xref: /linux/drivers/firmware/cirrus/cs_dsp.c (revision 2aa680df68062e4e0c356ec2aa7100c13654907b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * cs_dsp.c  --  Cirrus Logic DSP firmware support
4  *
5  * Based on sound/soc/codecs/wm_adsp.c
6  *
7  * Copyright 2012 Wolfson Microelectronics plc
8  * Copyright (C) 2015-2021 Cirrus Logic, Inc. and
9  *                         Cirrus Logic International Semiconductor Ltd.
10  */
11 
12 #include <linux/cleanup.h>
13 #include <linux/ctype.h>
14 #include <linux/debugfs.h>
15 #include <linux/delay.h>
16 #include <linux/math.h>
17 #include <linux/minmax.h>
18 #include <linux/module.h>
19 #include <linux/moduleparam.h>
20 #include <linux/seq_file.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 
24 #include <linux/firmware/cirrus/cs_dsp.h>
25 #include <linux/firmware/cirrus/wmfw.h>
26 
27 #define cs_dsp_err(_dsp, fmt, ...) \
28 	dev_err(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
29 #define cs_dsp_warn(_dsp, fmt, ...) \
30 	dev_warn(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
31 #define cs_dsp_info(_dsp, fmt, ...) \
32 	dev_info(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
33 #define cs_dsp_dbg(_dsp, fmt, ...) \
34 	dev_dbg(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
35 
36 #define ADSP1_CONTROL_1                   0x00
37 #define ADSP1_CONTROL_2                   0x02
38 #define ADSP1_CONTROL_3                   0x03
39 #define ADSP1_CONTROL_4                   0x04
40 #define ADSP1_CONTROL_5                   0x06
41 #define ADSP1_CONTROL_6                   0x07
42 #define ADSP1_CONTROL_7                   0x08
43 #define ADSP1_CONTROL_8                   0x09
44 #define ADSP1_CONTROL_9                   0x0A
45 #define ADSP1_CONTROL_10                  0x0B
46 #define ADSP1_CONTROL_11                  0x0C
47 #define ADSP1_CONTROL_12                  0x0D
48 #define ADSP1_CONTROL_13                  0x0F
49 #define ADSP1_CONTROL_14                  0x10
50 #define ADSP1_CONTROL_15                  0x11
51 #define ADSP1_CONTROL_16                  0x12
52 #define ADSP1_CONTROL_17                  0x13
53 #define ADSP1_CONTROL_18                  0x14
54 #define ADSP1_CONTROL_19                  0x16
55 #define ADSP1_CONTROL_20                  0x17
56 #define ADSP1_CONTROL_21                  0x18
57 #define ADSP1_CONTROL_22                  0x1A
58 #define ADSP1_CONTROL_23                  0x1B
59 #define ADSP1_CONTROL_24                  0x1C
60 #define ADSP1_CONTROL_25                  0x1E
61 #define ADSP1_CONTROL_26                  0x20
62 #define ADSP1_CONTROL_27                  0x21
63 #define ADSP1_CONTROL_28                  0x22
64 #define ADSP1_CONTROL_29                  0x23
65 #define ADSP1_CONTROL_30                  0x24
66 #define ADSP1_CONTROL_31                  0x26
67 
68 /*
69  * ADSP1 Control 19
70  */
71 #define ADSP1_WDMA_BUFFER_LENGTH_MASK     0x00FF  /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
72 #define ADSP1_WDMA_BUFFER_LENGTH_SHIFT         0  /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
73 #define ADSP1_WDMA_BUFFER_LENGTH_WIDTH         8  /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
74 
75 /*
76  * ADSP1 Control 30
77  */
78 #define ADSP1_DBG_CLK_ENA                 0x0008  /* DSP1_DBG_CLK_ENA */
79 #define ADSP1_DBG_CLK_ENA_MASK            0x0008  /* DSP1_DBG_CLK_ENA */
80 #define ADSP1_DBG_CLK_ENA_SHIFT                3  /* DSP1_DBG_CLK_ENA */
81 #define ADSP1_DBG_CLK_ENA_WIDTH                1  /* DSP1_DBG_CLK_ENA */
82 #define ADSP1_SYS_ENA                     0x0004  /* DSP1_SYS_ENA */
83 #define ADSP1_SYS_ENA_MASK                0x0004  /* DSP1_SYS_ENA */
84 #define ADSP1_SYS_ENA_SHIFT                    2  /* DSP1_SYS_ENA */
85 #define ADSP1_SYS_ENA_WIDTH                    1  /* DSP1_SYS_ENA */
86 #define ADSP1_CORE_ENA                    0x0002  /* DSP1_CORE_ENA */
87 #define ADSP1_CORE_ENA_MASK               0x0002  /* DSP1_CORE_ENA */
88 #define ADSP1_CORE_ENA_SHIFT                   1  /* DSP1_CORE_ENA */
89 #define ADSP1_CORE_ENA_WIDTH                   1  /* DSP1_CORE_ENA */
90 #define ADSP1_START                       0x0001  /* DSP1_START */
91 #define ADSP1_START_MASK                  0x0001  /* DSP1_START */
92 #define ADSP1_START_SHIFT                      0  /* DSP1_START */
93 #define ADSP1_START_WIDTH                      1  /* DSP1_START */
94 
95 /*
96  * ADSP1 Control 31
97  */
98 #define ADSP1_CLK_SEL_MASK                0x0007  /* CLK_SEL_ENA */
99 #define ADSP1_CLK_SEL_SHIFT                    0  /* CLK_SEL_ENA */
100 #define ADSP1_CLK_SEL_WIDTH                    3  /* CLK_SEL_ENA */
101 
102 #define ADSP2_CONTROL                     0x0
103 #define ADSP2_CLOCKING                    0x1
104 #define ADSP2V2_CLOCKING                  0x2
105 #define ADSP2_STATUS1                     0x4
106 #define ADSP2_WDMA_CONFIG_1               0x30
107 #define ADSP2_WDMA_CONFIG_2               0x31
108 #define ADSP2V2_WDMA_CONFIG_2             0x32
109 #define ADSP2_RDMA_CONFIG_1               0x34
110 
111 #define ADSP2_SCRATCH0                    0x40
112 #define ADSP2_SCRATCH1                    0x41
113 #define ADSP2_SCRATCH2                    0x42
114 #define ADSP2_SCRATCH3                    0x43
115 
116 #define ADSP2V2_SCRATCH0_1                0x40
117 #define ADSP2V2_SCRATCH2_3                0x42
118 
119 /*
120  * ADSP2 Control
121  */
122 #define ADSP2_MEM_ENA                     0x0010  /* DSP1_MEM_ENA */
123 #define ADSP2_MEM_ENA_MASK                0x0010  /* DSP1_MEM_ENA */
124 #define ADSP2_MEM_ENA_SHIFT                    4  /* DSP1_MEM_ENA */
125 #define ADSP2_MEM_ENA_WIDTH                    1  /* DSP1_MEM_ENA */
126 #define ADSP2_SYS_ENA                     0x0004  /* DSP1_SYS_ENA */
127 #define ADSP2_SYS_ENA_MASK                0x0004  /* DSP1_SYS_ENA */
128 #define ADSP2_SYS_ENA_SHIFT                    2  /* DSP1_SYS_ENA */
129 #define ADSP2_SYS_ENA_WIDTH                    1  /* DSP1_SYS_ENA */
130 #define ADSP2_CORE_ENA                    0x0002  /* DSP1_CORE_ENA */
131 #define ADSP2_CORE_ENA_MASK               0x0002  /* DSP1_CORE_ENA */
132 #define ADSP2_CORE_ENA_SHIFT                   1  /* DSP1_CORE_ENA */
133 #define ADSP2_CORE_ENA_WIDTH                   1  /* DSP1_CORE_ENA */
134 #define ADSP2_START                       0x0001  /* DSP1_START */
135 #define ADSP2_START_MASK                  0x0001  /* DSP1_START */
136 #define ADSP2_START_SHIFT                      0  /* DSP1_START */
137 #define ADSP2_START_WIDTH                      1  /* DSP1_START */
138 
139 /*
140  * ADSP2 clocking
141  */
142 #define ADSP2_CLK_SEL_MASK                0x0007  /* CLK_SEL_ENA */
143 #define ADSP2_CLK_SEL_SHIFT                    0  /* CLK_SEL_ENA */
144 #define ADSP2_CLK_SEL_WIDTH                    3  /* CLK_SEL_ENA */
145 
146 /*
147  * ADSP2V2 clocking
148  */
149 #define ADSP2V2_CLK_SEL_MASK             0x70000  /* CLK_SEL_ENA */
150 #define ADSP2V2_CLK_SEL_SHIFT                 16  /* CLK_SEL_ENA */
151 #define ADSP2V2_CLK_SEL_WIDTH                  3  /* CLK_SEL_ENA */
152 
153 #define ADSP2V2_RATE_MASK                 0x7800  /* DSP_RATE */
154 #define ADSP2V2_RATE_SHIFT                    11  /* DSP_RATE */
155 #define ADSP2V2_RATE_WIDTH                     4  /* DSP_RATE */
156 
157 /*
158  * ADSP2 Status 1
159  */
160 #define ADSP2_RAM_RDY                     0x0001
161 #define ADSP2_RAM_RDY_MASK                0x0001
162 #define ADSP2_RAM_RDY_SHIFT                    0
163 #define ADSP2_RAM_RDY_WIDTH                    1
164 
165 /*
166  * ADSP2 Lock support
167  */
168 #define ADSP2_LOCK_CODE_0                    0x5555
169 #define ADSP2_LOCK_CODE_1                    0xAAAA
170 
171 #define ADSP2_WATCHDOG                       0x0A
172 #define ADSP2_BUS_ERR_ADDR                   0x52
173 #define ADSP2_REGION_LOCK_STATUS             0x64
174 #define ADSP2_LOCK_REGION_1_LOCK_REGION_0    0x66
175 #define ADSP2_LOCK_REGION_3_LOCK_REGION_2    0x68
176 #define ADSP2_LOCK_REGION_5_LOCK_REGION_4    0x6A
177 #define ADSP2_LOCK_REGION_7_LOCK_REGION_6    0x6C
178 #define ADSP2_LOCK_REGION_9_LOCK_REGION_8    0x6E
179 #define ADSP2_LOCK_REGION_CTRL               0x7A
180 #define ADSP2_PMEM_ERR_ADDR_XMEM_ERR_ADDR    0x7C
181 
182 #define ADSP2_REGION_LOCK_ERR_MASK           0x8000
183 #define ADSP2_ADDR_ERR_MASK                  0x4000
184 #define ADSP2_WDT_TIMEOUT_STS_MASK           0x2000
185 #define ADSP2_CTRL_ERR_PAUSE_ENA             0x0002
186 #define ADSP2_CTRL_ERR_EINT                  0x0001
187 
188 #define ADSP2_BUS_ERR_ADDR_MASK              0x00FFFFFF
189 #define ADSP2_XMEM_ERR_ADDR_MASK             0x0000FFFF
190 #define ADSP2_PMEM_ERR_ADDR_MASK             0x7FFF0000
191 #define ADSP2_PMEM_ERR_ADDR_SHIFT            16
192 #define ADSP2_WDT_ENA_MASK                   0xFFFFFFFD
193 
194 #define ADSP2_LOCK_REGION_SHIFT              16
195 
196 /*
197  * Event control messages
198  */
199 #define CS_DSP_FW_EVENT_SHUTDOWN             0x000001
200 
201 /*
202  * HALO system info
203  */
204 #define HALO_AHBM_WINDOW_DEBUG_0             0x02040
205 #define HALO_AHBM_WINDOW_DEBUG_1             0x02044
206 
207 /*
208  * HALO core
209  */
210 #define HALO_SCRATCH1                        0x005c0
211 #define HALO_SCRATCH2                        0x005c8
212 #define HALO_SCRATCH3                        0x005d0
213 #define HALO_SCRATCH4                        0x005d8
214 #define HALO_CCM_CORE_CONTROL                0x41000
215 #define HALO_CORE_SOFT_RESET                 0x00010
216 #define HALO_WDT_CONTROL                     0x47000
217 
218 /*
219  * HALO MPU banks
220  */
221 #define HALO_MPU_XMEM_ACCESS_0               0x43000
222 #define HALO_MPU_YMEM_ACCESS_0               0x43004
223 #define HALO_MPU_WINDOW_ACCESS_0             0x43008
224 #define HALO_MPU_XREG_ACCESS_0               0x4300C
225 #define HALO_MPU_YREG_ACCESS_0               0x43014
226 #define HALO_MPU_XMEM_ACCESS_1               0x43018
227 #define HALO_MPU_YMEM_ACCESS_1               0x4301C
228 #define HALO_MPU_WINDOW_ACCESS_1             0x43020
229 #define HALO_MPU_XREG_ACCESS_1               0x43024
230 #define HALO_MPU_YREG_ACCESS_1               0x4302C
231 #define HALO_MPU_XMEM_ACCESS_2               0x43030
232 #define HALO_MPU_YMEM_ACCESS_2               0x43034
233 #define HALO_MPU_WINDOW_ACCESS_2             0x43038
234 #define HALO_MPU_XREG_ACCESS_2               0x4303C
235 #define HALO_MPU_YREG_ACCESS_2               0x43044
236 #define HALO_MPU_XMEM_ACCESS_3               0x43048
237 #define HALO_MPU_YMEM_ACCESS_3               0x4304C
238 #define HALO_MPU_WINDOW_ACCESS_3             0x43050
239 #define HALO_MPU_XREG_ACCESS_3               0x43054
240 #define HALO_MPU_YREG_ACCESS_3               0x4305C
241 #define HALO_MPU_XM_VIO_ADDR                 0x43100
242 #define HALO_MPU_XM_VIO_STATUS               0x43104
243 #define HALO_MPU_YM_VIO_ADDR                 0x43108
244 #define HALO_MPU_YM_VIO_STATUS               0x4310C
245 #define HALO_MPU_PM_VIO_ADDR                 0x43110
246 #define HALO_MPU_PM_VIO_STATUS               0x43114
247 #define HALO_MPU_LOCK_CONFIG                 0x43140
248 
249 /*
250  * HALO_AHBM_WINDOW_DEBUG_1
251  */
252 #define HALO_AHBM_CORE_ERR_ADDR_MASK         0x0fffff00
253 #define HALO_AHBM_CORE_ERR_ADDR_SHIFT                 8
254 #define HALO_AHBM_FLAGS_ERR_MASK             0x000000ff
255 
256 /*
257  * HALO_CCM_CORE_CONTROL
258  */
259 #define HALO_CORE_RESET                     0x00000200
260 #define HALO_CORE_EN                        0x00000001
261 
262 /*
263  * HALO_CORE_SOFT_RESET
264  */
265 #define HALO_CORE_SOFT_RESET_MASK           0x00000001
266 
267 /*
268  * HALO_WDT_CONTROL
269  */
270 #define HALO_WDT_EN_MASK                    0x00000001
271 
272 /*
273  * HALO_MPU_?M_VIO_STATUS
274  */
275 #define HALO_MPU_VIO_STS_MASK               0x007e0000
276 #define HALO_MPU_VIO_STS_SHIFT                      17
277 #define HALO_MPU_VIO_ERR_WR_MASK            0x00008000
278 #define HALO_MPU_VIO_ERR_SRC_MASK           0x00007fff
279 #define HALO_MPU_VIO_ERR_SRC_SHIFT                   0
280 
281 /*
282  * Write Sequence
283  */
284 #define WSEQ_OP_MAX_WORDS	3
285 #define WSEQ_END_OF_SCRIPT	0xFFFFFF
286 
287 struct cs_dsp_ops {
288 	bool (*validate_version)(struct cs_dsp *dsp, unsigned int version);
289 	unsigned int (*parse_sizes)(struct cs_dsp *dsp,
290 				    const char * const file,
291 				    unsigned int pos,
292 				    const struct firmware *firmware);
293 	int (*setup_algs)(struct cs_dsp *dsp);
294 	unsigned int (*region_to_reg)(struct cs_dsp_region const *mem,
295 				      unsigned int offset);
296 
297 	void (*show_fw_status)(struct cs_dsp *dsp);
298 	void (*stop_watchdog)(struct cs_dsp *dsp);
299 
300 	int (*enable_memory)(struct cs_dsp *dsp);
301 	void (*disable_memory)(struct cs_dsp *dsp);
302 	int (*lock_memory)(struct cs_dsp *dsp, unsigned int lock_regions);
303 
304 	int (*enable_core)(struct cs_dsp *dsp);
305 	void (*disable_core)(struct cs_dsp *dsp);
306 
307 	int (*start_core)(struct cs_dsp *dsp);
308 	void (*stop_core)(struct cs_dsp *dsp);
309 };
310 
311 static const struct cs_dsp_ops cs_dsp_adsp1_ops;
312 static const struct cs_dsp_ops cs_dsp_adsp2_ops[];
313 static const struct cs_dsp_ops cs_dsp_halo_ops;
314 static const struct cs_dsp_ops cs_dsp_halo_ao_ops;
315 
316 struct cs_dsp_alg_region_list_item {
317 	struct list_head list;
318 	struct cs_dsp_alg_region alg_region;
319 };
320 
321 /**
322  * cs_dsp_mem_region_name() - Return a name string for a memory type
323  * @type: the memory type to match
324  *
325  * Return: A const string identifying the memory region.
