,
1380 						       0);
1381 			if (ret)
1382 				return -EINVAL;
1383 			break;
1384 		default:
1385 			cs_dsp_err(dsp, "Unknown control type: %d\n",
1386 				   coeff_blk.ctl_type);
1387 			return -EINVAL;
1388 		}
1389 
1390 		alg_region.type = coeff_blk.mem_type;
1391 		alg_region.alg = alg_blk.id;
1392 
1393 		ret = cs_dsp_create_control(dsp, &alg_region,
1394 					    coeff_blk.offset,
1395 					    coeff_blk.len,
1396 					    coeff_blk.name,
1397 					    coeff_blk.name_len,
1398 					    coeff_blk.flags,
1399 					    coeff_blk.ctl_type);
1400 		if (ret < 0)
1401 			cs_dsp_err(dsp, "Failed to create control: %.*s, %d\n",
1402 				   coeff_blk.name_len, coeff_blk.name, ret);
1403 	}
1404 
1405 	return 0;
1406 }
1407 
1408 static unsigned int cs_dsp_adsp1_parse_sizes(struct cs_dsp *dsp,
1409 					     const char * const file,
1410 					     unsigned int pos,
1411 					     const struct firmware *firmware)
1412 {
1413 	const struct wmfw_adsp1_sizes *adsp1_sizes;
1414 
1415 	adsp1_sizes = (void *)&firmware->data[pos];
1416 	if (sizeof(*adsp1_sizes) > firmware->size - pos) {
1417 		cs_dsp_err(dsp, "%s: file truncated\n", file);
1418 		return 0;
1419 	}
1420 
1421 	cs_dsp_dbg(dsp, "%s: %d DM, %d PM, %d ZM\n", file,
1422 		   le32_to_cpu(adsp1_sizes->dm), le32_to_cpu(adsp1_sizes->pm),
1423 		   le32_to_cpu(adsp1_sizes->zm));
1424 
1425 	return pos + sizeof(*adsp1_sizes);
1426 }
1427 
1428 static unsigned int cs_dsp_adsp2_parse_sizes(struct cs_dsp *dsp,
1429 					     const char * const file,
1430 					     unsigned int pos,
1431 					     const struct firmware *firmware)
1432 {
1433 	const struct wmfw_adsp2_sizes *adsp2_sizes;
1434 
1435 	adsp2_sizes = (void *)&firmware->data[pos];
1436 	if (sizeof(*adsp2_sizes) > firmware->size - pos) {
1437 		cs_dsp_err(dsp, "%s: file truncated\n", file);
1438 		return 0;
1439 	}
1440 
1441 	cs_dsp_dbg(dsp, "%s: %d XM, %d YM %d PM, %d ZM\n", file,
1442 		   le32_to_cpu(adsp2_sizes->xm), le32_to_cpu(adsp2_sizes->ym),
1443 		   le32_to_cpu(adsp2_sizes->pm), le32_to_cpu(adsp2_sizes->zm));
1444 
1445 	return pos + sizeof(*adsp2_sizes);
1446 }
1447 
1448 static bool cs_dsp_validate_version(struct cs_dsp *dsp, unsigned int version)
1449 {
1450 	switch (version) {
1451 	case 0:
1452 		cs_dsp_warn(dsp, "Deprecated file format %d\n", version);
1453 		return true;
1454 	case 1:
1455 	case 2:
1456 		return true;
1457 	default:
1458 		return false;
1459 	}
1460 }
1461 
1462 static bool cs_dsp_halo_validate_version(struct cs_dsp *dsp, unsigned int version)
1463 {
1464 	switch (version) {
1465 	case 3:
1466 		return true;
1467 	default:
1468 		return false;
1469 	}
1470 }
1471 
1472 static int cs_dsp_load(struct cs_dsp *dsp, const struct firmware *firmware,
1473 		       const char *file)
1474 {
1475 	LIST_HEAD(buf_list);
1476 	struct regmap *regmap = dsp->regmap;
1477 	unsigned int pos = 0;
1478 	const struct wmfw_header *header;
1479 	const struct wmfw_footer *footer;
1480 	const struct wmfw_region *region;
1481 	const struct cs_dsp_region *mem;
1482 	const char *region_name;
1483 	struct cs_dsp_buf *buf;
1484 	unsigned int reg;
1485 	int regions = 0;
1486 	int ret, offset, type;
1487 
1488 	if (!firmware)
1489 		return 0;
1490 
1491 	ret = -EINVAL;
1492 
1493 	if (sizeof(*header) >= firmware->size) {
1494 		ret = -EOVERFLOW;
1495 		goto out_fw;
1496 	}
1497 
1498 	header = (void *)&firmware->data[0];
1499 
1500 	if (memcmp(&header->magic[0], "WMFW", 4) != 0) {
1501 		cs_dsp_err(dsp, "%s: invalid magic\n", file);
1502 		goto out_fw;
1503 	}
1504 
1505 	if (!dsp->ops->validate_version(dsp, header->ver)) {
1506 		cs_dsp_err(dsp, "%s: unknown file format %d\n",
1507 			   file, header->ver);
1508 		goto out_fw;
1509 	}
1510 
1511 	dsp->wmfw_ver = header->ver;
1512 
1513 	if (header->core != dsp->type) {
1514 		cs_dsp_err(dsp, "%s: invalid core %d != %d\n",
1515 			   file, header->core, dsp->type);
1516 		goto out_fw;
1517 	}
1518 
1519 	pos = sizeof(*header);
1520 	pos = dsp->ops->parse_sizes(dsp, file, pos, firmware);
1521 	if ((pos == 0) || (sizeof(*footer) > firmware->size - pos)) {
1522 		ret = -EOVERFLOW;
1523 		goto out_fw;
1524 	}
1525 
1526 	footer = (void *)&firmware->data[pos];
1527 	pos += sizeof(*footer);
1528 
1529 	if (le32_to_cpu(header->len) != pos) {
1530 		ret = -EOVERFLOW;
1531 		goto out_fw;
1532 	}
1533 
1534 	cs_dsp_info(dsp, "%s: format %d timestamp %#llx\n", file, header->ver,
1535 		    le64_to_cpu(footer->timestamp));
1536 
1537 	while (pos < firmware->size) {
1538 		/* Is there enough data for a complete block header? */
1539 		if (sizeof(*region) > firmware->size - pos) {
1540 			ret = -EOVERFLOW;
1541 			goto out_fw;
1542 		}
1543 
1544 		region = (void *)&(firmware->data[pos]);
1545 
1546 		if (le32_to_cpu(region->len) > firmware->size - pos - sizeof(*region)) {
1547 			ret = -EOVERFLOW;
1548 			goto out_fw;
1549 		}
1550 
1551 		region_name = "Unknown";
1552 		reg = 0;
1553 		offset = le32_to_cpu(region->offset) & 0xffffff;
1554 		type = be32_to_cpu(region->type) & 0xff;
1555 
1556 		switch (type) {
1557 		case WMFW_INFO_TEXT:
1558 		case WMFW_NAME_TEXT:
1559 			region_name = "Info/Name";
1560 			cs_dsp_info(dsp, "%s: %.*s\n", file,
1561 				    min(le32_to_cpu(region->len), 100), region->data);
1562 			break;
1563 		case WMFW_ALGORITHM_DATA:
1564 			region_name = "Algorithm";
1565 			ret = cs_dsp_parse_coeff(dsp, region);
1566 			if (ret != 0)
1567 				goto out_fw;
1568 			break;
1569 		case WMFW_ABSOLUTE:
1570 			region_name = "Absolute";
1571 			reg = offset;
1572 			break;
1573 		case WMFW_ADSP1_PM:
1574 		case WMFW_ADSP1_DM:
1575 		case WMFW_ADSP2_XM:
1576 		case WMFW_ADSP2_YM:
1577 		case WMFW_ADSP1_ZM:
1578 		case WMFW_HALO_PM_PACKED:
1579 		case WMFW_HALO_XM_PACKED:
1580 		case WMFW_HALO_YM_PACKED:
1581 			mem = cs_dsp_find_region(dsp, type);
1582 			if (!mem) {
1583 				cs_dsp_err(dsp, "No region of type: %x\n", type);
1584 				ret = -EINVAL;
1585 				goto out_fw;
1586 			}
1587 
1588 			region_name = cs_dsp_mem_region_name(type);
1589 			reg = dsp->ops->region_to_reg(mem, offset);
1590 			break;
1591 		default:
1592 			cs_dsp_warn(dsp,
1593 				    "%s.%d: Unknown region type %x at %d(%x)\n",
1594 				    file, regions, type, pos, pos);
1595 			break;
1596 		}
1597 
1598 		cs_dsp_dbg(dsp, "%s.%d: %d bytes at %d in %s\n", file,
1599 			   regions, le32_to_cpu(region->len), offset,
1600 			   region_name);
1601 
1602 		if (reg) {
1603 			buf = cs_dsp_buf_alloc(region->data,
1604 					       le32_to_cpu(region->len),
1605 					       &buf_list);
1606 			if (!buf) {
1607 				cs_dsp_err(dsp, "Out of memory\n");
1608 				ret = -ENOMEM;
1609 				goto out_fw;
1610 			}
1611 
1612 			ret = regmap_raw_write_async(regmap, reg, buf->buf,
1613 						     le32_to_cpu(region->len));
1614 			if (ret != 0) {
1615 				cs_dsp_err(dsp,
1616 					   "%s.%d: Failed to write %d bytes at %d in %s: %d\n",
1617 					   file, regions,
1618 					   le32_to_cpu(region->len), offset,
1619 					   region_name, ret);
1620 				goto out_fw;
1621 			}
1622 		}
1623 
1624 		pos += le32_to_cpu(region->len) + sizeof(*region);
1625 		regions++;
1626 	}
1627 
1628 	ret = regmap_async_complete(regmap);
1629 	if (ret != 0) {
1630 		cs_dsp_err(dsp, "Failed to complete async write: %d\n", ret);
1631 		goto out_fw;
1632 	}
1633 
1634 	if (pos > firmware->size)
1635 		cs_dsp_warn(dsp, "%s.%d: %zu bytes at end of file\n",
1636 			    file, regions, pos - firmware->size);
1637 
1638 	cs_dsp_debugfs_save_wmfwname(dsp, file);
1639 
1640 out_fw:
1641 	regmap_async_complete(regmap);
1642 	cs_dsp_buf_free(&buf_list);
1643 
1644 	if (ret == -EOVERFLOW)
1645 		cs_dsp_err(dsp, "%s: file content overflows file data\n", file);
1646 
1647 	return ret;
1648 }
1649 
1650 /**
1651  * cs_dsp_get_ctl() - Finds a matching coefficient control
1652  * @dsp: pointer to DSP structure
1653  * @name: pointer to string to match with a control's subname
1654  * @type: the algorithm type to match
1655  * @alg: the algorithm id to match
1656  *
1657  * Find cs_dsp_coeff_ctl with input name as its subname
1658  *
1659  * Return: pointer to the control on success, NULL if not found
1660  */
1661 struct cs_dsp_coeff_ctl *cs_dsp_get_ctl(struct cs_dsp *dsp, const char *name, int type,
1662 					unsigned int alg)
1663 {
1664 	struct cs_dsp_coeff_ctl *pos, *rslt = NULL;
1665 
1666 	lockdep_assert_held(&dsp->pwr_lock);
1667 
1668 	list_for_each_entry(pos, &dsp->ctl_list, list) {
1669 		if (!pos->subname)
1670 			continue;
1671 		if (strncmp(pos->subname, name, pos->subname_len) == 0 &&
1672 		    pos->fw_name == dsp->fw_name &&
1673 		    pos->alg_region.alg == alg &&
1674 		    pos->alg_region.type == type) {
1675 			rslt = pos;
1676 			break;
1677 		}
1678 	}
1679 
1680 	return rslt;
1681 }
1682 EXPORT_SYMBOL_NS_GPL(cs_dsp_get_ctl, FW_CS_DSP);
1683 
1684 static void cs_dsp_ctl_fixup_base(struct cs_dsp *dsp,
1685 				  const struct cs_dsp_alg_region *alg_region)
1686 {
1687 	struct cs_dsp_coeff_ctl *ctl;
1688 
1689 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
1690 		if (ctl->fw_name == dsp->fw_name &&
1691 		    alg_region->alg == ctl->alg_region.alg &&
1692 		    alg_region->type == ctl->alg_region.type) {
1693 			ctl->alg_region.base = alg_region->base;
1694 		}
1695 	}
1696 }
1697 
1698 static void *cs_dsp_read_algs(struct cs_dsp *dsp, size_t n_algs,
1699 			      const struct cs_dsp_region *mem,
1700 			      unsigned int pos, unsigned int len)
1701 {
1702 	void *alg;
1703 	unsigned int reg;
1704 	int ret;
1705 	__be32 val;
1706 
1707 	if (n_algs == 0) {
1708 		cs_dsp_err(dsp, "No algorithms\n");
1709 		return ERR_PTR(-EINVAL);
1710 	}
1711 
1712 	if (n_algs > 1024) {
1713 		cs_dsp_err(dsp, "Algorithm count %zx excessive\n", n_algs);
1714 		return ERR_PTR(-EINVAL);
1715 	}
1716 
1717 	/* Read the terminator first to validate the length */
1718 	reg = dsp->ops->region_to_reg(mem, pos + len);
1719 
1720 	ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val));
1721 	if (ret != 0) {
1722 		cs_dsp_err(dsp, "Failed to read algorithm list end: %d\n",
1723 			   ret);
1724 		return ERR_PTR(ret);
1725 	}
1726 
1727 	if (be32_to_cpu(val) != 0xbedead)
1728 		cs_dsp_warn(dsp, "Algorithm list end %x 0x%x != 0xbedead\n",
1729 			    reg, be32_to_cpu(val));
1730 
1731 	/* Convert length from DSP words to bytes */
1732 	len *= sizeof(u32);
1733 
1734 	alg = kzalloc(len, GFP_KERNEL | GFP_DMA);
1735 	if (!alg)
1736 		return ERR_PTR(-ENOMEM);
1737 
1738 	reg = dsp->ops->region_to_reg(mem, pos);
1739 
1740 	ret = regmap_raw_read(dsp->regmap, reg, alg, len);
1741 	if (ret != 0) {
1742 		cs_dsp_err(dsp, "Failed to read algorithm list: %d\n", ret);
1743 		kfree(alg);
1744 		return ERR_PTR(ret);
1745 	}
1746 
1747 	return alg;
1748 }
1749 
1750 /**
1751  * cs_dsp_find_alg_region() - Finds a matching algorithm region
1752  * @dsp: pointer to DSP structure
1753  * @type: the algorithm type to match
1754  * @id: the algorithm id to match
1755  *
1756  * Return: Pointer to matching algorithm region, or NULL if not found.
