xref: /linux/drivers/firmware/cirrus/cs_dsp.c (revision 06ba8020287f43fc13962b158d8dec2689448a5a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * cs_dsp.c  --  Cirrus Logic DSP firmware support
4  *
5  * Based on sound/soc/codecs/wm_adsp.c
6  *
7  * Copyright 2012 Wolfson Microelectronics plc
8  * Copyright (C) 2015-2021 Cirrus Logic, Inc. and
9  *                         Cirrus Logic International Semiconductor Ltd.
10  */
11 
12 #include <linux/ctype.h>
13 #include <linux/debugfs.h>
14 #include <linux/delay.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/seq_file.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 
21 #include <linux/firmware/cirrus/cs_dsp.h>
22 #include <linux/firmware/cirrus/wmfw.h>
23 
24 #define cs_dsp_err(_dsp, fmt, ...) \
25 	dev_err(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
26 #define cs_dsp_warn(_dsp, fmt, ...) \
27 	dev_warn(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
28 #define cs_dsp_info(_dsp, fmt, ...) \
29 	dev_info(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
30 #define cs_dsp_dbg(_dsp, fmt, ...) \
31 	dev_dbg(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
32 
33 #define ADSP1_CONTROL_1                   0x00
34 #define ADSP1_CONTROL_2                   0x02
35 #define ADSP1_CONTROL_3                   0x03
36 #define ADSP1_CONTROL_4                   0x04
37 #define ADSP1_CONTROL_5                   0x06
38 #define ADSP1_CONTROL_6                   0x07
39 #define ADSP1_CONTROL_7                   0x08
40 #define ADSP1_CONTROL_8                   0x09
41 #define ADSP1_CONTROL_9                   0x0A
42 #define ADSP1_CONTROL_10                  0x0B
43 #define ADSP1_CONTROL_11                  0x0C
44 #define ADSP1_CONTROL_12                  0x0D
45 #define ADSP1_CONTROL_13                  0x0F
46 #define ADSP1_CONTROL_14                  0x10
47 #define ADSP1_CONTROL_15                  0x11
48 #define ADSP1_CONTROL_16                  0x12
49 #define ADSP1_CONTROL_17                  0x13
50 #define ADSP1_CONTROL_18                  0x14
51 #define ADSP1_CONTROL_19                  0x16
52 #define ADSP1_CONTROL_20                  0x17
53 #define ADSP1_CONTROL_21                  0x18
54 #define ADSP1_CONTROL_22                  0x1A
55 #define ADSP1_CONTROL_23                  0x1B
56 #define ADSP1_CONTROL_24                  0x1C
57 #define ADSP1_CONTROL_25                  0x1E
58 #define ADSP1_CONTROL_26                  0x20
59 #define ADSP1_CONTROL_27                  0x21
60 #define ADSP1_CONTROL_28                  0x22
61 #define ADSP1_CONTROL_29                  0x23
62 #define ADSP1_CONTROL_30                  0x24
63 #define ADSP1_CONTROL_31                  0x26
64 
65 /*
66  * ADSP1 Control 19
67  */
68 #define ADSP1_WDMA_BUFFER_LENGTH_MASK     0x00FF  /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
69 #define ADSP1_WDMA_BUFFER_LENGTH_SHIFT         0  /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
70 #define ADSP1_WDMA_BUFFER_LENGTH_WIDTH         8  /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
71 
72 /*
73  * ADSP1 Control 30
74  */
75 #define ADSP1_DBG_CLK_ENA                 0x0008  /* DSP1_DBG_CLK_ENA */
76 #define ADSP1_DBG_CLK_ENA_MASK            0x0008  /* DSP1_DBG_CLK_ENA */
77 #define ADSP1_DBG_CLK_ENA_SHIFT                3  /* DSP1_DBG_CLK_ENA */
78 #define ADSP1_DBG_CLK_ENA_WIDTH                1  /* DSP1_DBG_CLK_ENA */
79 #define ADSP1_SYS_ENA                     0x0004  /* DSP1_SYS_ENA */
80 #define ADSP1_SYS_ENA_MASK                0x0004  /* DSP1_SYS_ENA */
81 #define ADSP1_SYS_ENA_SHIFT                    2  /* DSP1_SYS_ENA */
82 #define ADSP1_SYS_ENA_WIDTH                    1  /* DSP1_SYS_ENA */
83 #define ADSP1_CORE_ENA                    0x0002  /* DSP1_CORE_ENA */
84 #define ADSP1_CORE_ENA_MASK               0x0002  /* DSP1_CORE_ENA */
85 #define ADSP1_CORE_ENA_SHIFT                   1  /* DSP1_CORE_ENA */
86 #define ADSP1_CORE_ENA_WIDTH                   1  /* DSP1_CORE_ENA */
87 #define ADSP1_START                       0x0001  /* DSP1_START */
88 #define ADSP1_START_MASK                  0x0001  /* DSP1_START */
89 #define ADSP1_START_SHIFT                      0  /* DSP1_START */
90 #define ADSP1_START_WIDTH                      1  /* DSP1_START */
91 
92 /*
93  * ADSP1 Control 31
94  */
95 #define ADSP1_CLK_SEL_MASK                0x0007  /* CLK_SEL_ENA */
96 #define ADSP1_CLK_SEL_SHIFT                    0  /* CLK_SEL_ENA */
97 #define ADSP1_CLK_SEL_WIDTH                    3  /* CLK_SEL_ENA */
98 
99 #define ADSP2_CONTROL                     0x0
100 #define ADSP2_CLOCKING                    0x1
101 #define ADSP2V2_CLOCKING                  0x2
102 #define ADSP2_STATUS1                     0x4
103 #define ADSP2_WDMA_CONFIG_1               0x30
104 #define ADSP2_WDMA_CONFIG_2               0x31
105 #define ADSP2V2_WDMA_CONFIG_2             0x32
106 #define ADSP2_RDMA_CONFIG_1               0x34
107 
108 #define ADSP2_SCRATCH0                    0x40
109 #define ADSP2_SCRATCH1                    0x41
110 #define ADSP2_SCRATCH2                    0x42
111 #define ADSP2_SCRATCH3                    0x43
112 
113 #define ADSP2V2_SCRATCH0_1                0x40
114 #define ADSP2V2_SCRATCH2_3                0x42
115 
116 /*
117  * ADSP2 Control
118  */
119 #define ADSP2_MEM_ENA                     0x0010  /* DSP1_MEM_ENA */
120 #define ADSP2_MEM_ENA_MASK                0x0010  /* DSP1_MEM_ENA */
121 #define ADSP2_MEM_ENA_SHIFT                    4  /* DSP1_MEM_ENA */
122 #define ADSP2_MEM_ENA_WIDTH                    1  /* DSP1_MEM_ENA */
123 #define ADSP2_SYS_ENA                     0x0004  /* DSP1_SYS_ENA */
124 #define ADSP2_SYS_ENA_MASK                0x0004  /* DSP1_SYS_ENA */
125 #define ADSP2_SYS_ENA_SHIFT                    2  /* DSP1_SYS_ENA */
126 #define ADSP2_SYS_ENA_WIDTH                    1  /* DSP1_SYS_ENA */
127 #define ADSP2_CORE_ENA                    0x0002  /* DSP1_CORE_ENA */
128 #define ADSP2_CORE_ENA_MASK               0x0002  /* DSP1_CORE_ENA */
129 #define ADSP2_CORE_ENA_SHIFT                   1  /* DSP1_CORE_ENA */
130 #define ADSP2_CORE_ENA_WIDTH                   1  /* DSP1_CORE_ENA */
131 #define ADSP2_START                       0x0001  /* DSP1_START */
132 #define ADSP2_START_MASK                  0x0001  /* DSP1_START */
133 #define ADSP2_START_SHIFT                      0  /* DSP1_START */
134 #define ADSP2_START_WIDTH                      1  /* DSP1_START */
135 
136 /*
137  * ADSP2 clocking
138  */
139 #define ADSP2_CLK_SEL_MASK                0x0007  /* CLK_SEL_ENA */
140 #define ADSP2_CLK_SEL_SHIFT                    0  /* CLK_SEL_ENA */
141 #define ADSP2_CLK_SEL_WIDTH                    3  /* CLK_SEL_ENA */
142 
143 /*
144  * ADSP2V2 clocking
145  */
146 #define ADSP2V2_CLK_SEL_MASK             0x70000  /* CLK_SEL_ENA */
147 #define ADSP2V2_CLK_SEL_SHIFT                 16  /* CLK_SEL_ENA */
148 #define ADSP2V2_CLK_SEL_WIDTH                  3  /* CLK_SEL_ENA */
149 
150 #define ADSP2V2_RATE_MASK                 0x7800  /* DSP_RATE */
151 #define ADSP2V2_RATE_SHIFT                    11  /* DSP_RATE */
152 #define ADSP2V2_RATE_WIDTH                     4  /* DSP_RATE */
153 
154 /*
155  * ADSP2 Status 1
156  */
157 #define ADSP2_RAM_RDY                     0x0001
158 #define ADSP2_RAM_RDY_MASK                0x0001
159 #define ADSP2_RAM_RDY_SHIFT                    0
160 #define ADSP2_RAM_RDY_WIDTH                    1
161 
162 /*
163  * ADSP2 Lock support
164  */
165 #define ADSP2_LOCK_CODE_0                    0x5555
166 #define ADSP2_LOCK_CODE_1                    0xAAAA
167 
168 #define ADSP2_WATCHDOG                       0x0A
169 #define ADSP2_BUS_ERR_ADDR                   0x52
170 #define ADSP2_REGION_LOCK_STATUS             0x64
171 #define ADSP2_LOCK_REGION_1_LOCK_REGION_0    0x66
172 #define ADSP2_LOCK_REGION_3_LOCK_REGION_2    0x68
173 #define ADSP2_LOCK_REGION_5_LOCK_REGION_4    0x6A
174 #define ADSP2_LOCK_REGION_7_LOCK_REGION_6    0x6C
175 #define ADSP2_LOCK_REGION_9_LOCK_REGION_8    0x6E
176 #define ADSP2_LOCK_REGION_CTRL               0x7A
177 #define ADSP2_PMEM_ERR_ADDR_XMEM_ERR_ADDR    0x7C
178 
179 #define ADSP2_REGION_LOCK_ERR_MASK           0x8000
180 #define ADSP2_ADDR_ERR_MASK                  0x4000
181 #define ADSP2_WDT_TIMEOUT_STS_MASK           0x2000
182 #define ADSP2_CTRL_ERR_PAUSE_ENA             0x0002
183 #define ADSP2_CTRL_ERR_EINT                  0x0001
184 
185 #define ADSP2_BUS_ERR_ADDR_MASK              0x00FFFFFF
186 #define ADSP2_XMEM_ERR_ADDR_MASK             0x0000FFFF
187 #define ADSP2_PMEM_ERR_ADDR_MASK             0x7FFF0000
188 #define ADSP2_PMEM_ERR_ADDR_SHIFT            16
189 #define ADSP2_WDT_ENA_MASK                   0xFFFFFFFD
190 
191 #define ADSP2_LOCK_REGION_SHIFT              16
192 
193 /*
194  * Event control messages
195  */
196 #define CS_DSP_FW_EVENT_SHUTDOWN             0x000001
197 
198 /*
199  * HALO system info
200  */
201 #define HALO_AHBM_WINDOW_DEBUG_0             0x02040
202 #define HALO_AHBM_WINDOW_DEBUG_1             0x02044
203 
204 /*
205  * HALO core
206  */
207 #define HALO_SCRATCH1                        0x005c0
208 #define HALO_SCRATCH2                        0x005c8
209 #define HALO_SCRATCH3                        0x005d0
210 #define HALO_SCRATCH4                        0x005d8
211 #define HALO_CCM_CORE_CONTROL                0x41000
212 #define HALO_CORE_SOFT_RESET                 0x00010
213 #define HALO_WDT_CONTROL                     0x47000
214 
215 /*
216  * HALO MPU banks
217  */
218 #define HALO_MPU_XMEM_ACCESS_0               0x43000
219 #define HALO_MPU_YMEM_ACCESS_0               0x43004
220 #define HALO_MPU_WINDOW_ACCESS_0             0x43008
221 #define HALO_MPU_XREG_ACCESS_0               0x4300C
222 #define HALO_MPU_YREG_ACCESS_0               0x43014
223 #define HALO_MPU_XMEM_ACCESS_1               0x43018
224 #define HALO_MPU_YMEM_ACCESS_1               0x4301C
225 #define HALO_MPU_WINDOW_ACCESS_1             0x43020
226 #define HALO_MPU_XREG_ACCESS_1               0x43024
227 #define HALO_MPU_YREG_ACCESS_1               0x4302C
228 #define HALO_MPU_XMEM_ACCESS_2               0x43030
229 #define HALO_MPU_YMEM_ACCESS_2               0x43034
230 #define HALO_MPU_WINDOW_ACCESS_2             0x43038
231 #define HALO_MPU_XREG_ACCESS_2               0x4303C
232 #define HALO_MPU_YREG_ACCESS_2               0x43044
233 #define HALO_MPU_XMEM_ACCESS_3               0x43048
234 #define HALO_MPU_YMEM_ACCESS_3               0x4304C
235 #define HALO_MPU_WINDOW_ACCESS_3             0x43050
236 #define HALO_MPU_XREG_ACCESS_3               0x43054
237 #define HALO_MPU_YREG_ACCESS_3               0x4305C
238 #define HALO_MPU_XM_VIO_ADDR                 0x43100
239 #define HALO_MPU_XM_VIO_STATUS               0x43104
240 #define HALO_MPU_YM_VIO_ADDR                 0x43108
241 #define HALO_MPU_YM_VIO_STATUS               0x4310C
242 #define HALO_MPU_PM_VIO_ADDR                 0x43110
243 #define HALO_MPU_PM_VIO_STATUS               0x43114
244 #define HALO_MPU_LOCK_CONFIG                 0x43140
245 
246 /*
247  * HALO_AHBM_WINDOW_DEBUG_1
248  */
249 #define HALO_AHBM_CORE_ERR_ADDR_MASK         0x0fffff00
250 #define HALO_AHBM_CORE_ERR_ADDR_SHIFT                 8
251 #define HALO_AHBM_FLAGS_ERR_MASK             0x000000ff
252 
253 /*
254  * HALO_CCM_CORE_CONTROL
255  */
256 #define HALO_CORE_RESET                     0x00000200
257 #define HALO_CORE_EN                        0x00000001
258 
259 /*
260  * HALO_CORE_SOFT_RESET
261  */
262 #define HALO_CORE_SOFT_RESET_MASK           0x00000001
263 
264 /*
265  * HALO_WDT_CONTROL
266  */
267 #define HALO_WDT_EN_MASK                    0x00000001
268 
269 /*
270  * HALO_MPU_?M_VIO_STATUS
271  */
272 #define HALO_MPU_VIO_STS_MASK               0x007e0000
273 #define HALO_MPU_VIO_STS_SHIFT                      17
274 #define HALO_MPU_VIO_ERR_WR_MASK            0x00008000
275 #define HALO_MPU_VIO_ERR_SRC_MASK           0x00007fff
276 #define HALO_MPU_VIO_ERR_SRC_SHIFT                   0
277 
278 struct cs_dsp_ops {
279 	bool (*validate_version)(struct cs_dsp *dsp, unsigned int version);
280 	unsigned int (*parse_sizes)(struct cs_dsp *dsp,
281 				    const char * const file,
282 				    unsigned int pos,
283 				    const struct firmware *firmware);
284 	int (*setup_algs)(struct cs_dsp *dsp);
285 	unsigned int (*region_to_reg)(struct cs_dsp_region const *mem,
286 				      unsigned int offset);
287 
288 	void (*show_fw_status)(struct cs_dsp *dsp);
289 	void (*stop_watchdog)(struct cs_dsp *dsp);
290 
291 	int (*enable_memory)(struct cs_dsp *dsp);
292 	void (*disable_memory)(struct cs_dsp *dsp);
293 	int (*lock_memory)(struct cs_dsp *dsp, unsigned int lock_regions);
294 
295 	int (*enable_core)(struct cs_dsp *dsp);
296 	void (*disable_core)(struct cs_dsp *dsp);
297 
298 	int (*start_core)(struct cs_dsp *dsp);
299 	void (*stop_core)(struct cs_dsp *dsp);
300 };
301 
302 static const struct cs_dsp_ops cs_dsp_adsp1_ops;
303 static const struct cs_dsp_ops cs_dsp_adsp2_ops[];
304 static const struct cs_dsp_ops cs_dsp_halo_ops;
305 static const struct cs_dsp_ops cs_dsp_halo_ao_ops;
306 
307 struct cs_dsp_buf {
308 	struct list_head list;
309 	void *buf;
310 };
311 
312 static struct cs_dsp_buf *cs_dsp_buf_alloc(const void *src, size_t len,
313 					   struct list_head *list)
314 {
315 	struct cs_dsp_buf *buf = kzalloc(sizeof(*buf), GFP_KERNEL);
316 
317 	if (buf == NULL)
318 		return NULL;
319 
320 	buf->buf = vmalloc(len);
321 	if (!buf->buf) {
322 		kfree(buf);
323 		return NULL;
324 	}
325 	memcpy(buf->buf, src, len);
326 
327 	if (list)
328 		list_add_tail(&buf->list, list);
329 
330 	return buf;
331 }
332 
333 static void cs_dsp_buf_free(struct list_head *list)
334 {
335 	while (!list_empty(list)) {
336 		struct cs_dsp_buf *buf = list_first_entry(list,
337 							  struct cs_dsp_buf,
338 							  list);
339 		list_del(&buf->list);
340 		vfree(buf->buf);
341 		kfree(buf);
342 	}
343 }
344 
345 /**
346  * cs_dsp_mem_region_name() - Return a name string for a memory type
347  * @type: the memory type to match
348  *
349  * Return: A const string identifying the memory region.