326  */
327 const char *cs_dsp_mem_region_name(unsigned int type)
328 {
329 	switch (type) {
330 	case WMFW_ADSP1_PM:
331 		return "PM";
332 	case WMFW_HALO_PM_PACKED:
333 		return "PM_PACKED";
334 	case WMFW_ADSP1_DM:
335 		return "DM";
336 	case WMFW_ADSP2_XM:
337 		return "XM";
338 	case WMFW_HALO_XM_PACKED:
339 		return "XM_PACKED";
340 	case WMFW_ADSP2_YM:
341 		return "YM";
342 	case WMFW_HALO_YM_PACKED:
343 		return "YM_PACKED";
344 	case WMFW_ADSP1_ZM:
345 		return "ZM";
346 	default:
347 		return NULL;
348 	}
349 }
350 EXPORT_SYMBOL_NS_GPL(cs_dsp_mem_region_name, "FW_CS_DSP");
351 
352 #ifdef CONFIG_DEBUG_FS
353 static void cs_dsp_debugfs_save_wmfwname(struct cs_dsp *dsp, const char *s)
354 {
355 	kfree(dsp->wmfw_file_name);
356 	dsp->wmfw_file_name = kstrdup(s, GFP_KERNEL);
357 }
358 
359 static void cs_dsp_debugfs_save_binname(struct cs_dsp *dsp, const char *s)
360 {
361 	kfree(dsp->bin_file_name);
362 	dsp->bin_file_name = kstrdup(s, GFP_KERNEL);
363 }
364 
365 static void cs_dsp_debugfs_clear(struct cs_dsp *dsp)
366 {
367 	kfree(dsp->wmfw_file_name);
368 	kfree(dsp->bin_file_name);
369 	dsp->wmfw_file_name = NULL;
370 	dsp->bin_file_name = NULL;
371 }
372 
373 static ssize_t cs_dsp_debugfs_string_read(struct cs_dsp *dsp,
374 					  char __user *user_buf,
375 					  size_t count, loff_t *ppos,
376 					  const char **pstr)
377 {
378 	const char *str __free(kfree) = NULL;
379 
380 	scoped_guard(mutex, &dsp->pwr_lock) {
381 		if (!*pstr)
382 			return 0;
383 
384 		str = kasprintf(GFP_KERNEL, "%s\n", *pstr);
385 		if (!str)
386 			return -ENOMEM;
387 
388 		return simple_read_from_buffer(user_buf, count, ppos, str, strlen(str));
389 	}
390 }
391 
392 static ssize_t cs_dsp_debugfs_wmfw_read(struct file *file,
393 					char __user *user_buf,
394 					size_t count, loff_t *ppos)
395 {
396 	struct cs_dsp *dsp = file->private_data;
397 
398 	return cs_dsp_debugfs_string_read(dsp, user_buf, count, ppos,
399 					  &dsp->wmfw_file_name);
400 }
401 
402 static ssize_t cs_dsp_debugfs_bin_read(struct file *file,
403 				       char __user *user_buf,
404 				       size_t count, loff_t *ppos)
405 {
406 	struct cs_dsp *dsp = file->private_data;
407 
408 	return cs_dsp_debugfs_string_read(dsp, user_buf, count, ppos,
409 					  &dsp->bin_file_name);
410 }
411 
412 static const struct {
413 	const char *name;
414 	const struct file_operations fops;
415 } cs_dsp_debugfs_fops[] = {
416 	{
417 		.name = "wmfw_file_name",
418 		.fops = {
419 			.open = simple_open,
420 			.read = cs_dsp_debugfs_wmfw_read,
421 		},
422 	},
423 	{
424 		.name = "bin_file_name",
425 		.fops = {
426 			.open = simple_open,
427 			.read = cs_dsp_debugfs_bin_read,
428 		},
429 	},
430 };
431 
432 static int cs_dsp_coeff_base_reg(struct cs_dsp_coeff_ctl *ctl, unsigned int *reg,
433 				 unsigned int off);
434 
435 static int cs_dsp_debugfs_read_controls_show(struct seq_file *s, void *ignored)
436 {
437 	struct cs_dsp *dsp = s->private;
438 	struct cs_dsp_coeff_ctl *ctl;
439 	unsigned int reg;
440 
441 	guard(mutex)(&dsp->pwr_lock);
442 
443 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
444 		cs_dsp_coeff_base_reg(ctl, &reg, 0);
445 		seq_printf(s, "%22.*s: %#8x %s:%08x %#8x %s %#8x %#4x %c%c%c%c %s %s\n",
446 			   ctl->subname_len, ctl->subname, ctl->len,
447 			   cs_dsp_mem_region_name(ctl->alg_region.type),
448 			   ctl->offset, reg, ctl->fw_name, ctl->alg_region.alg, ctl->type,
449 			   ctl->flags & WMFW_CTL_FLAG_VOLATILE ? 'V' : '-',
450 			   ctl->flags & WMFW_CTL_FLAG_SYS ? 'S' : '-',
451 			   ctl->flags & WMFW_CTL_FLAG_READABLE ? 'R' : '-',
452 			   ctl->flags & WMFW_CTL_FLAG_WRITEABLE ? 'W' : '-',
453 			   ctl->enabled ? "enabled" : "disabled",
454 			   ctl->set ? "dirty" : "clean");
455 	}
456 
457 	return 0;
458 }
459 DEFINE_SHOW_ATTRIBUTE(cs_dsp_debugfs_read_controls);
460 
461 /**
462  * cs_dsp_init_debugfs() - Create and populate DSP representation in debugfs
463  * @dsp: pointer to DSP structure
464  * @debugfs_root: pointer to debugfs directory in which to create this DSP
465  *                representation
466  */
467 void cs_dsp_init_debugfs(struct cs_dsp *dsp, struct dentry *debugfs_root)
468 {
469 	struct dentry *root = NULL;
470 	int i;
471 
472 	root = debugfs_create_dir(dsp->name, debugfs_root);
473 
474 	debugfs_create_bool("booted", 0444, root, &dsp->booted);
475 	debugfs_create_bool("running", 0444, root, &dsp->running);
476 	debugfs_create_x32("fw_id", 0444, root, &dsp->fw_id);
477 	debugfs_create_x32("fw_version", 0444, root, &dsp->fw_id_version);
478 
479 	for (i = 0; i < ARRAY_SIZE(cs_dsp_debugfs_fops); ++i)
480 		debugfs_create_file(cs_dsp_debugfs_fops[i].name, 0444, root,
481 				    dsp, &cs_dsp_debugfs_fops[i].fops);
482 
483 	debugfs_create_file("controls", 0444, root, dsp,
484 			    &cs_dsp_debugfs_read_controls_fops);
485 
486 	dsp->debugfs_root = root;
487 }
488 EXPORT_SYMBOL_NS_GPL(cs_dsp_init_debugfs, "FW_CS_DSP");
489 
490 /**
491  * cs_dsp_cleanup_debugfs() - Removes DSP representation from debugfs
492  * @dsp: pointer to DSP structure
493  */
494 void cs_dsp_cleanup_debugfs(struct cs_dsp *dsp)
495 {
496 	cs_dsp_debugfs_clear(dsp);
497 	debugfs_remove_recursive(dsp->debugfs_root);
498 	dsp->debugfs_root = ERR_PTR(-ENODEV);
499 }
500 EXPORT_SYMBOL_NS_GPL(cs_dsp_cleanup_debugfs, "FW_CS_DSP");
501 #else
502 void cs_dsp_init_debugfs(struct cs_dsp *dsp, struct dentry *debugfs_root)
503 {
504 }
505 EXPORT_SYMBOL_NS_GPL(cs_dsp_init_debugfs, "FW_CS_DSP");
506 
507 void cs_dsp_cleanup_debugfs(struct cs_dsp *dsp)
508 {
509 }
510 EXPORT_SYMBOL_NS_GPL(cs_dsp_cleanup_debugfs, "FW_CS_DSP");
511 
512 static inline void cs_dsp_debugfs_save_wmfwname(struct cs_dsp *dsp,
513 						const char *s)
514 {
515 }
516 
517 static inline void cs_dsp_debugfs_save_binname(struct cs_dsp *dsp,
518 					       const char *s)
519 {
520 }
521 
522 static inline void cs_dsp_debugfs_clear(struct cs_dsp *dsp)
523 {
524 }
525 #endif
526 
527 static const struct cs_dsp_region *cs_dsp_find_region(struct cs_dsp *dsp,
528 						      int type)
529 {
530 	int i;
531 
532 	for (i = 0; i < dsp->num_mems; i++)
533 		if (dsp->mem[i].type == type)
534 			return &dsp->mem[i];
535 
536 	return NULL;
537 }
538 
539 static unsigned int cs_dsp_region_to_reg(struct cs_dsp_region const *mem,
540 					 unsigned int offset)
541 {
542 	switch (mem->type) {
543 	case WMFW_ADSP1_PM:
544 		return mem->base + (offset * 3);
545 	case WMFW_ADSP1_DM:
546 	case WMFW_ADSP2_XM:
547 	case WMFW_ADSP2_YM:
548 	case WMFW_ADSP1_ZM:
549 		return mem->base + (offset * 2);
550 	default:
551 		WARN(1, "Unknown memory region type");
552 		return offset;
553 	}
554 }
555 
556 static unsigned int cs_dsp_halo_region_to_reg(struct cs_dsp_region const *mem,
557 					      unsigned int offset)
558 {
559 	switch (mem->type) {
560 	case WMFW_ADSP2_XM:
561 	case WMFW_ADSP2_YM:
562 		return mem->base + (offset * 4);
563 	case WMFW_HALO_XM_PACKED:
564 	case WMFW_HALO_YM_PACKED:
565 		return (mem->base + (offset * 3)) & ~0x3;
566 	case WMFW_HALO_PM_PACKED:
567 		return mem->base + (offset * 5);
568 	default:
569 		WARN(1, "Unknown memory region type");
570 		return offset;
571 	}
572 }
573 
574 static void cs_dsp_read_fw_status(struct cs_dsp *dsp,
575 				  int noffs, unsigned int *offs)
576 {
577 	unsigned int i;
578 	int ret;
579 
580 	for (i = 0; i < noffs; ++i) {
581 		ret = regmap_read(dsp->regmap, dsp->base + offs[i], &offs[i]);
582 		if (ret) {
583 			cs_dsp_err(dsp, "Failed to read SCRATCH%u: %d\n", i, ret);
584 			return;
585 		}
586 	}
587 }
588 
589 static void cs_dsp_adsp2_show_fw_status(struct cs_dsp *dsp)
590 {
591 	unsigned int offs[] = {
592 		ADSP2_SCRATCH0, ADSP2_SCRATCH1, ADSP2_SCRATCH2, ADSP2_SCRATCH3,
593 	};
594 
595 	cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
596 
597 	cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
598 		   offs[0], offs[1], offs[2], offs[3]);
599 }
600 
601 static void cs_dsp_adsp2v2_show_fw_status(struct cs_dsp *dsp)
602 {
603 	unsigned int offs[] = { ADSP2V2_SCRATCH0_1, ADSP2V2_SCRATCH2_3 };
604 
605 	cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
606 
607 	cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
608 		   offs[0] & 0xFFFF, offs[0] >> 16,
609 		   offs[1] & 0xFFFF, offs[1] >> 16);
610 }
611 
612 static void cs_dsp_halo_show_fw_status(struct cs_dsp *dsp)
613 {
614 	unsigned int offs[] = {
615 		HALO_SCRATCH1, HALO_SCRATCH2, HALO_SCRATCH3, HALO_SCRATCH4,
616 	};
617 
618 	cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
619 
620 	cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
621 		   offs[0], offs[1], offs[2], offs[3]);
622 }
623 
624 static int cs_dsp_coeff_base_reg(struct cs_dsp_coeff_ctl *ctl, unsigned int *reg,
625 				 unsigned int off)
626 {
627 	const struct cs_dsp_alg_region *alg_region = &ctl->alg_region;
628 	struct cs_dsp *dsp = ctl->dsp;
629 	const struct cs_dsp_region *mem;
630 
631 	mem = cs_dsp_find_region(dsp, alg_region->type);
632 	if (!mem) {
633 		cs_dsp_err(dsp, "No base for region %x\n",
634 			   alg_region->type);
635 		return -EINVAL;
636 	}
637 
638 	*reg = dsp->ops->region_to_reg(mem, ctl->alg_region.base + ctl->offset + off);
639 
640 	return 0;
641 }
642 
643 /**
644  * cs_dsp_coeff_write_acked_control() - Sends event_id to the acked control
645  * @ctl: pointer to acked coefficient control
646  * @event_id: the value to write to the given acked control
647  *
648  * Once the value has been written to the control the function shall block
649  * until the running firmware acknowledges the write or timeout is exceeded.
650  *
651  * Must be called with pwr_lock held.
652  *
653  * Return: Zero for success, a negative number on error.
654  */
655 int cs_dsp_coeff_write_acked_control(struct cs_dsp_coeff_ctl *ctl, unsigned int event_id)
656 {
657 	struct cs_dsp *dsp = ctl->dsp;
658 	__be32 val = cpu_to_be32(event_id);
659 	unsigned int reg;
660 	int i, ret;
661 
662 	lockdep_assert_held(&dsp->pwr_lock);
663 
664 	if (!dsp->running)
665 		return -EPERM;
666 
667 	ret = cs_dsp_coeff_base_reg(ctl, &reg, 0);
668 	if (ret)
669 		return ret;
670 
671 	cs_dsp_dbg(dsp, "Sending 0x%x to acked control alg 0x%x %s:0x%x\n",
672 		   event_id, ctl->alg_region.alg,
673 		   cs_dsp_mem_region_name(ctl->alg_region.type), ctl->offset);
674 
675 	ret = regmap_raw_write(dsp->regmap, reg, &val, sizeof(val));
676 	if (ret) {
677 		cs_dsp_err(dsp, "Failed to write %x: %d\n", reg, ret);
678 		return ret;
679 	}
680 
681 	/*
682 	 * Poll for ack, we initially poll at ~1ms intervals for firmwares
683 	 * that respond quickly, then go to ~10ms polls. A firmware is unlikely
684 	 * to ack instantly so we do the first 1ms delay before reading the
685 	 * control to avoid a pointless bus transaction
686 	 */
687 	for (i = 0; i < CS_DSP_ACKED_CTL_TIMEOUT_MS;) {
688 		switch (i) {
689 		case 0 ... CS_DSP_ACKED_CTL_N_QUICKPOLLS - 1:
690 			usleep_range(1000, 2000);
691 			i++;
692 			break;
693 		default:
694 			usleep_range(10000, 20000);
695 			i += 10;
696 			break;
697 		}
698 
699 		ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val));
700 		if (ret) {
701 			cs_dsp_err(dsp, "Failed to read %x: %d\n", reg, ret);
702 			return ret;
703 		}
704 
705 		if (val == 0) {
706 			cs_dsp_dbg(dsp, "Acked control ACKED at poll %u\n", i);
707 			return 0;
708 		}
709 	}
710 
711 	cs_dsp_warn(dsp, "Acked control @0x%x alg:0x%x %s:0x%x timed out\n",
712 		    reg, ctl->alg_region.alg,
713 		    cs_dsp_mem_region_name(ctl->alg_region.type),
714 		    ctl->offset);
715 
716 	return -ETIMEDOUT;
717 }
718 EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_write_acked_control, "FW_CS_DSP");
719 
720 static int cs_dsp_coeff_write_ctrl_raw(struct cs_dsp_coeff_ctl *ctl,
721 				       unsigned int off, const void *buf, size_t len)
722 {
723 	struct cs_dsp *dsp = ctl->dsp;
724 	void *scratch;
725 	int ret;
726 	unsigned int reg;
727 
728 	ret = cs_dsp_coeff_base_reg(ctl, &reg, off);
729 	if (ret)
730 		return ret;
731 
732 	scratch = kmemdup(buf, len, GFP_KERNEL | GFP_DMA);
733 	if (!scratch)
734 		return -ENOMEM;
735 
736 	ret = regmap_raw_write(dsp->regmap, reg, scratch,
737 			       len);
738 	if (ret) {
739 		cs_dsp_err(dsp, "Failed to write %zu bytes to %x: %d\n",
740 			   len, reg, ret);
741 		kfree(scratch);
742 		return ret;
743 	}
744 	cs_dsp_dbg(dsp, "Wrote %zu bytes to %x\n", len, reg);
745 
746 	kfree(scratch);
747 
748 	return 0;
749 }
750 
751 /**
752  * cs_dsp_coeff_write_ctrl() - Writes the given buffer to the given coefficient control
753  * @ctl: pointer to coefficient control
754  * @off: word offset at which data should be written
755  * @buf: the buffer to write to the given control
756  * @len: the length of the buffer in bytes
757  *
758  * Must be called with pwr_lock held.
759  *
760  * Return: < 0 on error, 1 when the control value changed and 0 when it has not.
761  */
762 int cs_dsp_coeff_write_ctrl(struct cs_dsp_coeff_ctl *ctl,
763 			    unsigned int off, const void *buf, size_t len)
764 {
765 	int ret = 0;
766 
767 	if (!ctl)
768 		return -ENOENT;
769 
770 	lockdep_assert_held(&ctl->dsp->pwr_lock);
771 
772 	if (ctl->flags && !(ctl->flags & WMFW_CTL_FLAG_WRITEABLE))
773 		return -EPERM;
774 
775 	if (len + off * sizeof(u32) > ctl->len)
776 		return -EINVAL;
777 
778 	if (ctl->flags & WMFW_CTL_FLAG_VOLATILE) {
779 		ret = -EPERM;
780 	} else if (buf != ctl->cache) {
781 		if (memcmp(ctl->cache + off * sizeof(u32), buf, len))
782 			memcpy(ctl->cache + off * sizeof(u32), buf, len);
783 		else
784 			return 0;
785 	}
786 
787 	ctl->set = 1;
788 	if (ctl->enabled && ctl->dsp->running)
789 		ret = cs_dsp_coeff_write_ctrl_raw(ctl, off, buf, len);
790 
791 	if (ret < 0)
792 		return ret;
793 
794 	return 1;
795 }
796 EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_write_ctrl, "FW_CS_DSP");
797 
798 /**
799  * cs_dsp_coeff_lock_and_write_ctrl() - Writes the given buffer to the given coefficient control
800  * @ctl: pointer to coefficient control
801  * @off: word offset at which data should be written
802  * @buf: the buffer to write to the given control
803  * @len: the length of the buffer in bytes
804  *
805  * Same as cs_dsp_coeff_write_ctrl() but takes pwr_lock.
806  *
807  * Return: A negative number on error, 1 when the control value changed and 0 when it has not.
808  */
809 int cs_dsp_coeff_lock_and_write_ctrl(struct cs_dsp_coeff_ctl *ctl,
810 				     unsigned int off, const void *buf, size_t len)
811 {
812 	struct cs_dsp *dsp = ctl->dsp;
813 	int ret;
814 
815 	lockdep_assert_not_held(&dsp->pwr_lock);
816 
817 	mutex_lock(&dsp->pwr_lock);
818 	ret = cs_dsp_coeff_write_ctrl(ctl, off, buf, len);
819 	mutex_unlock(&dsp->pwr_lock);
820 
821 	return ret;
822 }
823 EXPORT_SYMBOL_GPL(cs_dsp_coeff_lock_and_write_ctrl);
824 
825 static int cs_dsp_coeff_read_ctrl_raw(struct cs_dsp_coeff_ctl *ctl,
826 				      unsigned int off, void *buf, size_t len)
827 {
828 	struct cs_dsp *dsp = ctl->dsp;
829 	void *scratch;
830 	int ret;
831 	unsigned int reg;
832 
833 	ret = cs_dsp_coeff_base_reg(ctl, &reg, off);
834 	if (ret)
835 		return ret;
836 
837 	scratch = kmalloc(len, GFP_KERNEL | GFP_DMA);
838 	if (!scratch)
839 		return -ENOMEM;
840 
841 	ret = regmap_raw_read(dsp->regmap, reg, scratch, len);
842 	if (ret) {
843 		cs_dsp_err(dsp, "Failed to read %zu bytes from %x: %d\n",
844 			   len, reg, ret);
845 		kfree(scratch);
846 		return ret;
847 	}
848 	cs_dsp_dbg(dsp, "Read %zu bytes from %x\n", len, reg);
849 
850 	memcpy(buf, scratch, len);
851 	kfree(scratch);
852 
853 	return 0;
854 }
855 
856 /**
857  * cs_dsp_coeff_read_ctrl() - Reads the given coefficient control into the given buffer
858  * @ctl: pointer to coefficient control
859  * @off: word offset at which data should be read
860  * @buf: the buffer to store to the given control
861  * @len: the length of the buffer in bytes
862  *
863  * Must be called with pwr_lock held.
864  *
865  * Return: Zero for success, a negative number on error.
866  */
867 int cs_dsp_coeff_read_ctrl(struct cs_dsp_coeff_ctl *ctl,
868 			   unsigned int off, void *buf, size_t len)
869 {
870 	int ret = 0;
871 
872 	if (!ctl)
873 		return -ENOENT;
874 
875 	lockdep_assert_held(&ctl->dsp->pwr_lock);
876 
877 	if (len + off * sizeof(u32) > ctl->len)
878 		return -EINVAL;
879 
880 	if (ctl->flags & WMFW_CTL_FLAG_VOLATILE) {
881 		if (ctl->enabled && ctl->dsp->running)
882 			return cs_dsp_coeff_read_ctrl_raw(ctl, off, buf, len);
883 		else
884 			return -EPERM;
885 	} else {
886 		if (!ctl->flags && ctl->enabled && ctl->dsp->running)
887 			ret = cs_dsp_coeff_read_ctrl_raw(ctl, 0, ctl->cache, ctl->len);
888 
889 		if (buf != ctl->cache)
890 			memcpy(buf, ctl->cache + off * sizeof(u32), len);
891 	}
892 
893 	return ret;
894 }
895 EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_read_ctrl, "FW_CS_DSP");
896 
897 /**
898  * cs_dsp_coeff_lock_and_read_ctrl() - Reads the given coefficient control into the given buffer
899  * @ctl: pointer to coefficient control
900  * @off: word offset at which data should be read
901  * @buf: the buffer to store to the given control
902  * @len: the length of the buffer in bytes
903  *
904  * Same as cs_dsp_coeff_read_ctrl() but takes pwr_lock.