1757  */
1758 struct cs_dsp_alg_region *cs_dsp_find_alg_region(struct cs_dsp *dsp,
1759 						 int type, unsigned int id)
1760 {
1761 	struct cs_dsp_alg_region *alg_region;
1762 
1763 	lockdep_assert_held(&dsp->pwr_lock);
1764 
1765 	list_for_each_entry(alg_region, &dsp->alg_regions, list) {
1766 		if (id == alg_region->alg && type == alg_region->type)
1767 			return alg_region;
1768 	}
1769 
1770 	return NULL;
1771 }
1772 EXPORT_SYMBOL_NS_GPL(cs_dsp_find_alg_region, FW_CS_DSP);
1773 
1774 static struct cs_dsp_alg_region *cs_dsp_create_region(struct cs_dsp *dsp,
1775 						      int type, __be32 id,
1776 						      __be32 ver, __be32 base)
1777 {
1778 	struct cs_dsp_alg_region *alg_region;
1779 
1780 	alg_region = kzalloc(sizeof(*alg_region), GFP_KERNEL);
1781 	if (!alg_region)
1782 		return ERR_PTR(-ENOMEM);
1783 
1784 	alg_region->type = type;
1785 	alg_region->alg = be32_to_cpu(id);
1786 	alg_region->ver = be32_to_cpu(ver);
1787 	alg_region->base = be32_to_cpu(base);
1788 
1789 	list_add_tail(&alg_region->list, &dsp->alg_regions);
1790 
1791 	if (dsp->wmfw_ver > 0)
1792 		cs_dsp_ctl_fixup_base(dsp, alg_region);
1793 
1794 	return alg_region;
1795 }
1796 
1797 static void cs_dsp_free_alg_regions(struct cs_dsp *dsp)
1798 {
1799 	struct cs_dsp_alg_region *alg_region;
1800 
1801 	while (!list_empty(&dsp->alg_regions)) {
1802 		alg_region = list_first_entry(&dsp->alg_regions,
1803 					      struct cs_dsp_alg_region,
1804 					      list);
1805 		list_del(&alg_region->list);
1806 		kfree(alg_region);
1807 	}
1808 }
1809 
1810 static void cs_dsp_parse_wmfw_id_header(struct cs_dsp *dsp,
1811 					struct wmfw_id_hdr *fw, int nalgs)
1812 {
1813 	dsp->fw_id = be32_to_cpu(fw->id);
1814 	dsp->fw_id_version = be32_to_cpu(fw->ver);
1815 
1816 	cs_dsp_info(dsp, "Firmware: %x v%d.%d.%d, %d algorithms\n",
1817 		    dsp->fw_id, (dsp->fw_id_version & 0xff0000) >> 16,
1818 		    (dsp->fw_id_version & 0xff00) >> 8, dsp->fw_id_version & 0xff,
1819 		    nalgs);
1820 }
1821 
1822 static void cs_dsp_parse_wmfw_v3_id_header(struct cs_dsp *dsp,
1823 					   struct wmfw_v3_id_hdr *fw, int nalgs)
1824 {
1825 	dsp->fw_id = be32_to_cpu(fw->id);
1826 	dsp->fw_id_version = be32_to_cpu(fw->ver);
1827 	dsp->fw_vendor_id = be32_to_cpu(fw->vendor_id);
1828 
1829 	cs_dsp_info(dsp, "Firmware: %x vendor: 0x%x v%d.%d.%d, %d algorithms\n",
1830 		    dsp->fw_id, dsp->fw_vendor_id,
1831 		    (dsp->fw_id_version & 0xff0000) >> 16,
1832 		    (dsp->fw_id_version & 0xff00) >> 8, dsp->fw_id_version & 0xff,
1833 		    nalgs);
1834 }
1835 
1836 static int cs_dsp_create_regions(struct cs_dsp *dsp, __be32 id, __be32 ver,
1837 				 int nregions, const int *type, __be32 *base)
1838 {
1839 	struct cs_dsp_alg_region *alg_region;
1840 	int i;
1841 
1842 	for (i = 0; i < nregions; i++) {
1843 		alg_region = cs_dsp_create_region(dsp, type[i], id, ver, base[i]);
1844 		if (IS_ERR(alg_region))
1845 			return PTR_ERR(alg_region);
1846 	}
1847 
1848 	return 0;
1849 }
1850 
1851 static int cs_dsp_adsp1_setup_algs(struct cs_dsp *dsp)
1852 {
1853 	struct wmfw_adsp1_id_hdr adsp1_id;
1854 	struct wmfw_adsp1_alg_hdr *adsp1_alg;
1855 	struct cs_dsp_alg_region *alg_region;
1856 	const struct cs_dsp_region *mem;
1857 	unsigned int pos, len;
1858 	size_t n_algs;
1859 	int i, ret;
1860 
1861 	mem = cs_dsp_find_region(dsp, WMFW_ADSP1_DM);
1862 	if (WARN_ON(!mem))
1863 		return -EINVAL;
1864 
1865 	ret = regmap_raw_read(dsp->regmap, mem->base, &adsp1_id,
1866 			      sizeof(adsp1_id));
1867 	if (ret != 0) {
1868 		cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
1869 			   ret);
1870 		return ret;
1871 	}
1872 
1873 	n_algs = be32_to_cpu(adsp1_id.n_algs);
1874 
1875 	cs_dsp_parse_wmfw_id_header(dsp, &adsp1_id.fw, n_algs);
1876 
1877 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_ZM,
1878 					  adsp1_id.fw.id, adsp1_id.fw.ver,
1879 					  adsp1_id.zm);
1880 	if (IS_ERR(alg_region))
1881 		return PTR_ERR(alg_region);
1882 
1883 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_DM,
1884 					  adsp1_id.fw.id, adsp1_id.fw.ver,
1885 					  adsp1_id.dm);
1886 	if (IS_ERR(alg_region))
1887 		return PTR_ERR(alg_region);
1888 
1889 	/* Calculate offset and length in DSP words */
1890 	pos = sizeof(adsp1_id) / sizeof(u32);
1891 	len = (sizeof(*adsp1_alg) * n_algs) / sizeof(u32);
1892 
1893 	adsp1_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
1894 	if (IS_ERR(adsp1_alg))
1895 		return PTR_ERR(adsp1_alg);
1896 
1897 	for (i = 0; i < n_algs; i++) {
1898 		cs_dsp_info(dsp, "%d: ID %x v%d.%d.%d DM@%x ZM@%x\n",
1899 			    i, be32_to_cpu(adsp1_alg[i].alg.id),
1900 			    (be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff0000) >> 16,
1901 			    (be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff00) >> 8,
1902 			    be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff,
1903 			    be32_to_cpu(adsp1_alg[i].dm),
1904 			    be32_to_cpu(adsp1_alg[i].zm));
1905 
1906 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_DM,
1907 						  adsp1_alg[i].alg.id,
1908 						  adsp1_alg[i].alg.ver,
1909 						  adsp1_alg[i].dm);
1910 		if (IS_ERR(alg_region)) {
1911 			ret = PTR_ERR(alg_region);
1912 			goto out;
1913 		}
1914 		if (dsp->wmfw_ver == 0) {
1915 			if (i + 1 < n_algs) {
1916 				len = be32_to_cpu(adsp1_alg[i + 1].dm);
1917 				len -= be32_to_cpu(adsp1_alg[i].dm);
1918 				len *= 4;
1919 				cs_dsp_create_control(dsp, alg_region, 0,
1920 						      len, NULL, 0, 0,
1921 						      WMFW_CTL_TYPE_BYTES);
1922 			} else {
1923 				cs_dsp_warn(dsp, "Missing length info for region DM with ID %x\n",
1924 					    be32_to_cpu(adsp1_alg[i].alg.id));
1925 			}
1926 		}
1927 
1928 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_ZM,
1929 						  adsp1_alg[i].alg.id,
1930 						  adsp1_alg[i].alg.ver,
1931 						  adsp1_alg[i].zm);
1932 		if (IS_ERR(alg_region)) {
1933 			ret = PTR_ERR(alg_region);
1934 			goto out;
1935 		}
1936 		if (dsp->wmfw_ver == 0) {
1937 			if (i + 1 < n_algs) {
1938 				len = be32_to_cpu(adsp1_alg[i + 1].zm);
1939 				len -= be32_to_cpu(adsp1_alg[i].zm);
1940 				len *= 4;
1941 				cs_dsp_create_control(dsp, alg_region, 0,
1942 						      len, NULL, 0, 0,
1943 						      WMFW_CTL_TYPE_BYTES);
1944 			} else {
1945 				cs_dsp_warn(dsp, "Missing length info for region ZM with ID %x\n",
1946 					    be32_to_cpu(adsp1_alg[i].alg.id));
1947 			}
1948 		}
1949 	}
1950 
1951 out:
1952 	kfree(adsp1_alg);
1953 	return ret;
1954 }
1955 
1956 static int cs_dsp_adsp2_setup_algs(struct cs_dsp *dsp)
1957 {
1958 	struct wmfw_adsp2_id_hdr adsp2_id;
1959 	struct wmfw_adsp2_alg_hdr *adsp2_alg;
1960 	struct cs_dsp_alg_region *alg_region;
1961 	const struct cs_dsp_region *mem;
1962 	unsigned int pos, len;
1963 	size_t n_algs;
1964 	int i, ret;
1965 
1966 	mem = cs_dsp_find_region(dsp, WMFW_ADSP2_XM);
1967 	if (WARN_ON(!mem))
1968 		return -EINVAL;
1969 
1970 	ret = regmap_raw_read(dsp->regmap, mem->base, &adsp2_id,
1971 			      sizeof(adsp2_id));
1972 	if (ret != 0) {
1973 		cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
1974 			   ret);
1975 		return ret;
1976 	}
1977 
1978 	n_algs = be32_to_cpu(adsp2_id.n_algs);
1979 
1980 	cs_dsp_parse_wmfw_id_header(dsp, &adsp2_id.fw, n_algs);
1981 
1982 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_XM,
1983 					  adsp2_id.fw.id, adsp2_id.fw.ver,
1984 					  adsp2_id.xm);
1985 	if (IS_ERR(alg_region))
1986 		return PTR_ERR(alg_region);
1987 
1988 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_YM,
1989 					  adsp2_id.fw.id, adsp2_id.fw.ver,
1990 					  adsp2_id.ym);
1991 	if (IS_ERR(alg_region))
1992 		return PTR_ERR(alg_region);
1993 
1994 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_ZM,
1995 					  adsp2_id.fw.id, adsp2_id.fw.ver,
1996 					  adsp2_id.zm);
1997 	if (IS_ERR(alg_region))
1998 		return PTR_ERR(alg_region);
1999 
2000 	/* Calculate offset and length in DSP words */
2001 	pos = sizeof(adsp2_id) / sizeof(u32);
2002 	len = (sizeof(*adsp2_alg) * n_algs) / sizeof(u32);
2003 