350  */
351 const char *cs_dsp_mem_region_name(unsigned int type)
352 {
353 	switch (type) {
354 	case WMFW_ADSP1_PM:
355 		return "PM";
356 	case WMFW_HALO_PM_PACKED:
357 		return "PM_PACKED";
358 	case WMFW_ADSP1_DM:
359 		return "DM";
360 	case WMFW_ADSP2_XM:
361 		return "XM";
362 	case WMFW_HALO_XM_PACKED:
363 		return "XM_PACKED";
364 	case WMFW_ADSP2_YM:
365 		return "YM";
366 	case WMFW_HALO_YM_PACKED:
367 		return "YM_PACKED";
368 	case WMFW_ADSP1_ZM:
369 		return "ZM";
370 	default:
371 		return NULL;
372 	}
373 }
374 EXPORT_SYMBOL_NS_GPL(cs_dsp_mem_region_name, FW_CS_DSP);
375 
376 #ifdef CONFIG_DEBUG_FS
377 static void cs_dsp_debugfs_save_wmfwname(struct cs_dsp *dsp, const char *s)
378 {
379 	char *tmp = kasprintf(GFP_KERNEL, "%s\n", s);
380 
381 	kfree(dsp->wmfw_file_name);
382 	dsp->wmfw_file_name = tmp;
383 }
384 
385 static void cs_dsp_debugfs_save_binname(struct cs_dsp *dsp, const char *s)
386 {
387 	char *tmp = kasprintf(GFP_KERNEL, "%s\n", s);
388 
389 	kfree(dsp->bin_file_name);
390 	dsp->bin_file_name = tmp;
391 }
392 
393 static void cs_dsp_debugfs_clear(struct cs_dsp *dsp)
394 {
395 	kfree(dsp->wmfw_file_name);
396 	kfree(dsp->bin_file_name);
397 	dsp->wmfw_file_name = NULL;
398 	dsp->bin_file_name = NULL;
399 }
400 
401 static ssize_t cs_dsp_debugfs_wmfw_read(struct file *file,
402 					char __user *user_buf,
403 					size_t count, loff_t *ppos)
404 {
405 	struct cs_dsp *dsp = file->private_data;
406 	ssize_t ret;
407 
408 	mutex_lock(&dsp->pwr_lock);
409 
410 	if (!dsp->wmfw_file_name || !dsp->booted)
411 		ret = 0;
412 	else
413 		ret = simple_read_from_buffer(user_buf, count, ppos,
414 					      dsp->wmfw_file_name,
415 					      strlen(dsp->wmfw_file_name));
416 
417 	mutex_unlock(&dsp->pwr_lock);
418 	return ret;
419 }
420 
421 static ssize_t cs_dsp_debugfs_bin_read(struct file *file,
422 				       char __user *user_buf,
423 				       size_t count, loff_t *ppos)
424 {
425 	struct cs_dsp *dsp = file->private_data;
426 	ssize_t ret;
427 
428 	mutex_lock(&dsp->pwr_lock);
429 
430 	if (!dsp->bin_file_name || !dsp->booted)
431 		ret = 0;
432 	else
433 		ret = simple_read_from_buffer(user_buf, count, ppos,
434 					      dsp->bin_file_name,
435 					      strlen(dsp->bin_file_name));
436 
437 	mutex_unlock(&dsp->pwr_lock);
438 	return ret;
439 }
440 
441 static const struct {
442 	const char *name;
443 	const struct file_operations fops;
444 } cs_dsp_debugfs_fops[] = {
445 	{
446 		.name = "wmfw_file_name",
447 		.fops = {
448 			.open = simple_open,
449 			.read = cs_dsp_debugfs_wmfw_read,
450 		},
451 	},
452 	{
453 		.name = "bin_file_name",
454 		.fops = {
455 			.open = simple_open,
456 			.read = cs_dsp_debugfs_bin_read,
457 		},
458 	},
459 };
460 
461 static int cs_dsp_coeff_base_reg(struct cs_dsp_coeff_ctl *ctl, unsigned int *reg,
462 				 unsigned int off);
463 
464 static int cs_dsp_debugfs_read_controls_show(struct seq_file *s, void *ignored)
465 {
466 	struct cs_dsp *dsp = s->private;
467 	struct cs_dsp_coeff_ctl *ctl;
468 	unsigned int reg;
469 
470 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
471 		cs_dsp_coeff_base_reg(ctl, &reg, 0);
472 		seq_printf(s, "%22.*s: %#8zx %s:%08x %#8x %s %#8x %#4x %c%c%c%c %s %s\n",
473 			   ctl->subname_len, ctl->subname, ctl->len,
474 			   cs_dsp_mem_region_name(ctl->alg_region.type),
475 			   ctl->offset, reg, ctl->fw_name, ctl->alg_region.alg, ctl->type,
476 			   ctl->flags & WMFW_CTL_FLAG_VOLATILE ? 'V' : '-',
477 			   ctl->flags & WMFW_CTL_FLAG_SYS ? 'S' : '-',
478 			   ctl->flags & WMFW_CTL_FLAG_READABLE ? 'R' : '-',
479 			   ctl->flags & WMFW_CTL_FLAG_WRITEABLE ? 'W' : '-',
480 			   ctl->enabled ? "enabled" : "disabled",
481 			   ctl->set ? "dirty" : "clean");
482 	}
483 
484 	return 0;
485 }
486 DEFINE_SHOW_ATTRIBUTE(cs_dsp_debugfs_read_controls);
487 
488 /**
489  * cs_dsp_init_debugfs() - Create and populate DSP representation in debugfs
490  * @dsp: pointer to DSP structure
491  * @debugfs_root: pointer to debugfs directory in which to create this DSP
492  *                representation
493  */
494 void cs_dsp_init_debugfs(struct cs_dsp *dsp, struct dentry *debugfs_root)
495 {
496 	struct dentry *root = NULL;
497 	int i;
498 
499 	root = debugfs_create_dir(dsp->name, debugfs_root);
500 
501 	debugfs_create_bool("booted", 0444, root, &dsp->booted);
502 	debugfs_create_bool("running", 0444, root, &dsp->running);
503 	debugfs_create_x32("fw_id", 0444, root, &dsp->fw_id);
504 	debugfs_create_x32("fw_version", 0444, root, &dsp->fw_id_version);
505 
506 	for (i = 0; i < ARRAY_SIZE(cs_dsp_debugfs_fops); ++i)
507 		debugfs_create_file(cs_dsp_debugfs_fops[i].name, 0444, root,
508 				    dsp, &cs_dsp_debugfs_fops[i].fops);
509 
510 	debugfs_create_file("controls", 0444, root, dsp,
511 			    &cs_dsp_debugfs_read_controls_fops);
512 
513 	dsp->debugfs_root = root;
514 }
515 EXPORT_SYMBOL_NS_GPL(cs_dsp_init_debugfs, FW_CS_DSP);
516 
517 /**
518  * cs_dsp_cleanup_debugfs() - Removes DSP representation from debugfs
519  * @dsp: pointer to DSP structure
520  */
521 void cs_dsp_cleanup_debugfs(struct cs_dsp *dsp)
522 {
523 	cs_dsp_debugfs_clear(dsp);
524 	debugfs_remove_recursive(dsp->debugfs_root);
525 	dsp->debugfs_root = NULL;
526 }
527 EXPORT_SYMBOL_NS_GPL(cs_dsp_cleanup_debugfs, FW_CS_DSP);
528 #else
529 void cs_dsp_init_debugfs(struct cs_dsp *dsp, struct dentry *debugfs_root)
530 {
531 }
532 EXPORT_SYMBOL_NS_GPL(cs_dsp_init_debugfs, FW_CS_DSP);
533 
534 void cs_dsp_cleanup_debugfs(struct cs_dsp *dsp)
535 {
536 }
537 EXPORT_SYMBOL_NS_GPL(cs_dsp_cleanup_debugfs, FW_CS_DSP);
538 
539 static inline void cs_dsp_debugfs_save_wmfwname(struct cs_dsp *dsp,
540 						const char *s)
541 {
542 }
543 
544 static inline void cs_dsp_debugfs_save_binname(struct cs_dsp *dsp,
545 					       const char *s)
546 {
547 }
548 
549 static inline void cs_dsp_debugfs_clear(struct cs_dsp *dsp)
550 {
551 }
552 #endif
553 
554 static const struct cs_dsp_region *cs_dsp_find_region(struct cs_dsp *dsp,
555 						      int type)
556 {
557 	int i;
558 
559 	for (i = 0; i < dsp->num_mems; i++)
560 		if (dsp->mem[i].type == type)
561 			return &dsp->mem[i];
562 
563 	return NULL;
564 }
565 
566 static unsigned int cs_dsp_region_to_reg(struct cs_dsp_region const *mem,
567 					 unsigned int offset)
568 {
569 	switch (mem->type) {
570 	case WMFW_ADSP1_PM:
571 		return mem->base + (offset * 3);
572 	case WMFW_ADSP1_DM:
573 	case WMFW_ADSP2_XM:
574 	case WMFW_ADSP2_YM:
575 	case WMFW_ADSP1_ZM:
576 		return mem->base + (offset * 2);
577 	default:
578 		WARN(1, "Unknown memory region type");
579 		return offset;
580 	}
581 }
582 
583 static unsigned int cs_dsp_halo_region_to_reg(struct cs_dsp_region const *mem,
584 					      unsigned int offset)
585 {
586 	switch (mem->type) {
587 	case WMFW_ADSP2_XM:
588 	case WMFW_ADSP2_YM:
589 		return mem->base + (offset * 4);
590 	case WMFW_HALO_XM_PACKED:
591 	case WMFW_HALO_YM_PACKED:
592 		return (mem->base + (offset * 3)) & ~0x3;
593 	case WMFW_HALO_PM_PACKED:
594 		return mem->base + (offset * 5);
595 	default:
596 		WARN(1, "Unknown memory region type");
597 		return offset;
598 	}
599 }
600 
601 static void cs_dsp_read_fw_status(struct cs_dsp *dsp,
602 				  int noffs, unsigned int *offs)
603 {
604 	unsigned int i;
605 	int ret;
606 
607 	for (i = 0; i < noffs; ++i) {
608 		ret = regmap_read(dsp->regmap, dsp->base + offs[i], &offs[i]);
609 		if (ret) {
610 			cs_dsp_err(dsp, "Failed to read SCRATCH%u: %d\n", i, ret);
611 			return;
612 		}
613 	}
614 }
615 
616 static void cs_dsp_adsp2_show_fw_status(struct cs_dsp *dsp)
617 {
618 	unsigned int offs[] = {
619 		ADSP2_SCRATCH0, ADSP2_SCRATCH1, ADSP2_SCRATCH2, ADSP2_SCRATCH3,
620 	};
621 
622 	cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
623 
624 	cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
625 		   offs[0], offs[1], offs[2], offs[3]);
626 }
627 
628 static void cs_dsp_adsp2v2_show_fw_status(struct cs_dsp *dsp)
629 {
630 	unsigned int offs[] = { ADSP2V2_SCRATCH0_1, ADSP2V2_SCRATCH2_3 };
631 
632 	cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
633 
634 	cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
635 		   offs[0] & 0xFFFF, offs[0] >> 16,
636 		   offs[1] & 0xFFFF, offs[1] >> 16);
637 }
638 
639 static void cs_dsp_halo_show_fw_status(struct cs_dsp *dsp)
640 {
641 	unsigned int offs[] = {
642 		HALO_SCRATCH1, HALO_SCRATCH2, HALO_SCRATCH3, HALO_SCRATCH4,
643 	};
644 
645 	cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
646 
647 	cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
648 		   offs[0], offs[1], offs[2], offs[3]);
649 }
650 
651 static int cs_dsp_coeff_base_reg(struct cs_dsp_coeff_ctl *ctl, unsigned int *reg,
652 				 unsigned int off)
653 {
654 	const struct cs_dsp_alg_region *alg_region = &ctl->alg_region;
655 	struct cs_dsp *dsp = ctl->dsp;
656 	const struct cs_dsp_region *mem;
657 
658 	mem = cs_dsp_find_region(dsp, alg_region->type);
659 	if (!mem) {
660 		cs_dsp_err(dsp, "No base for region %x\n",
661 			   alg_region->type);
662 		return -EINVAL;
663 	}
664 
665 	*reg = dsp->ops->region_to_reg(mem, ctl->alg_region.base + ctl->offset + off);
666 
667 	return 0;
668 }
669 
670 /**
671  * cs_dsp_coeff_write_acked_control() - Sends event_id to the acked control
672  * @ctl: pointer to acked coefficient control
673  * @event_id: the value to write to the given acked control
674  *
675  * Once the value has been written to the control the function shall block
676  * until the running firmware acknowledges the write or timeout is exceeded.
677  *
678  * Must be called with pwr_lock held.
679  *
680  * Return: Zero for success, a negative number on error.
681  */
682 int cs_dsp_coeff_write_acked_control(struct cs_dsp_coeff_ctl *ctl, unsigned int event_id)
683 {
684 	struct cs_dsp *dsp = ctl->dsp;
685 	__be32 val = cpu_to_be32(event_id);
686 	unsigned int reg;
687 	int i, ret;
688 
689 	lockdep_assert_held(&dsp->pwr_lock);
690 
691 	if (!dsp->running)
692 		return -EPERM;
693 
694 	ret = cs_dsp_coeff_base_reg(ctl, &reg, 0);
695 	if (ret)
696 		return ret;
697 
698 	cs_dsp_dbg(dsp, "Sending 0x%x to acked control alg 0x%x %s:0x%x\n",
699 		   event_id, ctl->alg_region.alg,
700 		   cs_dsp_mem_region_name(ctl->alg_region.type), ctl->offset);
701 
702 	ret = regmap_raw_write(dsp->regmap, reg, &val, sizeof(val));
703 	if (ret) {
704 		cs_dsp_err(dsp, "Failed to write %x: %d\n", reg, ret);
705 		return ret;
706 	}
707 
708 	/*
709 	 * Poll for ack, we initially poll at ~1ms intervals for firmwares
710 	 * that respond quickly, then go to ~10ms polls. A firmware is unlikely
711 	 * to ack instantly so we do the first 1ms delay before reading the
712 	 * control to avoid a pointless bus transaction
713 	 */
714 	for (i = 0; i < CS_DSP_ACKED_CTL_TIMEOUT_MS;) {
715 		switch (i) {
716 		case 0 ... CS_DSP_ACKED_CTL_N_QUICKPOLLS - 1:
717 			usleep_range(1000, 2000);
718 			i++;
719 			break;
720 		default:
721 			usleep_range(10000, 20000);
722 			i += 10;
723 			break;
724 		}
725 
726 		ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val));
727 		if (ret) {
728 			cs_dsp_err(dsp, "Failed to read %x: %d\n", reg, ret);
729 			return ret;
730 		}
731 
732 		if (val == 0) {
733 			cs_dsp_dbg(dsp, "Acked control ACKED at poll %u\n", i);
734 			return 0;
735 		}
736 	}
737 
738 	cs_dsp_warn(dsp, "Acked control @0x%x alg:0x%x %s:0x%x timed out\n",
739 		    reg, ctl->alg_region.alg,
740 		    cs_dsp_mem_region_name(ctl->alg_region.type),
741 		    ctl->offset);
742 
743 	return -ETIMEDOUT;
744 }
745 EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_write_acked_control, FW_CS_DSP);
746 
747 static int cs_dsp_coeff_write_ctrl_raw(struct cs_dsp_coeff_ctl *ctl,
748 				       unsigned int off, const void *buf, size_t len)
749 {
750 	struct cs_dsp *dsp = ctl->dsp;
751 	void *scratch;
752 	int ret;
753 	unsigned int reg;
754 
755 	ret = cs_dsp_coeff_base_reg(ctl, &reg, off);
756 	if (ret)
757 		return ret;
758 
759 	scratch = kmemdup(buf, len, GFP_KERNEL | GFP_DMA);
760 	if (!scratch)
761 		return -ENOMEM;
762 
763 	ret = regmap_raw_write(dsp->regmap, reg, scratch,
764 			       len);
765 	if (ret) {
766 		cs_dsp_err(dsp, "Failed to write %zu bytes to %x: %d\n",
767 			   len, reg, ret);
768 		kfree(scratch);
769 		return ret;
770 	}
771 	cs_dsp_dbg(dsp, "Wrote %zu bytes to %x\n", len, reg);
772 
773 	kfree(scratch);
774 
775 	return 0;
776 }
777 
778 /**
779  * cs_dsp_coeff_write_ctrl() - Writes the given buffer to the given coefficient control
780  * @ctl: pointer to coefficient control
781  * @off: word offset at which data should be written
782  * @buf: the buffer to write to the given control
783  * @len: the length of the buffer in bytes
784  *
785  * Must be called with pwr_lock held.
786  *
787  * Return: < 0 on error, 1 when the control value changed and 0 when it has not.