905  *
906  * Return: Zero for success, a negative number on error.
907  */
908 int cs_dsp_coeff_lock_and_read_ctrl(struct cs_dsp_coeff_ctl *ctl,
909 				    unsigned int off, void *buf, size_t len)
910 {
911 	struct cs_dsp *dsp = ctl->dsp;
912 	int ret;
913 
914 	lockdep_assert_not_held(&dsp->pwr_lock);
915 
916 	mutex_lock(&dsp->pwr_lock);
917 	ret = cs_dsp_coeff_read_ctrl(ctl, off, buf, len);
918 	mutex_unlock(&dsp->pwr_lock);
919 
920 	return ret;
921 }
922 EXPORT_SYMBOL_GPL(cs_dsp_coeff_lock_and_read_ctrl);
923 
924 static int cs_dsp_coeff_init_control_caches(struct cs_dsp *dsp)
925 {
926 	struct cs_dsp_coeff_ctl *ctl;
927 	int ret;
928 
929 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
930 		if (!ctl->enabled || ctl->set)
931 			continue;
932 		if (ctl->flags & WMFW_CTL_FLAG_VOLATILE)
933 			continue;
934 
935 		/*
936 		 * For readable controls populate the cache from the DSP memory.
937 		 * For non-readable controls the cache was zero-filled when
938 		 * created so we don't need to do anything.
939 		 */
940 		if (!ctl->flags || (ctl->flags & WMFW_CTL_FLAG_READABLE)) {
941 			ret = cs_dsp_coeff_read_ctrl_raw(ctl, 0, ctl->cache, ctl->len);
942 			if (ret < 0)
943 				return ret;
944 		}
945 	}
946 
947 	return 0;
948 }
949 
950 static int cs_dsp_coeff_sync_controls(struct cs_dsp *dsp)
951 {
952 	struct cs_dsp_coeff_ctl *ctl;
953 	int ret;
954 
955 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
956 		if (!ctl->enabled)
957 			continue;
958 		if (ctl->set && !(ctl->flags & WMFW_CTL_FLAG_VOLATILE)) {
959 			ret = cs_dsp_coeff_write_ctrl_raw(ctl, 0, ctl->cache,
960 							  ctl->len);
961 			if (ret < 0)
962 				return ret;
963 		}
964 	}
965 
966 	return 0;
967 }
968 
969 static void cs_dsp_signal_event_controls(struct cs_dsp *dsp,
970 					 unsigned int event)
971 {
972 	struct cs_dsp_coeff_ctl *ctl;
973 	int ret;
974 
975 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
976 		if (ctl->type != WMFW_CTL_TYPE_HOSTEVENT)
977 			continue;
978 
979 		if (!ctl->enabled)
980 			continue;
981 
982 		ret = cs_dsp_coeff_write_acked_control(ctl, event);
983 		if (ret)
984 			cs_dsp_warn(dsp,
985 				    "Failed to send 0x%x event to alg 0x%x (%d)\n",
986 				    event, ctl->alg_region.alg, ret);
987 	}
988 }
989 
990 static void cs_dsp_free_ctl_blk(struct cs_dsp_coeff_ctl *ctl)
991 {
992 	kvfree(ctl->cache);
993 	kfree(ctl->subname);
994 	kfree(ctl);
995 }
996 
997 static int cs_dsp_create_control(struct cs_dsp *dsp,
998 				 const struct cs_dsp_alg_region *alg_region,
999 				 unsigned int offset, unsigned int len,
1000 				 const char *subname, unsigned int subname_len,
1001 				 unsigned int flags, unsigned int type)
1002 {
1003 	struct cs_dsp_coeff_ctl *ctl;
1004 	int ret;
1005 
1006 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
1007 		if (ctl->fw_name == dsp->fw_name &&
1008 		    ctl->alg_region.alg == alg_region->alg &&
1009 		    ctl->alg_region.type == alg_region->type) {
1010 			if ((!subname && !ctl->subname) ||
1011 			    (subname && (ctl->subname_len == subname_len) &&
1012 			     !strncmp(ctl->subname, subname, ctl->subname_len))) {
1013 				if (!ctl->enabled)
1014 					ctl->enabled = 1;
1015 				return 0;
1016 			}
1017 		}
1018 	}
1019 
1020 	ctl = kzalloc(sizeof(*ctl), GFP_KERNEL);
1021 	if (!ctl)
1022 		return -ENOMEM;
1023 
1024 	ctl->fw_name = dsp->fw_name;
1025 	ctl->alg_region = *alg_region;
1026 	if (subname && dsp->wmfw_ver >= 2) {
1027 		ctl->subname_len = subname_len;
1028 		ctl->subname = kasprintf(GFP_KERNEL, "%.*s", subname_len, subname);
1029 		if (!ctl->subname) {
1030 			ret = -ENOMEM;
1031 			goto err_ctl;
1032 		}
1033 	}
1034 	ctl->enabled = 1;
1035 	ctl->set = 0;
1036 	ctl->dsp = dsp;
1037 
1038 	ctl->flags = flags;
1039 	ctl->type = type;
1040 	ctl->offset = offset;
1041 	ctl->len = len;
1042 	ctl->cache = kvzalloc(ctl->len, GFP_KERNEL);
1043 	if (!ctl->cache) {
1044 		ret = -ENOMEM;
1045 		goto err_ctl_subname;
1046 	}
1047 
1048 	list_add(&ctl->list, &dsp->ctl_list);
1049 
1050 	if (dsp->client_ops->control_add) {
1051 		ret = dsp->client_ops->control_add(ctl);
1052 		if (ret)
1053 			goto err_list_del;
1054 	}
1055 
1056 	return 0;
1057 
1058 err_list_del:
1059 	list_del(&ctl->list);
1060 	kvfree(ctl->cache);
1061 err_ctl_subname:
1062 	kfree(ctl->subname);
1063 err_ctl:
1064 	kfree(ctl);
1065 
1066 	return ret;
1067 }
1068 
1069 struct cs_dsp_coeff_parsed_alg {
1070 	int id;
1071 	const u8 *name;
1072 	int name_len;
1073 	int ncoeff;
1074 };
1075 
1076 struct cs_dsp_coeff_parsed_coeff {
1077 	int offset;
1078 	int mem_type;
1079 	const u8 *name;
1080 	int name_len;
1081 	unsigned int ctl_type;
1082 	int flags;
1083 	int len;
1084 };
1085 
1086 static int cs_dsp_coeff_parse_string(int bytes, const u8 **pos, unsigned int avail,
1087 				     const u8 **str)
1088 {
1089 	int length, total_field_len;
1090 
1091 	/* String fields are at least one __le32 */
1092 	if (sizeof(__le32) > avail) {
1093 		*pos = NULL;
1094 		return 0;
1095 	}
1096 
1097 	switch (bytes) {
1098 	case 1:
1099 		length = **pos;
1100 		break;
1101 	case 2:
1102 		length = le16_to_cpu(*((__le16 *)*pos));
1103 		break;
1104 	default:
1105 		return 0;
1106 	}
1107 
1108 	total_field_len = ((length + bytes) + 3) & ~0x03;
1109 	if ((unsigned int)total_field_len > avail) {
1110 		*pos = NULL;
1111 		return 0;
1112 	}
1113 
1114 	if (str)
1115 		*str = *pos + bytes;
1116 
1117 	*pos += total_field_len;
1118 
1119 	return length;
1120 }
1121 
1122 static int cs_dsp_coeff_parse_int(int bytes, const u8 **pos)
1123 {
1124 	int val = 0;
1125 
1126 	switch (bytes) {
1127 	case 2:
1128 		val = le16_to_cpu(*((__le16 *)*pos));
1129 		break;
1130 	case 4:
1131 		val = le32_to_cpu(*((__le32 *)*pos));
1132 		break;
1133 	default:
1134 		break;
1135 	}
1136 
1137 	*pos += bytes;
1138 
1139 	return val;
1140 }
1141 
1142 static int cs_dsp_coeff_parse_alg(struct cs_dsp *dsp,
1143 				  const struct wmfw_region *region,
1144 				  struct cs_dsp_coeff_parsed_alg *blk)
1145 {
1146 	const struct wmfw_adsp_alg_data *raw;
1147 	unsigned int data_len = le32_to_cpu(region->len);
1148 	unsigned int pos;
1149 	const u8 *tmp;
1150 
1151 	raw = (const struct wmfw_adsp_alg_data *)region->data;
1152 
1153 	switch (dsp->wmfw_ver) {
1154 	case 0:
1155 	case 1:
1156 		if (sizeof(*raw) > data_len)
1157 			return -EOVERFLOW;
1158 
1159 		blk->id = le32_to_cpu(raw->id);
1160 		blk->name = raw->name;
1161 		blk->name_len = strnlen(raw->name, ARRAY_SIZE(raw->name));
1162 		blk->ncoeff = le32_to_cpu(raw->ncoeff);
1163 
1164 		pos = sizeof(*raw);
1165 		break;
1166 	default:
1167 		if (sizeof(raw->id) > data_len)
1168 			return -EOVERFLOW;
1169 
1170 		tmp = region->data;
1171 		blk->id = cs_dsp_coeff_parse_int(sizeof(raw->id), &tmp);
1172 		pos = tmp - region->data;
1173 
1174 		tmp = &region->data[pos];
1175 		blk->name_len = cs_dsp_coeff_parse_string(sizeof(u8), &tmp, data_len - pos,
1176 							  &blk->name);
1177 		if (!tmp)
1178 			return -EOVERFLOW;
1179 
1180 		pos = tmp - region->data;
1181 		cs_dsp_coeff_parse_string(sizeof(u16), &tmp, data_len - pos, NULL);
1182 		if (!tmp)
1183 			return -EOVERFLOW;
1184 
1185 		pos = tmp - region->data;
1186 		if (sizeof(raw->ncoeff) > (data_len - pos))
1187 			return -EOVERFLOW;
1188 
1189 		blk->ncoeff = cs_dsp_coeff_parse_int(sizeof(raw->ncoeff), &tmp);
1190 		pos += sizeof(raw->ncoeff);
1191 		break;
1192 	}
1193 
1194 	if ((int)blk->ncoeff < 0)
1195 		return -EOVERFLOW;
1196 
1197 	cs_dsp_dbg(dsp, "Algorithm ID: %#x\n", blk->id);
1198 	cs_dsp_dbg(dsp, "Algorithm name: %.*s\n", blk->name_len, blk->name);
1199 	cs_dsp_dbg(dsp, "# of coefficient descriptors: %#x\n", blk->ncoeff);
1200 
1201 	return pos;
1202 }
1203 
1204 static int cs_dsp_coeff_parse_coeff(struct cs_dsp *dsp,
1205 				    const struct wmfw_region *region,
1206 				    unsigned int pos,
1207 				    struct cs_dsp_coeff_parsed_coeff *blk)
1208 {
1209 	const struct wmfw_adsp_coeff_data *raw;
1210 	unsigned int data_len = le32_to_cpu(region->len);
1211 	unsigned int blk_len, blk_end_pos;
1212 	const u8 *tmp;
1213 
1214 	raw = (const struct wmfw_adsp_coeff_data *)&region->data[pos];
1215 	if (sizeof(raw->hdr) > (data_len - pos))
1216 		return -EOVERFLOW;
1217 
1218 	blk_len = le32_to_cpu(raw->hdr.size);
1219 	if (blk_len > S32_MAX)
1220 		return -EOVERFLOW;
1221 
1222 	if (blk_len > (data_len - pos - sizeof(raw->hdr)))
1223 		return -EOVERFLOW;
1224 
1225 	blk_end_pos = pos + sizeof(raw->hdr) + blk_len;
1226 
1227 	blk->offset = le16_to_cpu(raw->hdr.offset);
1228 	blk->mem_type = le16_to_cpu(raw->hdr.type);
1229 
1230 	switch (dsp->wmfw_ver) {
1231 	case 0:
1232 	case 1:
1233 		if (sizeof(*raw) > (data_len - pos))
1234 			return -EOVERFLOW;
1235 
1236 		blk->name = raw->name;
1237 		blk->name_len = strnlen(raw->name, ARRAY_SIZE(raw->name));
1238 		blk->ctl_type = le16_to_cpu(raw->ctl_type);
1239 		blk->flags = le16_to_cpu(raw->flags);
1240 		blk->len = le32_to_cpu(raw->len);
1241 		break;
1242 	default:
1243 		pos += sizeof(raw->hdr);
1244 		tmp = &region->data[pos];
1245 		blk->name_len = cs_dsp_coeff_parse_string(sizeof(u8), &tmp, data_len - pos,
1246 							  &blk->name);
1247 		if (!tmp)
1248 			return -EOVERFLOW;
1249 
1250 		pos = tmp - region->data;
1251 		cs_dsp_coeff_parse_string(sizeof(u8), &tmp, data_len - pos, NULL);
1252 		if (!tmp)
1253 			return -EOVERFLOW;
1254 
1255 		pos = tmp - region->data;
1256 		cs_dsp_coeff_parse_string(sizeof(u16), &tmp, data_len - pos, NULL);
1257 		if (!tmp)
1258 			return -EOVERFLOW;
1259 
1260 		pos = tmp - region->data;
1261 		if (sizeof(raw->ctl_type) + sizeof(raw->flags) + sizeof(raw->len) >
1262 		    (data_len - pos))
1263 			return -EOVERFLOW;
1264 
1265 		blk->ctl_type = cs_dsp_coeff_parse_int(sizeof(raw->ctl_type), &tmp);
1266 		pos += sizeof(raw->ctl_type);
1267 		blk->flags = cs_dsp_coeff_parse_int(sizeof(raw->flags), &tmp);
1268 		pos += sizeof(raw->flags);
1269 		blk->len = cs_dsp_coeff_parse_int(sizeof(raw->len), &tmp);
1270 		break;
1271 	}
1272 
1273 	cs_dsp_dbg(dsp, "\tCoefficient type: %#x\n", blk->mem_type);
1274 	cs_dsp_dbg(dsp, "\tCoefficient offset: %#x\n", blk->offset);
1275 	cs_dsp_dbg(dsp, "\tCoefficient name: %.*s\n", blk->name_len, blk->name);
1276 	cs_dsp_dbg(dsp, "\tCoefficient flags: %#x\n", blk->flags);
1277 	cs_dsp_dbg(dsp, "\tALSA control type: %#x\n", blk->ctl_type);
1278 	cs_dsp_dbg(dsp, "\tALSA control len: %#x\n", blk->len);
1279 
1280 	return blk_end_pos;
1281 }
1282 
1283 static int cs_dsp_check_coeff_flags(struct cs_dsp *dsp,
1284 				    const struct cs_dsp_coeff_parsed_coeff *coeff_blk,
1285 				    unsigned int f_required,
1286 				    unsigned int f_illegal)
1287 {
1288 	if ((coeff_blk->flags & f_illegal) ||
1289 	    ((coeff_blk->flags & f_required) != f_required)) {
1290 		cs_dsp_err(dsp, "Illegal flags 0x%x for control type 0x%x\n",
1291 			   coeff_blk->flags, coeff_blk->ctl_type);
1292 		return -EINVAL;
1293 	}
1294 
1295 	return 0;
1296 }
1297 
1298 static int cs_dsp_parse_coeff(struct cs_dsp *dsp,
1299 			      const struct wmfw_region *region)
1300 {
1301 	struct cs_dsp_alg_region alg_region = {};
1302 	struct cs_dsp_coeff_parsed_alg alg_blk;
1303 	struct cs_dsp_coeff_parsed_coeff coeff_blk;
1304 	int i, pos, ret;
1305 
1306 	pos = cs_dsp_coeff_parse_alg(dsp, region, &alg_blk);
1307 	if (pos < 0)
1308 		return pos;
1309 
1310 	for (i = 0; i < alg_blk.ncoeff; i++) {
1311 		pos = cs_dsp_coeff_parse_coeff(dsp, region, pos, &coeff_blk);
1312 		if (pos < 0)
1313 			return pos;
1314 
1315 		switch (coeff_blk.ctl_type) {
1316 		case WMFW_CTL_TYPE_BYTES:
1317 			break;
1318 		case WMFW_CTL_TYPE_ACKED:
1319 			if (coeff_blk.flags & WMFW_CTL_FLAG_SYS)
1320 				continue;	/* ignore */
1321 
1322 			ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1323 						       WMFW_CTL_FLAG_VOLATILE |
1324 						       WMFW_CTL_FLAG_WRITEABLE |
1325 						       WMFW_CTL_FLAG_READABLE,
1326 						       0);
1327 			if (ret)
1328 				return -EINVAL;
1329 			break;
1330 		case WMFW_CTL_TYPE_HOSTEVENT:
1331 		case WMFW_CTL_TYPE_FWEVENT:
1332 			ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1333 						       WMFW_CTL_FLAG_SYS |
1334 						       WMFW_CTL_FLAG_VOLATILE |
1335 						       WMFW_CTL_FLAG_WRITEABLE |
1336 						       WMFW_CTL_FLAG_READABLE,
1337 						       0);
1338 			if (ret)
1339 				return -EINVAL;
1340 			break;
1341 		case WMFW_CTL_TYPE_HOST_BUFFER:
1342 			ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1343 						       WMFW_CTL_FLAG_SYS |
1344 						       WMFW_CTL_FLAG_VOLATILE |
1345 						       WMFW_CTL_FLAG_READABLE,
1346 						       0);
1347 			if (ret)
1348 				return -EINVAL;
1349 			break;
1350 		default:
1351 			cs_dsp_err(dsp, "Unknown control type: %d\n",
1352 				   coeff_blk.ctl_type);
1353 			return -EINVAL;
1354 		}
1355 
1356 		alg_region.type = coeff_blk.mem_type;
1357 		alg_region.alg = alg_blk.id;
1358 
1359 		ret = cs_dsp_create_control(dsp, &alg_region,
1360 					    coeff_blk.offset,
1361 					    coeff_blk.len,
1362 					    coeff_blk.name,
1363 					    coeff_blk.name_len,
1364 					    coeff_blk.flags,
1365 					    coeff_blk.ctl_type);
1366 		if (ret < 0)
1367 			cs_dsp_err(dsp, "Failed to create control: %.*s, %d\n",
1368 				   coeff_blk.name_len, coeff_blk.name, ret);
1369 	}
1370 
1371 	return 0;
1372 }
1373 
1374 static unsigned int cs_dsp_adsp1_parse_sizes(struct cs_dsp *dsp,
1375 					     const char * const file,
1376 					     unsigned int pos,
1377 					     const struct firmware *firmware)
1378 {
1379 	const struct wmfw_adsp1_sizes *adsp1_sizes;
1380 
1381 	adsp1_sizes = (void *)&firmware->data[pos];
1382 	if (sizeof(*adsp1_sizes) > firmware->size - pos) {
1383 		cs_dsp_err(dsp, "%s: file truncated\n", file);
1384 		return 0;
1385 	}
1386 
1387 	cs_dsp_dbg(dsp, "%s: %d DM, %d PM, %d ZM\n", file,
1388 		   le32_to_cpu(adsp1_sizes->dm), le32_to_cpu(adsp1_sizes->pm),
1389 		   le32_to_cpu(adsp1_sizes->zm));
1390 
1391 	return pos + sizeof(*adsp1_sizes);
1392 }
1393 
1394 static unsigned int cs_dsp_adsp2_parse_sizes(struct cs_dsp *dsp,
1395 					     const char * const file,
1396 					     unsigned int pos,
1397 					     const struct firmware *firmware)
1398 {
1399 	const struct wmfw_adsp2_sizes *adsp2_sizes;
1400 
1401 	adsp2_sizes = (void *)&firmware->data[pos];
1402 	if (sizeof(*adsp2_sizes) > firmware->size - pos) {
1403 		cs_dsp_err(dsp, "%s: file truncated\n", file);
1404 		return 0;
1405 	}
1406 
1407 	cs_dsp_dbg(dsp, "%s: %d XM, %d YM %d PM, %d ZM\n", file,
1408 		   le32_to_cpu(adsp2_sizes->xm), le32_to_cpu(adsp2_sizes->ym),