2004 	adsp2_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
2005 	if (IS_ERR(adsp2_alg))
2006 		return PTR_ERR(adsp2_alg);
2007 
2008 	for (i = 0; i < n_algs; i++) {
2009 		cs_dsp_dbg(dsp,
2010 			   "%d: ID %x v%d.%d.%d XM@%x YM@%x ZM@%x\n",
2011 			   i, be32_to_cpu(adsp2_alg[i].alg.id),
2012 			   (be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff0000) >> 16,
2013 			   (be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff00) >> 8,
2014 			   be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff,
2015 			   be32_to_cpu(adsp2_alg[i].xm),
2016 			   be32_to_cpu(adsp2_alg[i].ym),
2017 			   be32_to_cpu(adsp2_alg[i].zm));
2018 
2019 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_XM,
2020 						  adsp2_alg[i].alg.id,
2021 						  adsp2_alg[i].alg.ver,
2022 						  adsp2_alg[i].xm);
2023 		if (IS_ERR(alg_region)) {
2024 			ret = PTR_ERR(alg_region);
2025 			goto out;
2026 		}
2027 		if (dsp->wmfw_ver == 0) {
2028 			if (i + 1 < n_algs) {
2029 				len = be32_to_cpu(adsp2_alg[i + 1].xm);
2030 				len -= be32_to_cpu(adsp2_alg[i].xm);
2031 				len *= 4;
2032 				cs_dsp_create_control(dsp, alg_region, 0,
2033 						      len, NULL, 0, 0,
2034 						      WMFW_CTL_TYPE_BYTES);
2035 			} else {
2036 				cs_dsp_warn(dsp, "Missing length info for region XM with ID %x\n",
2037 					    be32_to_cpu(adsp2_alg[i].alg.id));
2038 			}
2039 		}
2040 
2041 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_YM,
2042 						  adsp2_alg[i].alg.id,
2043 						  adsp2_alg[i].alg.ver,
2044 						  adsp2_alg[i].ym);
2045 		if (IS_ERR(alg_region)) {
2046 			ret = PTR_ERR(alg_region);
2047 			goto out;
2048 		}
2049 		if (dsp->wmfw_ver == 0) {
2050 			if (i + 1 < n_algs) {
2051 				len = be32_to_cpu(adsp2_alg[i + 1].ym);
2052 				len -= be32_to_cpu(adsp2_alg[i].ym);
2053 				len *= 4;
2054 				cs_dsp_create_control(dsp, alg_region, 0,
2055 						      len, NULL, 0, 0,
2056 						      WMFW_CTL_TYPE_BYTES);
2057 			} else {
2058 				cs_dsp_warn(dsp, "Missing length info for region YM with ID %x\n",
2059 					    be32_to_cpu(adsp2_alg[i].alg.id));
2060 			}
2061 		}
2062 
2063 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_ZM,
2064 						  adsp2_alg[i].alg.id,
2065 						  adsp2_alg[i].alg.ver,
2066 						  adsp2_alg[i].zm);
2067 		if (IS_ERR(alg_region)) {
2068 			ret = PTR_ERR(alg_region);
2069 			goto out;
2070 		}
2071 		if (dsp->wmfw_ver == 0) {
2072 			if (i + 1 < n_algs) {
2073 				len = be32_to_cpu(adsp2_alg[i + 1].zm);
2074 				len -= be32_to_cpu(adsp2_alg[i].zm);
2075 				len *= 4;
2076 				cs_dsp_create_control(dsp, alg_region, 0,
2077 						      len, NULL, 0, 0,
2078 						      WMFW_CTL_TYPE_BYTES);
2079 			} else {
2080 				cs_dsp_warn(dsp, "Missing length info for region ZM with ID %x\n",
2081 					    be32_to_cpu(adsp2_alg[i].alg.id));
2082 			}
2083 		}
2084 	}
2085 
2086 out:
2087 	kfree(adsp2_alg);
2088 	return ret;
2089 }
2090 
2091 static int cs_dsp_halo_create_regions(struct cs_dsp *dsp, __be32 id, __be32 ver,
2092 				      __be32 xm_base, __be32 ym_base)
2093 {
2094 	static const int types[] = {
2095 		WMFW_ADSP2_XM, WMFW_HALO_XM_PACKED,
2096 		WMFW_ADSP2_YM, WMFW_HALO_YM_PACKED
2097 	};
2098 	__be32 bases[] = { xm_base, xm_base, ym_base, ym_base };
2099 
2100 	return cs_dsp_create_regions(dsp, id, ver, ARRAY_SIZE(types), types, bases);
2101 }
2102 
2103 static int cs_dsp_halo_setup_algs(struct cs_dsp *dsp)
2104 {
2105 	struct wmfw_halo_id_hdr halo_id;
2106 	struct wmfw_halo_alg_hdr *halo_alg;
2107 	const struct cs_dsp_region *mem;
2108 	unsigned int pos, len;
2109 	size_t n_algs;
2110 	int i, ret;
2111 
2112 	mem = cs_dsp_find_region(dsp, WMFW_ADSP2_XM);
2113 	if (WARN_ON(!mem))
2114 		return -EINVAL;
2115 
2116 	ret = regmap_raw_read(dsp->regmap, mem->base, &halo_id,
2117 			      sizeof(halo_id));
2118 	if (ret != 0) {
2119 		cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
2120 			   ret);
2121 		return ret;
2122 	}
2123 
2124 	n_algs = be32_to_cpu(halo_id.n_algs);
2125 
2126 	cs_dsp_parse_wmfw_v3_id_header(dsp, &halo_id.fw, n_algs);
2127 
2128 	ret = cs_dsp_halo_create_regions(dsp, halo_id.fw.id, halo_id.fw.ver,
2129 					 halo_id.xm_base, halo_id.ym_base);
2130 	if (ret)
2131 		return ret;
2132 
2133 	/* Calculate offset and length in DSP words */
2134 	pos = sizeof(halo_id) / sizeof(u32);
2135 	len = (sizeof(*halo_alg) * n_algs) / sizeof(u32);
2136 
2137 	halo_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
2138 	if (IS_ERR(halo_alg))
2139 		return PTR_ERR(halo_alg);
2140 
2141 	for (i = 0; i < n_algs; i++) {
2142 		cs_dsp_dbg(dsp,
2143 			   "%d: ID %x v%d.%d.%d XM@%x YM@%x\n",
2144 			   i, be32_to_cpu(halo_alg[i].alg.id),
2145 			   (be32_to_cpu(halo_alg[i].alg.ver) & 0xff0000) >> 16,
2146 			   (be32_to_cpu(halo_alg[i].alg.ver) & 0xff00) >> 8,
2147 			   be32_to_cpu(halo_alg[i].alg.ver) & 0xff,
2148 			   be32_to_cpu(halo_alg[i].xm_base),
2149 			   be32_to_cpu(halo_alg[i].ym_base));
2150 
2151 		ret = cs_dsp_halo_create_regions(dsp, halo_alg[i].alg.id,
2152 						 halo_alg[i].alg.ver,
2153 						 halo_alg[i].xm_base,
2154 						 halo_alg[i].ym_base);
2155 		if (ret)
2156 			goto out;
2157 	}
2158 
2159 out:
2160 	kfree(halo_alg);
2161 	return ret;
2162 }
2163 
2164 static int cs_dsp_load_coeff(struct cs_dsp *dsp, const struct firmware *firmware,
2165 			     const char *file)
2166 {
2167 	LIST_HEAD(buf_list);
2168 	struct regmap *regmap = dsp->regmap;
2169 	struct wmfw_coeff_hdr *hdr;
2170 	struct wmfw_coeff_item *blk;
2171 	const struct cs_dsp_region *mem;
2172 	struct cs_dsp_alg_region *alg_region;
2173 	const char *region_name;
2174 	int ret, pos, blocks, type, offset, reg, version;
2175 	struct cs_dsp_buf *buf;
2176 
2177 	if (!firmware)
2178 		return 0;
2179 
2180 	ret = -EINVAL;
2181 
2182 	if (sizeof(*hdr) >= firmware->size) {
2183 		cs_dsp_err(dsp, "%s: coefficient file too short, %zu bytes\n",
2184 			   file, firmware->size);
2185 		goto out_fw;
2186 	}
2187 
2188 	hdr = (void *)&firmware->data[0];
2189 	if (memcmp(hdr->magic, "WMDR", 4) != 0) {
2190 		cs_dsp_err(dsp, "%s: invalid coefficient magic\n", file);
2191 		goto out_fw;
2192 	}
2193 
2194 	switch (be32_to_cpu(hdr->rev) & 0xff) {
2195 	case 1:
2196 	case 2:
2197 		break;
2198 	default:
2199 		cs_dsp_err(dsp, "%s: Unsupported coefficient file format %d\n",
2200 			   file, be32_to_cpu(hdr->rev) & 0xff);
2201 		ret = -EINVAL;
2202 		goto out_fw;
2203 	}
2204 
2205 	cs_dsp_info(dsp, "%s: v%d.%d.%d\n", file,
2206 		    (le32_to_cpu(hdr->ver) >> 16) & 0xff,
2207 		    (le32_to_cpu(hdr->ver) >>  8) & 0xff,
2208 		    le32_to_cpu(hdr->ver) & 0xff);
2209 
2210 	pos = le32_to_cpu(hdr->len);
2211 
2212 	blocks = 0;
2213 	while (pos < firmware->size) {
2214 		/* Is there enough data for a complete block header? */
2215 		if (sizeof(*blk) > firmware->size - pos) {
2216 			ret = -EOVERFLOW;
2217 			goto out_fw;
2218 		}
2219 
2220 		blk = (void *)(&firmware->data[pos]);
2221 
2222 		if (le32_to_cpu(blk->len) > firmware->size - pos - sizeof(*blk)) {
2223 			ret = -EOVERFLOW;
2224 			goto out_fw;
2225 		}
2226 
2227 		type = le16_to_cpu(blk->type);
2228 		offset = le16_to_cpu(blk->offset);
2229 		version = le32_to_cpu(blk->ver) >> 8;
2230 
2231 		cs_dsp_dbg(dsp, "%s.%d: %x v%d.%d.%d\n",
2232 			   file, blocks, le32_to_cpu(blk->id),
2233 			   (le32_to_cpu(blk->ver) >> 16) & 0xff,
2234 			   (le32_to_cpu(blk->ver) >>  8) & 0xff,
2235 			   le32_to_cpu(blk->ver) & 0xff);
2236 		cs_dsp_dbg(dsp, "%s.%d: %d bytes at 0x%x in %x\n",
2237 			   file, blocks, le32_to_cpu(blk->len), offset, type);
2238 
2239 		reg = 0;
2240 		region_name = "Unknown";
2241 		switch (type) {
2242 		case (WMFW_NAME_TEXT << 8):
2243 			cs_dsp_info(dsp, "%s: %.*s\n", dsp->fw_name,
2244 				    min(le32_to_cpu(blk->len), 100), blk->data);
2245 			break;
2246 		case (WMFW_INFO_TEXT << 8):
2247 		case (WMFW_METADATA << 8):
2248 			break;
2249 		case (WMFW_ABSOLUTE << 8):
2250 			/*
2251 			 * Old files may use this for global
2252 			 * coefficients.