788  */
789 int cs_dsp_coeff_write_ctrl(struct cs_dsp_coeff_ctl *ctl,
790 			    unsigned int off, const void *buf, size_t len)
791 {
792 	int ret = 0;
793 
794 	if (!ctl)
795 		return -ENOENT;
796 
797 	lockdep_assert_held(&ctl->dsp->pwr_lock);
798 
799 	if (len + off * sizeof(u32) > ctl->len)
800 		return -EINVAL;
801 
802 	if (ctl->flags & WMFW_CTL_FLAG_VOLATILE) {
803 		ret = -EPERM;
804 	} else if (buf != ctl->cache) {
805 		if (memcmp(ctl->cache + off * sizeof(u32), buf, len))
806 			memcpy(ctl->cache + off * sizeof(u32), buf, len);
807 		else
808 			return 0;
809 	}
810 
811 	ctl->set = 1;
812 	if (ctl->enabled && ctl->dsp->running)
813 		ret = cs_dsp_coeff_write_ctrl_raw(ctl, off, buf, len);
814 
815 	if (ret < 0)
816 		return ret;
817 
818 	return 1;
819 }
820 EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_write_ctrl, FW_CS_DSP);
821 
822 static int cs_dsp_coeff_read_ctrl_raw(struct cs_dsp_coeff_ctl *ctl,
823 				      unsigned int off, void *buf, size_t len)
824 {
825 	struct cs_dsp *dsp = ctl->dsp;
826 	void *scratch;
827 	int ret;
828 	unsigned int reg;
829 
830 	ret = cs_dsp_coeff_base_reg(ctl, &reg, off);
831 	if (ret)
832 		return ret;
833 
834 	scratch = kmalloc(len, GFP_KERNEL | GFP_DMA);
835 	if (!scratch)
836 		return -ENOMEM;
837 
838 	ret = regmap_raw_read(dsp->regmap, reg, scratch, len);
839 	if (ret) {
840 		cs_dsp_err(dsp, "Failed to read %zu bytes from %x: %d\n",
841 			   len, reg, ret);
842 		kfree(scratch);
843 		return ret;
844 	}
845 	cs_dsp_dbg(dsp, "Read %zu bytes from %x\n", len, reg);
846 
847 	memcpy(buf, scratch, len);
848 	kfree(scratch);
849 
850 	return 0;
851 }
852 
853 /**
854  * cs_dsp_coeff_read_ctrl() - Reads the given coefficient control into the given buffer
855  * @ctl: pointer to coefficient control
856  * @off: word offset at which data should be read
857  * @buf: the buffer to store to the given control
858  * @len: the length of the buffer in bytes
859  *
860  * Must be called with pwr_lock held.
861  *
862  * Return: Zero for success, a negative number on error.
863  */
864 int cs_dsp_coeff_read_ctrl(struct cs_dsp_coeff_ctl *ctl,
865 			   unsigned int off, void *buf, size_t len)
866 {
867 	int ret = 0;
868 
869 	if (!ctl)
870 		return -ENOENT;
871 
872 	lockdep_assert_held(&ctl->dsp->pwr_lock);
873 
874 	if (len + off * sizeof(u32) > ctl->len)
875 		return -EINVAL;
876 
877 	if (ctl->flags & WMFW_CTL_FLAG_VOLATILE) {
878 		if (ctl->enabled && ctl->dsp->running)
879 			return cs_dsp_coeff_read_ctrl_raw(ctl, off, buf, len);
880 		else
881 			return -EPERM;
882 	} else {
883 		if (!ctl->flags && ctl->enabled && ctl->dsp->running)
884 			ret = cs_dsp_coeff_read_ctrl_raw(ctl, 0, ctl->cache, ctl->len);
885 
886 		if (buf != ctl->cache)
887 			memcpy(buf, ctl->cache + off * sizeof(u32), len);
888 	}
889 
890 	return ret;
891 }
892 EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_read_ctrl, FW_CS_DSP);
893 
894 static int cs_dsp_coeff_init_control_caches(struct cs_dsp *dsp)
895 {
896 	struct cs_dsp_coeff_ctl *ctl;
897 	int ret;
898 
899 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
900 		if (!ctl->enabled || ctl->set)
901 			continue;
902 		if (ctl->flags & WMFW_CTL_FLAG_VOLATILE)
903 			continue;
904 
905 		/*
906 		 * For readable controls populate the cache from the DSP memory.
907 		 * For non-readable controls the cache was zero-filled when
908 		 * created so we don't need to do anything.
909 		 */
910 		if (!ctl->flags || (ctl->flags & WMFW_CTL_FLAG_READABLE)) {
911 			ret = cs_dsp_coeff_read_ctrl_raw(ctl, 0, ctl->cache, ctl->len);
912 			if (ret < 0)
913 				return ret;
914 		}
915 	}
916 
917 	return 0;
918 }
919 
920 static int cs_dsp_coeff_sync_controls(struct cs_dsp *dsp)
921 {
922 	struct cs_dsp_coeff_ctl *ctl;
923 	int ret;
924 
925 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
926 		if (!ctl->enabled)
927 			continue;
928 		if (ctl->set && !(ctl->flags & WMFW_CTL_FLAG_VOLATILE)) {
929 			ret = cs_dsp_coeff_write_ctrl_raw(ctl, 0, ctl->cache,
930 							  ctl->len);
931 			if (ret < 0)
932 				return ret;
933 		}
934 	}
935 
936 	return 0;
937 }
938 
939 static void cs_dsp_signal_event_controls(struct cs_dsp *dsp,
940 					 unsigned int event)
941 {
942 	struct cs_dsp_coeff_ctl *ctl;
943 	int ret;
944 
945 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
946 		if (ctl->type != WMFW_CTL_TYPE_HOSTEVENT)
947 			continue;
948 
949 		if (!ctl->enabled)
950 			continue;
951 
952 		ret = cs_dsp_coeff_write_acked_control(ctl, event);
953 		if (ret)
954 			cs_dsp_warn(dsp,
955 				    "Failed to send 0x%x event to alg 0x%x (%d)\n",
956 				    event, ctl->alg_region.alg, ret);
957 	}
958 }
959 
960 static void cs_dsp_free_ctl_blk(struct cs_dsp_coeff_ctl *ctl)
961 {
962 	kfree(ctl->cache);
963 	kfree(ctl->subname);
964 	kfree(ctl);
965 }
966 
967 static int cs_dsp_create_control(struct cs_dsp *dsp,
968 				 const struct cs_dsp_alg_region *alg_region,
969 				 unsigned int offset, unsigned int len,
970 				 const char *subname, unsigned int subname_len,
971 				 unsigned int flags, unsigned int type)
972 {
973 	struct cs_dsp_coeff_ctl *ctl;
974 	int ret;
975 
976 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
977 		if (ctl->fw_name == dsp->fw_name &&
978 		    ctl->alg_region.alg == alg_region->alg &&
979 		    ctl->alg_region.type == alg_region->type) {
980 			if ((!subname && !ctl->subname) ||
981 			    (subname && !strncmp(ctl->subname, subname, ctl->subname_len))) {
982 				if (!ctl->enabled)
983 					ctl->enabled = 1;
984 				return 0;
985 			}
986 		}
987 	}
988 
989 	ctl = kzalloc(sizeof(*ctl), GFP_KERNEL);
990 	if (!ctl)
991 		return -ENOMEM;
992 
993 	ctl->fw_name = dsp->fw_name;
994 	ctl->alg_region = *alg_region;
995 	if (subname && dsp->fw_ver >= 2) {
996 		ctl->subname_len = subname_len;
997 		ctl->subname = kasprintf(GFP_KERNEL, "%.*s", subname_len, subname);
998 		if (!ctl->subname) {
999 			ret = -ENOMEM;
1000 			goto err_ctl;
1001 		}
1002 	}
1003 	ctl->enabled = 1;
1004 	ctl->set = 0;
1005 	ctl->dsp = dsp;
1006 
1007 	ctl->flags = flags;
1008 	ctl->type = type;
1009 	ctl->offset = offset;
1010 	ctl->len = len;
1011 	ctl->cache = kzalloc(ctl->len, GFP_KERNEL);
1012 	if (!ctl->cache) {
1013 		ret = -ENOMEM;
1014 		goto err_ctl_subname;
1015 	}
1016 
1017 	list_add(&ctl->list, &dsp->ctl_list);
1018 
1019 	if (dsp->client_ops->control_add) {
1020 		ret = dsp->client_ops->control_add(ctl);
1021 		if (ret)
1022 			goto err_list_del;
1023 	}
1024 
1025 	return 0;
1026 
1027 err_list_del:
1028 	list_del(&ctl->list);
1029 	kfree(ctl->cache);
1030 err_ctl_subname:
1031 	kfree(ctl->subname);
1032 err_ctl:
1033 	kfree(ctl);
1034 
1035 	return ret;
1036 }
1037 
1038 struct cs_dsp_coeff_parsed_alg {
1039 	int id;
1040 	const u8 *name;
1041 	int name_len;
1042 	int ncoeff;
1043 };
1044 
1045 struct cs_dsp_coeff_parsed_coeff {
1046 	int offset;
1047 	int mem_type;
1048 	const u8 *name;
1049 	int name_len;
1050 	unsigned int ctl_type;
1051 	int flags;
1052 	int len;
1053 };
1054 
1055 static int cs_dsp_coeff_parse_string(int bytes, const u8 **pos, const u8 **str)
1056 {
1057 	int length;
1058 
1059 	switch (bytes) {
1060 	case 1:
1061 		length = **pos;
1062 		break;
1063 	case 2:
1064 		length = le16_to_cpu(*((__le16 *)*pos));
1065 		break;
1066 	default:
1067 		return 0;
1068 	}
1069 
1070 	if (str)
1071 		*str = *pos + bytes;
1072 
1073 	*pos += ((length + bytes) + 3) & ~0x03;
1074 
1075 	return length;
1076 }
1077 
1078 static int cs_dsp_coeff_parse_int(int bytes, const u8 **pos)
1079 {
1080 	int val = 0;
1081 
1082 	switch (bytes) {
1083 	case 2:
1084 		val = le16_to_cpu(*((__le16 *)*pos));
1085 		break;
1086 	case 4:
1087 		val = le32_to_cpu(*((__le32 *)*pos));
1088 		break;
1089 	default:
1090 		break;
1091 	}
1092 
1093 	*pos += bytes;
1094 
1095 	return val;
1096 }
1097 
1098 static inline void cs_dsp_coeff_parse_alg(struct cs_dsp *dsp, const u8 **data,
1099 					  struct cs_dsp_coeff_parsed_alg *blk)
1100 {
1101 	const struct wmfw_adsp_alg_data *raw;
1102 
1103 	switch (dsp->fw_ver) {
1104 	case 0:
1105 	case 1:
1106 		raw = (const struct wmfw_adsp_alg_data *)*data;
1107 		*data = raw->data;
1108 
1109 		blk->id = le32_to_cpu(raw->id);
1110 		blk->name = raw->name;
1111 		blk->name_len = strlen(raw->name);
1112 		blk->ncoeff = le32_to_cpu(raw->ncoeff);
1113 		break;
1114 	default:
1115 		blk->id = cs_dsp_coeff_parse_int(sizeof(raw->id), data);
1116 		blk->name_len = cs_dsp_coeff_parse_string(sizeof(u8), data,
1117 							  &blk->name);
1118 		cs_dsp_coeff_parse_string(sizeof(u16), data, NULL);
1119 		blk->ncoeff = cs_dsp_coeff_parse_int(sizeof(raw->ncoeff), data);
1120 		break;
1121 	}
1122 
1123 	cs_dsp_dbg(dsp, "Algorithm ID: %#x\n", blk->id);
1124 	cs_dsp_dbg(dsp, "Algorithm name: %.*s\n", blk->name_len, blk->name);
1125 	cs_dsp_dbg(dsp, "# of coefficient descriptors: %#x\n", blk->ncoeff);
1126 }
1127 
1128 static inline void cs_dsp_coeff_parse_coeff(struct cs_dsp *dsp, const u8 **data,
1129 					    struct cs_dsp_coeff_parsed_coeff *blk)
1130 {
1131 	const struct wmfw_adsp_coeff_data *raw;
1132 	const u8 *tmp;
1133 	int length;
1134 
1135 	switch (dsp->fw_ver) {
1136 	case 0:
1137 	case 1:
1138 		raw = (const struct wmfw_adsp_coeff_data *)*data;
1139 		*data = *data + sizeof(raw->hdr) + le32_to_cpu(raw->hdr.size);
1140 
1141 		blk->offset = le16_to_cpu(raw->hdr.offset);
1142 		blk->mem_type = le16_to_cpu(raw->hdr.type);
1143 		blk->name = raw->name;
1144 		blk->name_len = strlen(raw->name);
1145 		blk->ctl_type = le16_to_cpu(raw->ctl_type);
1146 		blk->flags = le16_to_cpu(raw->flags);
1147 		blk->len = le32_to_cpu(raw->len);
1148 		break;
1149 	default:
1150 		tmp = *data;
1151 		blk->offset = cs_dsp_coeff_parse_int(sizeof(raw->hdr.offset), &tmp);
1152 		blk->mem_type = cs_dsp_coeff_parse_int(sizeof(raw->hdr.type), &tmp);
1153 		length = cs_dsp_coeff_parse_int(sizeof(raw->hdr.size), &tmp);
1154 		blk->name_len = cs_dsp_coeff_parse_string(sizeof(u8), &tmp,
1155 							  &blk->name);
1156 		cs_dsp_coeff_parse_string(sizeof(u8), &tmp, NULL);
1157 		cs_dsp_coeff_parse_string(sizeof(u16), &tmp, NULL);
1158 		blk->ctl_type = cs_dsp_coeff_parse_int(sizeof(raw->ctl_type), &tmp);
1159 		blk->flags = cs_dsp_coeff_parse_int(sizeof(raw->flags), &tmp);
1160 		blk->len = cs_dsp_coeff_parse_int(sizeof(raw->len), &tmp);
1161 
1162 		*data = *data + sizeof(raw->hdr) + length;
1163 		break;
1164 	}
1165 
1166 	cs_dsp_dbg(dsp, "\tCoefficient type: %#x\n", blk->mem_type);
1167 	cs_dsp_dbg(dsp, "\tCoefficient offset: %#x\n", blk->offset);
1168 	cs_dsp_dbg(dsp, "\tCoefficient name: %.*s\n", blk->name_len, blk->name);
1169 	cs_dsp_dbg(dsp, "\tCoefficient flags: %#x\n", blk->flags);
1170 	cs_dsp_dbg(dsp, "\tALSA control type: %#x\n", blk->ctl_type);
1171 	cs_dsp_dbg(dsp, "\tALSA control len: %#x\n", blk->len);
1172 }
1173 
1174 static int cs_dsp_check_coeff_flags(struct cs_dsp *dsp,
1175 				    const struct cs_dsp_coeff_parsed_coeff *coeff_blk,
1176 				    unsigned int f_required,
1177 				    unsigned int f_illegal)
1178 {
1179 	if ((coeff_blk->flags & f_illegal) ||
1180 	    ((coeff_blk->flags & f_required) != f_required)) {
1181 		cs_dsp_err(dsp, "Illegal flags 0x%x for control type 0x%x\n",
1182 			   coeff_blk->flags, coeff_blk->ctl_type);
1183 		return -EINVAL;
1184 	}
1185 
1186 	return 0;
1187 }
1188 
1189 static int cs_dsp_parse_coeff(struct cs_dsp *dsp,
1190 			      const struct wmfw_region *region)
1191 {
1192 	struct cs_dsp_alg_region alg_region = {};
1193 	struct cs_dsp_coeff_parsed_alg alg_blk;
1194 	struct cs_dsp_coeff_parsed_coeff coeff_blk;
1195 	const u8 *data = region->data;
1196 	int i, ret;
1197 
1198 	cs_dsp_coeff_parse_alg(dsp, &data, &alg_blk);
1199 	for (i = 0; i < alg_blk.ncoeff; i++) {
1200 		cs_dsp_coeff_parse_coeff(dsp, &data, &coeff_blk);
1201 
1202 		switch (coeff_blk.ctl_type) {
1203 		case WMFW_CTL_TYPE_BYTES:
1204 			break;
1205 		case WMFW_CTL_TYPE_ACKED:
1206 			if (coeff_blk.flags & WMFW_CTL_FLAG_SYS)
1207 				continue;	/* ignore */
1208 
1209 			ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1210 						       WMFW_CTL_FLAG_VOLATILE |