1409 		   le32_to_cpu(adsp2_sizes->pm), le32_to_cpu(adsp2_sizes->zm));
1410 
1411 	return pos + sizeof(*adsp2_sizes);
1412 }
1413 
1414 static bool cs_dsp_validate_version(struct cs_dsp *dsp, unsigned int version)
1415 {
1416 	switch (version) {
1417 	case 0:
1418 		cs_dsp_warn(dsp, "Deprecated file format %d\n", version);
1419 		return true;
1420 	case 1:
1421 	case 2:
1422 		return true;
1423 	default:
1424 		return false;
1425 	}
1426 }
1427 
1428 static bool cs_dsp_halo_validate_version(struct cs_dsp *dsp, unsigned int version)
1429 {
1430 	switch (version) {
1431 	case 3:
1432 		return true;
1433 	default:
1434 		return false;
1435 	}
1436 }
1437 
1438 static int cs_dsp_load(struct cs_dsp *dsp, const struct firmware *firmware,
1439 		       const char *file)
1440 {
1441 	LIST_HEAD(buf_list);
1442 	struct regmap *regmap = dsp->regmap;
1443 	unsigned int pos = 0;
1444 	const struct wmfw_header *header;
1445 	const struct wmfw_footer *footer;
1446 	const struct wmfw_region *region;
1447 	const struct cs_dsp_region *mem;
1448 	const char *region_name;
1449 	u8 *buf __free(kfree) = NULL;
1450 	size_t buf_len = 0;
1451 	size_t region_len;
1452 	unsigned int reg;
1453 	int regions = 0;
1454 	int ret, offset, type;
1455 
1456 	if (!firmware)
1457 		return 0;
1458 
1459 	ret = -EINVAL;
1460 
1461 	if (sizeof(*header) >= firmware->size) {
1462 		ret = -EOVERFLOW;
1463 		goto out_fw;
1464 	}
1465 
1466 	header = (void *)&firmware->data[0];
1467 
1468 	if (memcmp(&header->magic[0], "WMFW", 4) != 0) {
1469 		cs_dsp_err(dsp, "%s: invalid magic\n", file);
1470 		goto out_fw;
1471 	}
1472 
1473 	if (!dsp->ops->validate_version(dsp, header->ver)) {
1474 		cs_dsp_err(dsp, "%s: unknown file format %d\n",
1475 			   file, header->ver);
1476 		goto out_fw;
1477 	}
1478 
1479 	dsp->wmfw_ver = header->ver;
1480 
1481 	if (header->core != dsp->type) {
1482 		cs_dsp_err(dsp, "%s: invalid core %d != %d\n",
1483 			   file, header->core, dsp->type);
1484 		goto out_fw;
1485 	}
1486 
1487 	pos = sizeof(*header);
1488 	pos = dsp->ops->parse_sizes(dsp, file, pos, firmware);
1489 	if ((pos == 0) || (sizeof(*footer) > firmware->size - pos)) {
1490 		ret = -EOVERFLOW;
1491 		goto out_fw;
1492 	}
1493 
1494 	footer = (void *)&firmware->data[pos];
1495 	pos += sizeof(*footer);
1496 
1497 	if (le32_to_cpu(header->len) != pos) {
1498 		ret = -EOVERFLOW;
1499 		goto out_fw;
1500 	}
1501 
1502 	cs_dsp_info(dsp, "%s: format %d timestamp %#llx\n", file, header->ver,
1503 		    le64_to_cpu(footer->timestamp));
1504 
1505 	while (pos < firmware->size) {
1506 		/* Is there enough data for a complete block header? */
1507 		if (sizeof(*region) > firmware->size - pos) {
1508 			ret = -EOVERFLOW;
1509 			goto out_fw;
1510 		}
1511 
1512 		region = (void *)&(firmware->data[pos]);
1513 
1514 		if (le32_to_cpu(region->len) > firmware->size - pos - sizeof(*region)) {
1515 			ret = -EOVERFLOW;
1516 			goto out_fw;
1517 		}
1518 
1519 		region_name = "Unknown";
1520 		reg = 0;
1521 		offset = le32_to_cpu(region->offset) & 0xffffff;
1522 		type = be32_to_cpu(region->type) & 0xff;
1523 
1524 		switch (type) {
1525 		case WMFW_INFO_TEXT:
1526 		case WMFW_NAME_TEXT:
1527 			region_name = "Info/Name";
1528 			cs_dsp_info(dsp, "%s: %.*s\n", file,
1529 				    min(le32_to_cpu(region->len), 100), region->data);
1530 			break;
1531 		case WMFW_ALGORITHM_DATA:
1532 			region_name = "Algorithm";
1533 			ret = cs_dsp_parse_coeff(dsp, region);
1534 			if (ret != 0)
1535 				goto out_fw;
1536 			break;
1537 		case WMFW_ABSOLUTE:
1538 			region_name = "Absolute";
1539 			reg = offset;
1540 			break;
1541 		case WMFW_ADSP1_PM:
1542 		case WMFW_ADSP1_DM:
1543 		case WMFW_ADSP2_XM:
1544 		case WMFW_ADSP2_YM:
1545 		case WMFW_ADSP1_ZM:
1546 		case WMFW_HALO_PM_PACKED:
1547 		case WMFW_HALO_XM_PACKED:
1548 		case WMFW_HALO_YM_PACKED:
1549 			mem = cs_dsp_find_region(dsp, type);
1550 			if (!mem) {
1551 				cs_dsp_err(dsp, "No region of type: %x\n", type);
1552 				ret = -EINVAL;
1553 				goto out_fw;
1554 			}
1555 
1556 			region_name = cs_dsp_mem_region_name(type);
1557 			reg = dsp->ops->region_to_reg(mem, offset);
1558 			break;
1559 		default:
1560 			cs_dsp_warn(dsp,
1561 				    "%s.%d: Unknown region type %x at %d(%x)\n",
1562 				    file, regions, type, pos, pos);
1563 			break;
1564 		}
1565 
1566 		cs_dsp_dbg(dsp, "%s.%d: %d bytes at %d in %s\n", file,
1567 			   regions, le32_to_cpu(region->len), offset,
1568 			   region_name);
1569 
1570 		if (reg) {
1571 			region_len = le32_to_cpu(region->len);
1572 			if (region_len > buf_len) {
1573 				buf_len = round_up(region_len, PAGE_SIZE);
1574 				kfree(buf);
1575 				buf = kmalloc(buf_len, GFP_KERNEL | GFP_DMA);
1576 				if (!buf) {
1577 					ret = -ENOMEM;
1578 					goto out_fw;
1579 				}
1580 			}
1581 
1582 			memcpy(buf, region->data, region_len);
1583 			ret = regmap_raw_write(regmap, reg, buf, region_len);
1584 			if (ret != 0) {
1585 				cs_dsp_err(dsp,
1586 					   "%s.%d: Failed to write %zu bytes at %d in %s: %d\n",
1587 					   file, regions, region_len, offset, region_name, ret);
1588 				goto out_fw;
1589 			}
1590 		}
1591 
1592 		pos += le32_to_cpu(region->len) + sizeof(*region);
1593 		regions++;
1594 	}
1595 
1596 	if (pos > firmware->size)
1597 		cs_dsp_warn(dsp, "%s.%d: %zu bytes at end of file\n",
1598 			    file, regions, pos - firmware->size);
1599 
1600 	cs_dsp_debugfs_save_wmfwname(dsp, file);
1601 
1602 	ret = 0;
1603 out_fw:
1604 	if (ret == -EOVERFLOW)
1605 		cs_dsp_err(dsp, "%s: file content overflows file data\n", file);
1606 
1607 	return ret;
1608 }
1609 
1610 /**
1611  * cs_dsp_get_ctl() - Finds a matching coefficient control
1612  * @dsp: pointer to DSP structure
1613  * @name: pointer to string to match with a control's subname
1614  * @type: the algorithm type to match
1615  * @alg: the algorithm id to match
1616  *
1617  * Find cs_dsp_coeff_ctl with input name as its subname
1618  *
1619  * Return: pointer to the control on success, NULL if not found
1620  */
1621 struct cs_dsp_coeff_ctl *cs_dsp_get_ctl(struct cs_dsp *dsp, const char *name, int type,
1622 					unsigned int alg)
1623 {
1624 	struct cs_dsp_coeff_ctl *pos, *rslt = NULL;
1625 
1626 	lockdep_assert_held(&dsp->pwr_lock);
1627 
1628 	list_for_each_entry(pos, &dsp->ctl_list, list) {
1629 		if (!pos->subname)
1630 			continue;
1631 		if (strncmp(pos->subname, name, pos->subname_len) == 0 &&
1632 		    pos->fw_name == dsp->fw_name &&
1633 		    pos->alg_region.alg == alg &&
1634 		    pos->alg_region.type == type) {
1635 			rslt = pos;
1636 			break;
1637 		}
1638 	}
1639 
1640 	return rslt;
1641 }
1642 EXPORT_SYMBOL_NS_GPL(cs_dsp_get_ctl, "FW_CS_DSP");
1643 
1644 static void cs_dsp_ctl_fixup_base(struct cs_dsp *dsp,
1645 				  const struct cs_dsp_alg_region *alg_region)
1646 {
1647 	struct cs_dsp_coeff_ctl *ctl;
1648 
1649 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
1650 		if (ctl->fw_name == dsp->fw_name &&
1651 		    alg_region->alg == ctl->alg_region.alg &&
1652 		    alg_region->type == ctl->alg_region.type) {
1653 			ctl->alg_region.base = alg_region->base;
1654 		}
1655 	}
1656 }
1657 
1658 static void *cs_dsp_read_algs(struct cs_dsp *dsp, size_t n_algs,
1659 			      const struct cs_dsp_region *mem,
1660 			      unsigned int pos, unsigned int len)
1661 {
1662 	void *alg;
1663 	unsigned int reg;
1664 	int ret;
1665 	__be32 val;
1666 
1667 	if (n_algs == 0) {
1668 		cs_dsp_err(dsp, "No algorithms\n");
1669 		return ERR_PTR(-EINVAL);
1670 	}
1671 
1672 	if (n_algs > 1024) {
1673 		cs_dsp_err(dsp, "Algorithm count %zx excessive\n", n_algs);
1674 		return ERR_PTR(-EINVAL);
1675 	}
1676 
1677 	/* Read the terminator first to validate the length */
1678 	reg = dsp->ops->region_to_reg(mem, pos + len);
1679 
1680 	ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val));
1681 	if (ret != 0) {
1682 		cs_dsp_err(dsp, "Failed to read algorithm list end: %d\n",
1683 			   ret);
1684 		return ERR_PTR(ret);
1685 	}
1686 
1687 	if (be32_to_cpu(val) != 0xbedead)
1688 		cs_dsp_warn(dsp, "Algorithm list end %x 0x%x != 0xbedead\n",
1689 			    reg, be32_to_cpu(val));
1690 
1691 	/* Convert length from DSP words to bytes */
1692 	len *= sizeof(u32);
1693 
1694 	alg = kzalloc(len, GFP_KERNEL | GFP_DMA);
1695 	if (!alg)
1696 		return ERR_PTR(-ENOMEM);
1697 
1698 	reg = dsp->ops->region_to_reg(mem, pos);
1699 
1700 	ret = regmap_raw_read(dsp->regmap, reg, alg, len);
1701 	if (ret != 0) {
1702 		cs_dsp_err(dsp, "Failed to read algorithm list: %d\n", ret);
1703 		kfree(alg);
1704 		return ERR_PTR(ret);
1705 	}
1706 
1707 	return alg;
1708 }
1709 
1710 /**
1711  * cs_dsp_find_alg_region() - Finds a matching algorithm region
1712  * @dsp: pointer to DSP structure
1713  * @type: the algorithm type to match
1714  * @id: the algorithm id to match
1715  *
1716  * Return: Pointer to matching algorithm region, or NULL if not found.
1717  */
1718 struct cs_dsp_alg_region *cs_dsp_find_alg_region(struct cs_dsp *dsp,
1719 						 int type, unsigned int id)
1720 {
1721 	struct cs_dsp_alg_region_list_item *item;
1722 
1723 	lockdep_assert_held(&dsp->pwr_lock);
1724 
1725 	list_for_each_entry(item, &dsp->alg_regions, list) {
1726 		if (id == item->alg_region.alg && type == item->alg_region.type)
1727 			return &item->alg_region;
1728 	}
1729 
1730 	return NULL;
1731 }
1732 EXPORT_SYMBOL_NS_GPL(cs_dsp_find_alg_region, "FW_CS_DSP");
1733 
1734 static struct cs_dsp_alg_region *cs_dsp_create_region(struct cs_dsp *dsp,
1735 						      int type, __be32 id,
1736 						      __be32 ver, __be32 base)
1737 {
1738 	struct cs_dsp_alg_region_list_item *item;
1739 
1740 	item = kzalloc(sizeof(*item), GFP_KERNEL);
1741 	if (!item)
1742 		return ERR_PTR(-ENOMEM);
1743 
1744 	item->alg_region.type = type;
1745 	item->alg_region.alg = be32_to_cpu(id);
1746 	item->alg_region.ver = be32_to_cpu(ver);
1747 	item->alg_region.base = be32_to_cpu(base);
1748 
1749 	list_add_tail(&item->list, &dsp->alg_regions);
1750 
1751 	if (dsp->wmfw_ver > 0)
1752 		cs_dsp_ctl_fixup_base(dsp, &item->alg_region);
1753 
1754 	return &item->alg_region;
1755 }
1756 
1757 static void cs_dsp_free_alg_regions(struct cs_dsp *dsp)
1758 {
1759 	struct cs_dsp_alg_region_list_item *item;
1760 
1761 	while (!list_empty(&dsp->alg_regions)) {
1762 		item = list_first_entry(&dsp->alg_regions,
1763 					struct cs_dsp_alg_region_list_item,
1764 					list);
1765 		list_del(&item->list);
1766 		kfree(item);
1767 	}
1768 }
1769 
1770 static void cs_dsp_parse_wmfw_id_header(struct cs_dsp *dsp,
1771 					struct wmfw_id_hdr *fw, int nalgs)
1772 {
1773 	dsp->fw_id = be32_to_cpu(fw->id);
1774 	dsp->fw_id_version = be32_to_cpu(fw->ver);
1775 
1776 	cs_dsp_info(dsp, "Firmware: %x v%d.%d.%d, %d algorithms\n",
1777 		    dsp->fw_id, (dsp->fw_id_version & 0xff0000) >> 16,
1778 		    (dsp->fw_id_version & 0xff00) >> 8, dsp->fw_id_version & 0xff,
1779 		    nalgs);
1780 }
1781 
1782 static void cs_dsp_parse_wmfw_v3_id_header(struct cs_dsp *dsp,
1783 					   struct wmfw_v3_id_hdr *fw, int nalgs)
1784 {
1785 	dsp->fw_id = be32_to_cpu(fw->id);
1786 	dsp->fw_id_version = be32_to_cpu(fw->ver);
1787 	dsp->fw_vendor_id = be32_to_cpu(fw->vendor_id);
1788 
1789 	cs_dsp_info(dsp, "Firmware: %x vendor: 0x%x v%d.%d.%d, %d algorithms\n",
1790 		    dsp->fw_id, dsp->fw_vendor_id,
1791 		    (dsp->fw_id_version & 0xff0000) >> 16,
1792 		    (dsp->fw_id_version & 0xff00) >> 8, dsp->fw_id_version & 0xff,
1793 		    nalgs);
1794 }
1795 
1796 static int cs_dsp_create_regions(struct cs_dsp *dsp, __be32 id, __be32 ver,
1797 				 int nregions, const int *type, __be32 *base)
1798 {
1799 	struct cs_dsp_alg_region *alg_region;
1800 	int i;
1801 
1802 	for (i = 0; i < nregions; i++) {
1803 		alg_region = cs_dsp_create_region(dsp, type[i], id, ver, base[i]);
1804 		if (IS_ERR(alg_region))
1805 			return PTR_ERR(alg_region);
1806 	}
1807 
1808 	return 0;
1809 }
1810 
1811 static int cs_dsp_adsp1_setup_algs(struct cs_dsp *dsp)
1812 {
1813 	struct wmfw_adsp1_id_hdr adsp1_id;
1814 	struct wmfw_adsp1_alg_hdr *adsp1_alg;
1815 	struct cs_dsp_alg_region *alg_region;
1816 	const struct cs_dsp_region *mem;
1817 	unsigned int pos, len;
1818 	size_t n_algs;
1819 	int i, ret;
1820 
1821 	mem = cs_dsp_find_region(dsp, WMFW_ADSP1_DM);
1822 	if (WARN_ON(!mem))
1823 		return -EINVAL;
1824 
1825 	ret = regmap_raw_read(dsp->regmap, mem->base, &adsp1_id,
1826 			      sizeof(adsp1_id));
1827 	if (ret != 0) {
1828 		cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
1829 			   ret);
1830 		return ret;
1831 	}
1832 
1833 	n_algs = be32_to_cpu(adsp1_id.n_algs);
1834 
1835 	cs_dsp_parse_wmfw_id_header(dsp, &adsp1_id.fw, n_algs);
1836 
1837 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_ZM,
1838 					  adsp1_id.fw.id, adsp1_id.fw.ver,
1839 					  adsp1_id.zm);
1840 	if (IS_ERR(alg_region))
1841 		return PTR_ERR(alg_region);
1842 
1843 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_DM,
1844 					  adsp1_id.fw.id, adsp1_id.fw.ver,
1845 					  adsp1_id.dm);
1846 	if (IS_ERR(alg_region))
1847 		return PTR_ERR(alg_region);
1848 
1849 	/* Calculate offset and length in DSP words */
1850 	pos = sizeof(adsp1_id) / sizeof(u32);
1851 	len = (sizeof(*adsp1_alg) * n_algs) / sizeof(u32);
1852 
1853 	adsp1_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
1854 	if (IS_ERR(adsp1_alg))
1855 		return PTR_ERR(adsp1_alg);
1856 
1857 	for (i = 0; i < n_algs; i++) {
1858 		cs_dsp_info(dsp, "%d: ID %x v%d.%d.%d DM@%x ZM@%x\n",
1859 			    i, be32_to_cpu(adsp1_alg[i].alg.id),
1860 			    (be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff0000) >> 16,
1861 			    (be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff00) >> 8,
1862 			    be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff,
1863 			    be32_to_cpu(adsp1_alg[i].dm),
1864 			    be32_to_cpu(adsp1_alg[i].zm));
1865 
1866 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_DM,
1867 						  adsp1_alg[i].alg.id,
1868 						  adsp1_alg[i].alg.ver,
1869 						  adsp1_alg[i].dm);
1870 		if (IS_ERR(alg_region)) {
1871 			ret = PTR_ERR(alg_region);
1872 			goto out;
1873 		}
1874 		if (dsp->wmfw_ver == 0) {
1875 			if (i + 1 < n_algs) {
1876 				len = be32_to_cpu(adsp1_alg[i + 1].dm);
1877 				len -= be32_to_cpu(adsp1_alg[i].dm);
1878 				len *= 4;
1879 				cs_dsp_create_control(dsp, alg_region, 0,
1880 						      len, NULL, 0, 0,
1881 						      WMFW_CTL_TYPE_BYTES);
1882 			} else {
1883 				cs_dsp_warn(dsp, "Missing length info for region DM with ID %x\n",
1884 					    be32_to_cpu(adsp1_alg[i].alg.id));
1885 			}
1886 		}
1887 
1888 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_ZM,