2253 			 */
2254 			if (le32_to_cpu(blk->id) == dsp->fw_id &&
2255 			    offset == 0) {
2256 				region_name = "global coefficients";
2257 				mem = cs_dsp_find_region(dsp, type);
2258 				if (!mem) {
2259 					cs_dsp_err(dsp, "No ZM\n");
2260 					break;
2261 				}
2262 				reg = dsp->ops->region_to_reg(mem, 0);
2263 
2264 			} else {
2265 				region_name = "register";
2266 				reg = offset;
2267 			}
2268 			break;
2269 
2270 		case WMFW_ADSP1_DM:
2271 		case WMFW_ADSP1_ZM:
2272 		case WMFW_ADSP2_XM:
2273 		case WMFW_ADSP2_YM:
2274 		case WMFW_HALO_XM_PACKED:
2275 		case WMFW_HALO_YM_PACKED:
2276 		case WMFW_HALO_PM_PACKED:
2277 			cs_dsp_dbg(dsp, "%s.%d: %d bytes in %x for %x\n",
2278 				   file, blocks, le32_to_cpu(blk->len),
2279 				   type, le32_to_cpu(blk->id));
2280 
2281 			region_name = cs_dsp_mem_region_name(type);
2282 			mem = cs_dsp_find_region(dsp, type);
2283 			if (!mem) {
2284 				cs_dsp_err(dsp, "No base for region %x\n", type);
2285 				break;
2286 			}
2287 
2288 			alg_region = cs_dsp_find_alg_region(dsp, type,
2289 							    le32_to_cpu(blk->id));
2290 			if (alg_region) {
2291 				if (version != alg_region->ver)
2292 					cs_dsp_warn(dsp,
2293 						    "Algorithm coefficient version %d.%d.%d but expected %d.%d.%d\n",
2294 						   (version >> 16) & 0xFF,
2295 						   (version >> 8) & 0xFF,
2296 						   version & 0xFF,
2297 						   (alg_region->ver >> 16) & 0xFF,
2298 						   (alg_region->ver >> 8) & 0xFF,
2299 						   alg_region->ver & 0xFF);
2300 
2301 				reg = alg_region->base;
2302 				reg = dsp->ops->region_to_reg(mem, reg);
2303 				reg += offset;
2304 			} else {
2305 				cs_dsp_err(dsp, "No %s for algorithm %x\n",
2306 					   region_name, le32_to_cpu(blk->id));
2307 			}
2308 			break;
2309 
2310 		default:
2311 			cs_dsp_err(dsp, "%s.%d: Unknown region type %x at %d\n",
2312 				   file, blocks, type, pos);
2313 			break;
2314 		}
2315 
2316 		if (reg) {
2317 			buf = cs_dsp_buf_alloc(blk->data,
2318 					       le32_to_cpu(blk->len),
2319 					       &buf_list);
2320 			if (!buf) {
2321 				cs_dsp_err(dsp, "Out of memory\n");
2322 				ret = -ENOMEM;
2323 				goto out_fw;
2324 			}
2325 
2326 			cs_dsp_dbg(dsp, "%s.%d: Writing %d bytes at %x\n",
2327 				   file, blocks, le32_to_cpu(blk->len),
2328 				   reg);
2329 			ret = regmap_raw_write_async(regmap, reg, buf->buf,
2330 						     le32_to_cpu(blk->len));
2331 			if (ret != 0) {
2332 				cs_dsp_err(dsp,
2333 					   "%s.%d: Failed to write to %x in %s: %d\n",
2334 					   file, blocks, reg, region_name, ret);
2335 			}
2336 		}
2337 
2338 		pos += (le32_to_cpu(blk->len) + sizeof(*blk) + 3) & ~0x03;
2339 		blocks++;
2340 	}
2341 
2342 	ret = regmap_async_complete(regmap);
2343 	if (ret != 0)
2344 		cs_dsp_err(dsp, "Failed to complete async write: %d\n", ret);
2345 
2346 	if (pos > firmware->size)
2347 		cs_dsp_warn(dsp, "%s.%d: %zu bytes at end of file\n",
2348 			    file, blocks, pos - firmware->size);
2349 
2350 	cs_dsp_debugfs_save_binname(dsp, file);
2351 
2352 out_fw:
2353 	regmap_async_complete(regmap);
2354 	cs_dsp_buf_free(&buf_list);
2355 
2356 	if (ret == -EOVERFLOW)
2357 		cs_dsp_err(dsp, "%s: file content overflows file data\n", file);
2358 
2359 	return ret;
2360 }
2361 
2362 static int cs_dsp_create_name(struct cs_dsp *dsp)
2363 {
2364 	if (!dsp->name) {
2365 		dsp->name = devm_kasprintf(dsp->dev, GFP_KERNEL, "DSP%d",
2366 					   dsp->num);
2367 		if (!dsp->name)
2368 			return -ENOMEM;
2369 	}
2370 
2371 	return 0;
2372 }
2373 
2374 static int cs_dsp_common_init(struct cs_dsp *dsp)
2375 {
2376 	int ret;
2377 
2378 	ret = cs_dsp_create_name(dsp);
2379 	if (ret)
2380 		return ret;
2381 
2382 	INIT_LIST_HEAD(&dsp->alg_regions);
2383 	INIT_LIST_HEAD(&dsp->ctl_list);
2384 
2385 	mutex_init(&dsp->pwr_lock);
2386 
2387 #ifdef CONFIG_DEBUG_FS
2388 	/* Ensure this is invalid if client never provides a debugfs root */
2389 	dsp->debugfs_root = ERR_PTR(-ENODEV);
2390 #endif
2391 
2392 	return 0;
2393 }
2394 
2395 /**
2396  * cs_dsp_adsp1_init() - Initialise a cs_dsp structure representing a ADSP1 device
2397  * @dsp: pointer to DSP structure
2398  *
2399  * Return: Zero for success, a negative number on error.
2400  */
2401 int cs_dsp_adsp1_init(struct cs_dsp *dsp)
2402 {
2403 	dsp->ops = &cs_dsp_adsp1_ops;
2404 
2405 	return cs_dsp_common_init(dsp);
2406 }
2407 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_init, FW_CS_DSP);
2408 
2409 /**
2410  * cs_dsp_adsp1_power_up() - Load and start the named firmware
2411  * @dsp: pointer to DSP structure
2412  * @wmfw_firmware: the firmware to be sent
2413  * @wmfw_filename: file name of firmware to be sent
2414  * @coeff_firmware: the coefficient data to be sent
2415  * @coeff_filename: file name of coefficient to data be sent
2416  * @fw_name: the user-friendly firmware name
2417  *
2418  * Return: Zero for success, a negative number on error.
2419  */
2420 int cs_dsp_adsp1_power_up(struct cs_dsp *dsp,
2421 			  const struct firmware *wmfw_firmware, const char *wmfw_filename,
2422 			  const struct firmware *coeff_firmware, const char *coeff_filename,
2423 			  const char *fw_name)
2424 {
2425 	unsigned int val;
2426 	int ret;
2427 
2428 	mutex_lock(&dsp->pwr_lock);
2429 
2430 	dsp->fw_name = fw_name;
2431 
2432 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2433 			   ADSP1_SYS_ENA, ADSP1_SYS_ENA);
2434 
2435 	/*
2436 	 * For simplicity set the DSP clock rate to be the
2437 	 * SYSCLK rate rather than making it configurable.
2438 	 */
2439 	if (dsp->sysclk_reg) {
2440 		ret = regmap_read(dsp->regmap, dsp->sysclk_reg, &val);
2441 		if (ret != 0) {
2442 			cs_dsp_err(dsp, "Failed to read SYSCLK state: %d\n", ret);
2443 			goto err_mutex;
2444 		}
2445 
2446 		val = (val & dsp->sysclk_mask) >> dsp->sysclk_shift;
2447 
2448 		ret = regmap_update_bits(dsp->regmap,
2449 					 dsp->base + ADSP1_CONTROL_31,
2450 					 ADSP1_CLK_SEL_MASK, val);
2451 		if (ret != 0) {
2452 			cs_dsp_err(dsp, "Failed to set clock rate: %d\n", ret);
2453 			goto err_mutex;
2454 		}
2455 	}
2456 
2457 	ret = cs_dsp_load(dsp, wmfw_firmware, wmfw_filename);
2458 	if (ret != 0)
2459 		goto err_ena;
2460 
2461 	ret = cs_dsp_adsp1_setup_algs(dsp);
2462 	if (ret != 0)
2463 		goto err_ena;
2464 
2465 	ret = cs_dsp_load_coeff(dsp, coeff_firmware, coeff_filename);
2466 	if (ret != 0)
2467 		goto err_ena;
2468 
2469 	/* Initialize caches for enabled and unset controls */
2470 	ret = cs_dsp_coeff_init_control_caches(dsp);
2471 	if (ret != 0)
2472 		goto err_ena;
2473 
2474 	/* Sync set controls */
2475 	ret = cs_dsp_coeff_sync_controls(dsp);
2476 	if (ret != 0)
2477 		goto err_ena;
2478 
2479 	dsp->booted = true;
2480 
2481 	/* Start the core running */
2482 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2483 			   ADSP1_CORE_ENA | ADSP1_START,
2484 			   ADSP1_CORE_ENA | ADSP1_START);
2485 
2486 	dsp->running = true;
2487 
2488 	mutex_unlock(&dsp->pwr_lock);
2489 
2490 	return 0;
2491 
2492 err_ena:
2493 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2494 			   ADSP1_SYS_ENA, 0);
2495 err_mutex:
2496 	mutex_unlock(&dsp->pwr_lock);
2497 	return ret;
2498 }
2499 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_power_up, FW_CS_DSP);
2500 
2501 /**
2502  * cs_dsp_adsp1_power_down() - Halts the DSP
2503  * @dsp: pointer to DSP structure
2504  */
2505 void cs_dsp_adsp1_power_down(struct cs_dsp *dsp)
2506 {
2507 	struct cs_dsp_coeff_ctl *ctl;
2508 
2509 	mutex_lock(&dsp->pwr_lock);
2510 
2511 	dsp->running = false;
2512 	dsp->booted = false;
2513 
2514 	/* Halt the core */
2515 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2516 			   ADSP1_CORE_ENA | ADSP1_START, 0);
2517 
2518 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_19,
2519 			   ADSP1_WDMA_BUFFER_LENGTH_MASK, 0);
2520 
2521 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2522 			   ADSP1_SYS_ENA, 0);
2523 
2524 	list_for_each_entry(ctl, &dsp->ctl_list, list)
2525 		ctl->enabled = 0;
2526 
2527 	cs_dsp_free_alg_regions(dsp);
2528 
2529 	mutex_unlock(&dsp->pwr_lock);
2530 }
2531 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_power_down, FW_CS_DSP);
2532 
2533 static int cs_dsp_adsp2v2_enable_core(struct cs_dsp *dsp)
2534 {
2535 	unsigned int val;
2536 	int ret, count;
2537 
2538 	/* Wait for the RAM to start, should be near instantaneous */
2539 	for (count = 0; count < 10; ++count) {
2540 		ret = regmap_read(dsp->regmap, dsp->base + ADSP2_STATUS1, &val);
2541 		if (ret != 0)
2542 			return ret;
2543 
2544 		if (val & ADSP2_RAM_RDY)
2545 			break;
2546 
2547 		usleep_range(250, 500);
2548 	}
2549 
2550 	if (!(val & ADSP2_RAM_RDY)) {
2551 		cs_dsp_err(dsp, "Failed to start DSP RAM\n");
2552 		return -EBUSY;
2553 	}
2554 
2555 	cs_dsp_dbg(dsp, "RAM ready after %d polls\n", count);
2556 
2557 	return 0;
2558 }
2559 
2560 static int cs_dsp_adsp2_enable_core(struct cs_dsp *dsp)
2561 {
2562 	int ret;
2563 
2564 	ret = regmap_update_bits_async(dsp->regmap, dsp->base + ADSP2_CONTROL,
2565 				       ADSP2_SYS_ENA, ADSP2_SYS_ENA);
2566 	if (ret != 0)
2567 		return ret;
2568 
2569 	return cs_dsp_adsp2v2_enable_core(dsp);
2570 }
2571 
2572 static int cs_dsp_adsp2_lock(struct cs_dsp *dsp, unsigned int lock_regions)
2573 {
2574 	struct regmap *regmap = dsp->regmap;
2575 	unsigned int code0, code1, lock_reg;
2576 
2577 	if (!(lock_regions & CS_ADSP2_REGION_ALL))
2578 		return 0;
2579 
2580 	lock_regions &= CS_ADSP2_REGION_ALL;
2581 	lock_reg = dsp->base + ADSP2_LOCK_REGION_1_LOCK_REGION_0;
2582 
2583 	while (lock_regions) {
2584 		code0 = code1 = 0;
2585 		if (lock_regions & BIT(0)) {
2586 			code0 = ADSP2_LOCK_CODE_0;
2587 			code1 = ADSP2_LOCK_CODE_1;
2588 		}
2589 		if (lock_regions & BIT(1)) {