1211 						       WMFW_CTL_FLAG_WRITEABLE |
1212 						       WMFW_CTL_FLAG_READABLE,
1213 						       0);
1214 			if (ret)
1215 				return -EINVAL;
1216 			break;
1217 		case WMFW_CTL_TYPE_HOSTEVENT:
1218 		case WMFW_CTL_TYPE_FWEVENT:
1219 			ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1220 						       WMFW_CTL_FLAG_SYS |
1221 						       WMFW_CTL_FLAG_VOLATILE |
1222 						       WMFW_CTL_FLAG_WRITEABLE |
1223 						       WMFW_CTL_FLAG_READABLE,
1224 						       0);
1225 			if (ret)
1226 				return -EINVAL;
1227 			break;
1228 		case WMFW_CTL_TYPE_HOST_BUFFER:
1229 			ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1230 						       WMFW_CTL_FLAG_SYS |
1231 						       WMFW_CTL_FLAG_VOLATILE |
1232 						       WMFW_CTL_FLAG_READABLE,
1233 						       0);
1234 			if (ret)
1235 				return -EINVAL;
1236 			break;
1237 		default:
1238 			cs_dsp_err(dsp, "Unknown control type: %d\n",
1239 				   coeff_blk.ctl_type);
1240 			return -EINVAL;
1241 		}
1242 
1243 		alg_region.type = coeff_blk.mem_type;
1244 		alg_region.alg = alg_blk.id;
1245 
1246 		ret = cs_dsp_create_control(dsp, &alg_region,
1247 					    coeff_blk.offset,
1248 					    coeff_blk.len,
1249 					    coeff_blk.name,
1250 					    coeff_blk.name_len,
1251 					    coeff_blk.flags,
1252 					    coeff_blk.ctl_type);
1253 		if (ret < 0)
1254 			cs_dsp_err(dsp, "Failed to create control: %.*s, %d\n",
1255 				   coeff_blk.name_len, coeff_blk.name, ret);
1256 	}
1257 
1258 	return 0;
1259 }
1260 
1261 static unsigned int cs_dsp_adsp1_parse_sizes(struct cs_dsp *dsp,
1262 					     const char * const file,
1263 					     unsigned int pos,
1264 					     const struct firmware *firmware)
1265 {
1266 	const struct wmfw_adsp1_sizes *adsp1_sizes;
1267 
1268 	adsp1_sizes = (void *)&firmware->data[pos];
1269 
1270 	cs_dsp_dbg(dsp, "%s: %d DM, %d PM, %d ZM\n", file,
1271 		   le32_to_cpu(adsp1_sizes->dm), le32_to_cpu(adsp1_sizes->pm),
1272 		   le32_to_cpu(adsp1_sizes->zm));
1273 
1274 	return pos + sizeof(*adsp1_sizes);
1275 }
1276 
1277 static unsigned int cs_dsp_adsp2_parse_sizes(struct cs_dsp *dsp,
1278 					     const char * const file,
1279 					     unsigned int pos,
1280 					     const struct firmware *firmware)
1281 {
1282 	const struct wmfw_adsp2_sizes *adsp2_sizes;
1283 
1284 	adsp2_sizes = (void *)&firmware->data[pos];
1285 
1286 	cs_dsp_dbg(dsp, "%s: %d XM, %d YM %d PM, %d ZM\n", file,
1287 		   le32_to_cpu(adsp2_sizes->xm), le32_to_cpu(adsp2_sizes->ym),
1288 		   le32_to_cpu(adsp2_sizes->pm), le32_to_cpu(adsp2_sizes->zm));
1289 
1290 	return pos + sizeof(*adsp2_sizes);
1291 }
1292 
1293 static bool cs_dsp_validate_version(struct cs_dsp *dsp, unsigned int version)
1294 {
1295 	switch (version) {
1296 	case 0:
1297 		cs_dsp_warn(dsp, "Deprecated file format %d\n", version);
1298 		return true;
1299 	case 1:
1300 	case 2:
1301 		return true;
1302 	default:
1303 		return false;
1304 	}
1305 }
1306 
1307 static bool cs_dsp_halo_validate_version(struct cs_dsp *dsp, unsigned int version)
1308 {
1309 	switch (version) {
1310 	case 3:
1311 		return true;
1312 	default:
1313 		return false;
1314 	}
1315 }
1316 
1317 static int cs_dsp_load(struct cs_dsp *dsp, const struct firmware *firmware,
1318 		       const char *file)
1319 {
1320 	LIST_HEAD(buf_list);
1321 	struct regmap *regmap = dsp->regmap;
1322 	unsigned int pos = 0;
1323 	const struct wmfw_header *header;
1324 	const struct wmfw_adsp1_sizes *adsp1_sizes;
1325 	const struct wmfw_footer *footer;
1326 	const struct wmfw_region *region;
1327 	const struct cs_dsp_region *mem;
1328 	const char *region_name;
1329 	char *text = NULL;
1330 	struct cs_dsp_buf *buf;
1331 	unsigned int reg;
1332 	int regions = 0;
1333 	int ret, offset, type;
1334 
1335 	if (!firmware)
1336 		return 0;
1337 
1338 	ret = -EINVAL;
1339 
1340 	pos = sizeof(*header) + sizeof(*adsp1_sizes) + sizeof(*footer);
1341 	if (pos >= firmware->size) {
1342 		cs_dsp_err(dsp, "%s: file too short, %zu bytes\n",
1343 			   file, firmware->size);
1344 		goto out_fw;
1345 	}
1346 
1347 	header = (void *)&firmware->data[0];
1348 
1349 	if (memcmp(&header->magic[0], "WMFW", 4) != 0) {
1350 		cs_dsp_err(dsp, "%s: invalid magic\n", file);
1351 		goto out_fw;
1352 	}
1353 
1354 	if (!dsp->ops->validate_version(dsp, header->ver)) {
1355 		cs_dsp_err(dsp, "%s: unknown file format %d\n",
1356 			   file, header->ver);
1357 		goto out_fw;
1358 	}
1359 
1360 	cs_dsp_info(dsp, "Firmware version: %d\n", header->ver);
1361 	dsp->fw_ver = header->ver;
1362 
1363 	if (header->core != dsp->type) {
1364 		cs_dsp_err(dsp, "%s: invalid core %d != %d\n",
1365 			   file, header->core, dsp->type);
1366 		goto out_fw;
1367 	}
1368 
1369 	pos = sizeof(*header);
1370 	pos = dsp->ops->parse_sizes(dsp, file, pos, firmware);
1371 
1372 	footer = (void *)&firmware->data[pos];
1373 	pos += sizeof(*footer);
1374 
1375 	if (le32_to_cpu(header->len) != pos) {
1376 		cs_dsp_err(dsp, "%s: unexpected header length %d\n",
1377 			   file, le32_to_cpu(header->len));
1378 		goto out_fw;
1379 	}
1380 
1381 	cs_dsp_dbg(dsp, "%s: timestamp %llu\n", file,
1382 		   le64_to_cpu(footer->timestamp));
1383 
1384 	while (pos < firmware->size &&
1385 	       sizeof(*region) < firmware->size - pos) {
1386 		region = (void *)&(firmware->data[pos]);
1387 		region_name = "Unknown";
1388 		reg = 0;
1389 		text = NULL;
1390 		offset = le32_to_cpu(region->offset) & 0xffffff;
1391 		type = be32_to_cpu(region->type) & 0xff;
1392 
1393 		switch (type) {
1394 		case WMFW_NAME_TEXT:
1395 			region_name = "Firmware name";
1396 			text = kzalloc(le32_to_cpu(region->len) + 1,
1397 				       GFP_KERNEL);
1398 			break;
1399 		case WMFW_ALGORITHM_DATA:
1400 			region_name = "Algorithm";
1401 			ret = cs_dsp_parse_coeff(dsp, region);
1402 			if (ret != 0)
1403 				goto out_fw;
1404 			break;
1405 		case WMFW_INFO_TEXT:
1406 			region_name = "Information";
1407 			text = kzalloc(le32_to_cpu(region->len) + 1,
1408 				       GFP_KERNEL);
1409 			break;
1410 		case WMFW_ABSOLUTE:
1411 			region_name = "Absolute";
1412 			reg = offset;
1413 			break;
1414 		case WMFW_ADSP1_PM:
1415 		case WMFW_ADSP1_DM:
1416 		case WMFW_ADSP2_XM:
1417 		case WMFW_ADSP2_YM:
1418 		case WMFW_ADSP1_ZM:
1419 		case WMFW_HALO_PM_PACKED:
1420 		case WMFW_HALO_XM_PACKED:
1421 		case WMFW_HALO_YM_PACKED:
1422 			mem = cs_dsp_find_region(dsp, type);
1423 			if (!mem) {
1424 				cs_dsp_err(dsp, "No region of type: %x\n", type);
1425 				ret = -EINVAL;
1426 				goto out_fw;
1427 			}
1428 
1429 			region_name = cs_dsp_mem_region_name(type);
1430 			reg = dsp->ops->region_to_reg(mem, offset);
1431 			break;
1432 		default:
1433 			cs_dsp_warn(dsp,
1434 				    "%s.%d: Unknown region type %x at %d(%x)\n",
1435 				    file, regions, type, pos, pos);
1436 			break;
1437 		}
1438 
1439 		cs_dsp_dbg(dsp, "%s.%d: %d bytes at %d in %s\n", file,
1440 			   regions, le32_to_cpu(region->len), offset,
1441 			   region_name);
1442 
1443 		if (le32_to_cpu(region->len) >
1444 		    firmware->size - pos - sizeof(*region)) {
1445 			cs_dsp_err(dsp,
1446 				   "%s.%d: %s region len %d bytes exceeds file length %zu\n",
1447 				   file, regions, region_name,
1448 				   le32_to_cpu(region->len), firmware->size);
1449 			ret = -EINVAL;
1450 			goto out_fw;
1451 		}
1452 
1453 		if (text) {
1454 			memcpy(text, region->data, le32_to_cpu(region->len));
1455 			cs_dsp_info(dsp, "%s: %s\n", file, text);
1456 			kfree(text);
1457 			text = NULL;
1458 		}
1459 
1460 		if (reg) {
1461 			buf = cs_dsp_buf_alloc(region->data,
1462 					       le32_to_cpu(region->len),
1463 					       &buf_list);
1464 			if (!buf) {
1465 				cs_dsp_err(dsp, "Out of memory\n");
1466 				ret = -ENOMEM;
1467 				goto out_fw;
1468 			}
1469 
1470 			ret = regmap_raw_write_async(regmap, reg, buf->buf,
1471 						     le32_to_cpu(region->len));
1472 			if (ret != 0) {
1473 				cs_dsp_err(dsp,
1474 					   "%s.%d: Failed to write %d bytes at %d in %s: %d\n",
1475 					   file, regions,
1476 					   le32_to_cpu(region->len), offset,
1477 					   region_name, ret);
1478 				goto out_fw;
1479 			}
1480 		}
1481 
1482 		pos += le32_to_cpu(region->len) + sizeof(*region);
1483 		regions++;
1484 	}
1485 
1486 	ret = regmap_async_complete(regmap);
1487 	if (ret != 0) {
1488 		cs_dsp_err(dsp, "Failed to complete async write: %d\n", ret);
1489 		goto out_fw;
1490 	}
1491 
1492 	if (pos > firmware->size)
1493 		cs_dsp_warn(dsp, "%s.%d: %zu bytes at end of file\n",
1494 			    file, regions, pos - firmware->size);
1495 
1496 	cs_dsp_debugfs_save_wmfwname(dsp, file);
1497 
1498 out_fw:
1499 	regmap_async_complete(regmap);
1500 	cs_dsp_buf_free(&buf_list);
1501 	kfree(text);
1502 
1503 	return ret;
1504 }
1505 
1506 /**
1507  * cs_dsp_get_ctl() - Finds a matching coefficient control
1508  * @dsp: pointer to DSP structure
1509  * @name: pointer to string to match with a control's subname
1510  * @type: the algorithm type to match
1511  * @alg: the algorithm id to match
1512  *
1513  * Find cs_dsp_coeff_ctl with input name as its subname
1514  *
1515  * Return: pointer to the control on success, NULL if not found
1516  */
1517 struct cs_dsp_coeff_ctl *cs_dsp_get_ctl(struct cs_dsp *dsp, const char *name, int type,
1518 					unsigned int alg)
1519 {
1520 	struct cs_dsp_coeff_ctl *pos, *rslt = NULL;
1521 
1522 	lockdep_assert_held(&dsp->pwr_lock);
1523 
1524 	list_for_each_entry(pos, &dsp->ctl_list, list) {
1525 		if (!pos->subname)
1526 			continue;
1527 		if (strncmp(pos->subname, name, pos->subname_len) == 0 &&
1528 		    pos->fw_name == dsp->fw_name &&
1529 		    pos->alg_region.alg == alg &&
1530 		    pos->alg_region.type == type) {
1531 			rslt = pos;
1532 			break;
1533 		}
1534 	}
1535 
1536 	return rslt;
1537 }
1538 EXPORT_SYMBOL_NS_GPL(cs_dsp_get_ctl, FW_CS_DSP);
1539 
1540 static void cs_dsp_ctl_fixup_base(struct cs_dsp *dsp,
1541 				  const struct cs_dsp_alg_region *alg_region)
1542 {
1543 	struct cs_dsp_coeff_ctl *ctl;
1544 
1545 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
1546 		if (ctl->fw_name == dsp->fw_name &&
1547 		    alg_region->alg == ctl->alg_region.alg &&
1548 		    alg_region->type == ctl->alg_region.type) {
1549 			ctl->alg_region.base = alg_region->base;
1550 		}
1551 	}
1552 }
1553 
1554 static void *cs_dsp_read_algs(struct cs_dsp *dsp, size_t n_algs,
1555 			      const struct cs_dsp_region *mem,
1556 			      unsigned int pos, unsigned int len)
1557 {
1558 	void *alg;
1559 	unsigned int reg;
1560 	int ret;
1561 	__be32 val;
1562 
1563 	if (n_algs == 0) {
1564 		cs_dsp_err(dsp, "No algorithms\n");
1565 		return ERR_PTR(-EINVAL);
1566 	}
1567 
1568 	if (n_algs > 1024) {
1569 		cs_dsp_err(dsp, "Algorithm count %zx excessive\n", n_algs);
1570 		return ERR_PTR(-EINVAL);
1571 	}
1572 
1573 	/* Read the terminator first to validate the length */
1574 	reg = dsp->ops->region_to_reg(mem, pos + len);
1575 
1576 	ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val));
1577 	if (ret != 0) {
1578 		cs_dsp_err(dsp, "Failed to read algorithm list end: %d\n",
1579 			   ret);
1580 		return ERR_PTR(ret);
1581 	}
1582 
1583 	if (be32_to_cpu(val) != 0xbedead)
1584 		cs_dsp_warn(dsp, "Algorithm list end %x 0x%x != 0xbedead\n",
1585 			    reg, be32_to_cpu(val));
1586 
1587 	/* Convert length from DSP words to bytes */
1588 	len *= sizeof(u32);
1589 
1590 	alg = kzalloc(len, GFP_KERNEL | GFP_DMA);
1591 	if (!alg)
1592 		return ERR_PTR(-ENOMEM);
1593 
1594 	reg = dsp->ops->region_to_reg(mem, pos);
1595 
1596 	ret = regmap_raw_read(dsp->regmap, reg, alg, len);
1597 	if (ret != 0) {
1598 		cs_dsp_err(dsp, "Failed to read algorithm list: %d\n", ret);
1599 		kfree(alg);
1600 		return ERR_PTR(ret);
1601 	}
1602 
1603 	return alg;
1604 }
1605 
1606 /**
1607  * cs_dsp_find_alg_region() - Finds a matching algorithm region
1608  * @dsp: pointer to DSP structure
1609  * @type: the algorithm type to match
1610  * @id: the algorithm id to match
1611  *
1612  * Return: Pointer to matching algorithm region, or NULL if not found.