1889 						  adsp1_alg[i].alg.id,
1890 						  adsp1_alg[i].alg.ver,
1891 						  adsp1_alg[i].zm);
1892 		if (IS_ERR(alg_region)) {
1893 			ret = PTR_ERR(alg_region);
1894 			goto out;
1895 		}
1896 		if (dsp->wmfw_ver == 0) {
1897 			if (i + 1 < n_algs) {
1898 				len = be32_to_cpu(adsp1_alg[i + 1].zm);
1899 				len -= be32_to_cpu(adsp1_alg[i].zm);
1900 				len *= 4;
1901 				cs_dsp_create_control(dsp, alg_region, 0,
1902 						      len, NULL, 0, 0,
1903 						      WMFW_CTL_TYPE_BYTES);
1904 			} else {
1905 				cs_dsp_warn(dsp, "Missing length info for region ZM with ID %x\n",
1906 					    be32_to_cpu(adsp1_alg[i].alg.id));
1907 			}
1908 		}
1909 	}
1910 
1911 out:
1912 	kfree(adsp1_alg);
1913 	return ret;
1914 }
1915 
1916 static int cs_dsp_adsp2_setup_algs(struct cs_dsp *dsp)
1917 {
1918 	struct wmfw_adsp2_id_hdr adsp2_id;
1919 	struct wmfw_adsp2_alg_hdr *adsp2_alg;
1920 	struct cs_dsp_alg_region *alg_region;
1921 	const struct cs_dsp_region *mem;
1922 	unsigned int pos, len;
1923 	size_t n_algs;
1924 	int i, ret;
1925 
1926 	mem = cs_dsp_find_region(dsp, WMFW_ADSP2_XM);
1927 	if (WARN_ON(!mem))
1928 		return -EINVAL;
1929 
1930 	ret = regmap_raw_read(dsp->regmap, mem->base, &adsp2_id,
1931 			      sizeof(adsp2_id));
1932 	if (ret != 0) {
1933 		cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
1934 			   ret);
1935 		return ret;
1936 	}
1937 
1938 	n_algs = be32_to_cpu(adsp2_id.n_algs);
1939 
1940 	cs_dsp_parse_wmfw_id_header(dsp, &adsp2_id.fw, n_algs);
1941 
1942 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_XM,
1943 					  adsp2_id.fw.id, adsp2_id.fw.ver,
1944 					  adsp2_id.xm);
1945 	if (IS_ERR(alg_region))
1946 		return PTR_ERR(alg_region);
1947 
1948 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_YM,
1949 					  adsp2_id.fw.id, adsp2_id.fw.ver,
1950 					  adsp2_id.ym);
1951 	if (IS_ERR(alg_region))
1952 		return PTR_ERR(alg_region);
1953 
1954 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_ZM,
1955 					  adsp2_id.fw.id, adsp2_id.fw.ver,
1956 					  adsp2_id.zm);
1957 	if (IS_ERR(alg_region))
1958 		return PTR_ERR(alg_region);
1959 
1960 	/* Calculate offset and length in DSP words */
1961 	pos = sizeof(adsp2_id) / sizeof(u32);
1962 	len = (sizeof(*adsp2_alg) * n_algs) / sizeof(u32);
1963 
1964 	adsp2_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
1965 	if (IS_ERR(adsp2_alg))
1966 		return PTR_ERR(adsp2_alg);
1967 
1968 	for (i = 0; i < n_algs; i++) {
1969 		cs_dsp_dbg(dsp,
1970 			   "%d: ID %x v%d.%d.%d XM@%x YM@%x ZM@%x\n",
1971 			   i, be32_to_cpu(adsp2_alg[i].alg.id),
1972 			   (be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff0000) >> 16,
1973 			   (be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff00) >> 8,
1974 			   be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff,
1975 			   be32_to_cpu(adsp2_alg[i].xm),
1976 			   be32_to_cpu(adsp2_alg[i].ym),
1977 			   be32_to_cpu(adsp2_alg[i].zm));
1978 
1979 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_XM,
1980 						  adsp2_alg[i].alg.id,
1981 						  adsp2_alg[i].alg.ver,
1982 						  adsp2_alg[i].xm);
1983 		if (IS_ERR(alg_region)) {
1984 			ret = PTR_ERR(alg_region);
1985 			goto out;
1986 		}
1987 		if (dsp->wmfw_ver == 0) {
1988 			if (i + 1 < n_algs) {
1989 				len = be32_to_cpu(adsp2_alg[i + 1].xm);
1990 				len -= be32_to_cpu(adsp2_alg[i].xm);
1991 				len *= 4;
1992 				cs_dsp_create_control(dsp, alg_region, 0,
1993 						      len, NULL, 0, 0,
1994 						      WMFW_CTL_TYPE_BYTES);
1995 			} else {
1996 				cs_dsp_warn(dsp, "Missing length info for region XM with ID %x\n",
1997 					    be32_to_cpu(adsp2_alg[i].alg.id));
1998 			}
1999 		}
2000 
2001 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_YM,
2002 						  adsp2_alg[i].alg.id,
2003 						  adsp2_alg[i].alg.ver,
2004 						  adsp2_alg[i].ym);
2005 		if (IS_ERR(alg_region)) {
2006 			ret = PTR_ERR(alg_region);
2007 			goto out;
2008 		}
2009 		if (dsp->wmfw_ver == 0) {
2010 			if (i + 1 < n_algs) {
2011 				len = be32_to_cpu(adsp2_alg[i + 1].ym);
2012 				len -= be32_to_cpu(adsp2_alg[i].ym);
2013 				len *= 4;
2014 				cs_dsp_create_control(dsp, alg_region, 0,
2015 						      len, NULL, 0, 0,
2016 						      WMFW_CTL_TYPE_BYTES);
2017 			} else {
2018 				cs_dsp_warn(dsp, "Missing length info for region YM with ID %x\n",
2019 					    be32_to_cpu(adsp2_alg[i].alg.id));
2020 			}
2021 		}
2022 
2023 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_ZM,
2024 						  adsp2_alg[i].alg.id,
2025 						  adsp2_alg[i].alg.ver,
2026 						  adsp2_alg[i].zm);
2027 		if (IS_ERR(alg_region)) {
2028 			ret = PTR_ERR(alg_region);
2029 			goto out;
2030 		}
2031 		if (dsp->wmfw_ver == 0) {
2032 			if (i + 1 < n_algs) {
2033 				len = be32_to_cpu(adsp2_alg[i + 1].zm);
2034 				len -= be32_to_cpu(adsp2_alg[i].zm);
2035 				len *= 4;
2036 				cs_dsp_create_control(dsp, alg_region, 0,
2037 						      len, NULL, 0, 0,
2038 						      WMFW_CTL_TYPE_BYTES);
2039 			} else {
2040 				cs_dsp_warn(dsp, "Missing length info for region ZM with ID %x\n",
2041 					    be32_to_cpu(adsp2_alg[i].alg.id));
2042 			}
2043 		}
2044 	}
2045 
2046 out:
2047 	kfree(adsp2_alg);
2048 	return ret;
2049 }
2050 
2051 static int cs_dsp_halo_create_regions(struct cs_dsp *dsp, __be32 id, __be32 ver,
2052 				      __be32 xm_base, __be32 ym_base)
2053 {
2054 	static const int types[] = {
2055 		WMFW_ADSP2_XM, WMFW_HALO_XM_PACKED,
2056 		WMFW_ADSP2_YM, WMFW_HALO_YM_PACKED
2057 	};
2058 	__be32 bases[] = { xm_base, xm_base, ym_base, ym_base };
2059 
2060 	return cs_dsp_create_regions(dsp, id, ver, ARRAY_SIZE(types), types, bases);
2061 }
2062 
2063 static int cs_dsp_halo_setup_algs(struct cs_dsp *dsp)
2064 {
2065 	struct wmfw_halo_id_hdr halo_id;
2066 	struct wmfw_halo_alg_hdr *halo_alg;
2067 	const struct cs_dsp_region *mem;
2068 	unsigned int pos, len;
2069 	size_t n_algs;
2070 	int i, ret;
2071 
2072 	mem = cs_dsp_find_region(dsp, WMFW_ADSP2_XM);
2073 	if (WARN_ON(!mem))
2074 		return -EINVAL;
2075 
2076 	ret = regmap_raw_read(dsp->regmap, mem->base, &halo_id,
2077 			      sizeof(halo_id));
2078 	if (ret != 0) {
2079 		cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
2080 			   ret);
2081 		return ret;
2082 	}
2083 
2084 	n_algs = be32_to_cpu(halo_id.n_algs);
2085 
2086 	cs_dsp_parse_wmfw_v3_id_header(dsp, &halo_id.fw, n_algs);
2087 
2088 	ret = cs_dsp_halo_create_regions(dsp, halo_id.fw.id, halo_id.fw.ver,
2089 					 halo_id.xm_base, halo_id.ym_base);
2090 	if (ret)
2091 		return ret;
2092 
2093 	/* Calculate offset and length in DSP words */
2094 	pos = sizeof(halo_id) / sizeof(u32);
2095 	len = (sizeof(*halo_alg) * n_algs) / sizeof(u32);
2096 
2097 	halo_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
2098 	if (IS_ERR(halo_alg))
2099 		return PTR_ERR(halo_alg);
2100 
2101 	for (i = 0; i < n_algs; i++) {
2102 		cs_dsp_dbg(dsp,
2103 			   "%d: ID %x v%d.%d.%d XM@%x YM@%x\n",
2104 			   i, be32_to_cpu(halo_alg[i].alg.id),
2105 			   (be32_to_cpu(halo_alg[i].alg.ver) & 0xff0000) >> 16,
2106 			   (be32_to_cpu(halo_alg[i].alg.ver) & 0xff00) >> 8,
2107 			   be32_to_cpu(halo_alg[i].alg.ver) & 0xff,
2108 			   be32_to_cpu(halo_alg[i].xm_base),
2109 			   be32_to_cpu(halo_alg[i].ym_base));
2110 
2111 		ret = cs_dsp_halo_create_regions(dsp, halo_alg[i].alg.id,
2112 						 halo_alg[i].alg.ver,
2113 						 halo_alg[i].xm_base,
2114 						 halo_alg[i].ym_base);
2115 		if (ret)
2116 			goto out;
2117 	}
2118 
2119 out:
2120 	kfree(halo_alg);
2121 	return ret;
2122 }
2123 
2124 static int cs_dsp_load_coeff(struct cs_dsp *dsp, const struct firmware *firmware,
2125 			     const char *file)
2126 {
2127 	LIST_HEAD(buf_list);
2128 	struct regmap *regmap = dsp->regmap;
2129 	struct wmfw_coeff_hdr *hdr;
2130 	struct wmfw_coeff_item *blk;
2131 	const struct cs_dsp_region *mem;
2132 	struct cs_dsp_alg_region *alg_region;
2133 	const char *region_name;
2134 	int ret, pos, blocks, type, offset, reg, version;
2135 	u8 *buf __free(kfree) = NULL;
2136 	size_t buf_len = 0;
2137 	size_t region_len;
2138 
2139 	if (!firmware)
2140 		return 0;
2141 
2142 	ret = -EINVAL;
2143 
2144 	if (sizeof(*hdr) >= firmware->size) {
2145 		cs_dsp_err(dsp, "%s: coefficient file too short, %zu bytes\n",
2146 			   file, firmware->size);
2147 		goto out_fw;
2148 	}
2149 
2150 	hdr = (void *)&firmware->data[0];
2151 	if (memcmp(hdr->magic, "WMDR", 4) != 0) {
2152 		cs_dsp_err(dsp, "%s: invalid coefficient magic\n", file);
2153 		goto out_fw;
2154 	}
2155 
2156 	switch (be32_to_cpu(hdr->rev) & 0xff) {
2157 	case 1:
2158 	case 2:
2159 		break;
2160 	default:
2161 		cs_dsp_err(dsp, "%s: Unsupported coefficient file format %d\n",
2162 			   file, be32_to_cpu(hdr->rev) & 0xff);
2163 		ret = -EINVAL;
2164 		goto out_fw;
2165 	}
2166 
2167 	cs_dsp_info(dsp, "%s: v%d.%d.%d\n", file,
2168 		    (le32_to_cpu(hdr->ver) >> 16) & 0xff,
2169 		    (le32_to_cpu(hdr->ver) >>  8) & 0xff,
2170 		    le32_to_cpu(hdr->ver) & 0xff);
2171 
2172 	pos = le32_to_cpu(hdr->len);
2173 
2174 	blocks = 0;
2175 	while (pos < firmware->size) {
2176 		/* Is there enough data for a complete block header? */
2177 		if (sizeof(*blk) > firmware->size - pos) {
2178 			ret = -EOVERFLOW;
2179 			goto out_fw;
2180 		}
2181 
2182 		blk = (void *)(&firmware->data[pos]);
2183 
2184 		if (le32_to_cpu(blk->len) > firmware->size - pos - sizeof(*blk)) {
2185 			ret = -EOVERFLOW;
2186 			goto out_fw;
2187 		}
2188 
2189 		type = le16_to_cpu(blk->type);
2190 		offset = le16_to_cpu(blk->offset);
2191 		version = le32_to_cpu(blk->ver) >> 8;
2192 
2193 		cs_dsp_dbg(dsp, "%s.%d: %x v%d.%d.%d\n",
2194 			   file, blocks, le32_to_cpu(blk->id),
2195 			   (le32_to_cpu(blk->ver) >> 16) & 0xff,
2196 			   (le32_to_cpu(blk->ver) >>  8) & 0xff,
2197 			   le32_to_cpu(blk->ver) & 0xff);
2198 		cs_dsp_dbg(dsp, "%s.%d: %d bytes at 0x%x in %x\n",
2199 			   file, blocks, le32_to_cpu(blk->len), offset, type);
2200 
2201 		reg = 0;
2202 		region_name = "Unknown";
2203 		switch (type) {
2204 		case (WMFW_NAME_TEXT << 8):
2205 			cs_dsp_info(dsp, "%s: %.*s\n", dsp->fw_name,
2206 				    min(le32_to_cpu(blk->len), 100), blk->data);
2207 			break;
2208 		case (WMFW_INFO_TEXT << 8):
2209 		case (WMFW_METADATA << 8):
2210 			break;
2211 		case (WMFW_ABSOLUTE << 8):
2212 			/*
2213 			 * Old files may use this for global
2214 			 * coefficients.
2215 			 */
2216 			if (le32_to_cpu(blk->id) == dsp->fw_id &&
2217 			    offset == 0) {
2218 				region_name = "global coefficients";
2219 				mem = cs_dsp_find_region(dsp, type);
2220 				if (!mem) {
2221 					cs_dsp_err(dsp, "No ZM\n");
2222 					break;
2223 				}
2224 				reg = dsp->ops->region_to_reg(mem, 0);
2225 
2226 			} else {
2227 				region_name = "register";
2228 				reg = offset;
2229 			}
2230 			break;
2231 
2232 		case WMFW_ADSP1_DM:
2233 		case WMFW_ADSP1_ZM:
2234 		case WMFW_ADSP2_XM:
2235 		case WMFW_ADSP2_YM:
2236 		case WMFW_HALO_XM_PACKED:
2237 		case WMFW_HALO_YM_PACKED:
2238 		case WMFW_HALO_PM_PACKED:
2239 			cs_dsp_dbg(dsp, "%s.%d: %d bytes in %x for %x\n",
2240 				   file, blocks, le32_to_cpu(blk->len),
2241 				   type, le32_to_cpu(blk->id));
2242 
2243 			region_name = cs_dsp_mem_region_name(type);
2244 			mem = cs_dsp_find_region(dsp, type);
2245 			if (!mem) {
2246 				cs_dsp_err(dsp, "No base for region %x\n", type);
2247 				break;
2248 			}
2249 
2250 			alg_region = cs_dsp_find_alg_region(dsp, type,
2251 							    le32_to_cpu(blk->id));
2252 			if (alg_region) {
2253 				if (version != alg_region->ver)
2254 					cs_dsp_warn(dsp,
2255 						    "Algorithm coefficient version %d.%d.%d but expected %d.%d.%d\n",
2256 						   (version >> 16) & 0xFF,
2257 						   (version >> 8) & 0xFF,
2258 						   version & 0xFF,
2259 						   (alg_region->ver >> 16) & 0xFF,
2260 						   (alg_region->ver >> 8) & 0xFF,
2261 						   alg_region->ver & 0xFF);
2262 
2263 				reg = alg_region->base;
2264 				reg = dsp->ops->region_to_reg(mem, reg);
2265 				reg += offset;
2266 			} else {
2267 				cs_dsp_err(dsp, "No %s for algorithm %x\n",
2268 					   region_name, le32_to_cpu(blk->id));
2269 			}
2270 			break;
2271 
2272 		default:
2273 			cs_dsp_err(dsp, "%s.%d: Unknown region type %x at %d\n",
2274 				   file, blocks, type, pos);
2275 			break;
2276 		}
2277 
2278 		if (reg) {
2279 			region_len = le32_to_cpu(blk->len);
2280 			if (region_len > buf_len) {
2281 				buf_len = round_up(region_len, PAGE_SIZE);
2282 				kfree(buf);
2283 				buf = kmalloc(buf_len, GFP_KERNEL | GFP_DMA);
2284 				if (!buf) {
2285 					ret = -ENOMEM;
2286 					goto out_fw;
2287 				}
2288 			}
2289 
2290 			memcpy(buf, blk->data, region_len);
2291 
2292 			cs_dsp_dbg(dsp, "%s.%d: Writing %zu bytes at %x\n",
2293 				   file, blocks, region_len, reg);
2294 			ret = regmap_raw_write(regmap, reg, buf, region_len);
2295 			if (ret != 0) {
2296 				cs_dsp_err(dsp,
2297 					   "%s.%d: Failed to write to %x in %s: %d\n",
2298 					   file, blocks, reg, region_name, ret);
2299 			}
2300 		}
2301 
2302 		pos += (le32_to_cpu(blk->len) + sizeof(*blk) + 3) & ~0x03;
2303 		blocks++;
2304 	}
2305 
2306 	if (pos > firmware->size)
2307 		cs_dsp_warn(dsp, "%s.%d: %zu bytes at end of file\n",
2308 			    file, blocks, pos - firmware->size);
2309 
2310 	cs_dsp_debugfs_save_binname(dsp, file);
2311 
2312 	ret = 0;
2313 out_fw:
2314 	if (ret == -EOVERFLOW)
2315 		cs_dsp_err(dsp, "%s: file content overflows file data\n", file);
2316 
2317 	return ret;
2318 }
2319 
2320 static int cs_dsp_create_name(struct cs_dsp *dsp)
2321 {
2322 	if (!dsp->name) {
2323 		dsp->name = devm_kasprintf(dsp->dev, GFP_KERNEL, "DSP%d",
2324 					   dsp->num);
2325 		if (!dsp->name)
2326 			return -ENOMEM;
2327 	}
2328 
2329 	return 0;
2330 }
2331 
2332 static const struct cs_dsp_client_ops cs_dsp_default_client_ops = {
2333 };
2334 
2335 static int cs_dsp_common_init(struct cs_dsp *dsp)
2336 {
2337 	int ret;
2338 
2339 	ret = cs_dsp_create_name(dsp);
2340 	if (ret)
2341 		return ret;
2342 
2343 	INIT_LIST_HEAD(&dsp->alg_regions);
2344 	INIT_LIST_HEAD(&dsp->ctl_list);
2345 
2346 	mutex_init(&dsp->pwr_lock);
2347 
2348 	if (!dsp->client_ops)
2349 		dsp->client_ops = &cs_dsp_default_client_ops;
2350 
2351 #ifdef CONFIG_DEBUG_FS
2352 	/* Ensure this is invalid if client never provides a debugfs root */
2353 	dsp->debugfs_root = ERR_PTR(-ENODEV);
2354 #endif
2355 
2356 	return 0;
2357 }
2358 
2359 /**
2360  * cs_dsp_adsp1_init() - Initialise a cs_dsp structure representing a ADSP1 device
2361  * @dsp: pointer to DSP structure
2362  *
2363  * Return: Zero for success, a negative number on error.