2590 			code0 |= ADSP2_LOCK_CODE_0 << ADSP2_LOCK_REGION_SHIFT;
2591 			code1 |= ADSP2_LOCK_CODE_1 << ADSP2_LOCK_REGION_SHIFT;
2592 		}
2593 		regmap_write(regmap, lock_reg, code0);
2594 		regmap_write(regmap, lock_reg, code1);
2595 		lock_regions >>= 2;
2596 		lock_reg += 2;
2597 	}
2598 
2599 	return 0;
2600 }
2601 
2602 static int cs_dsp_adsp2_enable_memory(struct cs_dsp *dsp)
2603 {
2604 	return regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2605 				  ADSP2_MEM_ENA, ADSP2_MEM_ENA);
2606 }
2607 
2608 static void cs_dsp_adsp2_disable_memory(struct cs_dsp *dsp)
2609 {
2610 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2611 			   ADSP2_MEM_ENA, 0);
2612 }
2613 
2614 static void cs_dsp_adsp2_disable_core(struct cs_dsp *dsp)
2615 {
2616 	regmap_write(dsp->regmap, dsp->base + ADSP2_RDMA_CONFIG_1, 0);
2617 	regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_1, 0);
2618 	regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_2, 0);
2619 
2620 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2621 			   ADSP2_SYS_ENA, 0);
2622 }
2623 
2624 static void cs_dsp_adsp2v2_disable_core(struct cs_dsp *dsp)
2625 {
2626 	regmap_write(dsp->regmap, dsp->base + ADSP2_RDMA_CONFIG_1, 0);
2627 	regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_1, 0);
2628 	regmap_write(dsp->regmap, dsp->base + ADSP2V2_WDMA_CONFIG_2, 0);
2629 }
2630 
2631 static int cs_dsp_halo_configure_mpu(struct cs_dsp *dsp, unsigned int lock_regions)
2632 {
2633 	struct reg_sequence config[] = {
2634 		{ dsp->base + HALO_MPU_LOCK_CONFIG,     0x5555 },
2635 		{ dsp->base + HALO_MPU_LOCK_CONFIG,     0xAAAA },
2636 		{ dsp->base + HALO_MPU_XMEM_ACCESS_0,   0xFFFFFFFF },
2637 		{ dsp->base + HALO_MPU_YMEM_ACCESS_0,   0xFFFFFFFF },
2638 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_0, lock_regions },
2639 		{ dsp->base + HALO_MPU_XREG_ACCESS_0,   lock_regions },
2640 		{ dsp->base + HALO_MPU_YREG_ACCESS_0,   lock_regions },
2641 		{ dsp->base + HALO_MPU_XMEM_ACCESS_1,   0xFFFFFFFF },
2642 		{ dsp->base + HALO_MPU_YMEM_ACCESS_1,   0xFFFFFFFF },
2643 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_1, lock_regions },
2644 		{ dsp->base + HALO_MPU_XREG_ACCESS_1,   lock_regions },
2645 		{ dsp->base + HALO_MPU_YREG_ACCESS_1,   lock_regions },
2646 		{ dsp->base + HALO_MPU_XMEM_ACCESS_2,   0xFFFFFFFF },
2647 		{ dsp->base + HALO_MPU_YMEM_ACCESS_2,   0xFFFFFFFF },
2648 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_2, lock_regions },
2649 		{ dsp->base + HALO_MPU_XREG_ACCESS_2,   lock_regions },
2650 		{ dsp->base + HALO_MPU_YREG_ACCESS_2,   lock_regions },
2651 		{ dsp->base + HALO_MPU_XMEM_ACCESS_3,   0xFFFFFFFF },
2652 		{ dsp->base + HALO_MPU_YMEM_ACCESS_3,   0xFFFFFFFF },
2653 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_3, lock_regions },
2654 		{ dsp->base + HALO_MPU_XREG_ACCESS_3,   lock_regions },
2655 		{ dsp->base + HALO_MPU_YREG_ACCESS_3,   lock_regions },
2656 		{ dsp->base + HALO_MPU_LOCK_CONFIG,     0 },
2657 	};
2658 
2659 	return regmap_multi_reg_write(dsp->regmap, config, ARRAY_SIZE(config));
2660 }
2661 
2662 /**
2663  * cs_dsp_set_dspclk() - Applies the given frequency to the given cs_dsp
2664  * @dsp: pointer to DSP structure
2665  * @freq: clock rate to set
2666  *
2667  * This is only for use on ADSP2 cores.
2668  *
2669  * Return: Zero for success, a negative number on error.
2670  */
2671 int cs_dsp_set_dspclk(struct cs_dsp *dsp, unsigned int freq)
2672 {
2673 	int ret;
2674 
2675 	ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CLOCKING,
2676 				 ADSP2_CLK_SEL_MASK,
2677 				 freq << ADSP2_CLK_SEL_SHIFT);
2678 	if (ret)
2679 		cs_dsp_err(dsp, "Failed to set clock rate: %d\n", ret);
2680 
2681 	return ret;
2682 }
2683 EXPORT_SYMBOL_NS_GPL(cs_dsp_set_dspclk, FW_CS_DSP);
2684 
2685 static void cs_dsp_stop_watchdog(struct cs_dsp *dsp)
2686 {
2687 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_WATCHDOG,
2688 			   ADSP2_WDT_ENA_MASK, 0);
2689 }
2690 
2691 static void cs_dsp_halo_stop_watchdog(struct cs_dsp *dsp)
2692 {
2693 	regmap_update_bits(dsp->regmap, dsp->base + HALO_WDT_CONTROL,
2694 			   HALO_WDT_EN_MASK, 0);
2695 }
2696 
2697 /**
2698  * cs_dsp_power_up() - Downloads firmware to the DSP
2699  * @dsp: pointer to DSP structure
2700  * @wmfw_firmware: the firmware to be sent
2701  * @wmfw_filename: file name of firmware to be sent
2702  * @coeff_firmware: the coefficient data to be sent
2703  * @coeff_filename: file name of coefficient to data be sent
2704  * @fw_name: the user-friendly firmware name
2705  *
2706  * This function is used on ADSP2 and Halo DSP cores, it powers-up the DSP core
2707  * and downloads the firmware but does not start the firmware running. The
2708  * cs_dsp booted flag will be set once completed and if the core has a low-power
2709  * memory retention mode it will be put into this state after the firmware is
2710  * downloaded.
2711  *
2712  * Return: Zero for success, a negative number on error.
2713  */
2714 int cs_dsp_power_up(struct cs_dsp *dsp,
2715 		    const struct firmware *wmfw_firmware, const char *wmfw_filename,
2716 		    const struct firmware *coeff_firmware, const char *coeff_filename,
2717 		    const char *fw_name)
2718 {
2719 	int ret;
2720 
2721 	mutex_lock(&dsp->pwr_lock);
2722 
2723 	dsp->fw_name = fw_name;
2724 
2725 	if (dsp->ops->enable_memory) {
2726 		ret = dsp->ops->enable_memory(dsp);
2727 		if (ret != 0)
2728 			goto err_mutex;
2729 	}
2730 
2731 	if (dsp->ops->enable_core) {
2732 		ret = dsp->ops->enable_core(dsp);
2733 		if (ret != 0)
2734 			goto err_mem;
2735 	}
2736 
2737 	ret = cs_dsp_load(dsp, wmfw_firmware, wmfw_filename);
2738 	if (ret != 0)
2739 		goto err_ena;
2740 
2741 	ret = dsp->ops->setup_algs(dsp);
2742 	if (ret != 0)
2743 		goto err_ena;
2744 
2745 	ret = cs_dsp_load_coeff(dsp, coeff_firmware, coeff_filename);
2746 	if (ret != 0)
2747 		goto err_ena;
2748 
2749 	/* Initialize caches for enabled and unset controls */
2750 	ret = cs_dsp_coeff_init_control_caches(dsp);
2751 	if (ret != 0)
2752 		goto err_ena;
2753 
2754 	if (dsp->ops->disable_core)
2755 		dsp->ops->disable_core(dsp);
2756 
2757 	dsp->booted = true;
2758 
2759 	mutex_unlock(&dsp->pwr_lock);
2760 
2761 	return 0;
2762 err_ena:
2763 	if (dsp->ops->disable_core)
2764 		dsp->ops->disable_core(dsp);
2765 err_mem:
2766 	if (dsp->ops->disable_memory)
2767 		dsp->ops->disable_memory(dsp);
2768 err_mutex:
2769 	mutex_unlock(&dsp->pwr_lock);
2770 
2771 	return ret;
2772 }
2773 EXPORT_SYMBOL_NS_GPL(cs_dsp_power_up, FW_CS_DSP);
2774 
2775 /**
2776  * cs_dsp_power_down() - Powers-down the DSP
2777  * @dsp: pointer to DSP structure
2778  *
2779  * cs_dsp_stop() must have been called before this function. The core will be
2780  * fully powered down and so the memory will not be retained.
2781  */
2782 void cs_dsp_power_down(struct cs_dsp *dsp)
2783 {
2784 	struct cs_dsp_coeff_ctl *ctl;
2785 
2786 	mutex_lock(&dsp->pwr_lock);
2787 
2788 	cs_dsp_debugfs_clear(dsp);
2789 
2790 	dsp->fw_id = 0;
2791 	dsp->fw_id_version = 0;
2792 
2793 	dsp->booted = false;
2794 
2795 	if (dsp->ops->disable_memory)
2796 		dsp->ops->disable_memory(dsp);
2797 
2798 	list_for_each_entry(ctl, &dsp->ctl_list, list)
2799 		ctl->enabled = 0;
2800 
2801 	cs_dsp_free_alg_regions(dsp);
2802 
2803 	mutex_unlock(&dsp->pwr_lock);
2804 
2805 	cs_dsp_dbg(dsp, "Shutdown complete\n");
2806 }
2807 EXPORT_SYMBOL_NS_GPL(cs_dsp_power_down, FW_CS_DSP);
2808 
2809 static int cs_dsp_adsp2_start_core(struct cs_dsp *dsp)
2810 {
2811 	return regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2812 				  ADSP2_CORE_ENA | ADSP2_START,
2813 				  ADSP2_CORE_ENA | ADSP2_START);
2814 }
2815 
2816 static void cs_dsp_adsp2_stop_core(struct cs_dsp *dsp)
2817 {
2818 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2819 			   ADSP2_CORE_ENA | ADSP2_START, 0);
2820 }
2821 
2822 /**
2823  * cs_dsp_run() - Starts the firmware running
2824  * @dsp: pointer to DSP structure
2825  *
2826  * cs_dsp_power_up() must have previously been called successfully.
2827  *
2828  * Return: Zero for success, a negative number on error.
2829  */
2830 int cs_dsp_run(struct cs_dsp *dsp)
2831 {
2832 	int ret;
2833 
2834 	mutex_lock(&dsp->pwr_lock);
2835 
2836 	if (!dsp->booted) {
2837 		ret = -EIO;
2838 		goto err;
2839 	}
2840 
2841 	if (dsp->ops->enable_core) {
2842 		ret = dsp->ops->enable_core(dsp);
2843 		if (ret != 0)
2844 			goto err;
2845 	}
2846 
2847 	if (dsp->client_ops->pre_run) {
2848 		ret = dsp->client_ops->pre_run(dsp);
2849 		if (ret)
2850 			goto err;
2851 	}
2852 
2853 	/* Sync set controls */
2854 	ret = cs_dsp_coeff_sync_controls(dsp);
2855 	if (ret != 0)
2856 		goto err;
2857 
2858 	if (dsp->ops->lock_memory) {
2859 		ret = dsp->ops->lock_memory(dsp, dsp->lock_regions);
2860 		if (ret != 0) {
2861 			cs_dsp_err(dsp, "Error configuring MPU: %d\n", ret);
2862 			goto err;
2863 		}
2864 	}
2865 
2866 	if (dsp->ops->start_core) {
2867 		ret = dsp->ops->start_core(dsp);
2868 		if (ret != 0)
2869 			goto err;
2870 	}
2871 
2872 	dsp->running = true;
2873 
2874 	if (dsp->client_ops->post_run) {
2875 		ret = dsp->client_ops->post_run(dsp);
2876 		if (ret)
2877 			goto err;
2878 	}
2879 
2880 	mutex_unlock(&dsp->pwr_lock);
2881 
2882 	return 0;
2883 
2884 err:
2885 	if (dsp->ops->stop_core)
2886 		dsp->ops->stop_core(dsp);
2887 	if (dsp->ops->disable_core)
2888 		dsp->ops->disable_core(dsp);
2889 	mutex_unlock(&dsp->pwr_lock);
2890 
2891 	return ret;
2892 }
2893 EXPORT_SYMBOL_NS_GPL(cs_dsp_run, FW_CS_DSP);
2894 
2895 /**
2896  * cs_dsp_stop() - Stops the firmware
2897  * @dsp: pointer to DSP structure
2898  *
2899  * Memory will not be disabled so firmware will remain loaded.