1613  */
1614 struct cs_dsp_alg_region *cs_dsp_find_alg_region(struct cs_dsp *dsp,
1615 						 int type, unsigned int id)
1616 {
1617 	struct cs_dsp_alg_region *alg_region;
1618 
1619 	lockdep_assert_held(&dsp->pwr_lock);
1620 
1621 	list_for_each_entry(alg_region, &dsp->alg_regions, list) {
1622 		if (id == alg_region->alg && type == alg_region->type)
1623 			return alg_region;
1624 	}
1625 
1626 	return NULL;
1627 }
1628 EXPORT_SYMBOL_NS_GPL(cs_dsp_find_alg_region, FW_CS_DSP);
1629 
1630 static struct cs_dsp_alg_region *cs_dsp_create_region(struct cs_dsp *dsp,
1631 						      int type, __be32 id,
1632 						      __be32 ver, __be32 base)
1633 {
1634 	struct cs_dsp_alg_region *alg_region;
1635 
1636 	alg_region = kzalloc(sizeof(*alg_region), GFP_KERNEL);
1637 	if (!alg_region)
1638 		return ERR_PTR(-ENOMEM);
1639 
1640 	alg_region->type = type;
1641 	alg_region->alg = be32_to_cpu(id);
1642 	alg_region->ver = be32_to_cpu(ver);
1643 	alg_region->base = be32_to_cpu(base);
1644 
1645 	list_add_tail(&alg_region->list, &dsp->alg_regions);
1646 
1647 	if (dsp->fw_ver > 0)
1648 		cs_dsp_ctl_fixup_base(dsp, alg_region);
1649 
1650 	return alg_region;
1651 }
1652 
1653 static void cs_dsp_free_alg_regions(struct cs_dsp *dsp)
1654 {
1655 	struct cs_dsp_alg_region *alg_region;
1656 
1657 	while (!list_empty(&dsp->alg_regions)) {
1658 		alg_region = list_first_entry(&dsp->alg_regions,
1659 					      struct cs_dsp_alg_region,
1660 					      list);
1661 		list_del(&alg_region->list);
1662 		kfree(alg_region);
1663 	}
1664 }
1665 
1666 static void cs_dsp_parse_wmfw_id_header(struct cs_dsp *dsp,
1667 					struct wmfw_id_hdr *fw, int nalgs)
1668 {
1669 	dsp->fw_id = be32_to_cpu(fw->id);
1670 	dsp->fw_id_version = be32_to_cpu(fw->ver);
1671 
1672 	cs_dsp_info(dsp, "Firmware: %x v%d.%d.%d, %d algorithms\n",
1673 		    dsp->fw_id, (dsp->fw_id_version & 0xff0000) >> 16,
1674 		    (dsp->fw_id_version & 0xff00) >> 8, dsp->fw_id_version & 0xff,
1675 		    nalgs);
1676 }
1677 
1678 static void cs_dsp_parse_wmfw_v3_id_header(struct cs_dsp *dsp,
1679 					   struct wmfw_v3_id_hdr *fw, int nalgs)
1680 {
1681 	dsp->fw_id = be32_to_cpu(fw->id);
1682 	dsp->fw_id_version = be32_to_cpu(fw->ver);
1683 	dsp->fw_vendor_id = be32_to_cpu(fw->vendor_id);
1684 
1685 	cs_dsp_info(dsp, "Firmware: %x vendor: 0x%x v%d.%d.%d, %d algorithms\n",
1686 		    dsp->fw_id, dsp->fw_vendor_id,
1687 		    (dsp->fw_id_version & 0xff0000) >> 16,
1688 		    (dsp->fw_id_version & 0xff00) >> 8, dsp->fw_id_version & 0xff,
1689 		    nalgs);
1690 }
1691 
1692 static int cs_dsp_create_regions(struct cs_dsp *dsp, __be32 id, __be32 ver,
1693 				 int nregions, const int *type, __be32 *base)
1694 {
1695 	struct cs_dsp_alg_region *alg_region;
1696 	int i;
1697 
1698 	for (i = 0; i < nregions; i++) {
1699 		alg_region = cs_dsp_create_region(dsp, type[i], id, ver, base[i]);
1700 		if (IS_ERR(alg_region))
1701 			return PTR_ERR(alg_region);
1702 	}
1703 
1704 	return 0;
1705 }
1706 
1707 static int cs_dsp_adsp1_setup_algs(struct cs_dsp *dsp)
1708 {
1709 	struct wmfw_adsp1_id_hdr adsp1_id;
1710 	struct wmfw_adsp1_alg_hdr *adsp1_alg;
1711 	struct cs_dsp_alg_region *alg_region;
1712 	const struct cs_dsp_region *mem;
1713 	unsigned int pos, len;
1714 	size_t n_algs;
1715 	int i, ret;
1716 
1717 	mem = cs_dsp_find_region(dsp, WMFW_ADSP1_DM);
1718 	if (WARN_ON(!mem))
1719 		return -EINVAL;
1720 
1721 	ret = regmap_raw_read(dsp->regmap, mem->base, &adsp1_id,
1722 			      sizeof(adsp1_id));
1723 	if (ret != 0) {
1724 		cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
1725 			   ret);
1726 		return ret;
1727 	}
1728 
1729 	n_algs = be32_to_cpu(adsp1_id.n_algs);
1730 
1731 	cs_dsp_parse_wmfw_id_header(dsp, &adsp1_id.fw, n_algs);
1732 
1733 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_ZM,
1734 					  adsp1_id.fw.id, adsp1_id.fw.ver,
1735 					  adsp1_id.zm);
1736 	if (IS_ERR(alg_region))
1737 		return PTR_ERR(alg_region);
1738 
1739 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_DM,
1740 					  adsp1_id.fw.id, adsp1_id.fw.ver,
1741 					  adsp1_id.dm);
1742 	if (IS_ERR(alg_region))
1743 		return PTR_ERR(alg_region);
1744 
1745 	/* Calculate offset and length in DSP words */
1746 	pos = sizeof(adsp1_id) / sizeof(u32);
1747 	len = (sizeof(*adsp1_alg) * n_algs) / sizeof(u32);
1748 
1749 	adsp1_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
1750 	if (IS_ERR(adsp1_alg))
1751 		return PTR_ERR(adsp1_alg);
1752 
1753 	for (i = 0; i < n_algs; i++) {
1754 		cs_dsp_info(dsp, "%d: ID %x v%d.%d.%d DM@%x ZM@%x\n",
1755 			    i, be32_to_cpu(adsp1_alg[i].alg.id),
1756 			    (be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff0000) >> 16,
1757 			    (be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff00) >> 8,
1758 			    be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff,
1759 			    be32_to_cpu(adsp1_alg[i].dm),
1760 			    be32_to_cpu(adsp1_alg[i].zm));
1761 
1762 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_DM,
1763 						  adsp1_alg[i].alg.id,
1764 						  adsp1_alg[i].alg.ver,
1765 						  adsp1_alg[i].dm);
1766 		if (IS_ERR(alg_region)) {
1767 			ret = PTR_ERR(alg_region);
1768 			goto out;
1769 		}
1770 		if (dsp->fw_ver == 0) {
1771 			if (i + 1 < n_algs) {
1772 				len = be32_to_cpu(adsp1_alg[i + 1].dm);
1773 				len -= be32_to_cpu(adsp1_alg[i].dm);
1774 				len *= 4;
1775 				cs_dsp_create_control(dsp, alg_region, 0,
1776 						      len, NULL, 0, 0,
1777 						      WMFW_CTL_TYPE_BYTES);
1778 			} else {
1779 				cs_dsp_warn(dsp, "Missing length info for region DM with ID %x\n",
1780 					    be32_to_cpu(adsp1_alg[i].alg.id));
1781 			}
1782 		}
1783 
1784 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_ZM,
1785 						  adsp1_alg[i].alg.id,
1786 						  adsp1_alg[i].alg.ver,
1787 						  adsp1_alg[i].zm);
1788 		if (IS_ERR(alg_region)) {
1789 			ret = PTR_ERR(alg_region);
1790 			goto out;
1791 		}
1792 		if (dsp->fw_ver == 0) {
1793 			if (i + 1 < n_algs) {
1794 				len = be32_to_cpu(adsp1_alg[i + 1].zm);
1795 				len -= be32_to_cpu(adsp1_alg[i].zm);
1796 				len *= 4;
1797 				cs_dsp_create_control(dsp, alg_region, 0,
1798 						      len, NULL, 0, 0,
1799 						      WMFW_CTL_TYPE_BYTES);
1800 			} else {
1801 				cs_dsp_warn(dsp, "Missing length info for region ZM with ID %x\n",
1802 					    be32_to_cpu(adsp1_alg[i].alg.id));
1803 			}
1804 		}
1805 	}
1806 
1807 out:
1808 	kfree(adsp1_alg);
1809 	return ret;
1810 }
1811 
1812 static int cs_dsp_adsp2_setup_algs(struct cs_dsp *dsp)
1813 {
1814 	struct wmfw_adsp2_id_hdr adsp2_id;
1815 	struct wmfw_adsp2_alg_hdr *adsp2_alg;
1816 	struct cs_dsp_alg_region *alg_region;
1817 	const struct cs_dsp_region *mem;
1818 	unsigned int pos, len;
1819 	size_t n_algs;
1820 	int i, ret;
1821 
1822 	mem = cs_dsp_find_region(dsp, WMFW_ADSP2_XM);
1823 	if (WARN_ON(!mem))
1824 		return -EINVAL;
1825 
1826 	ret = regmap_raw_read(dsp->regmap, mem->base, &adsp2_id,
1827 			      sizeof(adsp2_id));
1828 	if (ret != 0) {
1829 		cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
1830 			   ret);
1831 		return ret;
1832 	}
1833 
1834 	n_algs = be32_to_cpu(adsp2_id.n_algs);
1835 
1836 	cs_dsp_parse_wmfw_id_header(dsp, &adsp2_id.fw, n_algs);
1837 
1838 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_XM,
1839 					  adsp2_id.fw.id, adsp2_id.fw.ver,
1840 					  adsp2_id.xm);
1841 	if (IS_ERR(alg_region))
1842 		return PTR_ERR(alg_region);
1843 
1844 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_YM,
1845 					  adsp2_id.fw.id, adsp2_id.fw.ver,
1846 					  adsp2_id.ym);
1847 	if (IS_ERR(alg_region))
1848 		return PTR_ERR(alg_region);
1849 
1850 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_ZM,
1851 					  adsp2_id.fw.id, adsp2_id.fw.ver,
1852 					  adsp2_id.zm);
1853 	if (IS_ERR(alg_region))
1854 		return PTR_ERR(alg_region);
1855 
1856 	/* Calculate offset and length in DSP words */
1857 	pos = sizeof(adsp2_id) / sizeof(u32);
1858 	len = (sizeof(*adsp2_alg) * n_algs) / sizeof(u32);
1859 
1860 	adsp2_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
1861 	if (IS_ERR(adsp2_alg))
1862 		return PTR_ERR(adsp2_alg);
1863 
1864 	for (i = 0; i < n_algs; i++) {
1865 		cs_dsp_info(dsp,
1866 			    "%d: ID %x v%d.%d.%d XM@%x YM@%x ZM@%x\n",
1867 			    i, be32_to_cpu(adsp2_alg[i].alg.id),
1868 			    (be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff0000) >> 16,
1869 			    (be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff00) >> 8,
1870 			    be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff,
1871 			    be32_to_cpu(adsp2_alg[i].xm),
1872 			    be32_to_cpu(adsp2_alg[i].ym),
1873 			    be32_to_cpu(adsp2_alg[i].zm));
1874 
1875 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_XM,
1876 						  adsp2_alg[i].alg.id,
1877 						  adsp2_alg[i].alg.ver,
1878 						  adsp2_alg[i].xm);
1879 		if (IS_ERR(alg_region)) {
1880 			ret = PTR_ERR(alg_region);
1881 			goto out;
1882 		}
1883 		if (dsp->fw_ver == 0) {
1884 			if (i + 1 < n_algs) {
1885 				len = be32_to_cpu(adsp2_alg[i + 1].xm);
1886 				len -= be32_to_cpu(adsp2_alg[i].xm);
1887 				len *= 4;
1888 				cs_dsp_create_control(dsp, alg_region, 0,
1889 						      len, NULL, 0, 0,
1890 						      WMFW_CTL_TYPE_BYTES);
1891 			} else {
1892 				cs_dsp_warn(dsp, "Missing length info for region XM with ID %x\n",
1893 					    be32_to_cpu(adsp2_alg[i].alg.id));
1894 			}
1895 		}
1896 
1897 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_YM,
1898 						  adsp2_alg[i].alg.id,
1899 						  adsp2_alg[i].alg.ver,
1900 						  adsp2_alg[i].ym);
1901 		if (IS_ERR(alg_region)) {
1902 			ret = PTR_ERR(alg_region);
1903 			goto out;
1904 		}
1905 		if (dsp->fw_ver == 0) {
1906 			if (i + 1 < n_algs) {
1907 				len = be32_to_cpu(adsp2_alg[i + 1].ym);
1908 				len -= be32_to_cpu(adsp2_alg[i].ym);
1909 				len *= 4;
1910 				cs_dsp_create_control(dsp, alg_region, 0,
1911 						      len, NULL, 0, 0,
1912 						      WMFW_CTL_TYPE_BYTES);
1913 			} else {
1914 				cs_dsp_warn(dsp, "Missing length info for region YM with ID %x\n",
1915 					    be32_to_cpu(adsp2_alg[i].alg.id));
1916 			}
1917 		}
1918 
1919 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_ZM,
1920 						  adsp2_alg[i].alg.id,
1921 						  adsp2_alg[i].alg.ver,
1922 						  adsp2_alg[i].zm);
1923 		if (IS_ERR(alg_region)) {
1924 			ret = PTR_ERR(alg_region);
1925 			goto out;
1926 		}
1927 		if (dsp->fw_ver == 0) {
1928 			if (i + 1 < n_algs) {
1929 				len = be32_to_cpu(adsp2_alg[i + 1].zm);
1930 				len -= be32_to_cpu(adsp2_alg[i].zm);
1931 				len *= 4;
1932 				cs_dsp_create_control(dsp, alg_region, 0,
1933 						      len, NULL, 0, 0,
1934 						      WMFW_CTL_TYPE_BYTES);
1935 			} else {
1936 				cs_dsp_warn(dsp, "Missing length info for region ZM with ID %x\n",
1937 					    be32_to_cpu(adsp2_alg[i].alg.id));
1938 			}
1939 		}
1940 	}
1941 
1942 out:
1943 	kfree(adsp2_alg);
1944 	return ret;
1945 }
1946 
1947 static int cs_dsp_halo_create_regions(struct cs_dsp *dsp, __be32 id, __be32 ver,
1948 				      __be32 xm_base, __be32 ym_base)
1949 {
1950 	static const int types[] = {
1951 		WMFW_ADSP2_XM, WMFW_HALO_XM_PACKED,
1952 		WMFW_ADSP2_YM, WMFW_HALO_YM_PACKED
1953 	};
1954 	__be32 bases[] = { xm_base, xm_base, ym_base, ym_base };
1955 
1956 	return cs_dsp_create_regions(dsp, id, ver, ARRAY_SIZE(types), types, bases);
1957 }
1958 
1959 static int cs_dsp_halo_setup_algs(struct cs_dsp *dsp)
1960 {
1961 	struct wmfw_halo_id_hdr halo_id;
1962 	struct wmfw_halo_alg_hdr *halo_alg;
1963 	const struct cs_dsp_region *mem;
1964 	unsigned int pos, len;
1965 	size_t n_algs;
1966 	int i, ret;
1967 
1968 	mem = cs_dsp_find_region(dsp, WMFW_ADSP2_XM);
1969 	if (WARN_ON(!mem))
1970 		return -EINVAL;
1971 
1972 	ret = regmap_raw_read(dsp->regmap, mem->base, &halo_id,
1973 			      sizeof(halo_id));
1974 	if (ret != 0) {
1975 		cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
1976 			   ret);
1977 		return ret;
1978 	}
1979 
1980 	n_algs = be32_to_cpu(halo_id.n_algs);
1981 
1982 	cs_dsp_parse_wmfw_v3_id_header(dsp, &halo_id.fw, n_algs);
1983 
1984 	ret = cs_dsp_halo_create_regions(dsp, halo_id.fw.id, halo_id.fw.ver,
1985 					 halo_id.xm_base, halo_id.ym_base);
1986 	if (ret)
1987 		return ret;
1988 
1989 	/* Calculate offset and length in DSP words */
1990 	pos = sizeof(halo_id) / sizeof(u32);
1991 	len = (sizeof(*halo_alg) * n_algs) / sizeof(u32);
1992 
1993 	halo_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
1994 	if (IS_ERR(halo_alg))
1995 		return PTR_ERR(halo_alg);
1996 
1997 	for (i = 0; i < n_algs; i++) {
1998 		cs_dsp_info(dsp,
1999 			    "%d: ID %x v%d.%d.%d XM@%x YM@%x\n",
2000 			    i, be32_to_cpu(halo_alg[i].alg.id),
2001 			    (be32_to_cpu(halo_alg[i].alg.ver) & 0xff0000) >> 16,
2002 			    (be32_to_cpu(halo_alg[i].alg.ver) & 0xff00) >> 8,
2003 			    be32_to_cpu(halo_alg[i].alg.ver) & 0xff,
2004 			    be32_to_cpu(halo_alg[i].xm_base),
2005 			    be32_to_cpu(halo_alg[i].ym_base));
2006 
2007 		ret = cs_dsp_halo_create_regions(dsp, halo_alg[i].alg.id,
2008 						 halo_alg[i].alg.ver,
2009 						 halo_alg[i].xm_base,
2010 						 halo_alg[i].ym_base);
2011 		if (ret)
2012 			goto out;
2013 	}
2014 
2015 out:
2016 	kfree(halo_alg);
2017 	return ret;
2018 }
2019 
2020 static int cs_dsp_load_coeff(struct cs_dsp *dsp, const struct firmware *firmware,
2021 			     const char *file)
2022 {
2023 	LIST_HEAD(buf_list);
2024 	struct regmap *regmap = dsp->regmap;
2025 	struct wmfw_coeff_hdr *hdr;
2026 	struct wmfw_coeff_item *blk;
2027 	const struct cs_dsp_region *mem;
2028 	struct cs_dsp_alg_region *alg_region;
2029 	const char *region_name;
2030 	int ret, pos, blocks, type, offset, reg, version;
2031 	char *text = NULL;
2032 	struct cs_dsp_buf *buf;
2033 
2034 	if (!firmware)
2035 		return 0;
2036 
2037 	ret = -EINVAL;
2038 
2039 	if (sizeof(*hdr) >= firmware->size) {
2040 		cs_dsp_err(dsp, "%s: coefficient file too short, %zu bytes\n",
2041 			   file, firmware->size);
2042 		goto out_fw;
2043 	}
2044 
2045 	hdr = (void *)&firmware->data[0];
2046 	if (memcmp(hdr->magic, "WMDR", 4) != 0) {
2047 		cs_dsp_err(dsp, "%s: invalid coefficient magic\n", file);
2048 		goto out_fw;
2049 	}
2050 
2051 	switch (be32_to_cpu(hdr->rev) & 0xff) {
2052 	case 1:
2053 	case 2:
2054 		break;
2055 	default:
2056 		cs_dsp_err(dsp, "%s: Unsupported coefficient file format %d\n",
2057 			   file, be32_to_cpu(hdr->rev) & 0xff);
2058 		ret = -EINVAL;
2059 		goto out_fw;
2060 	}
2061 
2062 	cs_dsp_dbg(dsp, "%s: v%d.%d.%d\n", file,
2063 		   (le32_to_cpu(hdr->ver) >> 16) & 0xff,
2064 		   (le32_to_cpu(hdr->ver) >>  8) & 0xff,
2065 		   le32_to_cpu(hdr->ver) & 0xff);
2066 
2067 	pos = le32_to_cpu(hdr->len);
2068 
2069 	blocks = 0;
2070 	while (pos < firmware->size &&
2071 	       sizeof(*blk) < firmware->size - pos) {
2072 		blk = (void *)(&firmware->data[pos]);
2073 
2074 		type = le16_to_cpu(blk->type);
2075 		offset = le16_to_cpu(blk->offset);
2076 		version = le32_to_cpu(blk->ver) >> 8;
2077 
2078 		cs_dsp_dbg(dsp, "%s.%d: %x v%d.%d.%d\n",
2079 			   file, blocks, le32_to_cpu(blk->id),
2080 			   (le32_to_cpu(blk->ver) >> 16) & 0xff,
2081 			   (le32_to_cpu(blk->ver) >>  8) & 0xff,
2082 			   le32_to_cpu(blk->ver) & 0xff);
2083 		cs_dsp_dbg(dsp, "%s.%d: %d bytes at 0x%x in %x\n",
2084 			   file, blocks, le32_to_cpu(blk->len), offset, type);
2085 
2086 		reg = 0;
2087 		region_name = "Unknown";
2088 		switch (type) {
2089 		case (WMFW_NAME_TEXT << 8):
2090 			text = kzalloc(le32_to_cpu(blk->len) + 1, GFP_KERNEL);
2091 			break;
2092 		case (WMFW_INFO_TEXT << 8):
2093 		case (WMFW_METADATA << 8):
2094 			break;
2095 		case (WMFW_ABSOLUTE << 8):
2096 			/*
2097 			 * Old files may use this for global
2098 			 * coefficients.