2364  */
2365 int cs_dsp_adsp1_init(struct cs_dsp *dsp)
2366 {
2367 	dsp->ops = &cs_dsp_adsp1_ops;
2368 
2369 	return cs_dsp_common_init(dsp);
2370 }
2371 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_init, "FW_CS_DSP");
2372 
2373 /**
2374  * cs_dsp_adsp1_power_up() - Load and start the named firmware
2375  * @dsp: pointer to DSP structure
2376  * @wmfw_firmware: the firmware to be sent
2377  * @wmfw_filename: file name of firmware to be sent
2378  * @coeff_firmware: the coefficient data to be sent
2379  * @coeff_filename: file name of coefficient to data be sent
2380  * @fw_name: the user-friendly firmware name
2381  *
2382  * Return: Zero for success, a negative number on error.
2383  */
2384 int cs_dsp_adsp1_power_up(struct cs_dsp *dsp,
2385 			  const struct firmware *wmfw_firmware, const char *wmfw_filename,
2386 			  const struct firmware *coeff_firmware, const char *coeff_filename,
2387 			  const char *fw_name)
2388 {
2389 	unsigned int val;
2390 	int ret;
2391 
2392 	mutex_lock(&dsp->pwr_lock);
2393 
2394 	dsp->fw_name = fw_name;
2395 
2396 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2397 			   ADSP1_SYS_ENA, ADSP1_SYS_ENA);
2398 
2399 	/*
2400 	 * For simplicity set the DSP clock rate to be the
2401 	 * SYSCLK rate rather than making it configurable.
2402 	 */
2403 	if (dsp->sysclk_reg) {
2404 		ret = regmap_read(dsp->regmap, dsp->sysclk_reg, &val);
2405 		if (ret != 0) {
2406 			cs_dsp_err(dsp, "Failed to read SYSCLK state: %d\n", ret);
2407 			goto err_mutex;
2408 		}
2409 
2410 		val = (val & dsp->sysclk_mask) >> dsp->sysclk_shift;
2411 
2412 		ret = regmap_update_bits(dsp->regmap,
2413 					 dsp->base + ADSP1_CONTROL_31,
2414 					 ADSP1_CLK_SEL_MASK, val);
2415 		if (ret != 0) {
2416 			cs_dsp_err(dsp, "Failed to set clock rate: %d\n", ret);
2417 			goto err_mutex;
2418 		}
2419 	}
2420 
2421 	ret = cs_dsp_load(dsp, wmfw_firmware, wmfw_filename);
2422 	if (ret != 0)
2423 		goto err_ena;
2424 
2425 	ret = cs_dsp_adsp1_setup_algs(dsp);
2426 	if (ret != 0)
2427 		goto err_ena;
2428 
2429 	ret = cs_dsp_load_coeff(dsp, coeff_firmware, coeff_filename);
2430 	if (ret != 0)
2431 		goto err_ena;
2432 
2433 	/* Initialize caches for enabled and unset controls */
2434 	ret = cs_dsp_coeff_init_control_caches(dsp);
2435 	if (ret != 0)
2436 		goto err_ena;
2437 
2438 	/* Sync set controls */
2439 	ret = cs_dsp_coeff_sync_controls(dsp);
2440 	if (ret != 0)
2441 		goto err_ena;
2442 
2443 	dsp->booted = true;
2444 
2445 	/* Start the core running */
2446 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2447 			   ADSP1_CORE_ENA | ADSP1_START,
2448 			   ADSP1_CORE_ENA | ADSP1_START);
2449 
2450 	dsp->running = true;
2451 
2452 	mutex_unlock(&dsp->pwr_lock);
2453 
2454 	return 0;
2455 
2456 err_ena:
2457 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2458 			   ADSP1_SYS_ENA, 0);
2459 err_mutex:
2460 	mutex_unlock(&dsp->pwr_lock);
2461 	return ret;
2462 }
2463 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_power_up, "FW_CS_DSP");
2464 
2465 /**
2466  * cs_dsp_adsp1_power_down() - Halts the DSP
2467  * @dsp: pointer to DSP structure
2468  */
2469 void cs_dsp_adsp1_power_down(struct cs_dsp *dsp)
2470 {
2471 	struct cs_dsp_coeff_ctl *ctl;
2472 
2473 	mutex_lock(&dsp->pwr_lock);
2474 
2475 	dsp->running = false;
2476 	dsp->booted = false;
2477 
2478 	/* Halt the core */
2479 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2480 			   ADSP1_CORE_ENA | ADSP1_START, 0);
2481 
2482 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_19,
2483 			   ADSP1_WDMA_BUFFER_LENGTH_MASK, 0);
2484 
2485 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2486 			   ADSP1_SYS_ENA, 0);
2487 
2488 	list_for_each_entry(ctl, &dsp->ctl_list, list)
2489 		ctl->enabled = 0;
2490 
2491 	cs_dsp_free_alg_regions(dsp);
2492 
2493 	mutex_unlock(&dsp->pwr_lock);
2494 }
2495 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_power_down, "FW_CS_DSP");
2496 
2497 static int cs_dsp_adsp2v2_enable_core(struct cs_dsp *dsp)
2498 {
2499 	unsigned int val;
2500 	int ret, count;
2501 
2502 	/* Wait for the RAM to start, should be near instantaneous */
2503 	for (count = 0; count < 10; ++count) {
2504 		ret = regmap_read(dsp->regmap, dsp->base + ADSP2_STATUS1, &val);
2505 		if (ret != 0)
2506 			return ret;
2507 
2508 		if (val & ADSP2_RAM_RDY)
2509 			break;
2510 
2511 		usleep_range(250, 500);
2512 	}
2513 
2514 	if (!(val & ADSP2_RAM_RDY)) {
2515 		cs_dsp_err(dsp, "Failed to start DSP RAM\n");
2516 		return -EBUSY;
2517 	}
2518 
2519 	cs_dsp_dbg(dsp, "RAM ready after %d polls\n", count);
2520 
2521 	return 0;
2522 }
2523 
2524 static int cs_dsp_adsp2_enable_core(struct cs_dsp *dsp)
2525 {
2526 	int ret;
2527 
2528 	ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2529 				 ADSP2_SYS_ENA, ADSP2_SYS_ENA);
2530 	if (ret != 0)
2531 		return ret;
2532 
2533 	return cs_dsp_adsp2v2_enable_core(dsp);
2534 }
2535 
2536 static int cs_dsp_adsp2_lock(struct cs_dsp *dsp, unsigned int lock_regions)
2537 {
2538 	struct regmap *regmap = dsp->regmap;
2539 	unsigned int code0, code1, lock_reg;
2540 
2541 	if (!(lock_regions & CS_ADSP2_REGION_ALL))
2542 		return 0;
2543 
2544 	lock_regions &= CS_ADSP2_REGION_ALL;
2545 	lock_reg = dsp->base + ADSP2_LOCK_REGION_1_LOCK_REGION_0;
2546 
2547 	while (lock_regions) {
2548 		code0 = code1 = 0;
2549 		if (lock_regions & BIT(0)) {
2550 			code0 = ADSP2_LOCK_CODE_0;
2551 			code1 = ADSP2_LOCK_CODE_1;
2552 		}
2553 		if (lock_regions & BIT(1)) {
2554 			code0 |= ADSP2_LOCK_CODE_0 << ADSP2_LOCK_REGION_SHIFT;
2555 			code1 |= ADSP2_LOCK_CODE_1 << ADSP2_LOCK_REGION_SHIFT;
2556 		}
2557 		regmap_write(regmap, lock_reg, code0);
2558 		regmap_write(regmap, lock_reg, code1);
2559 		lock_regions >>= 2;
2560 		lock_reg += 2;
2561 	}
2562 
2563 	return 0;
2564 }
2565 
2566 static int cs_dsp_adsp2_enable_memory(struct cs_dsp *dsp)
2567 {
2568 	return regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2569 				  ADSP2_MEM_ENA, ADSP2_MEM_ENA);
2570 }
2571 
2572 static void cs_dsp_adsp2_disable_memory(struct cs_dsp *dsp)
2573 {
2574 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2575 			   ADSP2_MEM_ENA, 0);
2576 }
2577 
2578 static void cs_dsp_adsp2_disable_core(struct cs_dsp *dsp)
2579 {
2580 	regmap_write(dsp->regmap, dsp->base + ADSP2_RDMA_CONFIG_1, 0);
2581 	regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_1, 0);
2582 	regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_2, 0);
2583 
2584 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2585 			   ADSP2_SYS_ENA, 0);
2586 }
2587 
2588 static void cs_dsp_adsp2v2_disable_core(struct cs_dsp *dsp)
2589 {
2590 	regmap_write(dsp->regmap, dsp->base + ADSP2_RDMA_CONFIG_1, 0);
2591 	regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_1, 0);
2592 	regmap_write(dsp->regmap, dsp->base + ADSP2V2_WDMA_CONFIG_2, 0);
2593 }
2594 
2595 static int cs_dsp_halo_configure_mpu(struct cs_dsp *dsp, unsigned int lock_regions)
2596 {
2597 	struct reg_sequence config[] = {
2598 		{ dsp->base + HALO_MPU_LOCK_CONFIG,     0x5555 },
2599 		{ dsp->base + HALO_MPU_LOCK_CONFIG,     0xAAAA },
2600 		{ dsp->base + HALO_MPU_XMEM_ACCESS_0,   0xFFFFFFFF },
2601 		{ dsp->base + HALO_MPU_YMEM_ACCESS_0,   0xFFFFFFFF },
2602 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_0, lock_regions },
2603 		{ dsp->base + HALO_MPU_XREG_ACCESS_0,   lock_regions },
2604 		{ dsp->base + HALO_MPU_YREG_ACCESS_0,   lock_regions },
2605 		{ dsp->base + HALO_MPU_XMEM_ACCESS_1,   0xFFFFFFFF },
2606 		{ dsp->base + HALO_MPU_YMEM_ACCESS_1,   0xFFFFFFFF },
2607 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_1, lock_regions },
2608 		{ dsp->base + HALO_MPU_XREG_ACCESS_1,   lock_regions },
2609 		{ dsp->base + HALO_MPU_YREG_ACCESS_1,   lock_regions },
2610 		{ dsp->base + HALO_MPU_XMEM_ACCESS_2,   0xFFFFFFFF },
2611 		{ dsp->base + HALO_MPU_YMEM_ACCESS_2,   0xFFFFFFFF },
2612 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_2, lock_regions },
2613 		{ dsp->base + HALO_MPU_XREG_ACCESS_2,   lock_regions },
2614 		{ dsp->base + HALO_MPU_YREG_ACCESS_2,   lock_regions },
2615 		{ dsp->base + HALO_MPU_XMEM_ACCESS_3,   0xFFFFFFFF },
2616 		{ dsp->base + HALO_MPU_YMEM_ACCESS_3,   0xFFFFFFFF },
2617 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_3, lock_regions },
2618 		{ dsp->base + HALO_MPU_XREG_ACCESS_3,   lock_regions },
2619 		{ dsp->base + HALO_MPU_YREG_ACCESS_3,   lock_regions },
2620 		{ dsp->base + HALO_MPU_LOCK_CONFIG,     0 },
2621 	};
2622 
2623 	return regmap_multi_reg_write(dsp->regmap, config, ARRAY_SIZE(config));
2624 }
2625 
2626 /**
2627  * cs_dsp_set_dspclk() - Applies the given frequency to the given cs_dsp
2628  * @dsp: pointer to DSP structure
2629  * @freq: clock rate to set
2630  *
2631  * This is only for use on ADSP2 cores.
2632  *
2633  * Return: Zero for success, a negative number on error.
2634  */
2635 int cs_dsp_set_dspclk(struct cs_dsp *dsp, unsigned int freq)
2636 {
2637 	int ret;
2638 
2639 	ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CLOCKING,
2640 				 ADSP2_CLK_SEL_MASK,
2641 				 freq << ADSP2_CLK_SEL_SHIFT);
2642 	if (ret)
2643 		cs_dsp_err(dsp, "Failed to set clock rate: %d\n", ret);
2644 
2645 	return ret;
2646 }
2647 EXPORT_SYMBOL_NS_GPL(cs_dsp_set_dspclk, "FW_CS_DSP");
2648 
2649 static void cs_dsp_stop_watchdog(struct cs_dsp *dsp)
2650 {
2651 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_WATCHDOG,
2652 			   ADSP2_WDT_ENA_MASK, 0);
2653 }
2654 
2655 static void cs_dsp_halo_stop_watchdog(struct cs_dsp *dsp)
2656 {
2657 	regmap_update_bits(dsp->regmap, dsp->base + HALO_WDT_CONTROL,
2658 			   HALO_WDT_EN_MASK, 0);
2659 }
2660 
2661 /**
2662  * cs_dsp_power_up() - Downloads firmware to the DSP
2663  * @dsp: pointer to DSP structure
2664  * @wmfw_firmware: the firmware to be sent
2665  * @wmfw_filename: file name of firmware to be sent
2666  * @coeff_firmware: the coefficient data to be sent
2667  * @coeff_filename: file name of coefficient to data be sent
2668  * @fw_name: the user-friendly firmware name
2669  *
2670  * This function is used on ADSP2 and Halo DSP cores, it powers-up the DSP core
2671  * and downloads the firmware but does not start the firmware running. The
2672  * cs_dsp booted flag will be set once completed and if the core has a low-power
2673  * memory retention mode it will be put into this state after the firmware is
2674  * downloaded.
2675  *
2676  * Return: Zero for success, a negative number on error.
2677  */
2678 int cs_dsp_power_up(struct cs_dsp *dsp,
2679 		    const struct firmware *wmfw_firmware, const char *wmfw_filename,
2680 		    const struct firmware *coeff_firmware, const char *coeff_filename,
2681 		    const char *fw_name)
2682 {
2683 	int ret;
2684 
2685 	mutex_lock(&dsp->pwr_lock);
2686 
2687 	dsp->fw_name = fw_name;
2688 
2689 	if (dsp->ops->enable_memory) {
2690 		ret = dsp->ops->enable_memory(dsp);
2691 		if (ret != 0)
2692 			goto err_mutex;
2693 	}
2694 
2695 	if (dsp->ops->enable_core) {
2696 		ret = dsp->ops->enable_core(dsp);
2697 		if (ret != 0)
2698 			goto err_mem;
2699 	}
2700 
2701 	ret = cs_dsp_load(dsp, wmfw_firmware, wmfw_filename);
2702 	if (ret != 0)
2703 		goto err_ena;
2704 
2705 	ret = dsp->ops->setup_algs(dsp);
2706 	if (ret != 0)
2707 		goto err_ena;
2708 
2709 	ret = cs_dsp_load_coeff(dsp, coeff_firmware, coeff_filename);
2710 	if (ret != 0)
2711 		goto err_ena;
2712 
2713 	/* Initialize caches for enabled and unset controls */
2714 	ret = cs_dsp_coeff_init_control_caches(dsp);
2715 	if (ret != 0)
2716 		goto err_ena;
2717 
2718 	if (dsp->ops->disable_core)
2719 		dsp->ops->disable_core(dsp);
2720 
2721 	dsp->booted = true;
2722 
2723 	mutex_unlock(&dsp->pwr_lock);
2724 
2725 	return 0;
2726 err_ena:
2727 	if (dsp->ops->disable_core)
2728 		dsp->ops->disable_core(dsp);
2729 err_mem:
2730 	if (dsp->ops->disable_memory)
2731 		dsp->ops->disable_memory(dsp);
2732 err_mutex:
2733 	mutex_unlock(&dsp->pwr_lock);
2734 
2735 	return ret;
2736 }
2737 EXPORT_SYMBOL_NS_GPL(cs_dsp_power_up, "FW_CS_DSP");
2738 
2739 /**
2740  * cs_dsp_power_down() - Powers-down the DSP
2741  * @dsp: pointer to DSP structure
2742  *
2743  * cs_dsp_stop() must have been called before this function. The core will be
2744  * fully powered down and so the memory will not be retained.
2745  */
2746 void cs_dsp_power_down(struct cs_dsp *dsp)
2747 {
2748 	struct cs_dsp_coeff_ctl *ctl;
2749 
2750 	mutex_lock(&dsp->pwr_lock);
2751 
2752 	cs_dsp_debugfs_clear(dsp);
2753 
2754 	dsp->fw_id = 0;
2755 	dsp->fw_id_version = 0;
2756 
2757 	dsp->booted = false;
2758 
2759 	if (dsp->ops->disable_memory)
2760 		dsp->ops->disable_memory(dsp);
2761 
2762 	list_for_each_entry(ctl, &dsp->ctl_list, list)
2763 		ctl->enabled = 0;
2764 
2765 	cs_dsp_free_alg_regions(dsp);
2766 
2767 	mutex_unlock(&dsp->pwr_lock);
2768 
2769 	cs_dsp_dbg(dsp, "Shutdown complete\n");
2770 }
2771 EXPORT_SYMBOL_NS_GPL(cs_dsp_power_down, "FW_CS_DSP");
2772 
2773 static int cs_dsp_adsp2_start_core(struct cs_dsp *dsp)
2774 {
2775 	return regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2776 				  ADSP2_CORE_ENA | ADSP2_START,
2777 				  ADSP2_CORE_ENA | ADSP2_START);
2778 }
2779 
2780 static void cs_dsp_adsp2_stop_core(struct cs_dsp *dsp)
2781 {
2782 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2783 			   ADSP2_CORE_ENA | ADSP2_START, 0);
2784 }
2785 
2786 /**
2787  * cs_dsp_run() - Starts the firmware running
2788  * @dsp: pointer to DSP structure
2789  *
2790  * cs_dsp_power_up() must have previously been called successfully.
2791  *
2792  * Return: Zero for success, a negative number on error.