2900  */
2901 void cs_dsp_stop(struct cs_dsp *dsp)
2902 {
2903 	/* Tell the firmware to cleanup */
2904 	cs_dsp_signal_event_controls(dsp, CS_DSP_FW_EVENT_SHUTDOWN);
2905 
2906 	if (dsp->ops->stop_watchdog)
2907 		dsp->ops->stop_watchdog(dsp);
2908 
2909 	/* Log firmware state, it can be useful for analysis */
2910 	if (dsp->ops->show_fw_status)
2911 		dsp->ops->show_fw_status(dsp);
2912 
2913 	mutex_lock(&dsp->pwr_lock);
2914 
2915 	if (dsp->client_ops->pre_stop)
2916 		dsp->client_ops->pre_stop(dsp);
2917 
2918 	dsp->running = false;
2919 
2920 	if (dsp->ops->stop_core)
2921 		dsp->ops->stop_core(dsp);
2922 	if (dsp->ops->disable_core)
2923 		dsp->ops->disable_core(dsp);
2924 
2925 	if (dsp->client_ops->post_stop)
2926 		dsp->client_ops->post_stop(dsp);
2927 
2928 	mutex_unlock(&dsp->pwr_lock);
2929 
2930 	cs_dsp_dbg(dsp, "Execution stopped\n");
2931 }
2932 EXPORT_SYMBOL_NS_GPL(cs_dsp_stop, FW_CS_DSP);
2933 
2934 static int cs_dsp_halo_start_core(struct cs_dsp *dsp)
2935 {
2936 	int ret;
2937 
2938 	ret = regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2939 				 HALO_CORE_RESET | HALO_CORE_EN,
2940 				 HALO_CORE_RESET | HALO_CORE_EN);
2941 	if (ret)
2942 		return ret;
2943 
2944 	return regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2945 				  HALO_CORE_RESET, 0);
2946 }
2947 
2948 static void cs_dsp_halo_stop_core(struct cs_dsp *dsp)
2949 {
2950 	regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2951 			   HALO_CORE_EN, 0);
2952 
2953 	/* reset halo core with CORE_SOFT_RESET */
2954 	regmap_update_bits(dsp->regmap, dsp->base + HALO_CORE_SOFT_RESET,
2955 			   HALO_CORE_SOFT_RESET_MASK, 1);
2956 }
2957 
2958 /**
2959  * cs_dsp_adsp2_init() - Initialise a cs_dsp structure representing a ADSP2 core
2960  * @dsp: pointer to DSP structure
2961  *
2962  * Return: Zero for success, a negative number on error.
2963  */
2964 int cs_dsp_adsp2_init(struct cs_dsp *dsp)
2965 {
2966 	int ret;
2967 
2968 	switch (dsp->rev) {
2969 	case 0:
2970 		/*
2971 		 * Disable the DSP memory by default when in reset for a small
2972 		 * power saving.
2973 		 */
2974 		ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2975 					 ADSP2_MEM_ENA, 0);
2976 		if (ret) {
2977 			cs_dsp_err(dsp,
2978 				   "Failed to clear memory retention: %d\n", ret);
2979 			return ret;
2980 		}
2981 
2982 		dsp->ops = &cs_dsp_adsp2_ops[0];
2983 		break;
2984 	case 1:
2985 		dsp->ops = &cs_dsp_adsp2_ops[1];
2986 		break;
2987 	default:
2988 		dsp->ops = &cs_dsp_adsp2_ops[2];
2989 		break;
2990 	}
2991 
2992 	return cs_dsp_common_init(dsp);
2993 }
2994 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp2_init, FW_CS_DSP);
2995 
2996 /**
2997  * cs_dsp_halo_init() - Initialise a cs_dsp structure representing a HALO Core DSP
2998  * @dsp: pointer to DSP structure
2999  *
3000  * Return: Zero for success, a negative number on error.
3001  */
3002 int cs_dsp_halo_init(struct cs_dsp *dsp)
3003 {
3004 	if (dsp->no_core_startstop)
3005 		dsp->ops = &cs_dsp_halo_ao_ops;
3006 	else
3007 		dsp->ops = &cs_dsp_halo_ops;
3008 
3009 	return cs_dsp_common_init(dsp);
3010 }
3011 EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_init, FW_CS_DSP);
3012 
3013 /**
3014  * cs_dsp_remove() - Clean a cs_dsp before deletion
3015  * @dsp: pointer to DSP structure
3016  */
3017 void cs_dsp_remove(struct cs_dsp *dsp)
3018 {
3019 	struct cs_dsp_coeff_ctl *ctl;
3020 
3021 	while (!list_empty(&dsp->ctl_list)) {
3022 		ctl = list_first_entry(&dsp->ctl_list, struct cs_dsp_coeff_ctl, list);
3023 
3024 		if (dsp->client_ops->control_remove)
3025 			dsp->client_ops->control_remove(ctl);
3026 
3027 		list_del(&ctl->list);
3028 		cs_dsp_free_ctl_blk(ctl);
3029 	}
3030 }
3031 EXPORT_SYMBOL_NS_GPL(cs_dsp_remove, FW_CS_DSP);
3032 
3033 /**
3034  * cs_dsp_read_raw_data_block() - Reads a block of data from DSP memory
3035  * @dsp: pointer to DSP structure
3036  * @mem_type: the type of DSP memory containing the data to be read
3037  * @mem_addr: the address of the data within the memory region
3038  * @num_words: the length of the data to read
3039  * @data: a buffer to store the fetched data
3040  *
3041  * If this is used to read unpacked 24-bit memory, each 24-bit DSP word will
3042  * occupy 32-bits in data (MSbyte will be 0). This padding can be removed using
3043  * cs_dsp_remove_padding()
3044  *
3045  * Return: Zero for success, a negative number on error.
3046  */
3047 int cs_dsp_read_raw_data_block(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr,
3048 			       unsigned int num_words, __be32 *data)
3049 {
3050 	struct cs_dsp_region const *mem = cs_dsp_find_region(dsp, mem_type);
3051 	unsigned int reg;
3052 	int ret;
3053 
3054 	lockdep_assert_held(&dsp->pwr_lock);
3055 
3056 	if (!mem)
3057 		return -EINVAL;
3058 
3059 	reg = dsp->ops->region_to_reg(mem, mem_addr);
3060 
3061 	ret = regmap_raw_read(dsp->regmap, reg, data,
3062 			      sizeof(*data) * num_words);
3063 	if (ret < 0)
3064 		return ret;
3065 
3066 	return 0;
3067 }
3068 EXPORT_SYMBOL_NS_GPL(cs_dsp_read_raw_data_block, FW_CS_DSP);
3069 
3070 /**
3071  * cs_dsp_read_data_word() - Reads a word from DSP memory
3072  * @dsp: pointer to DSP structure
3073  * @mem_type: the type of DSP memory containing the data to be read
3074  * @mem_addr: the address of the data within the memory region
3075  * @data: a buffer to store the fetched data
3076  *
3077  * Return: Zero for success, a negative number on error.
3078  */
3079 int cs_dsp_read_data_word(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr, u32 *data)
3080 {
3081 	__be32 raw;
3082 	int ret;
3083 
3084 	ret = cs_dsp_read_raw_data_block(dsp, mem_type, mem_addr, 1, &raw);
3085 	if (ret < 0)
3086 		return ret;
3087 
3088 	*data = be32_to_cpu(raw) & 0x00ffffffu;
3089 
3090 	return 0;
3091 }
3092 EXPORT_SYMBOL_NS_GPL(cs_dsp_read_data_word, FW_CS_DSP);
3093 
3094 /**
3095  * cs_dsp_write_data_word() - Writes a word to DSP memory
3096  * @dsp: pointer to DSP structure
3097  * @mem_type: the type of DSP memory containing the data to be written
3098  * @mem_addr: the address of the data within the memory region
3099  * @data: the data to be written
3100  *
3101  * Return: Zero for success, a negative number on error.
3102  */
3103 int cs_dsp_write_data_word(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr, u32 data)
3104 {
3105 	struct cs_dsp_region const *mem = cs_dsp_find_region(dsp, mem_type);
3106 	__be32 val = cpu_to_be32(data & 0x00ffffffu);
3107 	unsigned int reg;
3108 
3109 	lockdep_assert_held(&dsp->pwr_lock);
3110 
3111 	if (!mem)
3112 		return -EINVAL;
3113 
3114 	reg = dsp->ops->region_to_reg(mem, mem_addr);
3115 
3116 	return regmap_raw_write(dsp->regmap, reg, &val, sizeof(val));
3117 }
3118 EXPORT_SYMBOL_NS_GPL(cs_dsp_write_data_word, FW_CS_DSP);
3119 
3120 /**
3121  * cs_dsp_remove_padding() - Convert unpacked words to packed bytes
3122  * @buf: buffer containing DSP words read from DSP memory
3123  * @nwords: number of words to convert
3124  *
3125  * DSP words from the register map have pad bytes and the data bytes
3126  * are in swapped order. This swaps to the native endian order and
3127  * strips the pad bytes.
3128  */
3129 void cs_dsp_remove_padding(u32 *buf, int nwords)
3130 {
3131 	const __be32 *pack_in = (__be32 *)buf;
3132 	u8 *pack_out = (u8 *)buf;
3133 	int i;
3134 
3135 	for (i = 0; i < nwords; i++) {
3136 		u32 word = be32_to_cpu(*pack_in++);
3137 		*pack_out++ = (u8)word;
3138 		*pack_out++ = (u8)(word >> 8);
3139 		*pack_out++ = (u8)(word >> 16);
3140 	}
3141 }
3142 EXPORT_SYMBOL_NS_GPL(cs_dsp_remove_padding, FW_CS_DSP);
3143 
3144 /**
3145  * cs_dsp_adsp2_bus_error() - Handle a DSP bus error interrupt
3146  * @dsp: pointer to DSP structure
3147  *
3148  * The firmware and DSP state will be logged for future analysis.
3149  */
3150 void cs_dsp_adsp2_bus_error(struct cs_dsp *dsp)
3151 {
3152 	unsigned int val;
3153 	struct regmap *regmap = dsp->regmap;
3154 	int ret = 0;
3155 
3156 	mutex_lock(&dsp->pwr_lock);
3157 
3158 	ret = regmap_read(regmap, dsp->base + ADSP2_LOCK_REGION_CTRL, &val);
3159 	if (ret) {
3160 		cs_dsp_err(dsp,
3161 			   "Failed to read Region Lock Ctrl register: %d\n", ret);
3162 		goto error;
3163 	}
3164 
3165 	if (val & ADSP2_WDT_TIMEOUT_STS_MASK) {
3166 		cs_dsp_err(dsp, "watchdog timeout error\n");
3167 		dsp->ops->stop_watchdog(dsp);
3168 		if (dsp->client_ops->watchdog_expired)
3169 			dsp->client_ops->watchdog_expired(dsp);
3170 	}
3171 
3172 	if (val & (ADSP2_ADDR_ERR_MASK | ADSP2_REGION_LOCK_ERR_MASK)) {
3173 		if (val & ADSP2_ADDR_ERR_MASK)
3174 			cs_dsp_err(dsp, "bus error: address error\n");
3175 		else
3176 			cs_dsp_err(dsp, "bus error: region lock error\n");
3177 
3178 		ret = regmap_read(regmap, dsp->base + ADSP2_BUS_ERR_ADDR, &val);
3179 		if (ret) {
3180 			cs_dsp_err(dsp,
3181 				   "Failed to read Bus Err Addr register: %d\n",
3182 				   ret);
3183 			goto error;
3184 		}
3185 
3186 		cs_dsp_err(dsp, "bus error address = 0x%x\n",
3187 			   val & ADSP2_BUS_ERR_ADDR_MASK);
3188 
3189 		ret = regmap_read(regmap,
3190 				  dsp->base + ADSP2_PMEM_ERR_ADDR_XMEM_ERR_ADDR,
3191 				  &val);
3192 		if (ret) {
3193 			cs_dsp_err(dsp,
3194 				   "Failed to read Pmem Xmem Err Addr register: %d\n",
3195 				   ret);
3196 			goto error;
3197 		}
3198 
3199 		cs_dsp_err(dsp, "xmem error address = 0x%x\n",
3200 			   val & ADSP2_XMEM_ERR_ADDR_MASK);
3201 		cs_dsp_err(dsp, "pmem error address = 0x%x\n",
3202 			   (val & ADSP2_PMEM_ERR_ADDR_MASK) >>
3203 			   ADSP2_PMEM_ERR_ADDR_SHIFT);
3204 	}
3205 
3206 	regmap_update_bits(regmap, dsp->base + ADSP2_LOCK_REGION_CTRL,
3207 			   ADSP2_CTRL_ERR_EINT, ADSP2_CTRL_ERR_EINT);
3208 
3209 error:
3210 	mutex_unlock(&dsp->pwr_lock);
3211 }
3212 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp2_bus_error, FW_CS_DSP);
3213 
3214 /**
3215  * cs_dsp_halo_bus_error() - Handle a DSP bus error interrupt
3216  * @dsp: pointer to DSP structure
3217  *
3218  * The firmware and DSP state will be logged for future analysis.