2099 			 */
2100 			if (le32_to_cpu(blk->id) == dsp->fw_id &&
2101 			    offset == 0) {
2102 				region_name = "global coefficients";
2103 				mem = cs_dsp_find_region(dsp, type);
2104 				if (!mem) {
2105 					cs_dsp_err(dsp, "No ZM\n");
2106 					break;
2107 				}
2108 				reg = dsp->ops->region_to_reg(mem, 0);
2109 
2110 			} else {
2111 				region_name = "register";
2112 				reg = offset;
2113 			}
2114 			break;
2115 
2116 		case WMFW_ADSP1_DM:
2117 		case WMFW_ADSP1_ZM:
2118 		case WMFW_ADSP2_XM:
2119 		case WMFW_ADSP2_YM:
2120 		case WMFW_HALO_XM_PACKED:
2121 		case WMFW_HALO_YM_PACKED:
2122 		case WMFW_HALO_PM_PACKED:
2123 			cs_dsp_dbg(dsp, "%s.%d: %d bytes in %x for %x\n",
2124 				   file, blocks, le32_to_cpu(blk->len),
2125 				   type, le32_to_cpu(blk->id));
2126 
2127 			mem = cs_dsp_find_region(dsp, type);
2128 			if (!mem) {
2129 				cs_dsp_err(dsp, "No base for region %x\n", type);
2130 				break;
2131 			}
2132 
2133 			alg_region = cs_dsp_find_alg_region(dsp, type,
2134 							    le32_to_cpu(blk->id));
2135 			if (alg_region) {
2136 				if (version != alg_region->ver)
2137 					cs_dsp_warn(dsp,
2138 						    "Algorithm coefficient version %d.%d.%d but expected %d.%d.%d\n",
2139 						   (version >> 16) & 0xFF,
2140 						   (version >> 8) & 0xFF,
2141 						   version & 0xFF,
2142 						   (alg_region->ver >> 16) & 0xFF,
2143 						   (alg_region->ver >> 8) & 0xFF,
2144 						   alg_region->ver & 0xFF);
2145 
2146 				reg = alg_region->base;
2147 				reg = dsp->ops->region_to_reg(mem, reg);
2148 				reg += offset;
2149 			} else {
2150 				cs_dsp_err(dsp, "No %x for algorithm %x\n",
2151 					   type, le32_to_cpu(blk->id));
2152 			}
2153 			break;
2154 
2155 		default:
2156 			cs_dsp_err(dsp, "%s.%d: Unknown region type %x at %d\n",
2157 				   file, blocks, type, pos);
2158 			break;
2159 		}
2160 
2161 		if (text) {
2162 			memcpy(text, blk->data, le32_to_cpu(blk->len));
2163 			cs_dsp_info(dsp, "%s: %s\n", dsp->fw_name, text);
2164 			kfree(text);
2165 			text = NULL;
2166 		}
2167 
2168 		if (reg) {
2169 			if (le32_to_cpu(blk->len) >
2170 			    firmware->size - pos - sizeof(*blk)) {
2171 				cs_dsp_err(dsp,
2172 					   "%s.%d: %s region len %d bytes exceeds file length %zu\n",
2173 					   file, blocks, region_name,
2174 					   le32_to_cpu(blk->len),
2175 					   firmware->size);
2176 				ret = -EINVAL;
2177 				goto out_fw;
2178 			}
2179 
2180 			buf = cs_dsp_buf_alloc(blk->data,
2181 					       le32_to_cpu(blk->len),
2182 					       &buf_list);
2183 			if (!buf) {
2184 				cs_dsp_err(dsp, "Out of memory\n");
2185 				ret = -ENOMEM;
2186 				goto out_fw;
2187 			}
2188 
2189 			cs_dsp_dbg(dsp, "%s.%d: Writing %d bytes at %x\n",
2190 				   file, blocks, le32_to_cpu(blk->len),
2191 				   reg);
2192 			ret = regmap_raw_write_async(regmap, reg, buf->buf,
2193 						     le32_to_cpu(blk->len));
2194 			if (ret != 0) {
2195 				cs_dsp_err(dsp,
2196 					   "%s.%d: Failed to write to %x in %s: %d\n",
2197 					   file, blocks, reg, region_name, ret);
2198 			}
2199 		}
2200 
2201 		pos += (le32_to_cpu(blk->len) + sizeof(*blk) + 3) & ~0x03;
2202 		blocks++;
2203 	}
2204 
2205 	ret = regmap_async_complete(regmap);
2206 	if (ret != 0)
2207 		cs_dsp_err(dsp, "Failed to complete async write: %d\n", ret);
2208 
2209 	if (pos > firmware->size)
2210 		cs_dsp_warn(dsp, "%s.%d: %zu bytes at end of file\n",
2211 			    file, blocks, pos - firmware->size);
2212 
2213 	cs_dsp_debugfs_save_binname(dsp, file);
2214 
2215 out_fw:
2216 	regmap_async_complete(regmap);
2217 	cs_dsp_buf_free(&buf_list);
2218 	kfree(text);
2219 	return ret;
2220 }
2221 
2222 static int cs_dsp_create_name(struct cs_dsp *dsp)
2223 {
2224 	if (!dsp->name) {
2225 		dsp->name = devm_kasprintf(dsp->dev, GFP_KERNEL, "DSP%d",
2226 					   dsp->num);
2227 		if (!dsp->name)
2228 			return -ENOMEM;
2229 	}
2230 
2231 	return 0;
2232 }
2233 
2234 static int cs_dsp_common_init(struct cs_dsp *dsp)
2235 {
2236 	int ret;
2237 
2238 	ret = cs_dsp_create_name(dsp);
2239 	if (ret)
2240 		return ret;
2241 
2242 	INIT_LIST_HEAD(&dsp->alg_regions);
2243 	INIT_LIST_HEAD(&dsp->ctl_list);
2244 
2245 	mutex_init(&dsp->pwr_lock);
2246 
2247 	return 0;
2248 }
2249 
2250 /**
2251  * cs_dsp_adsp1_init() - Initialise a cs_dsp structure representing a ADSP1 device
2252  * @dsp: pointer to DSP structure
2253  *
2254  * Return: Zero for success, a negative number on error.
2255  */
2256 int cs_dsp_adsp1_init(struct cs_dsp *dsp)
2257 {
2258 	dsp->ops = &cs_dsp_adsp1_ops;
2259 
2260 	return cs_dsp_common_init(dsp);
2261 }
2262 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_init, FW_CS_DSP);
2263 
2264 /**
2265  * cs_dsp_adsp1_power_up() - Load and start the named firmware
2266  * @dsp: pointer to DSP structure
2267  * @wmfw_firmware: the firmware to be sent
2268  * @wmfw_filename: file name of firmware to be sent
2269  * @coeff_firmware: the coefficient data to be sent
2270  * @coeff_filename: file name of coefficient to data be sent
2271  * @fw_name: the user-friendly firmware name
2272  *
2273  * Return: Zero for success, a negative number on error.
2274  */
2275 int cs_dsp_adsp1_power_up(struct cs_dsp *dsp,
2276 			  const struct firmware *wmfw_firmware, char *wmfw_filename,
2277 			  const struct firmware *coeff_firmware, char *coeff_filename,
2278 			  const char *fw_name)
2279 {
2280 	unsigned int val;
2281 	int ret;
2282 
2283 	mutex_lock(&dsp->pwr_lock);
2284 
2285 	dsp->fw_name = fw_name;
2286 
2287 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2288 			   ADSP1_SYS_ENA, ADSP1_SYS_ENA);
2289 
2290 	/*
2291 	 * For simplicity set the DSP clock rate to be the
2292 	 * SYSCLK rate rather than making it configurable.
2293 	 */
2294 	if (dsp->sysclk_reg) {
2295 		ret = regmap_read(dsp->regmap, dsp->sysclk_reg, &val);
2296 		if (ret != 0) {
2297 			cs_dsp_err(dsp, "Failed to read SYSCLK state: %d\n", ret);
2298 			goto err_mutex;
2299 		}
2300 
2301 		val = (val & dsp->sysclk_mask) >> dsp->sysclk_shift;
2302 
2303 		ret = regmap_update_bits(dsp->regmap,
2304 					 dsp->base + ADSP1_CONTROL_31,
2305 					 ADSP1_CLK_SEL_MASK, val);
2306 		if (ret != 0) {
2307 			cs_dsp_err(dsp, "Failed to set clock rate: %d\n", ret);
2308 			goto err_mutex;
2309 		}
2310 	}
2311 
2312 	ret = cs_dsp_load(dsp, wmfw_firmware, wmfw_filename);
2313 	if (ret != 0)
2314 		goto err_ena;
2315 
2316 	ret = cs_dsp_adsp1_setup_algs(dsp);
2317 	if (ret != 0)
2318 		goto err_ena;
2319 
2320 	ret = cs_dsp_load_coeff(dsp, coeff_firmware, coeff_filename);
2321 	if (ret != 0)
2322 		goto err_ena;
2323 
2324 	/* Initialize caches for enabled and unset controls */
2325 	ret = cs_dsp_coeff_init_control_caches(dsp);
2326 	if (ret != 0)
2327 		goto err_ena;
2328 
2329 	/* Sync set controls */
2330 	ret = cs_dsp_coeff_sync_controls(dsp);
2331 	if (ret != 0)
2332 		goto err_ena;
2333 
2334 	dsp->booted = true;
2335 
2336 	/* Start the core running */
2337 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2338 			   ADSP1_CORE_ENA | ADSP1_START,
2339 			   ADSP1_CORE_ENA | ADSP1_START);
2340 
2341 	dsp->running = true;
2342 
2343 	mutex_unlock(&dsp->pwr_lock);
2344 
2345 	return 0;
2346 
2347 err_ena:
2348 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2349 			   ADSP1_SYS_ENA, 0);
2350 err_mutex:
2351 	mutex_unlock(&dsp->pwr_lock);
2352 	return ret;
2353 }
2354 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_power_up, FW_CS_DSP);
2355 
2356 /**
2357  * cs_dsp_adsp1_power_down() - Halts the DSP
2358  * @dsp: pointer to DSP structure
2359  */
2360 void cs_dsp_adsp1_power_down(struct cs_dsp *dsp)
2361 {
2362 	struct cs_dsp_coeff_ctl *ctl;
2363 
2364 	mutex_lock(&dsp->pwr_lock);
2365 
2366 	dsp->running = false;
2367 	dsp->booted = false;
2368 
2369 	/* Halt the core */
2370 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2371 			   ADSP1_CORE_ENA | ADSP1_START, 0);
2372 
2373 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_19,
2374 			   ADSP1_WDMA_BUFFER_LENGTH_MASK, 0);
2375 
2376 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2377 			   ADSP1_SYS_ENA, 0);
2378 
2379 	list_for_each_entry(ctl, &dsp->ctl_list, list)
2380 		ctl->enabled = 0;
2381 
2382 	cs_dsp_free_alg_regions(dsp);
2383 
2384 	mutex_unlock(&dsp->pwr_lock);
2385 }
2386 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_power_down, FW_CS_DSP);
2387 
2388 static int cs_dsp_adsp2v2_enable_core(struct cs_dsp *dsp)
2389 {
2390 	unsigned int val;
2391 	int ret, count;
2392 
2393 	/* Wait for the RAM to start, should be near instantaneous */
2394 	for (count = 0; count < 10; ++count) {
2395 		ret = regmap_read(dsp->regmap, dsp->base + ADSP2_STATUS1, &val);
2396 		if (ret != 0)
2397 			return ret;
2398 
2399 		if (val & ADSP2_RAM_RDY)
2400 			break;
2401 
2402 		usleep_range(250, 500);
2403 	}
2404 
2405 	if (!(val & ADSP2_RAM_RDY)) {
2406 		cs_dsp_err(dsp, "Failed to start DSP RAM\n");
2407 		return -EBUSY;
2408 	}
2409 
2410 	cs_dsp_dbg(dsp, "RAM ready after %d polls\n", count);
2411 
2412 	return 0;
2413 }
2414 
2415 static int cs_dsp_adsp2_enable_core(struct cs_dsp *dsp)
2416 {
2417 	int ret;
2418 
2419 	ret = regmap_update_bits_async(dsp->regmap, dsp->base + ADSP2_CONTROL,
2420 				       ADSP2_SYS_ENA, ADSP2_SYS_ENA);
2421 	if (ret != 0)
2422 		return ret;
2423 
2424 	return cs_dsp_adsp2v2_enable_core(dsp);
2425 }
2426 
2427 static int cs_dsp_adsp2_lock(struct cs_dsp *dsp, unsigned int lock_regions)
2428 {
2429 	struct regmap *regmap = dsp->regmap;
2430 	unsigned int code0, code1, lock_reg;
2431 
2432 	if (!(lock_regions & CS_ADSP2_REGION_ALL))
2433 		return 0;
2434 
2435 	lock_regions &= CS_ADSP2_REGION_ALL;
2436 	lock_reg = dsp->base + ADSP2_LOCK_REGION_1_LOCK_REGION_0;
2437 
2438 	while (lock_regions) {
2439 		code0 = code1 = 0;
2440 		if (lock_regions & BIT(0)) {
2441 			code0 = ADSP2_LOCK_CODE_0;
2442 			code1 = ADSP2_LOCK_CODE_1;
2443 		}
2444 		if (lock_regions & BIT(1)) {
2445 			code0 |= ADSP2_LOCK_CODE_0 << ADSP2_LOCK_REGION_SHIFT;
2446 			code1 |= ADSP2_LOCK_CODE_1 << ADSP2_LOCK_REGION_SHIFT;
2447 		}
2448 		regmap_write(regmap, lock_reg, code0);
2449 		regmap_write(regmap, lock_reg, code1);
2450 		lock_regions >>= 2;
2451 		lock_reg += 2;
2452 	}
2453 
2454 	return 0;
2455 }
2456 
2457 static int cs_dsp_adsp2_enable_memory(struct cs_dsp *dsp)
2458 {
2459 	return regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2460 				  ADSP2_MEM_ENA, ADSP2_MEM_ENA);
2461 }
2462 
2463 static void cs_dsp_adsp2_disable_memory(struct cs_dsp *dsp)
2464 {
2465 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2466 			   ADSP2_MEM_ENA, 0);
2467 }
2468 
2469 static void cs_dsp_adsp2_disable_core(struct cs_dsp *dsp)
2470 {
2471 	regmap_write(dsp->regmap, dsp->base + ADSP2_RDMA_CONFIG_1, 0);
2472 	regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_1, 0);
2473 	regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_2, 0);
2474 
2475 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2476 			   ADSP2_SYS_ENA, 0);
2477 }
2478 
2479 static void cs_dsp_adsp2v2_disable_core(struct cs_dsp *dsp)
2480 {
2481 	regmap_write(dsp->regmap, dsp->base + ADSP2_RDMA_CONFIG_1, 0);
2482 	regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_1, 0);
2483 	regmap_write(dsp->regmap, dsp->base + ADSP2V2_WDMA_CONFIG_2, 0);
2484 }
2485 
2486 static int cs_dsp_halo_configure_mpu(struct cs_dsp *dsp, unsigned int lock_regions)
2487 {
2488 	struct reg_sequence config[] = {
2489 		{ dsp->base + HALO_MPU_LOCK_CONFIG,     0x5555 },
2490 		{ dsp->base + HALO_MPU_LOCK_CONFIG,     0xAAAA },
2491 		{ dsp->base + HALO_MPU_XMEM_ACCESS_0,   0xFFFFFFFF },
2492 		{ dsp->base + HALO_MPU_YMEM_ACCESS_0,   0xFFFFFFFF },
2493 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_0, lock_regions },
2494 		{ dsp->base + HALO_MPU_XREG_ACCESS_0,   lock_regions },
2495 		{ dsp->base + HALO_MPU_YREG_ACCESS_0,   lock_regions },
2496 		{ dsp->base + HALO_MPU_XMEM_ACCESS_1,   0xFFFFFFFF },
2497 		{ dsp->base + HALO_MPU_YMEM_ACCESS_1,   0xFFFFFFFF },
2498 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_1, lock_regions },
2499 		{ dsp->base + HALO_MPU_XREG_ACCESS_1,   lock_regions },
2500 		{ dsp->base + HALO_MPU_YREG_ACCESS_1,   lock_regions },
2501 		{ dsp->base + HALO_MPU_XMEM_ACCESS_2,   0xFFFFFFFF },
2502 		{ dsp->base + HALO_MPU_YMEM_ACCESS_2,   0xFFFFFFFF },
2503 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_2, lock_regions },
2504 		{ dsp->base + HALO_MPU_XREG_ACCESS_2,   lock_regions },
2505 		{ dsp->base + HALO_MPU_YREG_ACCESS_2,   lock_regions },
2506 		{ dsp->base + HALO_MPU_XMEM_ACCESS_3,   0xFFFFFFFF },
2507 		{ dsp->base + HALO_MPU_YMEM_ACCESS_3,   0xFFFFFFFF },
2508 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_3, lock_regions },
2509 		{ dsp->base + HALO_MPU_XREG_ACCESS_3,   lock_regions },
2510 		{ dsp->base + HALO_MPU_YREG_ACCESS_3,   lock_regions },
2511 		{ dsp->base + HALO_MPU_LOCK_CONFIG,     0 },
2512 	};
2513 
2514 	return regmap_multi_reg_write(dsp->regmap, config, ARRAY_SIZE(config));
2515 }
2516 
2517 /**
2518  * cs_dsp_set_dspclk() - Applies the given frequency to the given cs_dsp
2519  * @dsp: pointer to DSP structure
2520  * @freq: clock rate to set
2521  *
2522  * This is only for use on ADSP2 cores.