2793  */
2794 int cs_dsp_run(struct cs_dsp *dsp)
2795 {
2796 	int ret;
2797 
2798 	mutex_lock(&dsp->pwr_lock);
2799 
2800 	if (!dsp->booted) {
2801 		ret = -EIO;
2802 		goto err;
2803 	}
2804 
2805 	if (dsp->ops->enable_core) {
2806 		ret = dsp->ops->enable_core(dsp);
2807 		if (ret != 0)
2808 			goto err;
2809 	}
2810 
2811 	if (dsp->client_ops->pre_run) {
2812 		ret = dsp->client_ops->pre_run(dsp);
2813 		if (ret)
2814 			goto err;
2815 	}
2816 
2817 	/* Sync set controls */
2818 	ret = cs_dsp_coeff_sync_controls(dsp);
2819 	if (ret != 0)
2820 		goto err;
2821 
2822 	if (dsp->ops->lock_memory) {
2823 		ret = dsp->ops->lock_memory(dsp, dsp->lock_regions);
2824 		if (ret != 0) {
2825 			cs_dsp_err(dsp, "Error configuring MPU: %d\n", ret);
2826 			goto err;
2827 		}
2828 	}
2829 
2830 	if (dsp->ops->start_core) {
2831 		ret = dsp->ops->start_core(dsp);
2832 		if (ret != 0)
2833 			goto err;
2834 	}
2835 
2836 	dsp->running = true;
2837 
2838 	if (dsp->client_ops->post_run) {
2839 		ret = dsp->client_ops->post_run(dsp);
2840 		if (ret)
2841 			goto err;
2842 	}
2843 
2844 	mutex_unlock(&dsp->pwr_lock);
2845 
2846 	return 0;
2847 
2848 err:
2849 	if (dsp->ops->stop_core)
2850 		dsp->ops->stop_core(dsp);
2851 	if (dsp->ops->disable_core)
2852 		dsp->ops->disable_core(dsp);
2853 	mutex_unlock(&dsp->pwr_lock);
2854 
2855 	return ret;
2856 }
2857 EXPORT_SYMBOL_NS_GPL(cs_dsp_run, "FW_CS_DSP");
2858 
2859 /**
2860  * cs_dsp_stop() - Stops the firmware
2861  * @dsp: pointer to DSP structure
2862  *
2863  * Memory will not be disabled so firmware will remain loaded.
2864  */
2865 void cs_dsp_stop(struct cs_dsp *dsp)
2866 {
2867 	/* Tell the firmware to cleanup */
2868 	cs_dsp_signal_event_controls(dsp, CS_DSP_FW_EVENT_SHUTDOWN);
2869 
2870 	if (dsp->ops->stop_watchdog)
2871 		dsp->ops->stop_watchdog(dsp);
2872 
2873 	/* Log firmware state, it can be useful for analysis */
2874 	if (dsp->ops->show_fw_status)
2875 		dsp->ops->show_fw_status(dsp);
2876 
2877 	mutex_lock(&dsp->pwr_lock);
2878 
2879 	if (dsp->client_ops->pre_stop)
2880 		dsp->client_ops->pre_stop(dsp);
2881 
2882 	dsp->running = false;
2883 
2884 	if (dsp->ops->stop_core)
2885 		dsp->ops->stop_core(dsp);
2886 	if (dsp->ops->disable_core)
2887 		dsp->ops->disable_core(dsp);
2888 
2889 	if (dsp->client_ops->post_stop)
2890 		dsp->client_ops->post_stop(dsp);
2891 
2892 	mutex_unlock(&dsp->pwr_lock);
2893 
2894 	cs_dsp_dbg(dsp, "Execution stopped\n");
2895 }
2896 EXPORT_SYMBOL_NS_GPL(cs_dsp_stop, "FW_CS_DSP");
2897 
2898 static int cs_dsp_halo_start_core(struct cs_dsp *dsp)
2899 {
2900 	int ret;
2901 
2902 	ret = regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2903 				 HALO_CORE_RESET | HALO_CORE_EN,
2904 				 HALO_CORE_RESET | HALO_CORE_EN);
2905 	if (ret)
2906 		return ret;
2907 
2908 	return regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2909 				  HALO_CORE_RESET, 0);
2910 }
2911 
2912 static void cs_dsp_halo_stop_core(struct cs_dsp *dsp)
2913 {
2914 	regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2915 			   HALO_CORE_EN, 0);
2916 
2917 	/* reset halo core with CORE_SOFT_RESET */
2918 	regmap_update_bits(dsp->regmap, dsp->base + HALO_CORE_SOFT_RESET,
2919 			   HALO_CORE_SOFT_RESET_MASK, 1);
2920 }
2921 
2922 /**
2923  * cs_dsp_adsp2_init() - Initialise a cs_dsp structure representing a ADSP2 core
2924  * @dsp: pointer to DSP structure
2925  *
2926  * Return: Zero for success, a negative number on error.
2927  */
2928 int cs_dsp_adsp2_init(struct cs_dsp *dsp)
2929 {
2930 	int ret;
2931 
2932 	switch (dsp->rev) {
2933 	case 0:
2934 		/*
2935 		 * Disable the DSP memory by default when in reset for a small
2936 		 * power saving.
2937 		 */
2938 		ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2939 					 ADSP2_MEM_ENA, 0);
2940 		if (ret) {
2941 			cs_dsp_err(dsp,
2942 				   "Failed to clear memory retention: %d\n", ret);
2943 			return ret;
2944 		}
2945 
2946 		dsp->ops = &cs_dsp_adsp2_ops[0];
2947 		break;
2948 	case 1:
2949 		dsp->ops = &cs_dsp_adsp2_ops[1];
2950 		break;
2951 	default:
2952 		dsp->ops = &cs_dsp_adsp2_ops[2];
2953 		break;
2954 	}
2955 
2956 	return cs_dsp_common_init(dsp);
2957 }
2958 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp2_init, "FW_CS_DSP");
2959 
2960 /**
2961  * cs_dsp_halo_init() - Initialise a cs_dsp structure representing a HALO Core DSP
2962  * @dsp: pointer to DSP structure
2963  *
2964  * Return: Zero for success, a negative number on error.
2965  */
2966 int cs_dsp_halo_init(struct cs_dsp *dsp)
2967 {
2968 	if (dsp->no_core_startstop)
2969 		dsp->ops = &cs_dsp_halo_ao_ops;
2970 	else
2971 		dsp->ops = &cs_dsp_halo_ops;
2972 
2973 	return cs_dsp_common_init(dsp);
2974 }
2975 EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_init, "FW_CS_DSP");
2976 
2977 /**
2978  * cs_dsp_remove() - Clean a cs_dsp before deletion
2979  * @dsp: pointer to DSP structure
2980  */
2981 void cs_dsp_remove(struct cs_dsp *dsp)
2982 {
2983 	struct cs_dsp_coeff_ctl *ctl;
2984 
2985 	while (!list_empty(&dsp->ctl_list)) {
2986 		ctl = list_first_entry(&dsp->ctl_list, struct cs_dsp_coeff_ctl, list);
2987 
2988 		if (dsp->client_ops->control_remove)
2989 			dsp->client_ops->control_remove(ctl);
2990 
2991 		list_del(&ctl->list);
2992 		cs_dsp_free_ctl_blk(ctl);
2993 	}
2994 }
2995 EXPORT_SYMBOL_NS_GPL(cs_dsp_remove, "FW_CS_DSP");
2996 
2997 /**
2998  * cs_dsp_read_raw_data_block() - Reads a block of data from DSP memory
2999  * @dsp: pointer to DSP structure
3000  * @mem_type: the type of DSP memory containing the data to be read
3001  * @mem_addr: the address of the data within the memory region
3002  * @num_words: the length of the data to read
3003  * @data: a buffer to store the fetched data
3004  *
3005  * If this is used to read unpacked 24-bit memory, each 24-bit DSP word will
3006  * occupy 32-bits in data (MSbyte will be 0). This padding can be removed using
3007  * cs_dsp_remove_padding()
3008  *
3009  * Return: Zero for success, a negative number on error.
3010  */
3011 int cs_dsp_read_raw_data_block(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr,
3012 			       unsigned int num_words, __be32 *data)
3013 {
3014 	struct cs_dsp_region const *mem = cs_dsp_find_region(dsp, mem_type);
3015 	unsigned int reg;
3016 	int ret;
3017 
3018 	lockdep_assert_held(&dsp->pwr_lock);
3019 
3020 	if (!mem)
3021 		return -EINVAL;
3022 
3023 	reg = dsp->ops->region_to_reg(mem, mem_addr);
3024 
3025 	ret = regmap_raw_read(dsp->regmap, reg, data,
3026 			      sizeof(*data) * num_words);
3027 	if (ret < 0)
3028 		return ret;
3029 
3030 	return 0;
3031 }
3032 EXPORT_SYMBOL_NS_GPL(cs_dsp_read_raw_data_block, "FW_CS_DSP");
3033 
3034 /**
3035  * cs_dsp_read_data_word() - Reads a word from DSP memory
3036  * @dsp: pointer to DSP structure
3037  * @mem_type: the type of DSP memory containing the data to be read
3038  * @mem_addr: the address of the data within the memory region
3039  * @data: a buffer to store the fetched data
3040  *
3041  * Return: Zero for success, a negative number on error.
3042  */
3043 int cs_dsp_read_data_word(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr, u32 *data)
3044 {
3045 	__be32 raw;
3046 	int ret;
3047 
3048 	ret = cs_dsp_read_raw_data_block(dsp, mem_type, mem_addr, 1, &raw);
3049 	if (ret < 0)
3050 		return ret;
3051 
3052 	*data = be32_to_cpu(raw) & 0x00ffffffu;
3053 
3054 	return 0;
3055 }
3056 EXPORT_SYMBOL_NS_GPL(cs_dsp_read_data_word, "FW_CS_DSP");
3057 
3058 /**
3059  * cs_dsp_write_data_word() - Writes a word to DSP memory
3060  * @dsp: pointer to DSP structure
3061  * @mem_type: the type of DSP memory containing the data to be written
3062  * @mem_addr: the address of the data within the memory region
3063  * @data: the data to be written
3064  *
3065  * Return: Zero for success, a negative number on error.
3066  */
3067 int cs_dsp_write_data_word(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr, u32 data)
3068 {
3069 	struct cs_dsp_region const *mem = cs_dsp_find_region(dsp, mem_type);
3070 	__be32 val = cpu_to_be32(data & 0x00ffffffu);
3071 	unsigned int reg;
3072 
3073 	lockdep_assert_held(&dsp->pwr_lock);
3074 
3075 	if (!mem)
3076 		return -EINVAL;
3077 
3078 	reg = dsp->ops->region_to_reg(mem, mem_addr);
3079 
3080 	return regmap_raw_write(dsp->regmap, reg, &val, sizeof(val));
3081 }
3082 EXPORT_SYMBOL_NS_GPL(cs_dsp_write_data_word, "FW_CS_DSP");
3083 
3084 /**
3085  * cs_dsp_remove_padding() - Convert unpacked words to packed bytes
3086  * @buf: buffer containing DSP words read from DSP memory
3087  * @nwords: number of words to convert
3088  *
3089  * DSP words from the register map have pad bytes and the data bytes
3090  * are in swapped order. This swaps to the native endian order and
3091  * strips the pad bytes.
3092  */
3093 void cs_dsp_remove_padding(u32 *buf, int nwords)
3094 {
3095 	const __be32 *pack_in = (__be32 *)buf;
3096 	u8 *pack_out = (u8 *)buf;
3097 	int i;
3098 
3099 	for (i = 0; i < nwords; i++) {
3100 		u32 word = be32_to_cpu(*pack_in++);
3101 		*pack_out++ = (u8)word;
3102 		*pack_out++ = (u8)(word >> 8);
3103 		*pack_out++ = (u8)(word >> 16);
3104 	}
3105 }
3106 EXPORT_SYMBOL_NS_GPL(cs_dsp_remove_padding, "FW_CS_DSP");
3107 
3108 /**
3109  * cs_dsp_adsp2_bus_error() - Handle a DSP bus error interrupt
3110  * @dsp: pointer to DSP structure
3111  *
3112  * The firmware and DSP state will be logged for future analysis.
3113  */
3114 void cs_dsp_adsp2_bus_error(struct cs_dsp *dsp)
3115 {
3116 	unsigned int val;
3117 	struct regmap *regmap = dsp->regmap;
3118 	int ret = 0;
3119 
3120 	mutex_lock(&dsp->pwr_lock);
3121 
3122 	ret = regmap_read(regmap, dsp->base + ADSP2_LOCK_REGION_CTRL, &val);
3123 	if (ret) {
3124 		cs_dsp_err(dsp,
3125 			   "Failed to read Region Lock Ctrl register: %d\n", ret);
3126 		goto error;
3127 	}
3128 
3129 	if (val & ADSP2_WDT_TIMEOUT_STS_MASK) {
3130 		cs_dsp_err(dsp, "watchdog timeout error\n");
3131 		dsp->ops->stop_watchdog(dsp);
3132 		if (dsp->client_ops->watchdog_expired)
3133 			dsp->client_ops->watchdog_expired(dsp);
3134 	}
3135 
3136 	if (val & (ADSP2_ADDR_ERR_MASK | ADSP2_REGION_LOCK_ERR_MASK)) {
3137 		if (val & ADSP2_ADDR_ERR_MASK)
3138 			cs_dsp_err(dsp, "bus error: address error\n");
3139 		else
3140 			cs_dsp_err(dsp, "bus error: region lock error\n");
3141 
3142 		ret = regmap_read(regmap, dsp->base + ADSP2_BUS_ERR_ADDR, &val);
3143 		if (ret) {
3144 			cs_dsp_err(dsp,
3145 				   "Failed to read Bus Err Addr register: %d\n",
3146 				   ret);
3147 			goto error;
3148 		}
3149 
3150 		cs_dsp_err(dsp, "bus error address = 0x%x\n",
3151 			   val & ADSP2_BUS_ERR_ADDR_MASK);
3152 
3153 		ret = regmap_read(regmap,
3154 				  dsp->base + ADSP2_PMEM_ERR_ADDR_XMEM_ERR_ADDR,
3155 				  &val);
3156 		if (ret) {
3157 			cs_dsp_err(dsp,
3158 				   "Failed to read Pmem Xmem Err Addr register: %d\n",
3159 				   ret);
3160 			goto error;
3161 		}
3162 
3163 		cs_dsp_err(dsp, "xmem error address = 0x%x\n",
3164 			   val & ADSP2_XMEM_ERR_ADDR_MASK);
3165 		cs_dsp_err(dsp, "pmem error address = 0x%x\n",
3166 			   (val & ADSP2_PMEM_ERR_ADDR_MASK) >>
3167 			   ADSP2_PMEM_ERR_ADDR_SHIFT);
3168 	}
3169 
3170 	regmap_update_bits(regmap, dsp->base + ADSP2_LOCK_REGION_CTRL,
3171 			   ADSP2_CTRL_ERR_EINT, ADSP2_CTRL_ERR_EINT);
3172 
3173 error:
3174 	mutex_unlock(&dsp->pwr_lock);
3175 }
3176 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp2_bus_error, "FW_CS_DSP");
3177 
3178 /**
3179  * cs_dsp_halo_bus_error() - Handle a DSP bus error interrupt
3180  * @dsp: pointer to DSP structure
3181  *
3182  * The firmware and DSP state will be logged for future analysis.
3183  */
3184 void cs_dsp_halo_bus_error(struct cs_dsp *dsp)
3185 {
3186 	struct regmap *regmap = dsp->regmap;
3187 	unsigned int fault[6];
3188 	struct reg_sequence clear[] = {
3189 		{ dsp->base + HALO_MPU_XM_VIO_STATUS,     0x0 },
3190 		{ dsp->base + HALO_MPU_YM_VIO_STATUS,     0x0 },
3191 		{ dsp->base + HALO_MPU_PM_VIO_STATUS,     0x0 },
3192 	};
3193 	int ret;
3194 
3195 	mutex_lock(&dsp->pwr_lock);
3196 
3197 	ret = regmap_read(regmap, dsp->base_sysinfo + HALO_AHBM_WINDOW_DEBUG_1,
3198 			  fault);
3199 	if (ret) {
3200 		cs_dsp_warn(dsp, "Failed to read AHB DEBUG_1: %d\n", ret);
3201 		goto exit_unlock;
3202 	}
3203 
3204 	cs_dsp_warn(dsp, "AHB: STATUS: 0x%x ADDR: 0x%x\n",
3205 		    *fault & HALO_AHBM_FLAGS_ERR_MASK,
3206 		    (*fault & HALO_AHBM_CORE_ERR_ADDR_MASK) >>
3207 		    HALO_AHBM_CORE_ERR_ADDR_SHIFT);
3208 
3209 	ret = regmap_read(regmap, dsp->base_sysinfo + HALO_AHBM_WINDOW_DEBUG_0,
3210 			  fault);
3211 	if (ret) {
3212 		cs_dsp_warn(dsp, "Failed to read AHB DEBUG_0: %d\n", ret);
3213 		goto exit_unlock;
3214 	}
3215 
3216 	cs_dsp_warn(dsp, "AHB: SYS_ADDR: 0x%x\n", *fault);
3217 
3218 	ret = regmap_bulk_read(regmap, dsp->base + HALO_MPU_XM_VIO_ADDR,
3219 			       fault, ARRAY_SIZE(fault));
3220 	if (ret) {
3221 		cs_dsp_warn(dsp, "Failed to read MPU fault info: %d\n", ret);
3222 		goto exit_unlock;
3223 	}
3224 
3225 	cs_dsp_warn(dsp, "XM: STATUS:0x%x ADDR:0x%x\n", fault[1], fault[0]);
3226 	cs_dsp_warn(dsp, "YM: STATUS:0x%x ADDR:0x%x\n", fault[3], fault[2]);
3227 	cs_dsp_warn(dsp, "PM: STATUS:0x%x ADDR:0x%x\n", fault[5], fault[4]);
3228 
3229 	ret = regmap_multi_reg_write(dsp->regmap, clear, ARRAY_SIZE(clear));
3230 	if (ret)
3231 		cs_dsp_warn(dsp, "Failed to clear MPU status: %d\n", ret);
3232 
3233 exit_unlock:
3234 	mutex_unlock(&dsp->pwr_lock);
3235 }
3236 EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_bus_error, "FW_CS_DSP");
3237 
3238 /**
3239  * cs_dsp_halo_wdt_expire() - Handle DSP watchdog expiry
3240  * @dsp: pointer to DSP structure
3241  *
3242  * This is logged for future analysis.