3219  */
3220 void cs_dsp_halo_bus_error(struct cs_dsp *dsp)
3221 {
3222 	struct regmap *regmap = dsp->regmap;
3223 	unsigned int fault[6];
3224 	struct reg_sequence clear[] = {
3225 		{ dsp->base + HALO_MPU_XM_VIO_STATUS,     0x0 },
3226 		{ dsp->base + HALO_MPU_YM_VIO_STATUS,     0x0 },
3227 		{ dsp->base + HALO_MPU_PM_VIO_STATUS,     0x0 },
3228 	};
3229 	int ret;
3230 
3231 	mutex_lock(&dsp->pwr_lock);
3232 
3233 	ret = regmap_read(regmap, dsp->base_sysinfo + HALO_AHBM_WINDOW_DEBUG_1,
3234 			  fault);
3235 	if (ret) {
3236 		cs_dsp_warn(dsp, "Failed to read AHB DEBUG_1: %d\n", ret);
3237 		goto exit_unlock;
3238 	}
3239 
3240 	cs_dsp_warn(dsp, "AHB: STATUS: 0x%x ADDR: 0x%x\n",
3241 		    *fault & HALO_AHBM_FLAGS_ERR_MASK,
3242 		    (*fault & HALO_AHBM_CORE_ERR_ADDR_MASK) >>
3243 		    HALO_AHBM_CORE_ERR_ADDR_SHIFT);
3244 
3245 	ret = regmap_read(regmap, dsp->base_sysinfo + HALO_AHBM_WINDOW_DEBUG_0,
3246 			  fault);
3247 	if (ret) {
3248 		cs_dsp_warn(dsp, "Failed to read AHB DEBUG_0: %d\n", ret);
3249 		goto exit_unlock;
3250 	}
3251 
3252 	cs_dsp_warn(dsp, "AHB: SYS_ADDR: 0x%x\n", *fault);
3253 
3254 	ret = regmap_bulk_read(regmap, dsp->base + HALO_MPU_XM_VIO_ADDR,
3255 			       fault, ARRAY_SIZE(fault));
3256 	if (ret) {
3257 		cs_dsp_warn(dsp, "Failed to read MPU fault info: %d\n", ret);
3258 		goto exit_unlock;
3259 	}
3260 
3261 	cs_dsp_warn(dsp, "XM: STATUS:0x%x ADDR:0x%x\n", fault[1], fault[0]);
3262 	cs_dsp_warn(dsp, "YM: STATUS:0x%x ADDR:0x%x\n", fault[3], fault[2]);
3263 	cs_dsp_warn(dsp, "PM: STATUS:0x%x ADDR:0x%x\n", fault[5], fault[4]);
3264 
3265 	ret = regmap_multi_reg_write(dsp->regmap, clear, ARRAY_SIZE(clear));
3266 	if (ret)
3267 		cs_dsp_warn(dsp, "Failed to clear MPU status: %d\n", ret);
3268 
3269 exit_unlock:
3270 	mutex_unlock(&dsp->pwr_lock);
3271 }
3272 EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_bus_error, FW_CS_DSP);
3273 
3274 /**
3275  * cs_dsp_halo_wdt_expire() - Handle DSP watchdog expiry
3276  * @dsp: pointer to DSP structure
3277  *
3278  * This is logged for future analysis.
3279  */
3280 void cs_dsp_halo_wdt_expire(struct cs_dsp *dsp)
3281 {
3282 	mutex_lock(&dsp->pwr_lock);
3283 
3284 	cs_dsp_warn(dsp, "WDT Expiry Fault\n");
3285 
3286 	dsp->ops->stop_watchdog(dsp);
3287 	if (dsp->client_ops->watchdog_expired)
3288 		dsp->client_ops->watchdog_expired(dsp);
3289 
3290 	mutex_unlock(&dsp->pwr_lock);
3291 }
3292 EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_wdt_expire, FW_CS_DSP);
3293 
3294 static const struct cs_dsp_ops cs_dsp_adsp1_ops = {
3295 	.validate_version = cs_dsp_validate_version,
3296 	.parse_sizes = cs_dsp_adsp1_parse_sizes,
3297 	.region_to_reg = cs_dsp_region_to_reg,
3298 };
3299 
3300 static const struct cs_dsp_ops cs_dsp_adsp2_ops[] = {
3301 	{
3302 		.parse_sizes = cs_dsp_adsp2_parse_sizes,
3303 		.validate_version = cs_dsp_validate_version,
3304 		.setup_algs = cs_dsp_adsp2_setup_algs,
3305 		.region_to_reg = cs_dsp_region_to_reg,
3306 
3307 		.show_fw_status = cs_dsp_adsp2_show_fw_status,
3308 
3309 		.enable_memory = cs_dsp_adsp2_enable_memory,
3310 		.disable_memory = cs_dsp_adsp2_disable_memory,
3311 
3312 		.enable_core = cs_dsp_adsp2_enable_core,
3313 		.disable_core = cs_dsp_adsp2_disable_core,
3314 
3315 		.start_core = cs_dsp_adsp2_start_core,
3316 		.stop_core = cs_dsp_adsp2_stop_core,
3317 
3318 	},
3319 	{
3320 		.parse_sizes = cs_dsp_adsp2_parse_sizes,
3321 		.validate_version = cs_dsp_validate_version,
3322 		.setup_algs = cs_dsp_adsp2_setup_algs,
3323 		.region_to_reg = cs_dsp_region_to_reg,
3324 
3325 		.show_fw_status = cs_dsp_adsp2v2_show_fw_status,
3326 
3327 		.enable_memory = cs_dsp_adsp2_enable_memory,
3328 		.disable_memory = cs_dsp_adsp2_disable_memory,
3329 		.lock_memory = cs_dsp_adsp2_lock,
3330 
3331 		.enable_core = cs_dsp_adsp2v2_enable_core,
3332 		.disable_core = cs_dsp_adsp2v2_disable_core,
3333 
3334 		.start_core = cs_dsp_adsp2_start_core,
3335 		.stop_core = cs_dsp_adsp2_stop_core,
3336 	},
3337 	{
3338 		.parse_sizes = cs_dsp_adsp2_parse_sizes,
3339 		.validate_version = cs_dsp_validate_version,
3340 		.setup_algs = cs_dsp_adsp2_setup_algs,
3341 		.region_to_reg = cs_dsp_region_to_reg,
3342 
3343 		.show_fw_status = cs_dsp_adsp2v2_show_fw_status,
3344 		.stop_watchdog = cs_dsp_stop_watchdog,
3345 
3346 		.enable_memory = cs_dsp_adsp2_enable_memory,
3347 		.disable_memory = cs_dsp_adsp2_disable_memory,
3348 		.lock_memory = cs_dsp_adsp2_lock,
3349 
3350 		.enable_core = cs_dsp_adsp2v2_enable_core,
3351 		.disable_core = cs_dsp_adsp2v2_disable_core,
3352 
3353 		.start_core = cs_dsp_adsp2_start_core,
3354 		.stop_core = cs_dsp_adsp2_stop_core,
3355 	},
3356 };
3357 
3358 static const struct cs_dsp_ops cs_dsp_halo_ops = {
3359 	.parse_sizes = cs_dsp_adsp2_parse_sizes,
3360 	.validate_version = cs_dsp_halo_validate_version,
3361 	.setup_algs = cs_dsp_halo_setup_algs,
3362 	.region_to_reg = cs_dsp_halo_region_to_reg,
3363 
3364 	.show_fw_status = cs_dsp_halo_show_fw_status,
3365 	.stop_watchdog = cs_dsp_halo_stop_watchdog,
3366 
3367 	.lock_memory = cs_dsp_halo_configure_mpu,
3368 
3369 	.start_core = cs_dsp_halo_start_core,
3370 	.stop_core = cs_dsp_halo_stop_core,
3371 };
3372 
3373 static const struct cs_dsp_ops cs_dsp_halo_ao_ops = {
3374 	.parse_sizes = cs_dsp_adsp2_parse_sizes,
3375 	.validate_version = cs_dsp_halo_validate_version,
3376 	.setup_algs = cs_dsp_halo_setup_algs,
3377 	.region_to_reg = cs_dsp_halo_region_to_reg,
3378 	.show_fw_status = cs_dsp_halo_show_fw_status,
3379 };
3380 
3381 /**
3382  * cs_dsp_chunk_write() - Format data to a DSP memory chunk
3383  * @ch: Pointer to the chunk structure
3384  * @nbits: Number of bits to write
3385  * @val: Value to write
3386  *
3387  * This function sequentially writes values into the format required for DSP
3388  * memory, it handles both inserting of the padding bytes and converting to
3389  * big endian. Note that data is only committed to the chunk when a whole DSP
3390  * words worth of data is available.
3391  *
3392  * Return: Zero for success, a negative number on error.
3393  */
3394 int cs_dsp_chunk_write(struct cs_dsp_chunk *ch, int nbits, u32 val)
3395 {
3396 	int nwrite, i;
3397 
3398 	nwrite = min(CS_DSP_DATA_WORD_BITS - ch->cachebits, nbits);
3399 
3400 	ch->cache <<= nwrite;
3401 	ch->cache |= val >> (nbits - nwrite);
3402 	ch->cachebits += nwrite;
3403 	nbits -= nwrite;
3404 
3405 	if (ch->cachebits == CS_DSP_DATA_WORD_BITS) {
3406 		if (cs_dsp_chunk_end(ch))
3407 			return -ENOSPC;
3408 
3409 		ch->cache &= 0xFFFFFF;
3410 		for (i = 0; i < sizeof(ch->cache); i++, ch->cache <<= BITS_PER_BYTE)
3411 			*ch->data++ = (ch->cache & 0xFF000000) >> CS_DSP_DATA_WORD_BITS;
3412 
3413 		ch->bytes += sizeof(ch->cache);
3414 		ch->cachebits = 0;
3415 	}
3416 
3417 	if (nbits)
3418 		return cs_dsp_chunk_write(ch, nbits, val);
3419 
3420 	return 0;
3421 }
3422 EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_write, FW_CS_DSP);
3423 
3424 /**
3425  * cs_dsp_chunk_flush() - Pad remaining data with zero and commit to chunk
3426  * @ch: Pointer to the chunk structure
3427  *
3428  * As cs_dsp_chunk_write only writes data when a whole DSP word is ready to
3429  * be written out it is possible that some data will remain in the cache, this
3430  * function will pad that data with zeros upto a whole DSP word and write out.
3431  *
3432  * Return: Zero for success, a negative number on error.
3433  */
3434 int cs_dsp_chunk_flush(struct cs_dsp_chunk *ch)
3435 {
3436 	if (!ch->cachebits)
3437 		return 0;
3438 
3439 	return cs_dsp_chunk_write(ch, CS_DSP_DATA_WORD_BITS - ch->cachebits, 0);
3440 }
3441 EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_flush, FW_CS_DSP);
3442 
3443 /**
3444  * cs_dsp_chunk_read() - Parse data from a DSP memory chunk
3445  * @ch: Pointer to the chunk structure
3446  * @nbits: Number of bits to read
3447  *
3448  * This function sequentially reads values from a DSP memory formatted buffer,
3449  * it handles both removing of the padding bytes and converting from big endian.
3450  *
3451  * Return: A negative number is returned on error, otherwise the read value.