2523  *
2524  * Return: Zero for success, a negative number on error.
2525  */
2526 int cs_dsp_set_dspclk(struct cs_dsp *dsp, unsigned int freq)
2527 {
2528 	int ret;
2529 
2530 	ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CLOCKING,
2531 				 ADSP2_CLK_SEL_MASK,
2532 				 freq << ADSP2_CLK_SEL_SHIFT);
2533 	if (ret)
2534 		cs_dsp_err(dsp, "Failed to set clock rate: %d\n", ret);
2535 
2536 	return ret;
2537 }
2538 EXPORT_SYMBOL_NS_GPL(cs_dsp_set_dspclk, FW_CS_DSP);
2539 
2540 static void cs_dsp_stop_watchdog(struct cs_dsp *dsp)
2541 {
2542 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_WATCHDOG,
2543 			   ADSP2_WDT_ENA_MASK, 0);
2544 }
2545 
2546 static void cs_dsp_halo_stop_watchdog(struct cs_dsp *dsp)
2547 {
2548 	regmap_update_bits(dsp->regmap, dsp->base + HALO_WDT_CONTROL,
2549 			   HALO_WDT_EN_MASK, 0);
2550 }
2551 
2552 /**
2553  * cs_dsp_power_up() - Downloads firmware to the DSP
2554  * @dsp: pointer to DSP structure
2555  * @wmfw_firmware: the firmware to be sent
2556  * @wmfw_filename: file name of firmware to be sent
2557  * @coeff_firmware: the coefficient data to be sent
2558  * @coeff_filename: file name of coefficient to data be sent
2559  * @fw_name: the user-friendly firmware name
2560  *
2561  * This function is used on ADSP2 and Halo DSP cores, it powers-up the DSP core
2562  * and downloads the firmware but does not start the firmware running. The
2563  * cs_dsp booted flag will be set once completed and if the core has a low-power
2564  * memory retention mode it will be put into this state after the firmware is
2565  * downloaded.
2566  *
2567  * Return: Zero for success, a negative number on error.
2568  */
2569 int cs_dsp_power_up(struct cs_dsp *dsp,
2570 		    const struct firmware *wmfw_firmware, char *wmfw_filename,
2571 		    const struct firmware *coeff_firmware, char *coeff_filename,
2572 		    const char *fw_name)
2573 {
2574 	int ret;
2575 
2576 	mutex_lock(&dsp->pwr_lock);
2577 
2578 	dsp->fw_name = fw_name;
2579 
2580 	if (dsp->ops->enable_memory) {
2581 		ret = dsp->ops->enable_memory(dsp);
2582 		if (ret != 0)
2583 			goto err_mutex;
2584 	}
2585 
2586 	if (dsp->ops->enable_core) {
2587 		ret = dsp->ops->enable_core(dsp);
2588 		if (ret != 0)
2589 			goto err_mem;
2590 	}
2591 
2592 	ret = cs_dsp_load(dsp, wmfw_firmware, wmfw_filename);
2593 	if (ret != 0)
2594 		goto err_ena;
2595 
2596 	ret = dsp->ops->setup_algs(dsp);
2597 	if (ret != 0)
2598 		goto err_ena;
2599 
2600 	ret = cs_dsp_load_coeff(dsp, coeff_firmware, coeff_filename);
2601 	if (ret != 0)
2602 		goto err_ena;
2603 
2604 	/* Initialize caches for enabled and unset controls */
2605 	ret = cs_dsp_coeff_init_control_caches(dsp);
2606 	if (ret != 0)
2607 		goto err_ena;
2608 
2609 	if (dsp->ops->disable_core)
2610 		dsp->ops->disable_core(dsp);
2611 
2612 	dsp->booted = true;
2613 
2614 	mutex_unlock(&dsp->pwr_lock);
2615 
2616 	return 0;
2617 err_ena:
2618 	if (dsp->ops->disable_core)
2619 		dsp->ops->disable_core(dsp);
2620 err_mem:
2621 	if (dsp->ops->disable_memory)
2622 		dsp->ops->disable_memory(dsp);
2623 err_mutex:
2624 	mutex_unlock(&dsp->pwr_lock);
2625 
2626 	return ret;
2627 }
2628 EXPORT_SYMBOL_NS_GPL(cs_dsp_power_up, FW_CS_DSP);
2629 
2630 /**
2631  * cs_dsp_power_down() - Powers-down the DSP
2632  * @dsp: pointer to DSP structure
2633  *
2634  * cs_dsp_stop() must have been called before this function. The core will be
2635  * fully powered down and so the memory will not be retained.
2636  */
2637 void cs_dsp_power_down(struct cs_dsp *dsp)
2638 {
2639 	struct cs_dsp_coeff_ctl *ctl;
2640 
2641 	mutex_lock(&dsp->pwr_lock);
2642 
2643 	cs_dsp_debugfs_clear(dsp);
2644 
2645 	dsp->fw_id = 0;
2646 	dsp->fw_id_version = 0;
2647 
2648 	dsp->booted = false;
2649 
2650 	if (dsp->ops->disable_memory)
2651 		dsp->ops->disable_memory(dsp);
2652 
2653 	list_for_each_entry(ctl, &dsp->ctl_list, list)
2654 		ctl->enabled = 0;
2655 
2656 	cs_dsp_free_alg_regions(dsp);
2657 
2658 	mutex_unlock(&dsp->pwr_lock);
2659 
2660 	cs_dsp_dbg(dsp, "Shutdown complete\n");
2661 }
2662 EXPORT_SYMBOL_NS_GPL(cs_dsp_power_down, FW_CS_DSP);
2663 
2664 static int cs_dsp_adsp2_start_core(struct cs_dsp *dsp)
2665 {
2666 	return regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2667 				  ADSP2_CORE_ENA | ADSP2_START,
2668 				  ADSP2_CORE_ENA | ADSP2_START);
2669 }
2670 
2671 static void cs_dsp_adsp2_stop_core(struct cs_dsp *dsp)
2672 {
2673 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2674 			   ADSP2_CORE_ENA | ADSP2_START, 0);
2675 }
2676 
2677 /**
2678  * cs_dsp_run() - Starts the firmware running
2679  * @dsp: pointer to DSP structure
2680  *
2681  * cs_dsp_power_up() must have previously been called successfully.
2682  *
2683  * Return: Zero for success, a negative number on error.
2684  */
2685 int cs_dsp_run(struct cs_dsp *dsp)
2686 {
2687 	int ret;
2688 
2689 	mutex_lock(&dsp->pwr_lock);
2690 
2691 	if (!dsp->booted) {
2692 		ret = -EIO;
2693 		goto err;
2694 	}
2695 
2696 	if (dsp->ops->enable_core) {
2697 		ret = dsp->ops->enable_core(dsp);
2698 		if (ret != 0)
2699 			goto err;
2700 	}
2701 
2702 	if (dsp->client_ops->pre_run) {
2703 		ret = dsp->client_ops->pre_run(dsp);
2704 		if (ret)
2705 			goto err;
2706 	}
2707 
2708 	/* Sync set controls */
2709 	ret = cs_dsp_coeff_sync_controls(dsp);
2710 	if (ret != 0)
2711 		goto err;
2712 
2713 	if (dsp->ops->lock_memory) {
2714 		ret = dsp->ops->lock_memory(dsp, dsp->lock_regions);
2715 		if (ret != 0) {
2716 			cs_dsp_err(dsp, "Error configuring MPU: %d\n", ret);
2717 			goto err;
2718 		}
2719 	}
2720 
2721 	if (dsp->ops->start_core) {
2722 		ret = dsp->ops->start_core(dsp);
2723 		if (ret != 0)
2724 			goto err;
2725 	}
2726 
2727 	dsp->running = true;
2728 
2729 	if (dsp->client_ops->post_run) {
2730 		ret = dsp->client_ops->post_run(dsp);
2731 		if (ret)
2732 			goto err;
2733 	}
2734 
2735 	mutex_unlock(&dsp->pwr_lock);
2736 
2737 	return 0;
2738 
2739 err:
2740 	if (dsp->ops->stop_core)
2741 		dsp->ops->stop_core(dsp);
2742 	if (dsp->ops->disable_core)
2743 		dsp->ops->disable_core(dsp);
2744 	mutex_unlock(&dsp->pwr_lock);
2745 
2746 	return ret;
2747 }
2748 EXPORT_SYMBOL_NS_GPL(cs_dsp_run, FW_CS_DSP);
2749 
2750 /**
2751  * cs_dsp_stop() - Stops the firmware
2752  * @dsp: pointer to DSP structure
2753  *
2754  * Memory will not be disabled so firmware will remain loaded.
2755  */
2756 void cs_dsp_stop(struct cs_dsp *dsp)
2757 {
2758 	/* Tell the firmware to cleanup */
2759 	cs_dsp_signal_event_controls(dsp, CS_DSP_FW_EVENT_SHUTDOWN);
2760 
2761 	if (dsp->ops->stop_watchdog)
2762 		dsp->ops->stop_watchdog(dsp);
2763 
2764 	/* Log firmware state, it can be useful for analysis */
2765 	if (dsp->ops->show_fw_status)
2766 		dsp->ops->show_fw_status(dsp);
2767 
2768 	mutex_lock(&dsp->pwr_lock);
2769 
2770 	if (dsp->client_ops->pre_stop)
2771 		dsp->client_ops->pre_stop(dsp);
2772 
2773 	dsp->running = false;
2774 
2775 	if (dsp->ops->stop_core)
2776 		dsp->ops->stop_core(dsp);
2777 	if (dsp->ops->disable_core)
2778 		dsp->ops->disable_core(dsp);
2779 
2780 	if (dsp->client_ops->post_stop)
2781 		dsp->client_ops->post_stop(dsp);
2782 
2783 	mutex_unlock(&dsp->pwr_lock);
2784 
2785 	cs_dsp_dbg(dsp, "Execution stopped\n");
2786 }
2787 EXPORT_SYMBOL_NS_GPL(cs_dsp_stop, FW_CS_DSP);
2788 
2789 static int cs_dsp_halo_start_core(struct cs_dsp *dsp)
2790 {
2791 	int ret;
2792 
2793 	ret = regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2794 				 HALO_CORE_RESET | HALO_CORE_EN,
2795 				 HALO_CORE_RESET | HALO_CORE_EN);
2796 	if (ret)
2797 		return ret;
2798 
2799 	return regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2800 				  HALO_CORE_RESET, 0);
2801 }
2802 
2803 static void cs_dsp_halo_stop_core(struct cs_dsp *dsp)
2804 {
2805 	regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2806 			   HALO_CORE_EN, 0);
2807 
2808 	/* reset halo core with CORE_SOFT_RESET */
2809 	regmap_update_bits(dsp->regmap, dsp->base + HALO_CORE_SOFT_RESET,
2810 			   HALO_CORE_SOFT_RESET_MASK, 1);
2811 }
2812 
2813 /**
2814  * cs_dsp_adsp2_init() - Initialise a cs_dsp structure representing a ADSP2 core
2815  * @dsp: pointer to DSP structure
2816  *
2817  * Return: Zero for success, a negative number on error.
2818  */
2819 int cs_dsp_adsp2_init(struct cs_dsp *dsp)
2820 {
2821 	int ret;
2822 
2823 	switch (dsp->rev) {
2824 	case 0:
2825 		/*
2826 		 * Disable the DSP memory by default when in reset for a small
2827 		 * power saving.
2828 		 */
2829 		ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2830 					 ADSP2_MEM_ENA, 0);
2831 		if (ret) {
2832 			cs_dsp_err(dsp,
2833 				   "Failed to clear memory retention: %d\n", ret);
2834 			return ret;
2835 		}
2836 
2837 		dsp->ops = &cs_dsp_adsp2_ops[0];
2838 		break;
2839 	case 1:
2840 		dsp->ops = &cs_dsp_adsp2_ops[1];
2841 		break;
2842 	default:
2843 		dsp->ops = &cs_dsp_adsp2_ops[2];
2844 		break;
2845 	}
2846 
2847 	return cs_dsp_common_init(dsp);
2848 }
2849 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp2_init, FW_CS_DSP);
2850 
2851 /**
2852  * cs_dsp_halo_init() - Initialise a cs_dsp structure representing a HALO Core DSP
2853  * @dsp: pointer to DSP structure
2854  *
2855  * Return: Zero for success, a negative number on error.
2856  */
2857 int cs_dsp_halo_init(struct cs_dsp *dsp)
2858 {
2859 	if (dsp->no_core_startstop)
2860 		dsp->ops = &cs_dsp_halo_ao_ops;
2861 	else
2862 		dsp->ops = &cs_dsp_halo_ops;
2863 
2864 	return cs_dsp_common_init(dsp);
2865 }
2866 EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_init, FW_CS_DSP);
2867 
2868 /**
2869  * cs_dsp_remove() - Clean a cs_dsp before deletion
2870  * @dsp: pointer to DSP structure
2871  */
2872 void cs_dsp_remove(struct cs_dsp *dsp)
2873 {
2874 	struct cs_dsp_coeff_ctl *ctl;
2875 
2876 	while (!list_empty(&dsp->ctl_list)) {
2877 		ctl = list_first_entry(&dsp->ctl_list, struct cs_dsp_coeff_ctl, list);
2878 
2879 		if (dsp->client_ops->control_remove)
2880 			dsp->client_ops->control_remove(ctl);
2881 
2882 		list_del(&ctl->list);
2883 		cs_dsp_free_ctl_blk(ctl);
2884 	}
2885 }
2886 EXPORT_SYMBOL_NS_GPL(cs_dsp_remove, FW_CS_DSP);
2887 
2888 /**
2889  * cs_dsp_read_raw_data_block() - Reads a block of data from DSP memory
2890  * @dsp: pointer to DSP structure
2891  * @mem_type: the type of DSP memory containing the data to be read
2892  * @mem_addr: the address of the data within the memory region
2893  * @num_words: the length of the data to read
2894  * @data: a buffer to store the fetched data
2895  *
2896  * If this is used to read unpacked 24-bit memory, each 24-bit DSP word will
2897  * occupy 32-bits in data (MSbyte will be 0). This padding can be removed using
2898  * cs_dsp_remove_padding()
2899  *
2900  * Return: Zero for success, a negative number on error.
2901  */
2902 int cs_dsp_read_raw_data_block(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr,
2903 			       unsigned int num_words, __be32 *data)
2904 {
2905 	struct cs_dsp_region const *mem = cs_dsp_find_region(dsp, mem_type);
2906 	unsigned int reg;
2907 	int ret;
2908 
2909 	lockdep_assert_held(&dsp->pwr_lock);
2910 
2911 	if (!mem)
2912 		return -EINVAL;
2913 
2914 	reg = dsp->ops->region_to_reg(mem, mem_addr);
2915 
2916 	ret = regmap_raw_read(dsp->regmap, reg, data,
2917 			      sizeof(*data) * num_words);
2918 	if (ret < 0)
2919 		return ret;
2920 
2921 	return 0;
2922 }
2923 EXPORT_SYMBOL_NS_GPL(cs_dsp_read_raw_data_block, FW_CS_DSP);
2924 
2925 /**
2926  * cs_dsp_read_data_word() - Reads a word from DSP memory
2927  * @dsp: pointer to DSP structure
2928  * @mem_type: the type of DSP memory containing the data to be read
2929  * @mem_addr: the address of the data within the memory region
2930  * @data: a buffer to store the fetched data
2931  *
2932  * Return: Zero for success, a negative number on error.
2933  */
2934 int cs_dsp_read_data_word(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr, u32 *data)
2935 {
2936 	__be32 raw;
2937 	int ret;
2938 
2939 	ret = cs_dsp_read_raw_data_block(dsp, mem_type, mem_addr, 1, &raw);
2940 	if (ret < 0)
2941 		return ret;
2942 
2943 	*data = be32_to_cpu(raw) & 0x00ffffffu;
2944 
2945 	return 0;
2946 }
2947 EXPORT_SYMBOL_NS_GPL(cs_dsp_read_data_word, FW_CS_DSP);
2948 
2949 /**
2950  * cs_dsp_write_data_word() - Writes a word to DSP memory
2951  * @dsp: pointer to DSP structure
2952  * @mem_type: the type of DSP memory containing the data to be written
2953  * @mem_addr: the address of the data within the memory region
2954  * @data: the data to be written
2955  *
2956  * Return: Zero for success, a negative number on error.