3243  */
3244 void cs_dsp_halo_wdt_expire(struct cs_dsp *dsp)
3245 {
3246 	mutex_lock(&dsp->pwr_lock);
3247 
3248 	cs_dsp_warn(dsp, "WDT Expiry Fault\n");
3249 
3250 	dsp->ops->stop_watchdog(dsp);
3251 	if (dsp->client_ops->watchdog_expired)
3252 		dsp->client_ops->watchdog_expired(dsp);
3253 
3254 	mutex_unlock(&dsp->pwr_lock);
3255 }
3256 EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_wdt_expire, "FW_CS_DSP");
3257 
3258 static const struct cs_dsp_ops cs_dsp_adsp1_ops = {
3259 	.validate_version = cs_dsp_validate_version,
3260 	.parse_sizes = cs_dsp_adsp1_parse_sizes,
3261 	.region_to_reg = cs_dsp_region_to_reg,
3262 };
3263 
3264 static const struct cs_dsp_ops cs_dsp_adsp2_ops[] = {
3265 	{
3266 		.parse_sizes = cs_dsp_adsp2_parse_sizes,
3267 		.validate_version = cs_dsp_validate_version,
3268 		.setup_algs = cs_dsp_adsp2_setup_algs,
3269 		.region_to_reg = cs_dsp_region_to_reg,
3270 
3271 		.show_fw_status = cs_dsp_adsp2_show_fw_status,
3272 
3273 		.enable_memory = cs_dsp_adsp2_enable_memory,
3274 		.disable_memory = cs_dsp_adsp2_disable_memory,
3275 
3276 		.enable_core = cs_dsp_adsp2_enable_core,
3277 		.disable_core = cs_dsp_adsp2_disable_core,
3278 
3279 		.start_core = cs_dsp_adsp2_start_core,
3280 		.stop_core = cs_dsp_adsp2_stop_core,
3281 
3282 	},
3283 	{
3284 		.parse_sizes = cs_dsp_adsp2_parse_sizes,
3285 		.validate_version = cs_dsp_validate_version,
3286 		.setup_algs = cs_dsp_adsp2_setup_algs,
3287 		.region_to_reg = cs_dsp_region_to_reg,
3288 
3289 		.show_fw_status = cs_dsp_adsp2v2_show_fw_status,
3290 
3291 		.enable_memory = cs_dsp_adsp2_enable_memory,
3292 		.disable_memory = cs_dsp_adsp2_disable_memory,
3293 		.lock_memory = cs_dsp_adsp2_lock,
3294 
3295 		.enable_core = cs_dsp_adsp2v2_enable_core,
3296 		.disable_core = cs_dsp_adsp2v2_disable_core,
3297 
3298 		.start_core = cs_dsp_adsp2_start_core,
3299 		.stop_core = cs_dsp_adsp2_stop_core,
3300 	},
3301 	{
3302 		.parse_sizes = cs_dsp_adsp2_parse_sizes,
3303 		.validate_version = cs_dsp_validate_version,
3304 		.setup_algs = cs_dsp_adsp2_setup_algs,
3305 		.region_to_reg = cs_dsp_region_to_reg,
3306 
3307 		.show_fw_status = cs_dsp_adsp2v2_show_fw_status,
3308 		.stop_watchdog = cs_dsp_stop_watchdog,
3309 
3310 		.enable_memory = cs_dsp_adsp2_enable_memory,
3311 		.disable_memory = cs_dsp_adsp2_disable_memory,
3312 		.lock_memory = cs_dsp_adsp2_lock,
3313 
3314 		.enable_core = cs_dsp_adsp2v2_enable_core,
3315 		.disable_core = cs_dsp_adsp2v2_disable_core,
3316 
3317 		.start_core = cs_dsp_adsp2_start_core,
3318 		.stop_core = cs_dsp_adsp2_stop_core,
3319 	},
3320 };
3321 
3322 static const struct cs_dsp_ops cs_dsp_halo_ops = {
3323 	.parse_sizes = cs_dsp_adsp2_parse_sizes,
3324 	.validate_version = cs_dsp_halo_validate_version,
3325 	.setup_algs = cs_dsp_halo_setup_algs,
3326 	.region_to_reg = cs_dsp_halo_region_to_reg,
3327 
3328 	.show_fw_status = cs_dsp_halo_show_fw_status,
3329 	.stop_watchdog = cs_dsp_halo_stop_watchdog,
3330 
3331 	.lock_memory = cs_dsp_halo_configure_mpu,
3332 
3333 	.start_core = cs_dsp_halo_start_core,
3334 	.stop_core = cs_dsp_halo_stop_core,
3335 };
3336 
3337 static const struct cs_dsp_ops cs_dsp_halo_ao_ops = {
3338 	.parse_sizes = cs_dsp_adsp2_parse_sizes,
3339 	.validate_version = cs_dsp_halo_validate_version,
3340 	.setup_algs = cs_dsp_halo_setup_algs,
3341 	.region_to_reg = cs_dsp_halo_region_to_reg,
3342 	.show_fw_status = cs_dsp_halo_show_fw_status,
3343 };
3344 
3345 /**
3346  * cs_dsp_chunk_write() - Format data to a DSP memory chunk
3347  * @ch: Pointer to the chunk structure
3348  * @nbits: Number of bits to write
3349  * @val: Value to write
3350  *
3351  * This function sequentially writes values into the format required for DSP
3352  * memory, it handles both inserting of the padding bytes and converting to
3353  * big endian. Note that data is only committed to the chunk when a whole DSP
3354  * words worth of data is available.
3355  *
3356  * Return: Zero for success, a negative number on error.
3357  */
3358 int cs_dsp_chunk_write(struct cs_dsp_chunk *ch, int nbits, u32 val)
3359 {
3360 	int nwrite, i;
3361 
3362 	nwrite = min(CS_DSP_DATA_WORD_BITS - ch->cachebits, nbits);
3363 
3364 	ch->cache <<= nwrite;
3365 	ch->cache |= val >> (nbits - nwrite);
3366 	ch->cachebits += nwrite;
3367 	nbits -= nwrite;
3368 
3369 	if (ch->cachebits == CS_DSP_DATA_WORD_BITS) {
3370 		if (cs_dsp_chunk_end(ch))
3371 			return -ENOSPC;
3372 
3373 		ch->cache &= 0xFFFFFF;
3374 		for (i = 0; i < sizeof(ch->cache); i++, ch->cache <<= BITS_PER_BYTE)
3375 			*ch->data++ = (ch->cache & 0xFF000000) >> CS_DSP_DATA_WORD_BITS;
3376 
3377 		ch->bytes += sizeof(ch->cache);
3378 		ch->cachebits = 0;
3379 	}
3380 
3381 	if (nbits)
3382 		return cs_dsp_chunk_write(ch, nbits, val);
3383 
3384 	return 0;
3385 }
3386 EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_write, "FW_CS_DSP");
3387 
3388 /**
3389  * cs_dsp_chunk_flush() - Pad remaining data with zero and commit to chunk
3390  * @ch: Pointer to the chunk structure
3391  *
3392  * As cs_dsp_chunk_write only writes data when a whole DSP word is ready to
3393  * be written out it is possible that some data will remain in the cache, this
3394  * function will pad that data with zeros upto a whole DSP word and write out.
3395  *
3396  * Return: Zero for success, a negative number on error.
3397  */
3398 int cs_dsp_chunk_flush(struct cs_dsp_chunk *ch)
3399 {
3400 	if (!ch->cachebits)
3401 		return 0;
3402 
3403 	return cs_dsp_chunk_write(ch, CS_DSP_DATA_WORD_BITS - ch->cachebits, 0);
3404 }
3405 EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_flush, "FW_CS_DSP");
3406 
3407 /**
3408  * cs_dsp_chunk_read() - Parse data from a DSP memory chunk
3409  * @ch: Pointer to the chunk structure
3410  * @nbits: Number of bits to read
3411  *
3412  * This function sequentially reads values from a DSP memory formatted buffer,
3413  * it handles both removing of the padding bytes and converting from big endian.
3414  *
3415  * Return: A negative number is returned on error, otherwise the read value.
3416  */
3417 int cs_dsp_chunk_read(struct cs_dsp_chunk *ch, int nbits)
3418 {
3419 	int nread, i;
3420 	u32 result;
3421 
3422 	if (!ch->cachebits) {
3423 		if (cs_dsp_chunk_end(ch))
3424 			return -ENOSPC;
3425 
3426 		ch->cache = 0;
3427 		ch->cachebits = CS_DSP_DATA_WORD_BITS;
3428 
3429 		for (i = 0; i < sizeof(ch->cache); i++, ch->cache <<= BITS_PER_BYTE)
3430 			ch->cache |= *ch->data++;
3431 
3432 		ch->bytes += sizeof(ch->cache);
3433 	}
3434 
3435 	nread = min(ch->cachebits, nbits);
3436 	nbits -= nread;
3437 
3438 	result = ch->cache >> ((sizeof(ch->cache) * BITS_PER_BYTE) - nread);
3439 	ch->cache <<= nread;
3440 	ch->cachebits -= nread;
3441 
3442 	if (nbits)
3443 		result = (result << nbits) | cs_dsp_chunk_read(ch, nbits);
3444 
3445 	return result;
3446 }
3447 EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_read, "FW_CS_DSP");
3448 
3449 
3450 struct cs_dsp_wseq_op {
3451 	struct list_head list;
3452 	u32 address;
3453 	u32 data;
3454 	u16 offset;
3455 	u8 operation;
3456 };
3457 
3458 static void cs_dsp_wseq_clear(struct cs_dsp *dsp, struct cs_dsp_wseq *wseq)
3459 {
3460 	struct cs_dsp_wseq_op *op, *op_tmp;
3461 
3462 	list_for_each_entry_safe(op, op_tmp, &wseq->ops, list) {
3463 		list_del(&op->list);
3464 		devm_kfree(dsp->dev, op);
3465 	}
3466 }
3467 
3468 static int cs_dsp_populate_wseq(struct cs_dsp *dsp, struct cs_dsp_wseq *wseq)
3469 {
3470 	struct cs_dsp_wseq_op *op = NULL;
3471 	struct cs_dsp_chunk chunk;
3472 	u8 *words;
3473 	int ret;
3474 
3475 	if (!wseq->ctl) {
3476 		cs_dsp_err(dsp, "No control for write sequence\n");
3477 		return -EINVAL;
3478 	}
3479 
3480 	words = kzalloc(wseq->ctl->len, GFP_KERNEL);
3481 	if (!words)
3482 		return -ENOMEM;
3483 
3484 	ret = cs_dsp_coeff_read_ctrl(wseq->ctl, 0, words, wseq->ctl->len);
3485 	if (ret) {
3486 		cs_dsp_err(dsp, "Failed to read %s: %d\n", wseq->ctl->subname, ret);
3487 		goto err_free;
3488 	}
3489 
3490 	INIT_LIST_HEAD(&wseq->ops);
3491 
3492 	chunk = cs_dsp_chunk(words, wseq->ctl->len);
3493 
3494 	while (!cs_dsp_chunk_end(&chunk)) {
3495 		op = devm_kzalloc(dsp->dev, sizeof(*op), GFP_KERNEL);
3496 		if (!op) {
3497 			ret = -ENOMEM;
3498 			goto err_free;
3499 		}
3500 
3501 		op->offset = cs_dsp_chunk_bytes(&chunk);
3502 		op->operation = cs_dsp_chunk_read(&chunk, 8);
3503 
3504 		switch (op->operation) {
3505 		case CS_DSP_WSEQ_END:
3506 			op->data = WSEQ_END_OF_SCRIPT;
3507 			break;
3508 		case CS_DSP_WSEQ_UNLOCK:
3509 			op->data = cs_dsp_chunk_read(&chunk, 16);
3510 			break;
3511 		case CS_DSP_WSEQ_ADDR8:
3512 			op->address = cs_dsp_chunk_read(&chunk, 8);
3513 			op->data = cs_dsp_chunk_read(&chunk, 32);
3514 			break;
3515 		case CS_DSP_WSEQ_H16:
3516 		case CS_DSP_WSEQ_L16:
3517 			op->address = cs_dsp_chunk_read(&chunk, 24);
3518 			op->data = cs_dsp_chunk_read(&chunk, 16);
3519 			break;
3520 		case CS_DSP_WSEQ_FULL:
3521 			op->address = cs_dsp_chunk_read(&chunk, 32);
3522 			op->data = cs_dsp_chunk_read(&chunk, 32);
3523 			break;
3524 		default:
3525 			ret = -EINVAL;
3526 			cs_dsp_err(dsp, "Unsupported op: %X\n", op->operation);
3527 			devm_kfree(dsp->dev, op);
3528 			goto err_free;
3529 		}
3530 
3531 		list_add_tail(&op->list, &wseq->ops);
3532 
3533 		if (op->operation == CS_DSP_WSEQ_END)
3534 			break;
3535 	}
3536 
3537 	if (op && op->operation != CS_DSP_WSEQ_END) {
3538 		cs_dsp_err(dsp, "%s missing end terminator\n", wseq->ctl->subname);
3539 		ret = -ENOENT;
3540 	}
3541 
3542 err_free:
3543 	kfree(words);
3544 
3545 	return ret;
3546 }
3547 
3548 /**
3549  * cs_dsp_wseq_init() - Initialize write sequences contained within the loaded DSP firmware
3550  * @dsp: Pointer to DSP structure
3551  * @wseqs: List of write sequences to initialize
3552  * @num_wseqs: Number of write sequences to initialize
3553  *
3554  * Return: Zero for success, a negative number on error.
3555  */
3556 int cs_dsp_wseq_init(struct cs_dsp *dsp, struct cs_dsp_wseq *wseqs, unsigned int num_wseqs)
3557 {
3558 	int i, ret;
3559 
3560 	lockdep_assert_held(&dsp->pwr_lock);
3561 
3562 	for (i = 0; i < num_wseqs; i++) {
3563 		ret = cs_dsp_populate_wseq(dsp, &wseqs[i]);
3564 		if (ret) {
3565 			cs_dsp_wseq_clear(dsp, &wseqs[i]);
3566 			return ret;
3567 		}
3568 	}
3569 
3570 	return 0;
3571 }
3572 EXPORT_SYMBOL_NS_GPL(cs_dsp_wseq_init, "FW_CS_DSP");
3573 
3574 static struct cs_dsp_wseq_op *cs_dsp_wseq_find_op(u32 addr, u8 op_code,
3575 						  struct list_head *wseq_ops)
3576 {
3577 	struct cs_dsp_wseq_op *op;
3578 
3579 	list_for_each_entry(op, wseq_ops, list) {
3580 		if (op->operation == op_code && op->address == addr)
3581 			return op;
3582 	}
3583 
3584 	return NULL;
3585 }
3586 
3587 /**
3588  * cs_dsp_wseq_write() - Add or update an entry in a write sequence
3589  * @dsp: Pointer to a DSP structure
3590  * @wseq: Write sequence to write to
3591  * @addr: Address of the register to be written to
3592  * @data: Data to be written
3593  * @op_code: The type of operation of the new entry
3594  * @update: If true, searches for the first entry in the write sequence with
3595  * the same address and op_code, and replaces it. If false, creates a new entry
3596  * at the tail
3597  *
3598  * This function formats register address and value pairs into the format
3599  * required for write sequence entries, and either updates or adds the
3600  * new entry into the write sequence.
3601  *
3602  * If update is set to true and no matching entry is found, it will add a new entry.
3603  *
3604  * Return: Zero for success, a negative number on error.
3605  */
3606 int cs_dsp_wseq_write(struct cs_dsp *dsp, struct cs_dsp_wseq *wseq,
3607 		      u32 addr, u32 data, u8 op_code, bool update)
3608 {
3609 	struct cs_dsp_wseq_op *op_end, *op_new = NULL;
3610 	u32 words[WSEQ_OP_MAX_WORDS];
3611 	struct cs_dsp_chunk chunk;
3612 	int new_op_size, ret;
3613 
3614 	if (update)
3615 		op_new = cs_dsp_wseq_find_op(addr, op_code, &wseq->ops);
3616 
3617 	/* If entry to update is not found, treat it as a new operation */
3618 	if (!op_new) {
3619 		op_end = cs_dsp_wseq_find_op(0, CS_DSP_WSEQ_END, &wseq->ops);
3620 		if (!op_end) {
3621 			cs_dsp_err(dsp, "Missing terminator for %s\n", wseq->ctl->subname);
3622 			return -EINVAL;
3623 		}
3624 
3625 		op_new = devm_kzalloc(dsp->dev, sizeof(*op_new), GFP_KERNEL);
3626 		if (!op_new)
3627 			return -ENOMEM;
3628 
3629 		op_new->operation = op_code;
3630 		op_new->address = addr;
3631 		op_new->offset = op_end->offset;
3632 		update = false;
3633 	}
3634 
3635 	op_new->data = data;
3636 
3637 	chunk = cs_dsp_chunk(words, sizeof(words));
3638 	cs_dsp_chunk_write(&chunk, 8, op_new->operation);
3639 
3640 	switch (op_code) {
3641 	case CS_DSP_WSEQ_FULL:
3642 		cs_dsp_chunk_write(&chunk, 32, op_new->address);
3643 		cs_dsp_chunk_write(&chunk, 32, op_new->data);
3644 		break;
3645 	case CS_DSP_WSEQ_L16:
3646 	case CS_DSP_WSEQ_H16:
3647 		cs_dsp_chunk_write(&chunk, 24, op_new->address);
3648 		cs_dsp_chunk_write(&chunk, 16, op_new->data);
3649 		break;
3650 	default:
3651 		ret = -EINVAL;
3652 		cs_dsp_err(dsp, "Operation %X not supported\n", op_code);
3653 		goto op_new_free;
3654 	}
3655 
3656 	new_op_size = cs_dsp_chunk_bytes(&chunk);
3657 
3658 	if (!update) {
3659 		if (wseq->ctl->len - op_end->offset < new_op_size) {
3660 			cs_dsp_err(dsp, "Not enough memory in %s for entry\n", wseq->ctl->subname);
3661 			ret = -E2BIG;
3662 			goto op_new_free;
3663 		}
3664 
3665 		op_end->offset += new_op_size;
3666 
3667 		ret = cs_dsp_coeff_write_ctrl(wseq->ctl, op_end->offset / sizeof(u32),
3668 					      &op_end->data, sizeof(u32));
3669 		if (ret)
3670 			goto op_new_free;
3671 
3672 		list_add_tail(&op_new->list, &op_end->list);
3673 	}
3674 
3675 	ret = cs_dsp_coeff_write_ctrl(wseq->ctl, op_new->offset / sizeof(u32),
3676 				      words, new_op_size);
3677 	if (ret)
3678 		goto op_new_free;
3679 
3680 	return 0;
3681 
3682 op_new_free:
3683 	devm_kfree(dsp->dev, op_new);
3684 
3685 	return ret;
3686 }
3687 EXPORT_SYMBOL_NS_GPL(cs_dsp_wseq_write, "FW_CS_DSP");
3688 
3689 /**
3690  * cs_dsp_wseq_multi_write() - Add or update multiple entries in a write sequence
3691  * @dsp: Pointer to a DSP structure
3692  * @wseq: Write sequence to write to
3693  * @reg_seq: List of address-data pairs
3694  * @num_regs: Number of address-data pairs
3695  * @op_code: The types of operations of the new entries
3696  * @update: If true, searches for the first entry in the write sequence with
3697  * the same address and op_code, and replaces it. If false, creates a new entry
3698  * at the tail
3699  *
3700  * This function calls cs_dsp_wseq_write() for multiple address-data pairs.
3701  *
3702  * Return: Zero for success, a negative number on error.
3703  */
3704 int cs_dsp_wseq_multi_write(struct cs_dsp *dsp, struct cs_dsp_wseq *wseq,
3705 			    const struct reg_sequence *reg_seq, int num_regs,
3706 			    u8 op_code, bool update)
3707 {
3708 	int i, ret;
3709 
3710 	for (i = 0; i < num_regs; i++) {
3711 		ret = cs_dsp_wseq_write(dsp, wseq, reg_seq[i].reg,
3712 					reg_seq[i].def, op_code, update);
3713 		if (ret)
3714 			return ret;
3715 	}
3716 
3717 	return 0;
3718 }
3719 EXPORT_SYMBOL_NS_GPL(cs_dsp_wseq_multi_write, "FW_CS_DSP");
3720 
3721 MODULE_DESCRIPTION("Cirrus Logic DSP Support");
3722 MODULE_AUTHOR("Simon Trimmer <simont@opensource.cirrus.com>");
3723 MODULE_LICENSE("GPL v2");
3724