3452  */
3453 int cs_dsp_chunk_read(struct cs_dsp_chunk *ch, int nbits)
3454 {
3455 	int nread, i;
3456 	u32 result;
3457 
3458 	if (!ch->cachebits) {
3459 		if (cs_dsp_chunk_end(ch))
3460 			return -ENOSPC;
3461 
3462 		ch->cache = 0;
3463 		ch->cachebits = CS_DSP_DATA_WORD_BITS;
3464 
3465 		for (i = 0; i < sizeof(ch->cache); i++, ch->cache <<= BITS_PER_BYTE)
3466 			ch->cache |= *ch->data++;
3467 
3468 		ch->bytes += sizeof(ch->cache);
3469 	}
3470 
3471 	nread = min(ch->cachebits, nbits);
3472 	nbits -= nread;
3473 
3474 	result = ch->cache >> ((sizeof(ch->cache) * BITS_PER_BYTE) - nread);
3475 	ch->cache <<= nread;
3476 	ch->cachebits -= nread;
3477 
3478 	if (nbits)
3479 		result = (result << nbits) | cs_dsp_chunk_read(ch, nbits);
3480 
3481 	return result;
3482 }
3483 EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_read, FW_CS_DSP);
3484 
3485 
3486 struct cs_dsp_wseq_op {
3487 	struct list_head list;
3488 	u32 address;
3489 	u32 data;
3490 	u16 offset;
3491 	u8 operation;
3492 };
3493 
3494 static void cs_dsp_wseq_clear(struct cs_dsp *dsp, struct cs_dsp_wseq *wseq)
3495 {
3496 	struct cs_dsp_wseq_op *op, *op_tmp;
3497 
3498 	list_for_each_entry_safe(op, op_tmp, &wseq->ops, list) {
3499 		list_del(&op->list);
3500 		devm_kfree(dsp->dev, op);
3501 	}
3502 }
3503 
3504 static int cs_dsp_populate_wseq(struct cs_dsp *dsp, struct cs_dsp_wseq *wseq)
3505 {
3506 	struct cs_dsp_wseq_op *op = NULL;
3507 	struct cs_dsp_chunk chunk;
3508 	u8 *words;
3509 	int ret;
3510 
3511 	if (!wseq->ctl) {
3512 		cs_dsp_err(dsp, "No control for write sequence\n");
3513 		return -EINVAL;
3514 	}
3515 
3516 	words = kzalloc(wseq->ctl->len, GFP_KERNEL);
3517 	if (!words)
3518 		return -ENOMEM;
3519 
3520 	ret = cs_dsp_coeff_read_ctrl(wseq->ctl, 0, words, wseq->ctl->len);
3521 	if (ret) {
3522 		cs_dsp_err(dsp, "Failed to read %s: %d\n", wseq->ctl->subname, ret);
3523 		goto err_free;
3524 	}
3525 
3526 	INIT_LIST_HEAD(&wseq->ops);
3527 
3528 	chunk = cs_dsp_chunk(words, wseq->ctl->len);
3529 
3530 	while (!cs_dsp_chunk_end(&chunk)) {
3531 		op = devm_kzalloc(dsp->dev, sizeof(*op), GFP_KERNEL);
3532 		if (!op) {
3533 			ret = -ENOMEM;
3534 			goto err_free;
3535 		}
3536 
3537 		op->offset = cs_dsp_chunk_bytes(&chunk);
3538 		op->operation = cs_dsp_chunk_read(&chunk, 8);
3539 
3540 		switch (op->operation) {
3541 		case CS_DSP_WSEQ_END:
3542 			op->data = WSEQ_END_OF_SCRIPT;
3543 			break;
3544 		case CS_DSP_WSEQ_UNLOCK:
3545 			op->data = cs_dsp_chunk_read(&chunk, 16);
3546 			break;
3547 		case CS_DSP_WSEQ_ADDR8:
3548 			op->address = cs_dsp_chunk_read(&chunk, 8);
3549 			op->data = cs_dsp_chunk_read(&chunk, 32);
3550 			break;
3551 		case CS_DSP_WSEQ_H16:
3552 		case CS_DSP_WSEQ_L16:
3553 			op->address = cs_dsp_chunk_read(&chunk, 24);
3554 			op->data = cs_dsp_chunk_read(&chunk, 16);
3555 			break;
3556 		case CS_DSP_WSEQ_FULL:
3557 			op->address = cs_dsp_chunk_read(&chunk, 32);
3558 			op->data = cs_dsp_chunk_read(&chunk, 32);
3559 			break;
3560 		default:
3561 			ret = -EINVAL;
3562 			cs_dsp_err(dsp, "Unsupported op: %X\n", op->operation);
3563 			devm_kfree(dsp->dev, op);
3564 			goto err_free;
3565 		}
3566 
3567 		list_add_tail(&op->list, &wseq->ops);
3568 
3569 		if (op->operation == CS_DSP_WSEQ_END)
3570 			break;
3571 	}
3572 
3573 	if (op && op->operation != CS_DSP_WSEQ_END) {
3574 		cs_dsp_err(dsp, "%s missing end terminator\n", wseq->ctl->subname);
3575 		ret = -ENOENT;
3576 	}
3577 
3578 err_free:
3579 	kfree(words);
3580 
3581 	return ret;
3582 }
3583 
3584 /**
3585  * cs_dsp_wseq_init() - Initialize write sequences contained within the loaded DSP firmware
3586  * @dsp: Pointer to DSP structure
3587  * @wseqs: List of write sequences to initialize
3588  * @num_wseqs: Number of write sequences to initialize
3589  *
3590  * Return: Zero for success, a negative number on error.
3591  */
3592 int cs_dsp_wseq_init(struct cs_dsp *dsp, struct cs_dsp_wseq *wseqs, unsigned int num_wseqs)
3593 {
3594 	int i, ret;
3595 
3596 	lockdep_assert_held(&dsp->pwr_lock);
3597 
3598 	for (i = 0; i < num_wseqs; i++) {
3599 		ret = cs_dsp_populate_wseq(dsp, &wseqs[i]);
3600 		if (ret) {
3601 			cs_dsp_wseq_clear(dsp, &wseqs[i]);
3602 			return ret;
3603 		}
3604 	}
3605 
3606 	return 0;
3607 }
3608 EXPORT_SYMBOL_NS_GPL(cs_dsp_wseq_init, FW_CS_DSP);
3609 
3610 static struct cs_dsp_wseq_op *cs_dsp_wseq_find_op(u32 addr, u8 op_code,
3611 						  struct list_head *wseq_ops)
3612 {
3613 	struct cs_dsp_wseq_op *op;
3614 
3615 	list_for_each_entry(op, wseq_ops, list) {
3616 		if (op->operation == op_code && op->address == addr)
3617 			return op;
3618 	}
3619 
3620 	return NULL;
3621 }
3622 
3623 /**
3624  * cs_dsp_wseq_write() - Add or update an entry in a write sequence
3625  * @dsp: Pointer to a DSP structure
3626  * @wseq: Write sequence to write to
3627  * @addr: Address of the register to be written to
3628  * @data: Data to be written
3629  * @op_code: The type of operation of the new entry
3630  * @update: If true, searches for the first entry in the write sequence with
3631  * the same address and op_code, and replaces it. If false, creates a new entry
3632  * at the tail
3633  *
3634  * This function formats register address and value pairs into the format
3635  * required for write sequence entries, and either updates or adds the
3636  * new entry into the write sequence.
3637  *
3638  * If update is set to true and no matching entry is found, it will add a new entry.
3639  *
3640  * Return: Zero for success, a negative number on error.
3641  */
3642 int cs_dsp_wseq_write(struct cs_dsp *dsp, struct cs_dsp_wseq *wseq,
3643 		      u32 addr, u32 data, u8 op_code, bool update)
3644 {
3645 	struct cs_dsp_wseq_op *op_end, *op_new = NULL;
3646 	u32 words[WSEQ_OP_MAX_WORDS];
3647 	struct cs_dsp_chunk chunk;
3648 	int new_op_size, ret;
3649 
3650 	if (update)
3651 		op_new = cs_dsp_wseq_find_op(addr, op_code, &wseq->ops);
3652 
3653 	/* If entry to update is not found, treat it as a new operation */
3654 	if (!op_new) {
3655 		op_end = cs_dsp_wseq_find_op(0, CS_DSP_WSEQ_END, &wseq->ops);
3656 		if (!op_end) {
3657 			cs_dsp_err(dsp, "Missing terminator for %s\n", wseq->ctl->subname);
3658 			return -EINVAL;
3659 		}
3660 
3661 		op_new = devm_kzalloc(dsp->dev, sizeof(*op_new), GFP_KERNEL);
3662 		if (!op_new)
3663 			return -ENOMEM;
3664 
3665 		op_new->operation = op_code;
3666 		op_new->address = addr;
3667 		op_new->offset = op_end->offset;
3668 		update = false;
3669 	}
3670 
3671 	op_new->data = data;
3672 
3673 	chunk = cs_dsp_chunk(words, sizeof(words));
3674 	cs_dsp_chunk_write(&chunk, 8, op_new->operation);
3675 
3676 	switch (op_code) {
3677 	case CS_DSP_WSEQ_FULL:
3678 		cs_dsp_chunk_write(&chunk, 32, op_new->address);
3679 		cs_dsp_chunk_write(&chunk, 32, op_new->data);
3680 		break;
3681 	case CS_DSP_WSEQ_L16:
3682 	case CS_DSP_WSEQ_H16:
3683 		cs_dsp_chunk_write(&chunk, 24, op_new->address);
3684 		cs_dsp_chunk_write(&chunk, 16, op_new->data);
3685 		break;
3686 	default:
3687 		ret = -EINVAL;
3688 		cs_dsp_err(dsp, "Operation %X not supported\n", op_code);
3689 		goto op_new_free;
3690 	}
3691 
3692 	new_op_size = cs_dsp_chunk_bytes(&chunk);
3693 
3694 	if (!update) {
3695 		if (wseq->ctl->len - op_end->offset < new_op_size) {
3696 			cs_dsp_err(dsp, "Not enough memory in %s for entry\n", wseq->ctl->subname);
3697 			ret = -E2BIG;
3698 			goto op_new_free;
3699 		}
3700 
3701 		op_end->offset += new_op_size;
3702 
3703 		ret = cs_dsp_coeff_write_ctrl(wseq->ctl, op_end->offset / sizeof(u32),
3704 					      &op_end->data, sizeof(u32));
3705 		if (ret)
3706 			goto op_new_free;
3707 
3708 		list_add_tail(&op_new->list, &op_end->list);
3709 	}
3710 
3711 	ret = cs_dsp_coeff_write_ctrl(wseq->ctl, op_new->offset / sizeof(u32),
3712 				      words, new_op_size);
3713 	if (ret)
3714 		goto op_new_free;
3715 
3716 	return 0;
3717 
3718 op_new_free:
3719 	devm_kfree(dsp->dev, op_new);
3720 
3721 	return ret;
3722 }
3723 EXPORT_SYMBOL_NS_GPL(cs_dsp_wseq_write, FW_CS_DSP);
3724 
3725 /**
3726  * cs_dsp_wseq_multi_write() - Add or update multiple entries in a write sequence
3727  * @dsp: Pointer to a DSP structure
3728  * @wseq: Write sequence to write to
3729  * @reg_seq: List of address-data pairs
3730  * @num_regs: Number of address-data pairs
3731  * @op_code: The types of operations of the new entries
3732  * @update: If true, searches for the first entry in the write sequence with
3733  * the same address and op_code, and replaces it. If false, creates a new entry
3734  * at the tail
3735  *
3736  * This function calls cs_dsp_wseq_write() for multiple address-data pairs.
3737  *
3738  * Return: Zero for success, a negative number on error.
3739  */
3740 int cs_dsp_wseq_multi_write(struct cs_dsp *dsp, struct cs_dsp_wseq *wseq,
3741 			    const struct reg_sequence *reg_seq, int num_regs,
3742 			    u8 op_code, bool update)
3743 {
3744 	int i, ret;
3745 
3746 	for (i = 0; i < num_regs; i++) {
3747 		ret = cs_dsp_wseq_write(dsp, wseq, reg_seq[i].reg,
3748 					reg_seq[i].def, op_code, update);
3749 		if (ret)
3750 			return ret;
3751 	}
3752 
3753 	return 0;
3754 }
3755 EXPORT_SYMBOL_NS_GPL(cs_dsp_wseq_multi_write, FW_CS_DSP);
3756 
3757 MODULE_DESCRIPTION("Cirrus Logic DSP Support");
3758 MODULE_AUTHOR("Simon Trimmer <simont@opensource.cirrus.com>");
3759 MODULE_LICENSE("GPL v2");
3760