2957  */
2958 int cs_dsp_write_data_word(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr, u32 data)
2959 {
2960 	struct cs_dsp_region const *mem = cs_dsp_find_region(dsp, mem_type);
2961 	__be32 val = cpu_to_be32(data & 0x00ffffffu);
2962 	unsigned int reg;
2963 
2964 	lockdep_assert_held(&dsp->pwr_lock);
2965 
2966 	if (!mem)
2967 		return -EINVAL;
2968 
2969 	reg = dsp->ops->region_to_reg(mem, mem_addr);
2970 
2971 	return regmap_raw_write(dsp->regmap, reg, &val, sizeof(val));
2972 }
2973 EXPORT_SYMBOL_NS_GPL(cs_dsp_write_data_word, FW_CS_DSP);
2974 
2975 /**
2976  * cs_dsp_remove_padding() - Convert unpacked words to packed bytes
2977  * @buf: buffer containing DSP words read from DSP memory
2978  * @nwords: number of words to convert
2979  *
2980  * DSP words from the register map have pad bytes and the data bytes
2981  * are in swapped order. This swaps to the native endian order and
2982  * strips the pad bytes.
2983  */
2984 void cs_dsp_remove_padding(u32 *buf, int nwords)
2985 {
2986 	const __be32 *pack_in = (__be32 *)buf;
2987 	u8 *pack_out = (u8 *)buf;
2988 	int i;
2989 
2990 	for (i = 0; i < nwords; i++) {
2991 		u32 word = be32_to_cpu(*pack_in++);
2992 		*pack_out++ = (u8)word;
2993 		*pack_out++ = (u8)(word >> 8);
2994 		*pack_out++ = (u8)(word >> 16);
2995 	}
2996 }
2997 EXPORT_SYMBOL_NS_GPL(cs_dsp_remove_padding, FW_CS_DSP);
2998 
2999 /**
3000  * cs_dsp_adsp2_bus_error() - Handle a DSP bus error interrupt
3001  * @dsp: pointer to DSP structure
3002  *
3003  * The firmware and DSP state will be logged for future analysis.
3004  */
3005 void cs_dsp_adsp2_bus_error(struct cs_dsp *dsp)
3006 {
3007 	unsigned int val;
3008 	struct regmap *regmap = dsp->regmap;
3009 	int ret = 0;
3010 
3011 	mutex_lock(&dsp->pwr_lock);
3012 
3013 	ret = regmap_read(regmap, dsp->base + ADSP2_LOCK_REGION_CTRL, &val);
3014 	if (ret) {
3015 		cs_dsp_err(dsp,
3016 			   "Failed to read Region Lock Ctrl register: %d\n", ret);
3017 		goto error;
3018 	}
3019 
3020 	if (val & ADSP2_WDT_TIMEOUT_STS_MASK) {
3021 		cs_dsp_err(dsp, "watchdog timeout error\n");
3022 		dsp->ops->stop_watchdog(dsp);
3023 		if (dsp->client_ops->watchdog_expired)
3024 			dsp->client_ops->watchdog_expired(dsp);
3025 	}
3026 
3027 	if (val & (ADSP2_ADDR_ERR_MASK | ADSP2_REGION_LOCK_ERR_MASK)) {
3028 		if (val & ADSP2_ADDR_ERR_MASK)
3029 			cs_dsp_err(dsp, "bus error: address error\n");
3030 		else
3031 			cs_dsp_err(dsp, "bus error: region lock error\n");
3032 
3033 		ret = regmap_read(regmap, dsp->base + ADSP2_BUS_ERR_ADDR, &val);
3034 		if (ret) {
3035 			cs_dsp_err(dsp,
3036 				   "Failed to read Bus Err Addr register: %d\n",
3037 				   ret);
3038 			goto error;
3039 		}
3040 
3041 		cs_dsp_err(dsp, "bus error address = 0x%x\n",
3042 			   val & ADSP2_BUS_ERR_ADDR_MASK);
3043 
3044 		ret = regmap_read(regmap,
3045 				  dsp->base + ADSP2_PMEM_ERR_ADDR_XMEM_ERR_ADDR,
3046 				  &val);
3047 		if (ret) {
3048 			cs_dsp_err(dsp,
3049 				   "Failed to read Pmem Xmem Err Addr register: %d\n",
3050 				   ret);
3051 			goto error;
3052 		}
3053 
3054 		cs_dsp_err(dsp, "xmem error address = 0x%x\n",
3055 			   val & ADSP2_XMEM_ERR_ADDR_MASK);
3056 		cs_dsp_err(dsp, "pmem error address = 0x%x\n",
3057 			   (val & ADSP2_PMEM_ERR_ADDR_MASK) >>
3058 			   ADSP2_PMEM_ERR_ADDR_SHIFT);
3059 	}
3060 
3061 	regmap_update_bits(regmap, dsp->base + ADSP2_LOCK_REGION_CTRL,
3062 			   ADSP2_CTRL_ERR_EINT, ADSP2_CTRL_ERR_EINT);
3063 
3064 error:
3065 	mutex_unlock(&dsp->pwr_lock);
3066 }
3067 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp2_bus_error, FW_CS_DSP);
3068 
3069 /**
3070  * cs_dsp_halo_bus_error() - Handle a DSP bus error interrupt
3071  * @dsp: pointer to DSP structure
3072  *
3073  * The firmware and DSP state will be logged for future analysis.
3074  */
3075 void cs_dsp_halo_bus_error(struct cs_dsp *dsp)
3076 {
3077 	struct regmap *regmap = dsp->regmap;
3078 	unsigned int fault[6];
3079 	struct reg_sequence clear[] = {
3080 		{ dsp->base + HALO_MPU_XM_VIO_STATUS,     0x0 },
3081 		{ dsp->base + HALO_MPU_YM_VIO_STATUS,     0x0 },
3082 		{ dsp->base + HALO_MPU_PM_VIO_STATUS,     0x0 },
3083 	};
3084 	int ret;
3085 
3086 	mutex_lock(&dsp->pwr_lock);
3087 
3088 	ret = regmap_read(regmap, dsp->base_sysinfo + HALO_AHBM_WINDOW_DEBUG_1,
3089 			  fault);
3090 	if (ret) {
3091 		cs_dsp_warn(dsp, "Failed to read AHB DEBUG_1: %d\n", ret);
3092 		goto exit_unlock;
3093 	}
3094 
3095 	cs_dsp_warn(dsp, "AHB: STATUS: 0x%x ADDR: 0x%x\n",
3096 		    *fault & HALO_AHBM_FLAGS_ERR_MASK,
3097 		    (*fault & HALO_AHBM_CORE_ERR_ADDR_MASK) >>
3098 		    HALO_AHBM_CORE_ERR_ADDR_SHIFT);
3099 
3100 	ret = regmap_read(regmap, dsp->base_sysinfo + HALO_AHBM_WINDOW_DEBUG_0,
3101 			  fault);
3102 	if (ret) {
3103 		cs_dsp_warn(dsp, "Failed to read AHB DEBUG_0: %d\n", ret);
3104 		goto exit_unlock;
3105 	}
3106 
3107 	cs_dsp_warn(dsp, "AHB: SYS_ADDR: 0x%x\n", *fault);
3108 
3109 	ret = regmap_bulk_read(regmap, dsp->base + HALO_MPU_XM_VIO_ADDR,
3110 			       fault, ARRAY_SIZE(fault));
3111 	if (ret) {
3112 		cs_dsp_warn(dsp, "Failed to read MPU fault info: %d\n", ret);
3113 		goto exit_unlock;
3114 	}
3115 
3116 	cs_dsp_warn(dsp, "XM: STATUS:0x%x ADDR:0x%x\n", fault[1], fault[0]);
3117 	cs_dsp_warn(dsp, "YM: STATUS:0x%x ADDR:0x%x\n", fault[3], fault[2]);
3118 	cs_dsp_warn(dsp, "PM: STATUS:0x%x ADDR:0x%x\n", fault[5], fault[4]);
3119 
3120 	ret = regmap_multi_reg_write(dsp->regmap, clear, ARRAY_SIZE(clear));
3121 	if (ret)
3122 		cs_dsp_warn(dsp, "Failed to clear MPU status: %d\n", ret);
3123 
3124 exit_unlock:
3125 	mutex_unlock(&dsp->pwr_lock);
3126 }
3127 EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_bus_error, FW_CS_DSP);
3128 
3129 /**
3130  * cs_dsp_halo_wdt_expire() - Handle DSP watchdog expiry
3131  * @dsp: pointer to DSP structure
3132  *
3133  * This is logged for future analysis.
3134  */
3135 void cs_dsp_halo_wdt_expire(struct cs_dsp *dsp)
3136 {
3137 	mutex_lock(&dsp->pwr_lock);
3138 
3139 	cs_dsp_warn(dsp, "WDT Expiry Fault\n");
3140 
3141 	dsp->ops->stop_watchdog(dsp);
3142 	if (dsp->client_ops->watchdog_expired)
3143 		dsp->client_ops->watchdog_expired(dsp);
3144 
3145 	mutex_unlock(&dsp->pwr_lock);
3146 }
3147 EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_wdt_expire, FW_CS_DSP);
3148 
3149 static const struct cs_dsp_ops cs_dsp_adsp1_ops = {
3150 	.validate_version = cs_dsp_validate_version,
3151 	.parse_sizes = cs_dsp_adsp1_parse_sizes,
3152 	.region_to_reg = cs_dsp_region_to_reg,
3153 };
3154 
3155 static const struct cs_dsp_ops cs_dsp_adsp2_ops[] = {
3156 	{
3157 		.parse_sizes = cs_dsp_adsp2_parse_sizes,
3158 		.validate_version = cs_dsp_validate_version,
3159 		.setup_algs = cs_dsp_adsp2_setup_algs,
3160 		.region_to_reg = cs_dsp_region_to_reg,
3161 
3162 		.show_fw_status = cs_dsp_adsp2_show_fw_status,
3163 
3164 		.enable_memory = cs_dsp_adsp2_enable_memory,
3165 		.disable_memory = cs_dsp_adsp2_disable_memory,
3166 
3167 		.enable_core = cs_dsp_adsp2_enable_core,
3168 		.disable_core = cs_dsp_adsp2_disable_core,
3169 
3170 		.start_core = cs_dsp_adsp2_start_core,
3171 		.stop_core = cs_dsp_adsp2_stop_core,
3172 
3173 	},
3174 	{
3175 		.parse_sizes = cs_dsp_adsp2_parse_sizes,
3176 		.validate_version = cs_dsp_validate_version,
3177 		.setup_algs = cs_dsp_adsp2_setup_algs,
3178 		.region_to_reg = cs_dsp_region_to_reg,
3179 
3180 		.show_fw_status = cs_dsp_adsp2v2_show_fw_status,
3181 
3182 		.enable_memory = cs_dsp_adsp2_enable_memory,
3183 		.disable_memory = cs_dsp_adsp2_disable_memory,
3184 		.lock_memory = cs_dsp_adsp2_lock,
3185 
3186 		.enable_core = cs_dsp_adsp2v2_enable_core,
3187 		.disable_core = cs_dsp_adsp2v2_disable_core,
3188 
3189 		.start_core = cs_dsp_adsp2_start_core,
3190 		.stop_core = cs_dsp_adsp2_stop_core,
3191 	},
3192 	{
3193 		.parse_sizes = cs_dsp_adsp2_parse_sizes,
3194 		.validate_version = cs_dsp_validate_version,
3195 		.setup_algs = cs_dsp_adsp2_setup_algs,
3196 		.region_to_reg = cs_dsp_region_to_reg,
3197 
3198 		.show_fw_status = cs_dsp_adsp2v2_show_fw_status,
3199 		.stop_watchdog = cs_dsp_stop_watchdog,
3200 
3201 		.enable_memory = cs_dsp_adsp2_enable_memory,
3202 		.disable_memory = cs_dsp_adsp2_disable_memory,
3203 		.lock_memory = cs_dsp_adsp2_lock,
3204 
3205 		.enable_core = cs_dsp_adsp2v2_enable_core,
3206 		.disable_core = cs_dsp_adsp2v2_disable_core,
3207 
3208 		.start_core = cs_dsp_adsp2_start_core,
3209 		.stop_core = cs_dsp_adsp2_stop_core,
3210 	},
3211 };
3212 
3213 static const struct cs_dsp_ops cs_dsp_halo_ops = {
3214 	.parse_sizes = cs_dsp_adsp2_parse_sizes,
3215 	.validate_version = cs_dsp_halo_validate_version,
3216 	.setup_algs = cs_dsp_halo_setup_algs,
3217 	.region_to_reg = cs_dsp_halo_region_to_reg,
3218 
3219 	.show_fw_status = cs_dsp_halo_show_fw_status,
3220 	.stop_watchdog = cs_dsp_halo_stop_watchdog,
3221 
3222 	.lock_memory = cs_dsp_halo_configure_mpu,
3223 
3224 	.start_core = cs_dsp_halo_start_core,
3225 	.stop_core = cs_dsp_halo_stop_core,
3226 };
3227 
3228 static const struct cs_dsp_ops cs_dsp_halo_ao_ops = {
3229 	.parse_sizes = cs_dsp_adsp2_parse_sizes,
3230 	.validate_version = cs_dsp_halo_validate_version,
3231 	.setup_algs = cs_dsp_halo_setup_algs,
3232 	.region_to_reg = cs_dsp_halo_region_to_reg,
3233 	.show_fw_status = cs_dsp_halo_show_fw_status,
3234 };
3235 
3236 /**
3237  * cs_dsp_chunk_write() - Format data to a DSP memory chunk
3238  * @ch: Pointer to the chunk structure
3239  * @nbits: Number of bits to write
3240  * @val: Value to write
3241  *
3242  * This function sequentially writes values into the format required for DSP
3243  * memory, it handles both inserting of the padding bytes and converting to
3244  * big endian. Note that data is only committed to the chunk when a whole DSP
3245  * words worth of data is available.
3246  *
3247  * Return: Zero for success, a negative number on error.
3248  */
3249 int cs_dsp_chunk_write(struct cs_dsp_chunk *ch, int nbits, u32 val)
3250 {
3251 	int nwrite, i;
3252 
3253 	nwrite = min(CS_DSP_DATA_WORD_BITS - ch->cachebits, nbits);
3254 
3255 	ch->cache <<= nwrite;
3256 	ch->cache |= val >> (nbits - nwrite);
3257 	ch->cachebits += nwrite;
3258 	nbits -= nwrite;
3259 
3260 	if (ch->cachebits == CS_DSP_DATA_WORD_BITS) {
3261 		if (cs_dsp_chunk_end(ch))
3262 			return -ENOSPC;
3263 
3264 		ch->cache &= 0xFFFFFF;
3265 		for (i = 0; i < sizeof(ch->cache); i++, ch->cache <<= BITS_PER_BYTE)
3266 			*ch->data++ = (ch->cache & 0xFF000000) >> CS_DSP_DATA_WORD_BITS;
3267 
3268 		ch->bytes += sizeof(ch->cache);
3269 		ch->cachebits = 0;
3270 	}
3271 
3272 	if (nbits)
3273 		return cs_dsp_chunk_write(ch, nbits, val);
3274 
3275 	return 0;
3276 }
3277 EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_write, FW_CS_DSP);
3278 
3279 /**
3280  * cs_dsp_chunk_flush() - Pad remaining data with zero and commit to chunk
3281  * @ch: Pointer to the chunk structure
3282  *
3283  * As cs_dsp_chunk_write only writes data when a whole DSP word is ready to
3284  * be written out it is possible that some data will remain in the cache, this
3285  * function will pad that data with zeros upto a whole DSP word and write out.
3286  *
3287  * Return: Zero for success, a negative number on error.
3288  */
3289 int cs_dsp_chunk_flush(struct cs_dsp_chunk *ch)
3290 {
3291 	if (!ch->cachebits)
3292 		return 0;
3293 
3294 	return cs_dsp_chunk_write(ch, CS_DSP_DATA_WORD_BITS - ch->cachebits, 0);
3295 }
3296 EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_flush, FW_CS_DSP);
3297 
3298 /**
3299  * cs_dsp_chunk_read() - Parse data from a DSP memory chunk
3300  * @ch: Pointer to the chunk structure
3301  * @nbits: Number of bits to read
3302  *
3303  * This function sequentially reads values from a DSP memory formatted buffer,
3304  * it handles both removing of the padding bytes and converting from big endian.
3305  *
3306  * Return: A negative number is returned on error, otherwise the read value.
3307  */
3308 int cs_dsp_chunk_read(struct cs_dsp_chunk *ch, int nbits)
3309 {
3310 	int nread, i;
3311 	u32 result;
3312 
3313 	if (!ch->cachebits) {
3314 		if (cs_dsp_chunk_end(ch))
3315 			return -ENOSPC;
3316 
3317 		ch->cache = 0;
3318 		ch->cachebits = CS_DSP_DATA_WORD_BITS;
3319 
3320 		for (i = 0; i < sizeof(ch->cache); i++, ch->cache <<= BITS_PER_BYTE)
3321 			ch->cache |= *ch->data++;
3322 
3323 		ch->bytes += sizeof(ch->cache);
3324 	}
3325 
3326 	nread = min(ch->cachebits, nbits);
3327 	nbits -= nread;
3328 
3329 	result = ch->cache >> ((sizeof(ch->cache) * BITS_PER_BYTE) - nread);
3330 	ch->cache <<= nread;
3331 	ch->cachebits -= nread;
3332 
3333 	if (nbits)
3334 		result = (result << nbits) | cs_dsp_chunk_read(ch, nbits);
3335 
3336 	return result;
3337 }
3338 EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_read, FW_CS_DSP);
3339 
3340 MODULE_DESCRIPTION("Cirrus Logic DSP Support");
3341 MODULE_AUTHOR("Simon Trimmer <simont@opensource.cirrus.com>");
3342 MODULE_LICENSE("GPL v2");
3343